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Genetically identical cells in the same stressful condition die at different times. The origin 13 

of this stochasticity is unclear; it may arise from different initial conditions that affect the 14 

time of demise, or from a stochastic damage accumulation mechanism that erases the initial 15 

conditions and instead amplifies noise to generate different lifespans. To address this 16 

requires measuring damage dynamics in individual cells over the lifespan, but this has 17 

rarely been achieved. Here, we used a microfluidic device to measure membrane damage in 18 

648 carbon-starved E. coli cells at high temporal resolution. We find that initial conditions 19 

of damage, size or cell-cycle phase do not explain most of the lifespan variation. Instead, the 20 

data points to a stochastic mechanism in which noise is amplified by a rising production of 21 

damage that saturates its own removal. Surprisingly, the relative variation in damage 22 

drops with age: cells become more similar to each other in terms of relative damage, 23 

indicating increasing determinism with age. Thus, chance erases initial conditions and then 24 

gives way to increasingly deterministic dynamics that dominate the lifespan distribution.  25 

 26 
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Introduction 27 

Genetically identical organisms placed in the same conditions die at different times 1–5. This non-28 

genetic variation is shared also by single celled organisms, such as starving E. coli 4 and aging 29 

yeast 6.  30 

Two possibilities have been raised to understand this stochasticity of death times 1,2,7,8. The first 31 

is that the initial states of individuals are different and affect the eventual time of demise 2,8. The 32 

second is that initial conditions are rapidly erased by stochastic accumulation of damage over 33 

time, and stochasticity further accumulates to cause the different lifespans 7. The nature of this 34 

stochastic accumulation is unclear. 35 

To understand the role of chance and initial conditions in the timing of cell death, it is essential 36 

to measure the damage that causes death over time in individual cells. This, however, has rarely 37 

been done.  38 

Here we use carbon-starved E. coli in microfluidic chambers to study the role of stochasticity 39 

and initial conditions in the time of cell death. The cells have a risk of death that rises 40 

exponentially with age 4, known as the Gompertz law, which also characterizes mortality in other 41 

microorganisms and animals 9. We use the well-established bacterial viability marker propidium 42 

iodide 10 to measure membrane damage in individual cells in the microfluidic device. We find 43 

that initial conditions of damage or cell-cycle phase do not strongly correlate with time of death. 44 

Instead, the data suggests a specific mechanistic model for the stochastic dynamics of the 45 

damage that causes death. In this model, damage-producing units such as unfolded protein 46 

complexes rise at a constant rate and produce damage, whose removal processes saturate at high 47 

damage levels. This saturation amplifies noise and leads to widely different individual dynamics, 48 

explaining the majority of variation in lifespan. Surprisingly, the relative damage variation 49 

between cells drops with age, indicating that stochasticity erases initial conditions, but then 50 

becomes less dominant and damage dynamics becomes increasingly deterministic with age.  51 

 52 

Results 53 

 54 
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E. coli damage dynamics in individual cells  55 

 56 

We tracked individually starved E. coli cells by time-lapse microscopy using a microfluidic 57 

system called the mother machine 11 (Fig. 1A). Individual cells from the same clone were loaded 58 

onto an array of dead-end micro-channels (6µm long and 1.1µm high and wide) that open onto a 59 

main channel 12. The micro-channels exposed the individual cells to a homogenous medium 60 

refreshed by flow in the main channel in which the cells were starved for carbon.  61 

The device prevented cells from interacting. This bypasses the effects of feeding on the remains 62 

of perished cells that occur in batch culture starvation and lead to an exponential survival curve 63 

with a constant risk of death13 rather than the Gompertz law observed in the microfluidic device4.  64 

To allow different initial cell-cycle phases and cell sizes, we loaded the cells onto the chip from a 65 

culture in exponential growth. Thus, some cells have recently divided whereas others are about 66 

to divide. The chip was then thoroughly washed to eliminate traces of carbon nutrient 4. 67 

To follow the physiological deterioration process of each cell, we focused on membrane integrity 68 

as an indicator of damage. Membrane integrity is critical to a cell's survival 14–16 and is affected 69 

by many physiological parameters, including pH, redox balance, energy metabolism and 70 

translation fidelity 17.  71 

We measured membrane integrity with propidium iodide (PI), a well-established non-toxic dye 72 

for bacterial viability 4. PI becomes fluorescent only when it penetrates the cell membrane and 73 

binds to DNA. Due to its relatively large size and charge, PI can not cross the membrane when 74 

the membrane is functionally intact. We therefore used the rate of PI uptake to quantify the 75 

integrity of bacterial membranes (Fig. 1B). PI uptake rate was calculated from the image time-76 

series of each bacterium at resolution of 1 hour (Methods). Experimental noise of the 77 

fluorescence image time-series is estimated at about 6% (SI Fig. S1). 78 

According to the Arrhenius equation, PI uptake rate is inversely proportional to the exponential 79 

of the potential barrier that the PI molecule has to cross to enter the cell. We therefore define 80 

membrane damage X(t) as the log of the PI uptake rate normalized to the mean uptake rate of the 81 

initial population (Methods). Cell death was determined by damage levels exceeding a threshold, 82 

𝑋". The value of 𝑋"is determined by the maximal X(t) observed before cells reach previously 83 

established lifespans 4.   84 
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Cells survived for an average of 82h, and showed an exponentially rising risk of death (Fig. 1C), 85 

namely the Gompertz law 4. Cells rarely die in the first 40 hours, and then begin to die more and 86 

more frequently, leading to a sigmoidal survival curve well described by a Weibull function 87 

(Methods). The relative variation of death times was 24%, where 5% of the cells died by 42h, 88 

and 95% died by 106h.  89 

From the time-series of PI fluorescence we measured the damage X(t) in 648 individual bacterial 90 

cells at 8 time points, which correspond to 8 non-overlapping windows of 7 hours each between 91 

20h and 80h. We do not consider the initial 20h period since it is a time over which cells adapt to 92 

the starvation conditions in the device, nor the data after 80 hours since most cells are dead. 93 

 94 

 95 
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 96 
Fig. 1. Damage dynamics in starving E. coli cells. (A) Individual E coli cells were placed in 97 

microfluidic channels with medium flow. Propidium iodide (PI) was added to the medium as a proxy for 98 

membrane damage. PI only crosses the membrane and stains DNA when membrane integrity is 99 

compromised. (B) Membrane damage was measured by a temporal derivative of PI fluorescence, as 100 
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shown for two individual bacteria. Top: fluorescence signal, bottom: derivative (uptake rate) in 7h time 101 

windows.  (C) Cumulative risk of death as a function of age shows an exponential regime. Cumulative 102 

risk of death is defined as negative natural logarithm of survivorship and is equal to the integral of the 103 

hazard function. The blue region corresponds to 95% confidence intervals. Death conditions are as 104 

previously defined 4. (D) Cellular damage fluctuates around a rising trajectory, subsampled to 7h time 105 

windows. Trajectories are color coded by the time window of cell death, circles indicate the last time 106 

window before death to highlight the rise in damage leading to the point of death. (E) PI uptake rate 107 

distributions and best-fit to a type-2 generalized beta distribution with the ratio between shape parameters 108 

p/(p+q), plotted versus age in (F), see Methods. 109 

  110 
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Initial damage and cell-cycle phase do not correlate with lifespan in most cells 111 

 112 

We asked whether initial conditions, namely the cell state when loaded onto the chip, might 113 

explain the variations in lifespan (Fig 2A). There was a negative correlation between initial 114 

damage and lifespan (Spearman r=-0.41, p<0.001). This correlation was primarily due to a subset 115 

of 3% of the cells that had high initial damage (PI uptake rate>4/h, compared to the mean uptake 116 

rate of 0.87/h in the remaining cells). These initially damaged cells had a short lifespan, 117 

averaging 48h.  118 

We therefore divided the cells into two populations, with initial uptake rate above and below 4 119 

(Fig. 2 B-C), which we call the high damage and low damage groups. The high damage group 120 

showed a strong correlation between initial damage and lifespan (Spearman r=-0.70, n=17, 121 

p=0.002). The low damage group, which comprised 95% of the cells, showed low correlation 122 

(Spearman r=-0.15, n=503, p=0.001).  123 

We also investigated the effect of cell-cycle phases by noting the initial size of the cell and 124 

number and timing of reductive divisions on the chip18. We find that cell size has only weak 125 

correlations with lifespan (Spearman r=-0.09) (Fig. 2D), as did the time of last division 126 

(Spearman r=-0.11) (Fig. 2E) and number of divisions (Spearman r=-0.06). 127 

Multiple regression shows that initial conditions explain a total of 27% of the variation for all 128 

cells, and 10% of the variation for the majority -- 95% of the cells -- with low initial damage 129 

(Fig. 2F). We conclude that in the traits measurable in this experiment, the initial conditions 130 

explain only a minority of the variation in lifespan.  131 

 132 

 133 
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 134 
Fig. 2. Initial conditions do not account for most of the variations in lifespan. (A) Initial damage 135 

levels (PI uptake rate) and lifespan of all cells in the experiment; (B) For cells with high initial damage 136 

(PI uptake rate>4, n=18), initial damage correlates with lifespan; (C) For cells with low initial damage 137 

(<4, n=589), the correlation between initial damage and lifespan is weak; (D) Initial cell size and lifespan 138 

of all cells in the experiment; (E) Time of last division and lifespan for all cells in the experiment; (F) 139 

Fraction of lifespan variation explained by initial conditions according to multiple regression. Left are all 140 

cells, right are cells with low (<4) initial damage. 141 

  142 
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Damage dynamics rise and fall suggesting a stochastic mechanism 143 

 144 

We next sought to characterize the stochastic dynamics of damage, defined as PI uptake rate, 145 

over time. Damage in each cell did not accumulate monotonically. Instead, damage rose and fell 146 

in each cell, with fluctuations larger than can be explained by experimental noise (Fig. 1D). This 147 

indicates that damage is produced and removed on the timescale of hours. These fluctuations 148 

occurred around a mean trajectory that accelerated with age on the scale of tens of hours. This 149 

suggests two timescales: in addition to the fast timescales of hours, a slower timescale of tens of 150 

hours over which damage production and removal rates change. 151 

Notably, we find that cells become more similar in relative terms as they age. Although the mean 152 

damage and its standard deviation both rise with age (Fig. 3 A,B,F), the standard deviation rises 153 

more slowly than the mean. As a result, the relative variation drops with age, as measured by the 154 

coefficient of variation CV=SD/mean (Fig. 3C). 1/CV rose approximately linearly with age 155 

above 50h.  156 

The increasing relative similarity between cells with age is seen also in the damage distributions 157 

at each timepoint. At early ages the distribution is skewed to the right, but skewness reduces with 158 

age (Fig. 3D), as the distribution becomes more symmetric,  159 

The longitudinal nature of the data allowed us to calculate the autocorrelation of damage. 160 

Correlation time increased with age. This means that a cell with damage above or below the 161 

population average remained so for a longer at old ages (Fig. 3E). Plotting damage as a function 162 

of remaining lifetime shows that X=log(normalized PI uptake) becomes less dispersed the closer 163 

the cell is to death (Fig. 3G). 164 

These findings indicate that the damage dynamics has aspects that become more deterministic 165 

with age.  166 

 167 

 168 

 169 
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 170 
 171 

Fig. 3. Damage dynamics show increasing determinism with age. Statistics of E. coli membrane 172 

damage for all cells alive at a given age: Mean (A) and standard deviation (B) increase with age; but 173 

coefficient of variation (C) decreases, indicating reduced relative heterogeneity in the damage 174 

distribution. (D) Skewness drops with age. (E) Autocorrelation of damage increases with age, showing 175 

increasing persistence. (F) Probability distribution of damage in younger (52.5h blue dashed line) versus 176 

older (72.5h yellow solid line) cells. (G) Log PI uptake rate as a function of remaining lifespan becomes 177 

less variable close to death. 178 

  179 
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Damage dynamics indicate a saturated-repair stochastic model 180 

 181 

To elucidate the stochastic mechanism that can give rise to these damage statistics, we modeled 182 

damage production and removal with noise. We exploited the separation of timescales in the 183 

data, namely the rapid fluctuations of damage around a slowly rising mean trajectory. Therefore, 184 

we explored models in which damage is produced and repaired quickly compared to the lifespan, 185 

whereas the rates of damage production and removal change slowly with age t (See Table S3 for 186 

relevant timescales). Damage removal and production were also allowed to depend on the 187 

amount of damage to include the possibility of feedback and saturation effects.  188 

We use as a damage variable X=log(normalized PI uptake) to represent the loss of the free-189 

energy barrier posed by the membrane in units of 𝑘$𝑇. We consider a general stochastic model 190 

𝑑𝑋/𝑑𝑡 = production - removal + noise, or mathematically 𝑑𝑋/𝑑𝑡 = 𝐺(𝑋, 𝑡) 	+ √2𝜎𝜉, where 𝜉 is 191 

white noise of amplitude 𝜎. 192 

To define the production and removal terms that make up G(X,t), we used timescale separation, 193 

by assuming that at each time point the damage distribution among cells P(X,t) is a steady-state 194 

solution of the equation. The analytical solution for the steady-state is 𝑃(𝑋, 𝑡) = 𝑒56(7,8)/9 , 195 

where U(X,t) is a potential function defined by 𝜕𝑈/𝜕𝑋 = −𝐺(𝑋, 𝑡). This is analogous to the 196 

Boltzmann distribution in statistical mechanics. 197 

Using the measured distribution of damage at different timepoints, P(X,t), we estimated U, 198 

integrated it to provide G(X,t) and hence the production-removal terms in the model. 199 

To facilitate this process, we characterized the experimental damage distributions P(X,t) by 200 

comparing them to 15 commonly-used distribution functions with 3-4 parameters (SI Fig. S2, 201 

Table S1). The best fit for the PI uptake distribution was a type-2 generalized beta distribution19 202 

with shape parameters whose ratio, p/(p+q), rises approximately linearly with age (Fig. 1F). The 203 

stochastic process which gives rise to this distribution is (see Methods):  204 

 205 

(1) 𝑑𝑋/𝑑𝑡 = 𝜂𝑡	 − 𝛽𝑓(𝑋) 	+ √2𝜎𝜉 206 

 207 

In this inferred mechanism (Fig 4A) damage production rises linearly with age as 𝜂𝑡, and damage 208 

removal is a saturating function of damage, 𝛽𝑓(𝑋) = 𝛽𝑒𝑎𝑋	/(𝑒𝑎𝑋 + 𝑒𝑎𝜅	), (Fig. 4B-C). The 209 

parameters are a production slope  𝜂 = (3.2± 0.3) × 10−3	𝑘𝐵𝑇ℎ
−2 and removal parameters 𝑎 =210 
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0.33± 0.03	(𝑘$𝑇)51,  𝛽 = 0.48± 0.02	𝑘𝐵𝑇ℎ
−1 and 𝜅 = 0.3± 0.1	𝑘$𝑇 The white noise 211 

amplitude is 𝜎 = 0.1	 ± 0.01(𝑘𝐵𝑇)
2	ℎ−1 . 212 

Notably, this model is in the same class as the saturated repair (SR) model established for aging 213 

in mice 20, in the sense that the production rate of damage rises linearly with age and damage 214 

inhibits or saturates its own removal. The only difference is that the mouse SR model used a 215 

different saturating removal function, 𝑓(𝑋) = 𝑋/(𝜅 + 𝑋). Hence we call the model of Eq. 1 the 216 

membrane-potential-SR model or MP-SR model.  217 

The MP-SR model captures the statistics of the observed PI uptake dynamics (Fig. 4D-G). It 218 

shows a reduction in the relative variation, CV=SD/mean (Fig. 4F), despite a super-linear rise in 219 

both mean and SD (Fig. 4D-E). The inverse CV, 1/CV, rises linearly with age as in the data.  220 

The model also captures the reducing skewness with age (Fig. 4G). Hence, the MP-SR model 221 

captures the dynamics of damage in the experiment.  222 

To compute the distribution of lifespans in the MP-SR model, we modeled death as damage X 223 

exceeding a threshold Xc 20. Death is therefore modeled as a first passage time process, which we 224 

computed numerically and analytically (Supplementary Information S4) using Kramer's 225 

approximation 21,22. The model provides an exponential increase in the risk of death that slows at 226 

very old ages, namely the Gompertz law (Fig. 4H), and a Weibull-like sigmoidal survival curve 227 

(Fig. 4I), as experimentally observed. This Gompertzian exponential increase is due in the model 228 

to the linear rise in damage production, which causes the potential U to drop linearly with time; 229 

since crossing this barrier goes exponentially in U, the risk of death rises exponentially with 230 

time. 231 

The differences in lifespan between individuals in the inferred stochastic mechanism is due to the 232 

fact that noise is effectively amplified by the saturation of damage removal. The slope of 233 

production minus removal becomes flat at old ages; fluctuations are not pulled back strongly 234 

towards equilibrium by the effective potential U (Fig. 4C). This is at the heart of how noise can 235 

generate different lifespans for cells with identical physiological parameters.  236 

We conclude that PI-uptake trajectories and their reducing relative variation are well-explained 237 

by an SR-type model in which damage production (loss of membrane barrier function) rate rises 238 

linearly with age whereas damage removal saturates. 239 

This SR-type model makes a further prediction that may be called ‘shortening twilight’ 23,24. 240 

Twilight is the remaining lifespan after a given damage threshold is crossed, and the SR model 241 
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predicts that twilight shortens with age. This shortening twilight prediction is borne out by the E. 242 

coli damage data (SI Fig. S3).  243 

 244 

 245 

 246 

 247 

 248 
Fig 4. The saturating-removal model captures damage dynamics. (A) Schematic of the MP-SR 249 

model. (B) rate plot showing linearly increasing production with age and a removal rate that saturates 250 

with damage, causing the fixed point to accelerate to high damage levels. (C) The potential function of 251 

the MP-SR model and its evolution with age. Simulations of the MP-SR model for PI uptake rate (𝑒7) 252 

show rising mean (D) and standard deviation (E), reducing CV (F) and reducing skewness (G). The 253 

model provides a death hazard that rises exponentially with age (H) and a Weibull-like survival function 254 

(I). Blue regions are 95% confidence intervals from simulation of N=645 cells. 255 

 256 
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Discussion  257 

We studied the role of chance and initial conditions on lifespan by measuring membrane damage 258 

over time in starved E. coli cells in a microfluidic device. Initial conditions in each cell, such as 259 

initial damage, cell size or cell-cycle phase, did not strongly correlate with time of death in most 260 

cells. Instead, damage fluctuated in each cell around a rising mean trajectory. Unexpectedly, the 261 

relative variation in damage dropped with age. This indicates an increasing determinism with 262 

age, where damage levels become more similar in relative terms the older the cells are. 263 

Correlation times increased and distributions became less skewed, further indicating rising 264 

determinism.  265 

 266 

We used our dynamical damage measurements to infer a stochastic mechanism that provides the 267 

dynamics and survival curves. In this mechanism, damage is produced at a rate that rises linearly 268 

with age, and damage-removal saturates at high damage levels. We called the mechanism the 269 

membrane-potential saturating repair (MP-SR) model. Our findings suggest that chance 270 

fluctuations, amplified by saturating removal of damage, play a major role in explaining why 271 

genetically identical bacterial cells in the same conditions die at different times. 272 

 273 

The damage dynamics measured here have statistical features that differ from random walks and 274 

from most previously suggested models of aging 25–27. The mean rises faster than the standard 275 

deviation, so that the relative heterogeneity between cells at a given age declines. This can be 276 

quantitated as a drop in the coefficient of variation, CV=SD/mean, such that 1/CV rises roughly 277 

linearly with age. This is an unusual feature in stochastic processes in general, and in previous 278 

theoretical models of aging including network models 25,26, the Strehler-Mildvan model 27, the 279 

cascading failure model 7, fixed frailty model 8 and Ornstein-Uhlenbeck type models which do 280 

not provide a drop in damage CV with age but instead have a constant CV (SI).  281 

 282 

The present MP-SR mechanism has two main features that require biological explanations. The 283 

first feature is the linear rise with age of the damage production rate, 𝜂𝑡	. This linear rise can be 284 

explained by assuming that damage arises from ‘damage-producing units’, such as unfolded-285 

protein complexes, that are added at a constant rate and cannot be resolved or removed 28–34. If 286 

these complexes assimilate new unfolded proteins at a constant rate, and can not be removed, 287 
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their total mass should rise linearly with time. Such unfolded protein complexes are known to be 288 

toxic to cells 31; they cause damage such as dysregulated proteostasis 35, which can lead to 289 

membrane damage 36,37. 290 

 291 

Mathematically, if cells accumulate damage-producing units P at a constant rate 𝑣, and these 292 

units cannot be removed, their number rises linearly with age, 𝑃 = 𝑣	𝑡	. Each unit produces 293 

damage at rate b, so that total damage production rate rises linearly with time as 𝜂𝑡 with 𝜂 = 𝑣	𝑏 294 

Organisms that manage to dilute such damage-producing units P, such as organisms with 295 

indefinite growth, are predicted to have different damage dynamics, in which P does not rise 296 

indefinitely. Such dilution occurs in growing and dividing bacterial cells 31,32, but not in the non-297 

growing starved cells studied here. Other examples of damage dilution may occur in eukaryotic 298 

cells with symmetric division such as fission yeast; in contrast, budding yeast with asymmetric 299 

divisions show aging and eventual death of the mother cell which retains damage rather than 300 

passing it to daughter cells. 301 

 302 

The second feature of the MP-SR model is the saturation of damage removal, which is crucial for 303 

the present dynamical hallmarks. The relevant removal mechanisms in E coli include chaperones 304 

and proteases 35, as well as enzymatic systems that repair proton leakage 38, oxidative damage 39 305 

and maintain membrane structural integrity 40. Such enzymatic repair mechanisms should 306 

naturally saturate at high damage levels. 307 

 308 

Notably, the inferred stochastic mechanism in E. coli is similar to a mechanism inferred in the 309 

context of mice aging by Karin et al. Karin et al used stochastic trajectories of senescent cells in 310 

mice, cells which are growth arrested cells that cause inflammation, to infer a mechanism for 311 

senescent-cell accumulation 20. This mechanism, called the saturating removal (SR) model, is a 312 

stochastic differential equation with a production rate that rises linearly with age and a removal 313 

rate that saturates, so that high senescent cell levels slow their own removal. Karin et al 314 

experimentally confirmed a prediction of the SR model, that senescent cell turnover slows with 315 

age 20. The SR model was generalized to other forms of damage, and explains observations on 316 

aging such as the Gompertz law, heterochronic parabiosis 41, age-related disease incidence in 317 
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humans 42 and the scaling of survival curves in C. elegans 5,20. Interestingly, the human frailty 318 

index shows similar dynamical features, including a reduction in CV with age 43. 319 

 320 

The similarity between the present study on E. coli cells and the model of Karin et al on 321 

mammalian aging hints at a possible universality in mechanisms of aging, in which chance plays 322 

a large role in the  differing lifespans of genetically identical organisms. Although the molecular 323 

forms of damage and lifespan timescales are very different between E. coli and mice, the features 324 

of linearly rising production and saturating removal may be more general and give rise to similar 325 

damage dynamics, with reducing relative heterogeneity with age. 326 

 327 

It would be interesting to measure longitudinal damage trajectories in other organisms to explore 328 

whether linear-production-and-saturating-removal models might apply more generally. In the 329 

context of bacteria, it would be important to explore the dynamics of damage in cells challenged 330 

with antibiotics, in order to better understand the role of chance in the function of these drugs.  331 
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Methods 440 

  441 

Experimental and analytical methods 442 

 443 

Microfluidic chip fabrication. The negative master mould for the modified mother machines 444 

was fabricated on top of silicon wafers in two steps. First, arrays of dead-end channels (2000x 6 445 

µm long) were fabricated via electron-beam lithography (EBL) in a specialized micro-fabrication 446 

facility. It was necessary to use EBL for these channels due to the high precision requirements 447 

for the cross section dimensions (both height and width have to be between 1.1 and 1.2 µm). 448 

They had to be large enough to allow single cells to enter yet narrow enough so that multiple 449 

cells could not be squeezed in the same channel. In the second step, using standard 450 

photolithography methods, the negative mould for the main channel was overlaid perpendicular 451 

to the dead-end channels. The main channel is 10mm long, 50µm wide and 10µm deep. 452 

For each run of the bacterial starvation experiment, microfluidic chips were fabricated by casting 453 

PDMS structures out of negative master moulds. Uncured PDMS mixes (RTV-615, Momentive 454 

Performance Materials) were poured to a thickness of 3mm onto the silicon wafer carrying the 455 

master moulds, and then de-gassed under vacuuming and spread out via gravity for about 2 456 

hours. The PDMS was then partially heat cured at 80°C for about an hour to form solid yet 457 

flexible PDMS blocks with patterned surfaces. After drilling inlets and outlets through the flow 458 

channel, the PDMS blocks were bound to cover glasses suitable for microscopy, using oxygen 459 

plasma (90 s, 1000 mTorr). Lastly, the assemblies were cured fully at 80°C overnight and so that 460 

the PDMS structure was sealed permanently to the glass cover slide. 461 

On the day of the experiment, the microfluidic chip was again treated by oxygen plasma for 90s 462 

so that its surfaces were activated, and then injected with 20% (v/v) polyethylene glycol 400 463 

solution for at least 1h to prevent bacterial adhesion.   464 

 465 

Material and equipment. During the process of media preparation, sterilization, cell culture and 466 

fluidic infusion, we generally avoided disposable lab plasticware in favor of glass or equipment 467 

whose wetted surfaces are coated with fluoropolymer such as polytetrafluoroethylene (PTFE). 468 

This step avoided a pitfall in which trace concentrations of carbon and energy-rich chemicals 469 

leached into the media, such as phthalate plasticisers commonly used in PVC tubings. Such 470 
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compounds can serve as carbon sources and allow the cells to grow, circumventing the goal of 471 

our experiments 4. Medium was filter-sterilized (0.2 µm) to avoid contamination by volatiles 472 

during autoclaving, and glassware was sterilized by dry heat. In the mother machine chips we 473 

subjected a relatively small number of cells (<10,000) to constantly refreshing volumes (5 µl per 474 

hour) of media.  475 

 476 

Bacterial growth and loading. Bacterial cultures were loaded into the microfluidic chip via 477 

centrifugation. All culture media were filter-sterilized before use to remove dust particles, which 478 

might otherwise block the microfluidic channels. E. coli wildtype strain MG1655 with a 479 

chromosomal-inserted constitutively CFP-expressing cassette (PrrnB2) was grown overnight in 480 

M9 minimal media (supplemented by 2mM MgSO4, and 0.1 mM CaCl2) at 37°C with 40mM 481 

succinate as carbon source, and diluted 250 fold into 50ml of the same media in 250-ml 482 

Erlenmeyer flasks. This subculture was grown to exponential phase (OD600 ~ 0.1) at 37°C and 483 

then transferred to glass centrifugation tubes and harvested by centrifugation at 4000rpm for 484 

15min. The bacterial pellet was resuspended, washed with fresh carbon-free M9 media and 485 

centrifuged 3 more times. The resulting pellet was resuspended a final time with 20µl M9 media. 486 

This final suspension was manually injected into the main channel of the microfluidic chip, and 487 

forced into the dead-end channels by centrifugation at 1000rpm for 15min. After centrifugation, 488 

the main channel is washed thoroughly by carbon-free M9 media to remove all cells that remain 489 

there. 490 

 491 

Microfluidic and microscopy setup. After the microfluidic chip was loaded with cells, it was 492 

connected to a linear, flow-controlled fluidic system driven by a high-precision syringe pump 493 

(Harvard Apparatus PHD 2000 Programmable) and GC-grade glass/PTFE syringes (Hamilton 494 

Gaslight 1000 series). As mentioned previously, PTFE tubing and glass syringes are used to 495 

avoid leaching of plasticizers into the media. This is critical for this type of microfluidic 496 

starvation experiments, as E. coli are able to uptake as carbon sources the trace concentrations of 497 

plasticizers in the media when it is constantly refreshed by the microfluidic flow. The syringes 498 

are preloaded with filter-sterilized M9 minimal media without carbon source, supplemented with 499 

propidium iodide (PI, 5 µg/ml). The chip was first washed at 100µl per hour for 30 min and then 500 

the flow rate was halved every 15 min to a final flow rate of 5µl per hour. In the meantime, the 501 
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chip was mounted and stabilized onto the objective stage of an inverted microscope (Nikon 502 

ECLIPSE Ti2, 100× oil-immersion objective, controlled with MetaMorph software) with 503 

temperature controlled at 37°C. Phase-contrast and fluorescence (PI signal excitation, 546/12 504 

nm; emission, 605/75 nm; CFP excitation 436/20nm; emission 480/40nm) images were 505 

automatically taken for up to 90 imaging positions every hour for up to 120 hours. Focus was 506 

maintained by the hardware-based Perfect Focus System (PFS) from Nikon. 507 

 508 

Image analysis. We used a published image analysis method specifically designed for mother 509 

machines 12. The regions in the time-lapse images of each dead-end channel were detected and 510 

cut out of the image stacks and displayed chronologically from left to right on the same image. 511 

Cells were segmented using the CFP (constitutively expressed) fluorescent image. The 512 

segmentation approach was semi-automatic and consisted of automatic segmentation, lineage 513 

assignment and manual correction. First, the central region of the cells was detected using 514 

statistical p-value thresholding, assuming that the observed intensities are spatially distributed as 515 

Gaussian functions. Then these central regions were used as seeds to add recursively neighboring 516 

points with similar intensities to form labeled regions. The result of this automatic process is an 517 

accurately segmented image with occasional over segmentation errors. Then labeled regions 518 

from different time points in the same dead-end channels were assigned together with arrows to 519 

track the same cell through time. These automatically segmented and tracked cells are then 520 

manually corrected to account for over-segmentation errors and mis-assignment due to sudden 521 

movements of the cells. For more details see 12. For each segmented and tracked cell through 522 

time, we used the segmented CFP contours to extract the average PI fluorescence signal. 523 

 524 

Modeling and statistical methods 525 

 526 

Measurements of membrane damage. Our general approach is to use the time derivative of 527 

fluorescence to calculate the rate constant of PI uptake, which in turn is a proxy for membrane 528 

damage. 529 

We model the PI fluorescence time series with one slow and one fast chemical reaction. The 530 

slow reaction is PI uptake 𝑃𝐼JK8 → 𝑃𝐼MN with rate constant r, and the fast reaction is PI binding to 531 
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DNA once inside the cell [𝑃𝐼]MN + [𝐷𝑁𝐴] ⇔ [𝑃𝐼: 𝐷𝑁𝐴], assumed reversible and at equilibrium 532 

with equilibrium constant K, so that  𝐾[𝐷𝑁𝐴][𝑃𝐼]MN = [𝑃𝐼: 𝐷𝑁𝐴]. 533 

First we focus on the rate of PI uptake. The Arrhenius equation states that the logarithm of the 534 

rate constant scales linearly with activation energy, in this case, an energetic barrier representing 535 

the integrity of the cell membrane. Thus we defined membrane damage X(t) as the reduction of 536 

this energy barrier compared to a healthy baseline. X(t) has the unit of kBT, where T is the 537 

experimental temperature 310K and kB is the Boltzmann constant. We can choose the unit 538 

appropriately, i.e. to be kBT, X(t) can be made unitless. Under these definitions, the rate constant 539 

is  𝑟 = 𝐴0𝑒7(8), where T is the experimental temperature 310K and kB is the Boltzmann constant. 540 

Then the PI uptake rate is 𝐴0𝑒7(8)([𝑃𝐼]JK8 − [𝑃𝐼]MN). 541 

Having defined the relation between membrane damage and PI uptake rate, our task is the 542 

estimation of the latter using fluorescence time-series. Since PI only becomes fluorescent when 543 

bound to DNA, average fluorescence intensity is proportional to the bound form of PI: [𝐹𝑙𝑢𝑜] =544 

𝐽][𝑃𝐼:𝐷𝑁𝐴]. Since the binding of PI to DNA is assumed to be at equilibrium, we have 545 

[𝑃𝐼: 𝐷𝑁𝐴] = ([𝑃𝐼]MN + [𝑃𝐼: 𝐷𝑁𝐴]) ^[_`a]
1b^[_`a]

. Thus the time derivative of fluorescence  should 546 

be proportional to the PI uptake rate: 547 
c[]def]
c8

= 𝐴0𝑒7(8)([𝑃𝐼]JK8 − [𝑃𝐼]MN)
gh^[_`a]
1b^[_`a]

. 548 

To obtain relative fluorescence time-series we normalize for each cell its fluorescence signal 549 

[𝐹𝑙𝑢𝑜] by its observed maximum [𝐹𝑙𝑢𝑜]ijK = 𝐽]𝐾[𝐷𝑁𝐴][𝑃𝐼]JK8 . The relative time series is 550 

thus𝑠(𝑡) = [𝐹𝑙𝑢𝑜]/[𝐹𝑙𝑢𝑜]ijK = [𝑃𝐼]MN/[𝑃𝐼]JK8. Membrane damage can be calculated from the 551 

experimentally observed relative fluorescence 𝑠(𝑡): 552 

𝑑𝑠(𝑡)
𝑑𝑡 =

𝑑[𝐹𝑙𝑢𝑜]
𝑑𝑡 /[𝐹𝑙𝑢𝑜]ijK =

𝐴0𝑒7(8)

1+ 𝐾[𝐷𝑁𝐴] [1− 𝑠(𝑡)] 553 

and thus we obtain the formula used in our analysis 554 

𝐴1𝑒7(8) =
cl(8)/c8

15l(8)
,  555 

where 𝐴1 = 𝐴0/(1+ 𝐾[𝐷𝑁𝐴]). 556 

 557 

𝐴1 is an Arrhenius-type pre-exponential factor with a unit of inverse time. It is assumed to be 558 

constant, because DNA concentration should be constant among the non-growing cells in our 559 
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experiment. The value of 𝐴1 is not relevant to the dynamics of damage, thus we used  560 

𝐴1 ==1/600 so that initial timepoints start close to PI uptake rates of 1. 561 

 562 

Time-series analysis and numerical differentiation. The fluorescence series was zeroed by the 563 

background and then divided by the maximum fluorescence for each cell to arrive at s(t) defined 564 

above. To arrive at estimates for PI uptake rate, cl(8)/c8
15l(8)

,  we performed numerical differentiation 565 

of s(t) in a fashion that reduces the impact of experimental noise. In the present time-lapse 566 

microscopy experiments where single cells inside microfluidic chambers are imaged, 567 

experimental noise is driven by fluctuations in focus on the z-axis. This type of noise is 568 

approximately multiplicative and non-correlated in neighboring 1h time points (see Fig. S1). We 569 

therefore smoothed the log-transformed data ln[s(t)] in time windows of 7h with a Wiener filter. 570 

Then dln[s(t)]/dt were estimated using linear regression in non-overlapping 7h windows. The 571 

resulting time derivatives are multiplied by the s(t)/[1-s(t)] to arrive at 𝐴1𝑒7(8). 572 

The typical values of X(t) during the lifetime of the bacteria begin around 0.01Xc and rise to 573 

cross Xc at 80-100h.   574 

 575 

Marginal damage distributions. We searched for an analytical form for the probability 576 

distribution function that can fit the damage distributions at various ages with age-dependent 577 

parameters. We tested 15 commonly used probability distributions. Each distribution has a 578 

probability density function f(Z/σ; Θ), where Z is the value of the random variable, Θ is the 579 

vector for the shape parameters and σ is the scaling parameter. We fit this to the empirical 580 

damage distribution 𝑍M8 of cell i at age t, by maximizing the likelihood  𝛴M𝑓(𝑍M8/𝜎8; 𝛩8)  as a 581 

function of parameters 𝜎8, 𝛩8, using  the scipy.stats package of python. The goodness of fit was 582 

evaluated by the one-sample Kolmogorov-Smirnov (K-S) test. The tested distributions, the K-S 583 

test statistics and associated p-value are shown in Table S1 and Figure S1. 584 

The three distribution functions that best fit the marginal damage distributions, Burr, Burr12 and 585 

Fisk, are all special cases of the generalized beta distribution of the second kind (GB2) 19, whose 586 

probability density function is: 587 

𝑓q$2(𝑍) 	= 𝑎	𝑏jr	𝑍js51(𝑏j + 𝑍j)5s5r /𝐵𝑒𝑡𝑎(𝑝, 𝑞), 588 

 589 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 17, 2022. ; https://doi.org/10.1101/2022.10.17.512406doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.17.512406
http://creativecommons.org/licenses/by-nc-nd/4.0/


where p and q are dimensionless shape parameters, and a and b describe the cooperativity and 590 

scale of the observed damage proxy Z, the PI uptake rate. GB2 becomes a Burr (Burr Type III) 591 

distribution when q=1 and a Burr12 distribution when p=1, and the Fisk distribution when 592 

p=q=1. Since the damage we seek is X=ln(Z), we transform to obtain: 593 

 594 

 595 

(2) 𝑃(𝑋) = 𝑓q$2(𝑍)	𝑑𝑍/𝑑𝑋 ∼ 	𝑒js7(𝑏j + 𝑒j7)5s5r . 596 

 597 

Derivation of the MP-SR model. We model the dynamics with a stochastic differential equation 598 

(SDE) in the form of  599 

 600 

(3) 𝑑𝑋/𝑑𝑡 = 𝐺(𝑋, 𝑡) + √2𝜎𝜉 = 	𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛	 − 𝑟𝑒𝑚𝑜𝑣𝑎𝑙	 + √2𝜎𝜉, 601 

 602 

where both production and removal rates of damage can depend on damage level X and age t. 603 

We assume that the production and removal of damage happen much faster than the age-related 604 

change in parameters. Thus we can make the approximation that the observed damage 605 

distributions in the previous section are quasi-steady-state distributions of the SDE. The quasi-606 

steady-state distribution can be written as the Boltzmann distribution 𝑃(𝑋) ∼ 𝑒56(7,8)/9 , where 607 

the potential function U is defined by 𝐺(𝑋, 𝑡) = −𝜕𝑈/𝜕𝑋.  608 

Using the best-fit GB2 distribution P(X) of Eq (2), we find the potential up to an irrelevant 609 

constant: 610 

𝑈(𝑋, 𝑡) = 𝜎(𝑝 + 𝑞)𝑙𝑛(𝑏j + 𝑒j7) − 𝜎𝑎𝑝𝑋  . 611 

The two terms of this potential function naturally relate to damage production and removal 612 

terms. Thus, via differentiation of U with respect to X we find: 613 

𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 = 𝜎𝑎𝑝, 𝑟𝑒𝑚𝑜𝑣𝑎𝑙 = 𝜎𝑎(𝑝 + 𝑞)	𝑒jK	/(𝑒jK + 𝑒j{). 614 

By redefining the GB2 parameters 𝑏 = 𝑒{, 𝑝 = 𝜂8/𝑎𝜎, 𝑞 = (𝛽8 − 𝜂8)/𝑎𝜎, the MP-SR model for 615 

damage dynamics in E. coli is given by: 616 

𝑑𝑋/𝑑𝑡 = 𝜂8 	− 𝛽8	𝑒j7	/(𝑒j7 + 𝑒j{) 	+ √2𝜎𝜉. 617 

The GB2 parameters that best fit the experimental data show that p/(p+q) rises approximately 618 

linearly with time (Fig. 1F) and that 𝑏 and 𝑎 remain approximately constant. We conclude that 619 
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the observed damage distributions are well-described by an SR-type process with  𝜂8 = 𝜂𝑡 and 620 

𝛽8=𝛽 , as in Eq 1. 621 

  622 
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S1 Estimated of experimental noise 639 

 640 
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 641 
Figure S1 Estimation of experimental noise. (A) Data derived from time-lapse microscopic 642 

images (dots) is assumed to be  composed of a relatively slow moving signal (curves) and 643 

sequentially independent multiplicative experimental noise. The curves are moving averages of 644 

7h with min and max value removed.  The difference between these curves and the raw data in 645 

log scale, i.e. the fitting residues, is our estimate of experimental noise. (B) Histogram of the 646 

fitting residues. The mean of this distribution is approximately zero, 0.02+/-0.03XX,  and the 647 

standard deviation approximates the magnitude of experimental noise, about 5.5%. The left half 648 

of this distribution was used to estimate the magnitude of the experimental noise, because the 649 

distribution is skewed to the right due to the generally rising trends of PI signal. 650 

 651 

S2 Best fit distribution functions to experimental damage 652 

distributions 653 

In this section we provide details for the fits of the 15 distribution functions to the experimental 654 

E. coli damage distributions at different ages. We provide the KS statistic (Table S1) and p-655 

value (Fig S2), where a higher KS p-value (bluer colors) means a better fit. The distributions are 656 

ordered according to goodness of fit (average log p-value). 657 
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 658 
Figure S2 KS test p-values for 15 distribution functions to the marginal damage distributions at 659 

different timepoints. Functions are ordered by mean p-value. 660 

 661 

 662 

 Model  K-S statistic 

 24.5h 31.5h 38.5h 45.5h 52.5h 59.5h 66.5h 73.5h 80.5h 

burr 0.042 0.046 0.035 0.038 0.047 0.048 0.046 0.027 0.038 

burr12 0.051 0.057 0.041 0.038 0.048 0.038 0.040 0.029 0.046 

fisk 0.049 0.061 0.048 0.038 0.048 0.052 0.051 0.051 0.048 

exponentiated 

weibull 

0.073 0.098 0.062 0.060 0.080 0.037 0.034 0.031 0.058 

generalized 

gamma 

0.076 0.101 0.063 0.069 0.088 0.036 0.033 0.032 0.059 

lognormal 0.095 0.106 0.067 0.069 0.082 0.060 0.051 0.078 0.106 
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half generalized 

normal 

0.104 0.129 0.085 0.087 0.112 0.036 0.036 0.045 0.093 

generalized 

pareto 

0.112 0.121 0.056 0.077 0.115 0.058 0.039 0.044 0.116 

weibull 0.106 0.142 0.099 0.106 0.129 0.043 0.050 0.049 0.064 

gamma 0.118 0.166 0.141 0.150 0.153 0.070 0.069 0.048 0.057 

beta 0.127 0.166 0.140 0.149 0.156 0.070 0.068 0.048 0.057 

inverse weibull 0.152 0.284 0.129 0.136 0.153 0.134 0.100 0.140 0.202 

inverse gamma 0.214 0.461 0.185 0.239 0.253 0.223 0.135 0.195 0.281 

inverse gaussian 0.220 0.784 0.201 0.280 0.279 0.326 0.152 0.216 0.316 

generalized 

extreme 

0.376 0.394 0.373 0.374 0.396 0.369 0.372 0.372 0.387 

 663 

 664 

Table S1 Kolmogorov-Smirnov (KS) test statistics for the 15 distribution functions compared to 665 

the marginal damage distributions at different timepoints. 666 

 667 

 668 

S3 Shortening twilight in the E. coli dataset 669 

 670 

We follow the pioneering work of Stroustrup et al and explore the question of twilight, the time 671 

from a measurable age related phenotype to the time of death 24. Suppose there is a 672 

measurable age-related phenotype that is equivalent to damage crossing a threshold X1. If we 673 

define twilight 23 as the remaining lifespan after the threshold is crossed , the question is 674 

whether twilight shortens or lengthens with the age at which the threshold is crossed.  675 
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 676 

The SR model predicts that twilight shortens with age on average (Fig S3ABC).  Equivalently, 677 

the time to cross X1, denoted 𝑡|	, should be positively correlated with time of death 𝑡c , but with a 678 

correlation coefficient less than one (Fig S3B).  679 

The reason for the shortening twilight is that the damage production term 𝜂𝑡	rises with age. 680 

Individuals that cross X1 at early times have a low production term. It takes them longer to 681 

reach the death threshold than those crossing X1 at late times. Thus there is a negative 682 

correlation between 𝑡|	 and  remaining lifespan (Fig S3C). This prediction is borne out by the E. 683 

coli dataset (Fig S3D). A similar effect was observed in aging C. elegans 24. 684 

 685 

 686 

 687 
 688 

Figure S3 E. coli shows shortened twilight at old age. (A) SR model simulation with parameters 689 

𝜂 = 0.1, 𝛽 = 𝑘 = 1. Thresholds are 4 and 6. (B) Time to cross the two thresholds is correlated 690 

but with slope less than 1 (regression slope ~ 0.7). (C ) Remaining lifespan (remaining time to 691 
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cross threshold 6 after threshold 4 is crossed) drops with time to cross threshold 4. (D) 692 

Correlation of remaining lifetime with time to cross a damage threshold of 𝑒7=4 in the E. coli 693 

dataset. Regression line is y=-0.13x+27.5. 694 

 695 

 696 

S4 Analytical properties of the MP-SR model 697 

 698 

Here, we derive the risk of death of the MP-SR model analytically, using Kramer’s 699 

approximation. 700 

 701 

The model equation is: 702 

𝑑𝑋/𝑑𝑡 = 𝜂𝑡	 − 	𝛽	𝑒j7	/(𝑒j7 + 𝑒j{) 	+ √2𝜎𝜉 703 

One can write this in terms of a potential function 𝑈(𝑋, 𝑡) (Fig. 4C) : 704 

𝑑𝑋/𝑑𝑡 = −𝜕𝑈(𝑋, 𝑡)/𝜕𝑋	 + √2𝜎𝜉, 705 

where the potential function is: 706 

 𝑈(𝑋, 𝑡) 	= 	−𝜂𝑡𝑋 + 𝛽/𝑎	𝑙𝑛(𝑒j{ + 𝑒j7) 707 

 708 

We model mortality as the first time when 𝑋 > 𝑋". Thus, death time is a first-passage time of the 709 

MP-SR model variable X. To estimate the risk of death, i.e. hazard rate, we apply the Kramer 710 

approximation 21,22 for the first passage time: 711 

ℎ(𝑡) ≈
�𝑈′′(𝑋�)𝑈′′(𝑋�)

2𝜋
	𝑒5

6(7�)56(7�)
9  712 

Where 𝑋�	is the steady state of the system. 713 

To arrive at Gompertz law, one needs −6(7�)56(7�)
9

 to increase linearly with age. This is indeed 714 

the case: 715 

−6(7�)56(7�)
�

= 𝑡𝜂𝜎5|(𝑋" − 𝑋�) + 𝛽𝑎5|𝜎5|[𝑧(𝑋�) − 𝑧(𝑋")], 716 

Where 𝑧(𝑥) = 𝑙𝑛(𝑒jK + 𝑒j{). If the quasi-steady-state  𝑋� is constant and much smaller than Xc, 717 

as it is at young ages, one obtains the Gompertz hazard rate ℎ(𝑡) ∼ 𝑒
���
� 8 with the Gompertz 718 

slope 𝜂𝜎5|𝑋". 719 

 720 
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However, the quasi-steady state 𝑋� does increase with age, and rises more rapidly at late ages 721 

approaching Xc (Fig. 4B). Thus the hazard rate is only approximately Gompertzian, especially at 722 

late ages. If we use the quasi-steady state 𝑋� = 𝑙𝑛( 8�
�58�

)/𝑎	to calculate the hazard rate, we get 723 

a more complicated, non-Gompertzian formula, plotted in Fig. S4. This more realistic result 724 

shows late-age deceleration  when compared with the Gompertz law. This deceleration is 725 

indeed observed experimentally for E. coli in similar conditions 4. 726 

 727 

 728 
 729 

Figure S4 Analytically calculated hazard rate of the MP-SR model using Kramer’s 730 

approximation. The two curves follow different assumptions: Blue curve shows Gompertz law, 731 

under the constant steady state assumption. Yellow curve uses a quasi-steady state that 732 

changes with age and shows late-age deceleration.  733 
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