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Abstract 

Neural populations, rather than single neurons, may be the fundamental unit of cortical 

computation. Analyzing chronically recorded neural population activity is challenging not only 

because of the high dimensionality of activity in many neurons, but also because of changes in 

the recorded signal that may or may not be due to neural plasticity. Hidden Markov models 

(HMMs) are a promising technique for analyzing such data in terms of discrete, latent states, but 

previous approaches have either not considered the statistical properties of neural spiking data, 

have not been adaptable to longitudinal data, or have not modeled condition specific differences. 

We present a multilevel Bayesian HMM which addresses these shortcomings by incorporating 

multivariate Poisson log-normal emission probability distributions, multilevel parameter 

estimation, and trial-specific condition covariates. We applied this framework to multi-unit neural 

spiking data recorded using chronically implanted multi-electrode arrays from macaque primary 

motor cortex during a cued reaching, grasping, and placing task. We show that the model 

identifies latent neural population states which are tightly linked to behavioral events, despite the 

model being trained without any information about event timing. We show that these events 

represent specific spatiotemporal patterns of neural population activity and that their relationship 

to behavior is consistent over days of recording. The utility and stability of this approach is 

demonstrated using a previously learned task, but this multilevel Bayesian HMM framework would 

be especially suited for future studies of long-term plasticity in neural populations.  
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1. Introduction 

The accelerating scale of recorded neurophysiological data has been accompanied by a shift from 

the view that individual neurons are the basic unit of computation, to one that explains 

computational processes in terms of the dynamics of neural populations (Saxena & Cunningham, 

2019). Electrophysiology studies routinely record data from ever larger neural populations using 

chronically implanted multi-electrode arrays. These datasets are challenging to analyze because 

of their dimensionality, but recent evidence suggests that neural population activity in low 

dimensional subspaces, or manifolds, may be more important in neural computation than the 

firing of particular single neurons (Barack & Krakauer, 2021; Gallego et al., 2017, 2018; 

Humphries, 2021; Saxena & Cunningham, 2019). Chronically implanted electrode arrays present 

an additional analysis hurdle because the recorded signals can change dramatically over weeks 

and months of recording because of electrode drift or degradation (Barrese et al., 2016), or task-

induced plasticity (Dayan & Cohen, 2011). The ability to understand long term learning 

mechanisms requires such longitudinal recording, but analysis of the resulting data at the 

individual neuron level is hindered by the difficulty in tracking single neurons over such long 

periods. 

Hidden Markov Models (HMMs; Rabiner, 1989; Zucchini et al., 2017) are a particularly promising 

approach for analyzing the activity of large neural populations (e.g., Gat et al., 1997; Kemere et 

al., 2008; Mazurek et al., 2018; Ponce-Alvarez et al., 2012; Radons et al., 1994; Sadacca et al., 

2016; Seidemann et al., 1996; van Kempen et al., 2021; Xydas et al., 2011). HMMs are 

probabilistic models which infer unobservable (hidden) “states” from a temporal sequence of 

observable data. These models can therefore be used to infer discretized lower dimensional state 

spaces that represent high dimensional neural activity. Given a suitable observational model 

governing the emission of observable data from unobservable states, HMMs do not require trial 

averaging or smoothing, making them suitable for trial-by-trial analyses.  

Movements unfold in a specific spatiotemporal sequence, making it difficult to disentangle the 

underlying cognitive and motor mechanisms of goal-directed movements in which planning and 

feedforward and feedback- based control are fundamentally intertwined. The primary motor cortex 

is the largest source of corticospinal projections, making it uniquely situated to integrate these 

mechanisms and translate them to muscle coordination of the arm and hand. Because HMMs can 

identify discrete changes in continuous multivariate time series (Cunningham & Yu, 2014), they 

are a promising technique for decomposing dynamic M1 population activity into discrete states 

corresponding to the underlying cognitive and motor mechanisms of goal-directed movement. 

Previous HMM-based approaches to analyzing neural spiking activity have shown that such 

models can identify similar patterns of neural population activity in premotor cortex between 

execution and observation of the same actions (Mazurek et al., 2018), accurately predict changes 

in movement velocity in the primary motor cortex (Kadmon Harpaz et al., 2019), and segment 

baseline, plan, and peri-movement epochs from dorsal premotor cortex activity (Kemere et al., 

2008). However, these approaches typically use statistical models with assumptions that are 

unmet by neural spiking activity, and in general have not considered non-stationary patterns of 

activity over long term recordings.  
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In the current study, we present a novel Bayesian multilevel HMM (e.g., de Haan-Rietdijk et al., 

2017; Raffa & Dubin, 2015; Rueda et al., 2013; K. Shirley et al., 2016; Zhang & Berhane, 2014) 

adapted to longitudinal spiking data recorded from multi-electrode arrays. To accommodate the 

spike counts in multiple electrodes along with temporal overdispersion in the activity patterns, a 

multivariate Poisson log-normal emission distribution is adopted, with individual, trial-based 

covariates on the transition distribution. Each individual trial is thus allowed to have a specific 

sequence of hidden states, along with a specific set of transition probabilities and emission 

parameters via parametric random effects (i.e., trial-specific means) following a lognormal 

distribution centered on the group-level means. 

We trained the model on spiking neural data recorded from the primary motor cortex of the 

macaque monkey during a reaching, grasping, and placing task. State transitions were tightly 

linked to task behavioral events, and state dynamics were closely aligned with the duration of 

intervals between events. We show that the states identified by the HMM represent fast transitions 

between distinct spatiotemporal patterns of neural population activity which are generated during 

specific phases of the reach, grasp, and place task, and likely correspond to different motor control 

processes. 

2. Materials and methods 

2.1. Multilevel Bayesian hidden Markov model 

HMMs identify latent states from observable data by assuming that each state is only dependent 

on its previous state (the Markov assumption), and that only one state actively generates 

observations (emissions) at any given time point (i.e., states are mutually exclusive). The fitted 

model parameters include transition probabilities, which define the likelihood of transitioning from 

any given state to any other state, and emission probabilities, which govern the generation of 

observable data within each state. Classic frequentist HMMs applied to neural data have used a 

univariate multinomial distribution for emission probabilities (Bollimunta et al., 2012; Mazurek et 

al., 2018; Diomedi et al., 2021), encoding which of N neurons is spiking in each time bin, and 

choosing a random neuron if multiple neurons spike in the same bin. Such an approach does not 

capture the multivariate nature of neural population activity measured with high density 

recordings, nor the statistical distribution of neural spiking, and breaks down as larger neural 

populations are recorded from. Previous HMM frameworks which have used multivariate and/or 

Poisson emission probabilities (Radon, 1994; Siedemann, 1996; Kemere, 2008; Xydas, 2011; 

Ponce-Alvarez, 2012), have been single-level, and thus unable to model day-to-day variability in 

longitudinal neural recordings. We therefore used a multilevel Bayesian hidden Markov model 

framework (K. E. Shirley et al., 2012) to mitigate these shortcomings, modeling trial-specific 

random effects in transition and emission probabilities, multivariate Poisson log-normal emission 

probability distributions, and trial-specific condition covariates. 

The adoption of the multilevel framework therefore has a number of advantages over previous 

non-hierarchical approaches. First, all the information available in the full data set is used for the 

estimation of each trial-specific parameter, such that parameter estimation on trials consisting of 

a lower number of observations benefits from trials with more observations (Hox et al., 2018; 
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Schoot & Miočević, 2020). As a result, the hierarchical structure of the model produces a 

regularizing effect on the estimation of trial-specific parameters, making them more robust to 

outliers (Gelman & Pardoe, 2006). Second, the inclusion of parametric random effects as part of 

the hierarchical structure of the model not only offers a vehicle for the allocation of variability 

between trials, but also avoids the statistical caveats of ignoring the nested structure of the 

electrophysiological recordings such as the underestimation of standard errors (Aarts et al., 2014; 

Hox et al., 2018; Schoot & Miočević, 2020). Finally, the multilevel framework provides each trial 

with individual parameters including an individual trajectory over time, while ensuring that the 

meaning of each state remains the same across trials. This between-trial state consistency avoids 

the need for post-hoc state matching between trials, as would be necessary if separate single-

level models were fit to data from each day or recording session. 

In addition, the Bayesian HMM framework has several advantages over previous implementations 

relying on maximal likelihood estimation and expectation-maximization paradigms. First, it allows 

for the inclusion of trial-specific random effects in both transition and emission probabilities, which 

would rapidly become computationally intractable in alternative frameworks as the number of 

random effects (trials) and model complexity grow (Altman, 2007; de Haan-Rietdijk et al., 2017). 

Second, the Bayesian estimation procedure produces useful byproducts, at no extra 

computational cost, such as the local decoding of the states (the most likely state at each point in 

time) and credibility intervals (Bayesian analogue to confidence intervals) on all model 

parameters, avoiding the necessity for additional computationally intensive steps for estimation 

of parameter standard errors. Finally, although non-informative priors are most commonly used, 

adopting (weakly) informative priors allows the possibility of updating the model with new data as 

it becomes available. 

2.1.1 Model specification of a basic HMM 

The likelihood 𝐿𝑇 of a basic hidden Markov model (HMM) consisting of a single time series of 

observations 𝑜1:𝑇 and a first-order Markov chain of 𝑚 hidden states 𝑠1:𝑇 can be defined in terms 

of three basic components 

 

𝐿𝑇  =  𝛿 𝛩(𝑜1) 𝛤𝛩(𝑜2) 𝛤𝛩(𝑜3) . . . 𝛤𝛩(𝑜𝑇)1′     (1) 

 

where 𝛿 is a vector of dimensions (1 ×  𝑀) with the initial probabilities of the states 𝑠 ∈

{𝑆1, . . . , 𝑆𝑚}, 𝛤 is a transition probability matrix of dimensions (𝑀 ×  𝑀) denoting the transition 

probabilities 𝛾𝑖𝑗𝑡 =  𝑃(𝑠𝑡 = 𝑆𝑗 | 𝑠𝑡−1 = 𝑆𝑖) which is assumed to be homogeneous over the 

occasions 𝑡, 𝛩 is the emission distribution consisting of a diagonal matrix of dimensions (𝑀 ×  𝑀) 

with the 𝑖th diagonal element denoting the emission probability density 𝜃𝑖 =  𝑃(𝑜𝑡 = 𝑂𝑡  | 𝑠𝑡 = 𝑆𝑖) 

which can take any arbitrary form, and 1′ is a column vector of 𝑀 elements of value one. In the 

context of this study, a Poisson emission distribution is assumed for the observed spike counts 

𝑜𝑡  , given the hidden state 𝑠𝑡, such that 𝑃(𝑜𝑡 = 𝑂𝑡  | 𝑠𝑡 = 𝑆𝑖) ≡ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆𝑖). 𝜆 is the diagonal matrix 

of dimensions (𝑀 ×  𝑀) with its diagonal elements denoting the Poisson parameters (expected 

spike counts) for the 𝑀 hidden states 𝑆. 
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Although the model has been defined for a single observed sequence, it can readily be extended 

to multivariate data with the convenient assumption that the multiple sequences (e.g., 

observations from multi-electrode probes) are conditionally independent given the hidden states 

(e.g., Zucchini et al., 2017). That is, we specify the joint distribution 𝑃(𝑜1𝑡 = 𝑂1𝑡, 𝑜2𝑡 =

𝑂2𝑡, . . . , 𝑜𝑘𝑡 = 𝑂𝑘𝑡) for the 𝑘 ∈ {1,2, . . . , 𝐾} state-dependent emission distributions as the product of 

the 𝐾 marginal state-dependent emission probability densities 𝑃(𝑜𝑘𝑡 = 𝑂𝑘𝑡 | 𝑠𝑡 = 𝑆𝑖): 

𝑃(𝑜1𝑡 = 𝑂1𝑡, 𝑜2𝑡 = 𝑂2𝑡 , . . . , 𝑜𝑘𝑡 = 𝑂𝑘𝑡)  = ∏ 𝑃(𝑜𝑘𝑡 = 𝑂𝑘𝑡  | 𝑠𝑡 = 𝑆𝑖)𝐾
𝑘=1    (2) 

As a result, the likelihood of the general multivariate HMM takes the form: 

𝐿𝑇  = ∏ 𝛿𝛩𝑘(𝑜𝑘1) 𝛤𝛩𝑘(𝑜𝑘2) 𝛤𝛩𝑘(𝑜𝑘3) . . . 𝛤𝛩𝑘(𝑜𝑘𝑇)1′𝐾
𝑘=1     (3) 

A basic HMM of this specification can be easily estimated using direct likelihood maximization 

(e.g., Zucchini et al., 2017), following a computationally efficient recursive implementation of the 

Expectation-Maximization algorithm (Dempster et al., 1977) known as the Baum-Welch algorithm 

(Baum et al., 1970; Zucchini et al., 2017), or via the Bayesian estimation framework as we do 

here (e.g., Scott, 2002). 

2.1.2 Model specification of the Bayesian multilevel HMM 

In the current implementation of the multilevel HMM, 𝛾𝑛𝑖𝑗, the probability for the individual 𝑛 ∈

{1, . . , 𝑁} (normally an individual, but here each trial) of switching between a state 𝑖 and state 𝑗, at 

occasion 𝑡, follows a Multinomial Logit model 

𝛾𝑛𝑖𝑗 ∼ 𝑀𝑁𝐿(𝛼𝑛𝑖𝑗)      (4) 

Hence, each trials’ probability to transition from hidden state 𝑖 ∈ {1, . . , 𝑀} to state 𝑗 ∈ {1, . . , 𝑀} is 

modeled using 𝑀 batches of 𝑀 − 1 random intercepts, 𝛼𝑛𝑖𝑗. That is,  

𝛾𝑛𝑖𝑗 =
𝑒𝑥𝑝(𝛼𝑛𝑖𝑗)

1 + ∑ 𝑒𝑥𝑝(𝛼𝑛𝑖𝑙)𝑀
𝑙=2

      (5) 

Where the numerator is set equal to 1 for 𝑗 =  1, making the first state of every row of the transition 

probability matrix 𝛤 the baseline category.  

For the Bayesian implementation we adopt a group-level state-specific multivariate Normal prior 

distribution on the trial-specific parameters 𝛼𝑛𝑖𝑗, with mean vector �̄�𝑖∙  + 𝑋𝑛𝑝 �̄�𝑖∙𝑝 of (𝑀 − 1) 

elements, and covariance 𝛹𝑖𝑗 –denoting the covariance between the 𝑀 − 1 state 𝑖-specific 

intercepts over trials. Thus, in addition to the group-level intercepts �̄�𝑖𝑗, we have 𝑀 matrices of 

𝑝 ∗  (𝑀 − 1) fixed regression coefficients, �̄�, where 𝑝 denotes the number of used covariates. The 

columns of �̄�, �̄�𝑖𝑗. = (�̄�𝑖𝑗1, �̄�𝑖𝑗2, . . . , �̄�𝑖𝑗𝑝), are used to model the random intercepts denoting the 

probability of transitioning from state 𝑖 to state 𝑗 given 𝑝 individual-level covariates. 
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A convenient hyper-prior on the parameters of the group-level prior distribution is a multivariate 

Normal distribution for the mean vector �̄�𝑖𝑗 and the fixed regression coefficients  �̄�𝑖𝑗𝑝, and an 

Inverse Wishart distribution for the covariance 𝛹𝑖𝑗. That is, 

𝛼𝑛𝑖𝑗 ∼ 𝑁(�̄�𝑖𝑗  + 𝑋𝑛𝑝 �̄�𝑖𝑗𝑝, 𝛹𝑖𝑗 )     (6) 

�̄�𝑖𝑗 ∼ 𝑁(𝑚0𝑖𝑗 , 1/𝐾0𝛹𝑖𝑗)      (7) 

�̄�𝑖𝑗 ∼ 𝑁(𝑚1𝑖𝑗, 1/𝐾0𝛹𝑖𝑗)      (8) 

𝛹𝑖𝑗 ∼ 𝐼𝑊(𝛹0, 𝑑𝑓0)       (9) 

The parameters 𝑚0𝑖𝑗, 𝑚1𝑖𝑗, and 𝐾0 denote the values of the parameters of the hyper-prior on the 

group (mean) vector �̄�𝑖𝑗, and �̄�𝑖𝑗𝑝, respectively. Here, 𝑚0𝑖𝑗 and 𝑚1𝑖𝑗 represent vectors of means, 

and 𝐾0 denotes the number of observations (i.e., the number of hypothetical prior trials) on which 

𝑚0𝑖𝑗 and 𝑚1𝑖𝑗 are based. The parameters 𝛹0 and 𝑑𝑓0, respectively, denote values of the 

covariance and the degrees of freedom of the hyper-prior for the Inverse Wishart distribution on 

the group variance 𝛹𝑖𝑗 of the trial-specific random intercepts 𝛼𝑛𝑖𝑗. 

Just as for the basic HMM introduced in section 2.1.1, spike count data 𝑜𝑛𝑘𝑡 follow Poisson 

emission distributions, but here with trial-specific parameters 𝜆𝑛𝑖𝑘 conditionally independent on 

the state 𝑖 ∈ {1, . . , 𝑀}. That is, 

𝑜𝑛𝑘𝑡  ∼ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆𝑛𝑘𝑖)      (10) 

for electrode (the dependent variable) 𝑘 ∈ {1, . . , 𝐾}, on time point 𝑡 ∈ {1, . . , 𝑇}, and trial 𝑛 ∈

{1, . . , 𝑁}, given the state 𝑖. 

We adopt a group-level state-specific log-Normal prior distribution on the trial-specific parameters 

𝜆𝑛𝑘𝑖, with mean vector �̄�𝑘𝑖 of 𝑀 elements, and variance 𝜏𝑘𝑖. Note that for the emission distribution 

no covariates have been used to model the variability between the trial-specific, electrode-

specific, state-specific parameters 𝜆𝑛𝑘𝑖. The complete specification of the emission distribution 

adopted is detailed in probabilistic notation below, along with conveniently defined hyper-priors 

on the parameters of the model 

𝑙𝑛(𝜆𝑛𝑘𝑖) ∼ 𝑁(�̄�𝑘𝑖, 𝜏𝑘𝑖 )      (11) 

�̄�𝑘𝑖 ∼ 𝑁(𝑚0𝑘𝑖, 𝜏0𝑘𝑖)      (12) 

𝜏𝑘𝑖 ∼ 𝐼𝐺(𝑎𝑘𝑖, 𝑏𝑘𝑖)      (13) 

The parameters 𝑚0𝑘𝑖 denote the a priori expectations on the group-level mean counts on the 

logarithmic scale, along with the a priori expectations on their variability, 𝜏0𝑘𝑖. Finally, 𝑎𝑘𝑖, 𝑏𝑘𝑖are 

the hyper parameters denoting the shape and rate of the hyper prior on the between-individual 

variance 𝜏𝑘𝑖. 

Note that using a Normal prior on the log-transformation of the trial-specific, electrode-specific, 

state-specific Poisson parameters 𝜆𝑛𝑘𝑖 is equivalent to specifying a log-Normal prior on the 
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untransformed Poisson parameter. In addition, as previously mentioned, because 𝜆𝑛𝑘𝑖 are 

assumed to be conditionally independent given the state, no covariance matrix is estimated for 

the covariance between dependent variables.  

2.2 Reach-to-grasp task  

Two adult female rhesus macaques (Macaca mulatta) trained on a reach and grasp task served 

as the subjects. The animal handling as well as surgical and experimental procedures complied 

with European guideline (2010/63/UE) and authorized by the French Ministry for Higher Education 

and Research (project # 2016112713202878) in force on the care and use of laboratory animals, 

and were approved by the ethics committee CELYNE (comité d’éthique Lyonnais pour les 

neurosciences expérimentale, C2EA 42). After initial training, we performed a sterile surgery to 

implant six floating multielectrode arrays (FMA, Microprobes for Life Science, Gaithersburg, MD, 

USA) in the right (monkey 1) or left (monkey 2) cortical hemisphere. Each array was comprised 

of 32 platinum/iridium electrodes (impedance 0.5 MΩ at 1 kHz) with lengths ranging from 1 to 6 

mm, and with an inter-electrode spacing of 400 μm. One electrode array was implanted in the 

primary motor cortex (M1), two were implanted in the ventral premotor cortex (F5), one in the 

dorsal premotor cortex (F2), and two in the prefrontal cortex (45a and 46/12r), as estimated 

according to a previous magnetic resonance imaging scan. For the purposes of this study, we 

analyzed data from the M1 array of each monkey. 

Throughout the task, the monkey sat in front of a table containing a handle and a semicircular 

groove. A metallic cube, the target, was placed at 11 cm from the handle, in a slot within a metallic 

grasping platform which could be placed within the groove (Figure 1B). Contact with the handle, 

target object, and the bottom of the groove was recorded by a circuit which detected changes in 

resistance. The task was programmed and controlled by EventIDE software (OkazoLab Ltd). 

Trials started when the monkey grasped the handle. After a variable delay period (500 - 1000 

ms), an auditory go signal (900 Hz tone) instructed the monkey to reach for the target object, 

grasp it, and place it into the groove beside the grasping platform. The monkey was then rewarded 

with a few drops of water. Data was recorded from 1 second before the handle grasp until the 

reward. The task was run in blocks of 10 trials per condition (with the grasping platform placed in 

the left, right, or center of the groove). The left and right target positions were each 25° from the 

center of the semicircular groove, relative to the handle. The orientation of the slot in the grasping 

platform depended on the condition. In the center condition the slot was oriented at 0° with respect 

to the animal, and in the left and right conditions the slot was oriented at 45° to left and right, 

respectively. The monkey completed 2-4 blocks of 10 trials per day by condition (monkey 1: left: 

M = 17.1, SD = 5.4, center: M = 16.7, SD = 5.1, right: M = 16.7, SD = 7.2; monkey 2: left: M = 

16.0, SD = 4.1, center: M = 13.1, SD = 4.4, right: M = 15.2, SD = 3.9), for a total of 25-70 trials 

per day (monkey 1: M = 50.5, SD = 13.3; monkey 2: M = 44.3, SD = 11.9). Any trial in which the 

handle was released before the go signal or the grasping movement was not properly executed 

within 3 seconds was aborted and not rewarded. Each monkey used the hand contralateral to the 

implanted array to perform the task (monkey 1: left hand, monkey 2: right hand). 
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Figure 1. Experimental setup. A) Localization of the floating multi-electrode arrays (FMA) on the 

right cortical hemisphere of monkey 1. Six arrays were implanted in the frontal cortex, and here 

we analyze data from one which was located in the primary motor cortex (M1). Labels show the 

location of the arcuate sulcus (AS), central sulcus (CS), and principal sulcus (PS). B)  The monkey 

performed a cued reach-to-grasp task. In each trial, the monkey was required to grasp a handle 

until the go signal, then reach and grasp a metallic cube with a precision grasp (using the index 

finger and thumb), and finally place it into a groove in the table.  

 

2.3 Neural recordings 

The wideband neural signal (bandpass filtered at 0.1 to 7500 kHz) was recorded at 30 kS/s, and 

amplified and digitized (16-bit; 0.192 μV resolution) with an Intan Tech-based (Intan Technologies, 

Los Angeles, CA, USA) open source acquisition system (Open Ephys; Siegle et al. 2017). This 

system uses a 256-channel Intan RHD2000 series acquisition board and 32-channel headstages 

(RHD2132). Spike detection was performed offline using Trisdesclous (Garcia & Pouzat,2015). 

The common reference was removed to reduce ambient noise. Spikes were then detected from 

each electrode using a threshold of 2 times the median absolute deviation (MAD), and analyzed 

as multi-unit activity (MUA) in 10 ms bins. All electrodes in which at least one well-isolated spike 

waveform was detected were selected for the following analyses. We thus used a sample of 21 

electrodes out of 32 for monkey 1, and 25 out of 32 electrodes for monkey 2. Custom made 

detection panels were used to record the moments when the monkey’s hand released the handle, 

the hand contacted the target object, and when the object was placed in the groove. An Omniplex 

16-channel recording system (Plexon, Dallas, TX, USA) was used to simultaneously record these 

behavioral events. Trials were discarded if the response time (time between the go signal and 

handle release) was less than 100 or greater than 1500 ms, the reach duration (time between 

handle release and object contact) was less than 100 or greater than 1000 ms, or the placing 

duration (time between object contact and placing the object in the groove) was less than 100 or 

greater than 1200 ms, leaving 19 - 68 trials per day for monkey 1 (M = 43.9, SD = 15.46, N = 439; 

left: M = 14.8, SD = 5.74; center: M = 14.4, SD = 5.15; right: M = 14.7, SD = 7.73), and 23 - 49 
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per day for monkey 2 (M = 38.3, SD = 9.87, N = 383; left: M = 14.2, SD = 3.91; center: M = 10.8, 

SD = 3.55; right: M = 13.3, SD = 3.37). 

2.4 Model training 

Model training was performed using R (R Core Team, 2021) and the developer version of the 

package mHMMbayes (Aarts, 2019). In mHMMbayes, models are fitted using a hybrid Metropolis 

within Gibbs MCMC algorithm, which expands on classic HMM implementations by using 

Bayesian estimation as outlined in Scott (2002). Estimation results from a conventional 

expectation-maximization HMM trained on aggregated spike count data were used as starting 

values for the MCMC chain (depmixS4; Visser & Speekenbrink, 2010). The Bayesian multilevel 

HMM was fit to binned (10 ms bin width) spike counts from each electrode used with trial-specific 

intercepts, and covariates encoding each trial’s condition. The model was fit with 4000 iterations, 

with the first 2000 being discarded to dissipate the effect of starting conditions (burn-in). In fitting 

the model, agnostic non-informative hyper-priors were specified for all group-level parameters. 

Convergence of all sample-level parameters was checked by verifying that the multivariate 

potential scale reduction factor, Ȓ, was lower than a threshold of 1.05 (Brooks & Gelman, 1998) 

for two additional chains with randomized starting values. The sequence of most likely states 

given the neural data, along with each state’s forward probabilities were determined for each trial 

with the Viterbi algorithm (Forney, 1973; Viterbi, 1967) based on trial-specific parameters. 

Model selection was performed by comparing relative model fit using AIC (Akaike, 1974) and BIC 

(Schwarz, 1978). The ability of the selected model to reproduce the original multielectrode data 

was determined using Bayesian posterior predictive checks (PPCs; for more details see: Gelman 

& Shalizi, 2013; McElreath, 2020). For the PPCs, the fitted model was used to simulate 500 new 

data sets, after which we assessed the extent to which a set of summary statistics (mean, 

standard deviation, maximum counts, and proportion of zeros) on all electrodes (21 for monkey 1 

and 25 for monkey 2) at the aggregated sample-level in the simulated data recovered the values 

empirically observed in the electrophysiological data. 

The upper bound for the decoding accuracy of the neural states identified by the multilevel HMM 

was assessed with a small Monte Carlo simulation. The fitted model was used to simulate 100 

new data sets with the same number of trials and observations per trial as the empirical data used 

to fit the model. The simulated data sets were then used to fit new multilevel HMMs, after which 

the accuracy of state decoding was evaluated. 

2.5 Neural and behavioral data analysis 

To compare state onset and offset times to behavioral event timings, we identified episodes 

lasting at least 100 ms in each trial where a particular state was identified as the most likely using 

the Viterbi algorithm. If a state was activated multiple times in a trial, we used the first activation. 

The partial Spearman’s correlation coefficient was used to relate state onset and offset times to 

each behavioral event time (movement onset, object contact, and placing), accounting for 

correlations between other event timings and the onset or offset of all other states. Statistical 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 21, 2022. ; https://doi.org/10.1101/2022.10.17.512024doi: bioRxiv preprint 

https://www.zotero.org/google-docs/?Cuf9GC
https://www.zotero.org/google-docs/?izktEU
https://www.zotero.org/google-docs/?mM8Fhe
https://www.zotero.org/google-docs/?qyxoIP
https://www.zotero.org/google-docs/?EZpabE
https://www.zotero.org/google-docs/?170oQA
https://www.zotero.org/google-docs/?oYXYJ3
https://www.zotero.org/google-docs/?bTKpUc
https://www.zotero.org/google-docs/?CIZOJT
https://www.zotero.org/google-docs/?CIZOJT
https://doi.org/10.1101/2022.10.17.512024
http://creativecommons.org/licenses/by-nc/4.0/


10 
 

significance was tested using permutation tests (10,000 permutations) in which the event timings, 

but not the state onset and offset times, were shuffled in each iteration.  

Response time (the time between the go and movement onset events), reach duration (time 

between the movement onset and object contact events), and placing duration (time between the 

object contact and placing events) were computed for each trial and compared between 

conditions using linear mixed models with condition (left, center, right) as a fixed effect and day-

specific offsets as a random effect. The number of state activations per trial was given by the 

number of episodes where a state was identified as the most likely for at least 100 ms. To compute 

state lifetime, the first activation was used if a state was activated multiple times in a trial, as 

above. State activations and lifetime were compared across states and conditions using 

generalized linear mixed models (with Poisson distribution and log link function for activations, 

and Normal distribution and identity link function for lifetime) with condition, state, and their 

interaction as fixed effects, and trial nested within day offsets as random effects. The relationship 

between response time, reach duration, and placing duration and the number of activations and 

lifetime of each state was evaluated using partial Spearman correlation coefficients, accounting 

for all other behavioral durations and state activations or lifetimes. 

Multi-unit firing rate activity around state transitions was compared by aligning firing rates to the 

onset and offset of the maximum duration activation of each state around a time window lasting 

from 100 ms prior to the onset to half of the mean state lifetime after onset, and from half the 

mean state lifetime prior to offset to 100 ms after offset. The firing rate from each electrode was 

then baseline-corrected using the mean firing rate in the 100 ms prior to the state onset. For each 

electrode, we compared the mean, baseline-corrected firing rate in the 100 ms prior to state onset 

to that in the first half of the state lifetime using linear mixed models with state, time period 

(baseline or first half of lifetime), and their interactions as fixed effects, and trial nested within day 

offsets as random effects. In the same way, we compared the mean, baseline-corrected firing rate 

in the first half of the state lifetime to that in the second half. 

Temporal and spatial shuffling was performed by permuting the data either by time point or by 

electrode, 100 times. The resulting permuted data was run through the HMM to obtain forward 

probabilities and sequences of the most likely state. For each iteration, the partial Spearman 

coefficient between state onsets and offsets and the behavioral events (accounting for 

correlations between other event timings and the onset or offset of all other states, as above) was 

evaluated, and the resulting coefficients were used as the null distribution for comparison with the 

corresponding unshuffled coefficients. 

All mixed models were run in R (R Core Team, 2021) using lme4 (v1.1.26; Bates et al., 2018). 

Factor significance was determined using type II Wald Χ2 tests using the car package (v3.0.10; 

Fox et al., 2019), and pairwise Tukey-corrected follow-up tests were performed using estimated 

marginal means using the emmeans package (v1.5.3; Lenth et al., 2020) with Kenward-Roger 

approximated degrees of freedom. Code for all analyses is freely available 

(https://github.com/danclab/motor_mea_mbhmm). 
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3. Results 

Multiple multilevel Bayesian HMMs with 3 to 8 states were fit to single-trial multi-unit spiking 

activity (Figure 2A) recorded from the primary motor cortex of two macaque monkeys during a 

reach-grasp task. Model comparison (AIC and BIC) was used to select the optimal model, yielding 

a model with 6 states for monkey 1, and 5 states for monkey 2 (Figure S1). All group-level 

parameters in the optimal models met the convergence criterion. 

3.1 Simulations 

We started by evaluating the goodness of fit of the optimal models selected for the two monkeys 

with posterior predictive checks. The results of the posterior predictive checks (PPCs) show that 

the models were able to recover the overall patterns of electrical activity aggregated over trials 

for the 21 and 25 electrodes of the first (Figure S2) and second monkey (Figure S3), respectively, 

which indicates a good fit to the empirical data. In addition, for some of the electrodes, the PPCs 

reveal a small overestimation of the mean aggregated counts, coupled with a small 

underestimation of the proportion of bins with zero spike counts (e.g., monkey 1 electrodes 6, 10, 

and 21; Figure S2) which are consistent with a zero-inflated generative process. These minor 

deviations from good fit appear to be more pronounced for the data of the second monkey than 

for the first monkey. 

Next, we explored the expected state decoding accuracy with a Monte Carlo simulation based on 

the modeling results for the optimal models on the two monkeys. The mean percent balanced 

accuracy averaged over trials and simulation repetitions of 91.6% (95%CI [91.3-92.0%]) for 

monkey 1 and 87.5% (95%CI [86.3-88.7%]) for monkey 2 (see Table S1 for extended 

performance metrics). The mean balanced accuracy varied across states, ranging from 73.0% for 

state 2 to 96.6% for state 1 in monkey 1 and from 60.8% for state 2 to 98.6% for state 3 in monkey 

2 (Table S2). Given the good fit to the data (Figures S2 and S3), these results indicate that a high 

level of decoding accuracy can be expected for the empirical data. 

3.2 Distinct M1 population activity states occur during different phases of the reach-to-

grasp task 

For each state, the model generates a forward probability, representing the probability at each 

point in time that the neural population is in that state given the MUA (Figure 2B). States were 

labeled in order of their trial-averaged order of occurrence. Trials had different durations due to 

variability in response time and movement kinematics, so in order to determine the task phase 

specificity of each state, we aligned both multi-unit firing rates and each state's forward probability 

with each behavioral event (go signal, hand movement onset, object contact, and placing), and 

averaged over trials. The event-aligned multi-unit mean firing rate exhibited slow ramping 

dynamics prior to the movement onset, and peaking just before object contact (monkey 1: Figure 

2C; monkey 2: Figure S4A). In contrast, the mean forward probabilities of each HMM state 

indicate that discrete state transitions tended to occur around the same time as the movement 

onset, object contact, and object placing behavioral events (Figure 2D). At the start of each trial, 

state 1 predominated, but sometime following the go signal, there was a transition to state 2, 
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followed by a transition to state 3 after the hand movement onset. During the initial reach, there 

was a transition to state 4, and then to state 5 after the hand contacted the object. Finally, during 

the final reaching movement to place the object in the groove, there was a transition to state 6. 

This sequence of state transitions was similar for the 5 states identified from monkey 2 (Figure 

S4B). Importantly, behavioral event timings were not provided to the HMM during training, it was 

simply fit to the multi-unit spiking activity recorded during each trial. This suggests that the 

identified states represent actual states of the neural population corresponding to different 

processes involved in motor control, rather than trivially reflecting the temporal structure of the 

task. 

 

 

Figure 2. The HMM identifies states that correspond to different phases of the action. A) 

Raster plot of a single example trial representing the spiking activity from 21 electrodes from the 

M1 array of monkey 1. B) Forward probabilities for each state given by the model for the same 

trial shown in (A). C) Mean multi-unit firing rate of 21 electrodes from the M1 array of monkey 1 

over 10 days (439 trials) aligned to behavioral events (go: go signal tone, hand movement onset: 

beginning of the reaching movement, object contact: grasping of the object, place: placing the 
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object). D) Mean forward probabilities generated by the model for each state, averaged over the 

same trials and aligned to the same behavioral events as in (C). 

 

 

Figure 3. States are tightly linked to behavioral events at the single trial level. Each row 

shows the forward probabilities from one of the model states for each trial, over all days of 

recording, for monkey 1. Each column shows the trial forward probabilities sorted by one of the 

behavioral events (from left to right: go signal, hand movement onset, object contact, and placing). 

When trials are sorted by the appropriate event, the alignment between state forward probabilities 

and event timing can be clearly seen over all trials.  

Although it appears that state transitions occur in specific relation to behavioral events, this could 

have been a result of trial averaging. We therefore examined the temporal relationship between 

state transitions and behavioral events at the single trial level. In each trial, increases and 

decreases in state forward probabilities closely matched the timing of the movement onset, object 

contact, and placing events (monkey 1: Figure 3; monkey 2: Figure S4C). In each trial, there was 

a transition from state 1 to state 2 occurring before the hand movement onset, from state 2 to 3 

closely locked to the hand movement onset, from 3 to 4 between the hand movement onset and 

object contact, from 4 to 5 locked to object contact, and from 5 to 6 between object contact and 

the placing event. We next used the Viterbi algorithm (Forney 1973; Viterbi 1967) to estimate the 
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most likely state at each point in time, for every trial, from the forward probabilities. We used the 

sequence of most likely states to determine the onset and offset times of each state in every trial. 

We then ran a permutation test on the partial Spearman’s correlation coefficient (accounting for 

correlations between event timings and the onsets and offsets of other states) between the onset 

and offset time of each state and the timing of each behavioral event. This revealed that for 

monkey 1, the onset (⍴ = 0.73, p < 0.001) and offset (⍴ = 0.64, p < 0.001) of state 2 were most 

correlated with the movement onset time. Only the onset of state 3 (⍴ = 0.46, p = 0.003), the offset 

of state 4 (⍴ = 0.56, p < 0.001), and the onset of state 5 (⍴ = 0.46, p = 0.005) were correlated with 

the object contact event. The offset of state 5 (⍴ = 0.26, p = 0.037) and the onset of state 6 (⍴ = 

0.32, p = 0.005) were the transitions most correlated with the placing event. For monkey 2, the 

onset (⍴ = 0.33, p < 0.001) and offset (⍴ = 0.32, p < 0.001) of state 2 was were correlated with 

movement onset time, the onset of state 3 (⍴ = 0.15, p = 0.042) and the onset (⍴ = 0.24, p = 0.001) 

and offset (⍴ = 0.30, p < 0.001) of state 4 were correlated with object contact, and the onset (⍴ = 

0.35, p < 0.001) and offset (⍴ = 0.38, p < 0.001) of state 4 and the onset of state 5 (⍴ = 0.15, p = 

0.046) with the placing event. We then evaluated these correlations over the duration of the 

recordings, in groups of two days to ensure a large enough number of trials for each correlation. 

In both monkeys, these correlations were sustained over 10 days of recording (all p < 0.02; Figure 

4). The onset and offset of various states was therefore tightly linked to the movement onset, 

object contact, and placing events at the single trial level, with earlier occurring states tending to 

be related to movement onset, states in the middle of the trial related to object contact, and states 

occurring later related to the placing event. Moreover, this linkage between states and behavioral 

events was stable over the entire period of recording. 

 

 

Figure 4. The link between states and behavioral events is consistent over days. A) Partial 

correlation coefficients between state transitions and behavioral events over the duration of 

recording from monkey 1, in groups of two days. Asterisks indicate statistically significant 

correlations. B) As in (A) for monkey 2. 
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3.3 M1 population state dynamics are related to behavioral state durations 

We next compared response time (the time between the go signal and the hand movement onset 

events), reach duration (the time between the hand movement onset and object contact events), 

placing duration (the time between the object contact and placing events), and state dynamics 

between task conditions. States were characterized by their number of activations per trial and 

their lifetime (the time that state remains active, taken for each trial as the maximum duration over 

all activations in that trial). 

 

 

Figure 5. Number of state activations per trial compared between conditions. A) The 

number of activations per trial for each state identified by the model. Shaded areas indicate the 

distribution density, scatter plots show the number of activations for individual trials, and box plots 

show descriptive statistics: median (in the box), interquartile interval (the box), outliers (above 

whiskers). The inset shows the event-aligned mean state forward probabilities from Figure 2.  B) 

Number of activations per trial for each state compared by conditions: center, right, left. Asterisks 

indicate significant pairwise comparisons. 

There was no difference in response time between conditions (monkey 1: Χ2(2) = 0.66, p = 0.717; 

monkey 2: Χ2(2) = 4.37, p = 0.113), but conditions varied in terms of reach duration (monkey 1: 

Χ2(2) = 78.68, p < 0.001; monkey 2: Χ2(2) = 9.09, p = 0.011; Figure S5). For monkey 1, reach 

durations to the left target location (M = 408, SE = 8.40 ms) were longer than to the right (M = 

343, SE = 8.58 ms, t(430) = 5.83, p < 0.001) and center (M = 312, SE = 8.48 ms, t(432) = -8.67, 

p < 0.001), and longer to the right compared to the center target location (t(436) = -2.79, p = 
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0.015). For monkey 2, reach durations to the left target (M = 230, SE = 13.2 ms) were shorter 

than to the right (M = 264, SE = 13.3, t(372) = -3.01, p = 0.008). Placing duration was only different 

for monkey 1 (Χ2(2) = 30.18, p < 0.001), and longer in the left (M = 641, SE = 15.7 ms) compared 

to the right (M = 582, SE = 15.8 ms, t(436) = 3.41, p = 0.002) and center (M = 548, SE = 15.8 ms, 

t(430) = -5.43, p < 0.001) conditions, but there was no difference between placing duration for the 

center and right conditions (t(433) = -1.96, p = 0.123). 

The number of state activations per trial and their lifetime varied by state and condition in monkey 

1 (activations: Χ2(10) = 95.94, p < 0.001; Figure 5; lifetime: Χ2(10) = 66.00, p < 0.001; Figure 6). 

State 1 had a shorter lifetime in the center (M = 533.5, SE = 11.4 ms) compared to the left (M = 

635.5, SE = 11.2 ms, t(2616) = -6.39, p < 0.001) and right (M = 626.9, SE = 11.2 ms, t(2616) = -

5.84, p < 0.001) conditions. State 3 was activated more times the left condition (M = 0.67, SE = 

0.06) than in the center (M = 0.36, SE = 0.07, z = -3.37, p = 0.002) and right (M = 0.39, SE = 0.07, 

z = 3.12, p = 0.005) conditions. State 4 had longer duration in the left condition (M = 160.2, SE = 

11.2 ms) than in the center (M = 97.7, SE = 11.4 ms, t(2616) = -3.92, p < 0.001) and right (M = 

114.4, SE = 11.2, t(2616) = 2.89, p = 0.011) conditions. In contrast, state 5 was activated fewer 

times in the left condition (M = 0.11, SE = 0.08) than the center (M = 0.61, SE = 0.06, z = 5.10, p 

< 0.001) and right (M = 0.68, SE = 0.06, z = -5.81, p < 0.001) conditions. State 6 was also activated 

more times and had longer lifetime in the left condition (activations: M = 0.77, SE = 0.06; lifetime: 

M = 114.8, SE = 11.2 ms) than the center (activations: M = 0.26, SE = 0.07, z = -5.59, p < 0.001, 

lifetime: M = 43.1, SE = 11.4 ms, t(2616) = -4.50, p < 0.001) and right (activations: M = 0.30, SE 

= 0.07, z = 5.23, p < 0.001; lifetime: M = 67.7, SE = 11.2 ms, t(2616) = 2.97, p = 0.008) conditions. 

The dynamics of state 2 did not vary by condition. In monkey 2, there was only a main effect of 

state on the number of state activations per trial and their lifetime, however, there was almost no 

difference between conditions in response time, reach duration, and placing duration for this 

monkey. 
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Figure 6. Maximum state lifetime compared between conditions. A) The maximum lifetime 

(duration of the longest activation per trial) for each state identified by the model. Shaded areas 

indicate the distribution density, scatter plots show the maximum state lifetime for individual trials, 

and box plots show descriptive statistics: median (in the box), interquartile interval (the box), 

outliers (above whiskers). The inset shows the event-aligned mean state forward probabilities 

from Figure 2.  B) Maximum lifetime for each state compared by conditions: center, right, left. 

Asterisks indicate significant pairwise comparisons. 

Finally, we looked at relationships between state dynamics and response time, reach duration, 

and placing duration. For monkey 1, response time was correlated with the number of activations 

(⍴ = 0.11, p = 0.03) and lifetime (⍴ = 0.46, p = 0.005) of state 1. Reach duration was correlated 

with the number of activations of states 3 (⍴ = 0.15, p = 0.002), 4 (⍴ = 0.23, p < 0.001), and 6 (⍴ 

= 0.17, p = 0.001). Placing duration was correlated with the number of activations of states 1 (⍴ = 

0.17, p = 0.001) and 4 (activations: ⍴ = 0.11, p = 0.018), as well as the number of activations and 

lifetime of state 6 (activations: ⍴ = 0.34, p < 0.001; lifetime: ⍴ = 0.39, p = 0.020). For monkey 2, 

response time was correlated with the number of activations (⍴ = 0.34, p < 0.001) and lifetime (⍴ 

= 0.22, p = 0.005) of state 1, and the number of activations of state 2 (⍴ = 0.17, p < 0.001). Reach 

duration was correlated with the number of activations of states 2 (⍴ = 0.23, p < 0.001), 3 (⍴ = 

0.25, p < 0.001), and 5 (⍴ = 0.22, p < 0.001), and the number of activations and lifetime of state 

4 (activations: ⍴ = 0.20, p < 0.001; lifetime: ⍴ = 0.22, p = 0.003). Placing duration was correlated 

with the number of activations of state 2 (⍴ = 0.22, p < 0.001), the lifetime of state 4 (⍴ = 0.22, p 

= 0.003), and the number of activations and lifetimes of states 3 (activations: ⍴ = 0.30, p < 0.001; 

lifetime: ⍴ = 0.15, p = 0.036), and 5 (activations: ⍴ = 0.37, p < 0.001; lifetime: ⍴ = 0.18, p = 0.015). 

The number of activations and lifetime of identified states was therefore related to response time, 
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reach duration, and placing duration in a state-specific way, with earlier occurring states related 

to response time, states occurring in the middle of the trial to reach duration, and states occurring 

later to placing duration. 

3.4 States represent distinct spatiotemporal patterns of neural population activity 

Having determined that the timing, number of activations, and lifetime of the HMM-identified states 

are tightly coupled to the behavioral phases of reaching, grasping, and placing an object, we next 

examined neural dynamics associated with state transitions and occurring within states. We 

aligned multi-unit firing rates to the onset and offset times of each state in every trial, and baseline-

corrected them using activity from the 100 ms prior to the state onset (monkey 1: Figure 7; monkey 

2: Figure S6). State transitions tended to be associated by rapid changes in firing rates, followed 

by state-specific patterns of activity. For each electrode, we compared the effect of state on the 

multi-unit firing rate in the 100 ms prior to state onset to that in the first half of the state duration, 

and the multi-unit firing rate in the last half of the state duration with that in the 100 ms following 

the state offset. For monkey 1, all electrodes had a significant interaction between state and time 

period, and follow-up comparisons showed that states differed in the number of electrodes in 

which multi-unit firing changed with the onset (state 1: N = 0, state 2: N = 14, state 3: N = 18, state 

4: N = 19, state 5: N = 19, state 6: N = 16) and offset (state 1: N = 16, state 2: N = 20, state 3: N 

= 15, state 4: N = 19, state 5: N = 14, state 6: N = 18) of the state. The same was true for monkey 

2 for all electrodes for both state onset (state 1: N = 0, state 2: N = 18, state 3: N = 24, state 4: N 

= 15, state 5: N = 20) and offset (state 1: N = 20, state 2: N = 19, state 3: N = 21, state 4: N = 21, 

state 5: N = 12). In order to determine if activity within each state represented dynamic or 

sustained patterns of activity, we similarly compared the effect of state on firing rate in the first 

half of the state duration to that in the second half. A significant interaction between state and 

time period was found in 19 out the 21 electrodes for monkey 1, with the fewest number of 

electrodes exhibiting within-state dynamic activity in state 1 and the greatest number in state 4 

(state 1: N = 0, state 2: N = 5, state 3: N = 9, state 4: N = 19, state 5: N = 9, state 6: N = 6). For 

monkey 2, there was a significant state by time period interaction in 24 out of the 25 electrodes, 

with the least within-state dynamics in state 1 and the most in state 5 (state 1: N = 5, state 2: N = 

15, state 3: N = 14, state 4: N = 16, state 5: N = 14). In both monkeys, state 1 therefore represents 

a static period of low activity in all electrodes, but each other state represents a transition to a 

specific combination of sustained and dynamic activity across electrodes. 
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Figure 7. States represent different patterns of neural activity patterns. Each panel shows 

mean, baseline-corrected firing rates from each electrode from monkey 1 aligned to the onset (left 

plot) and offset (right plot) of states 1-6 (A-F). Dashed vertical lines indicate the onset and offset 

time of the state. State transitions are associated with rapid changes in state-specific patterns of 

neural activity. 

We then evaluated the spatiotemporal specificity of these activity patterns by shuffling the data, 

either temporally (i.e. shuffling time points; Figure S7) or spatially (i.e. shuffling electrodes; Figure 

S8) and using the HMM to obtain forward probabilities and sequences of the most likely state. For 

monkey 1, both temporal and spatial shuffling abolished the relationships between the movement 

onset time and the onset (temporal shuffled ⍴ = 0.14; compared to unshuffled: p = 0.01; spatial 

shuffled ⍴ = 0.08; compared to unshuffled: p = 0.01) and offset (temporal shuffled ⍴ = 0.09; 

compared to unshuffled: p = 0.01; spatial shuffled ⍴ = 0.04; compared to unshuffled: p = 0.01) of 

state 2. The correlations between the object contact event and the onset of state 3 (temporal 

shuffled ⍴ = -0.02, compared to unshuffled: p = 0.02; spatial shuffled ⍴ = 0.10, compared to 

unshuffled: p = 0.02) and the onset of state 5 (temporal shuffled ⍴ = 0.10, compared to unshuffled: 

p = 0.01; spatial shuffled ⍴ = 0.13, compared to unshuffled: p = 0.01) were also destroyed by 

temporal and spatial shuffling. Only spatial shuffling had an effect on the correlation between the 

placing event and the onset of state 6 (spatial shuffled ⍴ = -0.08, compared to unshuffled: p = 

0.02), and only temporal shuffling disrupted the relationship between object contact and the offset 

of state 4 (⍴ = -0.02, p = 0.01). For monkey 2, both temporal and spatial shuffling abolished the 

relationships between the movement onset time and the onset (temporal shuffled ⍴ = -0.05; 

compared to unshuffled: p = 0.01; spatial shuffled ⍴ = 0.06; compared to unshuffled: p = 0.01) 

and offset (temporal shuffled ⍴ = -0.05; compared to unshuffled: p = 0.01; spatial shuffled ⍴ = 

0.04; compared to unshuffled: p = 0.01) of state 2. The correlations between the object contact 

event and the onset of state 3 were not destroyed by either temporal or spatial shuffling, but those 

between object contact and the onset (temporal shuffled ⍴ = -0.03, compared to unshuffled: p = 

0.01; spatial shuffled ⍴ = 0.10, compared to unshuffled: p = 0.02) and offset (temporal shuffled ⍴ 

= -0.02, compared to unshuffled: p = 0.01; spatial shuffled ⍴ = 0.06, compared to unshuffled: p = 

0.01) of state 4 were affected by both forms of shuffling. Both temporal and spatial shuffling had 
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an effect on the correlation between the placing event and the offset of state 4 (temporal shuffled 

⍴ = -0.03, compared to unshuffled: p = 0.01; spatial shuffled ⍴ = 0.04, compared to unshuffled: p 

= 0.01), but neither had an effect on that between the placing event and the onset of state 5. The 

states identified by the HMM therefore represent rapid transitions between distinct spatiotemporal 

patterns of neural population activity which are generated during specific phases of the reach, 

grasp, and place task. 

4. Discussion 

In this paper we present a new multilevel Bayesian HMM, designed for analyzing longitudinal 

neural recordings from chronic multi-electrode arrays through the use of trial-specific random 

effects in transition and emission probabilities, multivariate Poisson log-normal emission 

probability distributions, and trial-specific condition covariates. We trained instantiations of the 

model on long term data recorded from the primary motor cortex of the macaque monkey during 

a task involving reaching, grasping, and placing a target object. We showed that although the 

model was not trained with any information about the task structure, the timing of discrete state 

transitions was tightly linked to behavioral events (i.e. the timing of the movement onset, object 

contact, and placing events), and state dynamics were closely aligned with the duration of 

intervals between events (i.e. response time, reach duration, placing duration). The states 

identified by the HMM represented fast transitions between distinct spatiotemporal patterns of 

neural population activity which are generated during specific phases of the reach, grasp, and 

place task, likely corresponding to different motor control processes. 

At the single trial level, various states were coupled to different phases of the task. In both 

monkeys, state 1 represented a static period of low activity across all electrodes, and the go signal 

event did not elicit any state transition. However, sometime after the go signal, there was a 

transition to state 2, whose onset and offset correlated with movement onset time. State 2 

therefore likely represents movement preparation or initiation mechanisms. States 3, 4, and 5 in 

monkey 1 and states 3 and 4 in monkey 2 were correlated with the object contact, the reach 

duration, and the placing duration and therefore may be differentially involved in the acceleration 

and deceleration phases of reaching (Kadmon Harpaz et al., 2019), or the coordination of the 

wrist orientation. State 6 is activated before, and aligned to, the placing event, and therefore likely 

reflects control of a reaching movement in the opposite direction from the initial reach-to-grasp 

(Kadmon Harpaz et al., 2019). The model was trained solely on the multi-unit spike data from 

each trial without any event timing information, and yet state transitions and lifetimes were tightly 

linked to kinematic events and movement durations, suggesting that each state represents distinct 

motor control mechanisms. 

There are a few limitations to this framework which include the basic assumptions of HMMs, 

longitudinal generalizability for predictive decoding, task conditions, zero-inflation, and the use of 

multi-unit, rather than single-unit, activity. All HMMs make the assumption that only one state can 

be active at any given time, and that state transition probabilities only depend on the current state 

rather than the recent history of states (the Markov assumption). These may not be reasonable 

assumptions for neural population activity, and there have been recent efforts to develop a similar 

framework without, or with relaxed versions of, these assumptions (Gohil et al., 2022). A 
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promising future direction might be to extend the benefits of multilevel Bayesian HMMs to such 

frameworks, for example by implementing an explicit-duration hidden semi-Markov model that 

relaxes the Markov assumption, decoupling the state duration from the transition probabilities by 

explicitly assigning distributions to the duration of the states (Yu, 2010). One advantage of the 

multilevel approach is the ability to model between-trial differences in activity that might 

undermine attempts to identify the population state. However, as would also be the case for single 

level models, new trials would have to use group-level mean model parameters. One possibility 

for future work might be to take advantage of the trial-specific parameters in the multilevel model 

and extrapolate them for decoding future activity. The task used involves only three reach 

directions and one grasp type. This was a necessary restriction for the current study to establish 

and test the framework, but future applications should use a wider range of reach and grasp 

movements along with kinematic tracking in order to identify the specific motor control 

mechanisms represented by each state. Model checking with PPCs revealed a minor 

underestimation of the proportion of zeros in the spike count data, consistent with a zero-inflated 

generative process. Future versions of the model could be extended with a zero-inflated Poisson 

emission distribution to model the excess of zeros beyond what a common random-effect Poisson 

distribution can accommodate (Aguero-Valverde, 2013). Finally, we trained the model on multi-

unit spiking data, due to the inherent difficulty in tracking single units over long-term recordings. 

However, this is also a strength of this approach, as multi-unit activity has been shown to be 

sufficient to capture neural population dynamics (Trautmann et al., 2019), and therefore 

circumvents the need for longitudinal spike sorting.  

5. Conclusion 

The multilevel Bayesian HMM presented here has several unique advantages for analyzing 

longitudinal neural population dynamics from multi-electrode arrays compared to current 

approaches. The emission probabilities are multivariate Poisson distributions, capturing the 

statistical distribution of neuronal spikes. The model is trained trial-by-trial, without the need for 

epochs of the same length, making it applicable to motor tasks which typically have variable trial 

duration due to movement variability. The inclusion of covariates allows the model to be fit on 

data from multiple experimental conditions and therefore simplifies comparison between them. In 

this study, each monkey was pre-trained on the reaching, grasping, and placing task, but because 

the multilevel Bayesian framework easily handles longitudinal data, it is especially well suited for 

studies of longer term neural population plasticity in the context of motor learning. 
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Supplementary material 

 

Figure S1. Model comparison results. AIC and BIC, relative to the worst model, for monkey 1 

(A) and monkey 2 (B) for models with 3 to 8 states. For monkey 1, the best fitting model had 6 

states, whilst a 5 state model had the best fit for monkey 2.  
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Figure S2. The multilevel Bayesian HMM is able to reproduce the general patterns of four 

summary statistics on the aggregated empirical data of the first monkey. Histograms show 

the distribution of four summary statistics T(y)rep (mean, standard deviation, max, and proportion 

of zeros) of the synthetic spike counts for the 21 electrodes from monkey 1 over 500 simulated 

data sets. The red vertical lines indicate the actual scores of the summary statistics T(y)emp from 

the empirical data. The synthetic data simulated by the multilevel HMM was able to recover the 

general pattern of summary statistics of the aggregated empirical data set, indicating adequate fit 

to the data.  
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Figure S3. The multilevel Bayesian HMM is able to reproduce the general patterns of four 

summary statistics on the aggregated empirical data of the second monkey. Histograms 

show the distribution of four summary statistics T(y)rep (mean, standard deviation, max, and 
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proportion of zeros) of the synthetic spike counts for the 25 electrodes from monkey 2 over 500 

simulated data sets. The red vertical lines indicate the actual scores of the summary statistics 

T(y)emp from the empirical data. The synthetic data simulated by the multilevel HMM was able to 

recover the general pattern of summary statistics of the aggregated empirical data set, indicating 

adequate fit to the data. 
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Figure S4. States identified from monkey 2 are also tightly linked to behavioral events. A) 

Mean multi-unit firing rate of 25 electrodes from the M1 array of monkey 2 over 10 days (383 

trials) aligned to behavioral events (go: go signal tone, hand movement onset: beginning of the 

reaching movement, object contact: grasping of the object, place: placing the object). B) Mean 
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forward probabilities generated by the model for each state, averaged over the same trials and 

aligned to the same behavioral events as in (A). B) Each row shows the forward probabilities from 

one of the model states for each trial, over all days of recording, for monkey 2. Each column 

shows the trial forward probabilities sorted by one of the behavioral events (from left to right: go 

signal, hand movement onset, object contact, and placing). 

 

 

Figure S5. Response time, reach and place durations, but not response time vary by 

condition. The response time (A), reach duration (B), and placing duration (C) for each trial from 

monkey 1, and monkey 2 (D-F), by condition. Shaded areas indicate the distribution density, 

scatter plots show the values for individual trials, and box plots show  descriptive statistics: median 

(in the box), interquartile interval (the box), outliers (above whiskers). Asterisks indicate significant 

pairwise comparisons. 
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Figure S6. States represent different patterns of neural activity patterns from monkey 2. 

Each panel shows mean, baseline-corrected firing rates from each electrode from monkey 2 

aligned to the onset (left plot) and offset (right plot) of states 1-6 (A-F). Dashed vertical lines 

indicate the onset and offset time of the state. State transitions are associated with rapid changes 

in state-specific patterns of neural activity. 
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Figure S7. Temporal shuffling destroys the coupling between states and behavioral events. 

A) Mean forward probabilities generated by the model for monkey 1 for each state, averaged over 

100 iterations of temporal shuffling and aligned to the behavioral events. B) Each row shows the 

forward probabilities from one of the model states for each trial, averaged over 100 iterations of 

temporal shuffling. Each column shows the trial forward probabilities sorted by one of the 

behavioral events (from left to right: go signal, hand movement onset, object contact, and placing). 
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Figure S8. Spatial shuffling destroys the coupling between states and behavioral events. 

A) Mean forward probabilities generated by the model for monkey 1 for each state, averaged over 

100 iterations of spatial (electrode) shuffling and aligned to the behavioral events. B) Each row 

shows the forward probabilities from one of the model states for each trial, averaged over 100 

iterations of spatial (electrode) shuffling. Each column shows the trial forward probabilities sorted 

by one of the behavioral events (from left to right: go signal, hand movement onset, object contact, 

and placing). 
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Table S1. Mean evaluation metrics for the results of the Monte Carlo simulation study on 

the state decoding accuracy for each monkey 

Metric Mean SD CI2.5% CI97.5% 

Monkey 1     

Accuracy 0.903 0.002 0.899 0.908 

Bal. Accuracy 0.916 0.002 0.913 0.920 

F1 score 0.846 0.004 0.839 0.853 

Cohen’s 

Kappa 0.863 0.003 0.857 0.869 

Monkey 2     

Accuracy 0.847 0.009 0.829 0.864 

Bal. Accuracy 0.875 0.006 0.863 0.887 

F1 score 0.781 0.010 0.762 0.800 

Cohen’s 

Kappa 0.784 0.011 0.762 0.804 

 

Table S2. Mean decoding accuracy by state for the results of the Monte Carlo simulation 

study for each monkey 

State Mean SD CI2.5% CI97.5% 

Monkey 1     

1 0.966 0.004 0.958 0.973 

2 0.730 0.010 0.710 0.747 

3 0.961 0.003 0.954 0.968 

4 0.874 0.007 0.861 0.887 

5 0.734 0.010 0.716 0.758 

6 0.852 0.008 0.838 0.867 
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Monkey 2     

1 0.859 0.014 0.835 0.884 

2 0.608 0.025 0.562 0.658 

3 0.986 0.002 0.982 0.989 

4 0.619 0.025 0.573 0.664 

5 0.852 0.013 0.825 0.874 
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