
1

Identifying Patients with Cognitive Motor

Dissociation Using Resting-state Temporal Stability

Hang Wu1†, Qiuyou Xie2,3†, Jiahui Pan4,5, Qimei Liang2, Yue Lan2, Yequn Guo3,

Junrong Han6, Musi Xie1, Yueyao Liu1, Liubei Jiang1, Xuehai Wu5,7,8,9*, Yuanqing

Li5,10*, Pengmin Qin1,5*

Author affiliations:

1 Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education;

School of Psychology, Center for Studies of Psychological Application, and

Guangdong Key Laboratory of Mental Health and Cognitive Science, South China

Normal University, Guangzhou, Guangdong, 510631, China

2 Joint Center for disorders of consciousness, Department of Rehabilitation Medicine,

Zhujiang Hospital, Southern Medical University, Guangzhou, 510220, China

3 Centre for Hyperbaric Oxygen and Neurorehabilitation, Guangzhou General

Hospital of Guangzhou Military Command, Guangzhou, 510010, China

4 School of Software, South China Normal University, Foshan, 528225, China

5 Pazhou Lab, Guangzhou, 510330, China

6 Key Laboratory of Brain, Cognition and Education Science, Ministry of Education,

China; Institute for Brain Research and Rehabilitation, and Guangdong Key

Laboratory of Mental Health and Cognitive Science, South China Normal University,

510631 Guangzhou, China

7 Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan

University, Shanghai, 200433, China

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted October 21, 2022. ; https://doi.org/10.1101/2022.10.17.512475doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.17.512475


2

8 Neurosurgical Institute of Fudan University, Shanghai Clinical Medical Center of

Neurosurgery, Shanghai Key laboratory of Brain Function Restoration and Neural

Regeneration, Shanghai, 200433, China

9 State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain

Science, School of Basic Medical Sciences and Institutes of Brain Science, Fudan

University, Shanghai, 200433, China

10 School of Automation Science and Engineering, South China University of

Technology, Guangzhou 510640, China

† These authors contributed equally to this work

* Correspondence to:

Dr. Xuehai Wu

Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan

University, Shanghai, 200433, China. Email: wuxuehai2013@163.com

Dr. Yuanqing Li

School of Automation Science and Engineering, South China University of

Technology, Guangzhou, 510640, China. Email: auyqli@scut.edu.cn

Dr. Pengmin Qin

Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education;

School of Psychology, Center for Studies of Psychological Application, and

Guangdong Key Laboratory of Mental Health and Cognitive Science, South China

Normal University, Guangzhou, Guangdong, 510631, China. Email:

qin.pengmin@m.scnu.edu.cn

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted October 21, 2022. ; https://doi.org/10.1101/2022.10.17.512475doi: bioRxiv preprint 

mailto:wuxuehai2013@163.com
mailto:auyqli@scut.edu.cn
mailto:qin.pengmin@m.scnu.edu.cn
https://doi.org/10.1101/2022.10.17.512475


3

Abstract

Background: Using task-dependent neuroimaging techniques, recent studies

discovered a fraction of patients with disorders of consciousness (DOC) who had no

command-following behaviors but showed a clear sign of awareness, which was

defined as cognitive motor dissociation (CMD). Although many efforts were made to

identify the CMD, existing task-dependent approaches might fail when patients had

multiple cognitive function (e.g., attention, memory) impairments, and thus lead to

false-negative findings. However, recent advances in resting-state fMRI (rs-fMRI)

analysis allow investigation of the dynamic change of spontaneous brain activity,

which might be a powerful tool to test the patient’s cognitive functions, while its

capacity in identifying CMD was unclear.

Methods: The rs-fMRI study included 119 participants from three independent

research sites. A sliding-window approach was used to investigate the dynamic

functional connectivity of the brain in two aspects: the global and regional temporal

stability, which measures how stable the brain functional architecture is across time.

The temporal stability was compared in the first dataset (36/16 DOC/controls), and

then a Support Vector Machine (SVM) classifier was built to discriminate DOC

patients from controls. Furthermore, the generalizability of the SVM classifier was

tested in the second independent dataset (35/21 DOC/controls). Finally, the SVM

classifier was applied to the third independent dataset where patients underwent an

rs-fMRI and brain-computer interface assessment (4/7 CMD/potential non-CMD), to

test its performance in identifying CMD.

Results: Our results showed that the global and regional temporal stability were
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impaired in DOC patients, especially in regions from the cingulo-opercular task

control, default mode, fronto-parietal task control, and salience network. Using the

temporal stability as features, the SVM model not only showed a good performance in

the first dataset (accuracy = 90 %), but a good generalizability in the second dataset

(accuracy = 82 %). Most importantly, the SVM model generalized well in identifying

CMD in the third dataset (accuracy = 91 %).

Conclusion: The current findings suggested that rs-fMRI could be a potential tool to

assist in diagnosing CMD. Furthermore, the temporal stability investigated in this

study also contributed to a deeper understanding of the neural mechanism of the

consciousness.

Running title: temporal stability and consciousness

Keywords: disorders of consciousness; cognitive motor dissociation; resting-state

fMRI; functional brain networks; temporal stability;

Abbreviations: CRS-R = Coma Recovery Scale-Revised; DOC = disorders of

consciousness; SVM = Support Vector Machine; UWS = unresponsive wakefulness

syndrome; MCS = minimally conscious state; CMD = cognitive motor dissociation;

dFC = dynamic functional connectivity; rs-fMRI = resting-state fMRI; BCI =

brain-computer interface.
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Introduction

Consciousness is a fundamental aspect of our complex mental life, of which the

underlying neural mechanism has been a topic of great interest in the area of

neuroscience.1,2 In the clinical setting, severe brain injury would lead to the disorders

of consciousness (DOC), where some patients showed no awareness of the

environment or of themselves (i.e., vegetative state, VS, also called unresponsive

wakefulness syndrome, UWS),3 some showed unstable but reproducible signs of

awareness (i.e., minimally conscious state, MCS)4 that could be assessed by their

behavioral responses.5 To date, the diagnosis of patients with DOC was largely

dependent on their behavioral response at the bedside, while this indirect approach

may bias the evaluation of the patients’ actual awareness due to their cognitive or

sensory impairments.6,7 Thus, many efforts were made to detect patients’ actual

awareness by means of neuroimaging (EEG and fMRI) and brain-computer interface

(BCI) techniques with specific active tasks, where a fraction of (around 20%) DOC

patients were found able to follow commands and show a similar brain activation

pattern as healthy controls.8–11 These patients were defined as cognitive motor

dissociation (CMD), also known as the functional locked-in syndrome.12 However,

current tools for identifying CMD requires that patients could understand and follow

the researchers’ oral command in order to perform a specific task, which may fail due

to the patients’ cognitive function (e.g., attention, memory) impairments, thus leading

to a false-negative finding.13 To this end, as a convenient (i.e., typically acquiring

enough data in less than 10 minutes) and task-free (i.e., no active participation

required) neuroimaging technique, resting-state fMRI (rs-fMRI) accompanied with

the BCI technique, could be an ideal complementary approach to identify CMD.

However, evidence for its diagnostic value is still scarce.
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Using static rs-fMRI functional connectivity (FC), plenty of studies have observed

that a number of functional networks were impaired or reorganized in DOC, which

were associated with decreased awareness. These networks include the default mode

network,14,15 sensorimotor network,16,17 frontal parietal network,18,19 etc. However,

increasing evidence showed that the functional networks in the brain were not

stationary, and researchers therefore combined different approaches, such as dynamic

functional connectivity (dFC) and the clustering method, and identified a number of

discrete and reproducible brain states.20 For instance, studies have shown that altered

brain dynamics (e.g., dwelling time, pattern transition) were associated with the DOC,

which was not found with conventional FC approaches based on a stationarity

assumption.21–23 Although, most of the existing findings on the DOC investigated the

dFC properties from the perspective of the functional organization of the whole-brain,

while the dynamic FC pattern of a given region hasn’t been sufficiently studied. For

this, temporal variability, an alternative dFC measurement approach was recently

developed. This approach does not cluster brain activity into several discrete brain

states, but explores the global and regional functional dynamics in a more

straightforward way.24,25According to its definition, a brain region with high temporal

variability indicates lower temporal stability (i.e. regional activity being less stable

across time), and vice versa.24,25 Using these temporal properties, studies have found

that alteration of the temporal stability of certain brain regions could be highly

informative for identifying various mental disorders with cognitive function

impairments, e.g., Alzheimer’s disease, Schizophrenia, and autism.25–27 However, it is

unclear whether and how the temporal stability altered in patients with DOC, and

more importantly, whether this measure could be used to correctly identify CMD.
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The aim of this study was twofold: first, to investigate the difference of temporal

stability between DOC and controls and build a linear support vector machine (SVM)

classifier, and second, to test the performance of the SVM model in correctly

identifying the patients with CMD. For that, a final cohort of 119 participants were

recruited from three independent centers, and divided into three datasets. For our first

aim, the first dataset (n = 52, 36 DOC) was used to investigate the difference of

temporal stability between the DOC and controls, for which an SVM classification

model was built to discriminate DOC patients from controls. The SVM model was

then applied to the second dataset (n = 56, 35 DOC) to test its generalizability. For our

second aim, the third dataset (n = 11, 4 was subsequently diagnosed as CMD) was

used, to further test the SVM model’s generalizability. Our results first showed that

the global and regional temporal stability were indeed impaired in the patients with

DOC compared with the controls. More importantly, the SVM model not only

classified DOC and controls in the first and second datasets with a good performance

(accuracy = 90 %, 82 %, respectively), but showed a good generalizability for

identifying patients with CMD (accuracy = 91 %) in the third dataset.

(Fig.1)

Materials and methods

Participants

A cohort of 128 participants were recruited from three independent research sites:

Huashan Hospital in Shanghai, Zhujiang Hospital in Guangzhou, and Guangzhou
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General Hospital of Guangzhou Military Command. The above cohort was divided

into three datasets: (1) dataset DOC-HS (n = 58, all participants were recruited from

Huashan Hospital, note that some of patients were previously analyzed and published

out of a different purpose16,28); (2) dataset DOC-ZJ (n = 59, all participants were

recruited from Zhujiang Hospital); (3) dataset CMD-GH/ZJ (n = 11, 8 participants

from Guangzhou General Hospital of Guangzhou Military Command, 3 participants

from Zhujiang Hospital). The first two datasets (DOC-HS, DOC-ZJ) were collected

for the first aim of the current study. Specifically, dataset DOC-HS was analyzed and

reported as the main results, which was also used as a training dataset for the

classification analysis, and dataset DOC-ZJ served as an independent dataset for

testing. The third dataset (CMD-GH/ZJ) was collected for the second aim of the study.

For these patients, inclusion criteria were: (1) diagnosed as having UWS or MCS

using Coma Recovery Scale–Revised scale;5 (2) scanned at least 4 days after the acute

brain insult; (3) had structurally well-preserved brain images that were carefully

chosen by author XW and checked by author PQ. Patients were excluded due to

contraindication for MRI, and motion artifacts (i.e., > 20% volumes were identified as

outliers in preprocessing) during MRI scanning.

According to the exclusion criteria, a total of 9 participants (6 from DOC-HS, 3 from

DOC-ZJ) were excluded due to motion artifacts, resulting in the final cohort of 119

participants (please see Table 1 and Supplementary Tables 1 - 3 for detailed

demographic and clinical characteristics of each dataset). Specifically, dataset
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DOC-HS included 36 DOC patients (UWS/MCS: 26/10, 29 males, mean age 43 ±

14 years, 25 traumatic, 11 non-traumatic, mean time since brain injury: 85 days) and

16 fully conscious participants with a history of brain injuries (10 males, mean age 40

± 17 years, 12 traumatic, 4 non-traumatic, mean time since brain injury: 97 days).

Dataset DOC-ZJ included 35 DOC patients (UWS/MCS: 26/9, 21 males, mean age 43

± 15 years, 13 traumatic, 22 non-traumatic, mean time since brain injury: 74 days)

and 21 healthy controls (10 males, mean age 32 ± 10 years). Dataset CMD-GH/ZJ

included 11 DOC patients (UWS/MCS: 8/3, 4 CMD; 9 males; mean age 45 ± 13

years, 5 traumatic, 6 non-traumatic, mean time since brain injury: 78 days). All

healthy participants recruited in the current study reported no history of neurological

or psychiatric disorders. Informed written consent was obtained from all healthy

participants, and legal representatives of the patients. The study was approved by the

Ethics Committee of the Huashan Hospital, the Zhujiang Hospital, and the

Guangzhou General Hospital of Guangzhou Military Command, respectively.

Brain-Computer Interface Procedure

For the 11 DOC patients in the dataset CMD-GH/ZJ, an EEG-based BCI experiment

was carried out after the rs-fMRI scanning to identify patients with CMD. These

patients were analyzed and reported in a previous study out of a different research

purpose.11 In the BCI experiment, the participants were instructed to focus on the

target stimulus and perform simple tasks. Specifically, a calibration session and an

online evaluation session was presented for each patient, where the first session

contained 10 trials for training an SVM classifier to detect photograph-related P300,
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and the second session contained five blocks of 10 trials each, to update the SVM

model obtained from the first session. To detect residual awareness in the DOC

patients, three different stimuli were adopted, including audiovisual, numbers, and

photograph stimuli. The reason we used different stimuli was because of the

heterogeneity of the symptoms, where some patients may retain intact visual and

auditory function (i.e., suitable for audiovisual stimuli), some may only retain visual

function (i.e., suitable for photograph and number stimuli). For the photograph

paradigm, the patients were asked to focus on photographs of their own face or

strangers’ face in a random order. Before each trial, an audiovisual instruction in

Chinese was presented: ‘Focus on your own photograph (or the stranger’s photograph)

and count the flashes of the photo frame’, which lasted for 8 s and indicated the target

photograph. Then, two photographs were displayed, one of them had a flashing flame,

which was randomly selected and flashed five times. After 10 s, one of the two

photographs identified by the BCI algorithm was displayed in the center of the screen

as feedback, where patients were informed whether they selected the target

photograph correctly. The experimental procedure for the number or audiovisual

paradigm was similar to the photograph paradigm except that the photographs were

replaced by numbers or audiovisual stimuli, respectively.

Each patient was assigned one of the three paradigms, as selected by their family

members. Among the 11 patients in the current study, 8 patients participated in the

photograph paradigm, 2 in the number paradigm, and 1 in the audiovisual paradigm.

Finally, a DOC patient would be diagnosed with CMD when his/her BCI accuracy

was higher than 64%, determined at a significance level of p = 0.05 using a 2 test.

For detailed information of the BCI experiment, please see the reference paper.11
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MRI acquisition

For participants recruited from the Huashan Hospital, the MR images were acquired

using a Siemens 3 Tesla scanner. Functional images were acquired using a

T2*-weighted EPI sequence (TR/TE/θ = 2000ms/35ms/90°, FOV = 256 × 256 mm,

matrix = 64 × 64, 33 slices with 4-mm thickness, gap = 0 mm, 200 scans). For

participants recruited from the Zhujiang Hospital, the MR images were acquired using

a Philips Ingenia 3 Tesla scanner. Functional images were acquired using a

T2*-weighted EPI sequence (TR/TE/θ = 2000ms/30ms/90°, FOV = 224 × 224 mm,

matrix = 64 × 64, 33 slices with 3.5-mm thickness, gap = 0.7 mm, 240 scans). For

participants recruited from the Guangzhou General Hospital of Guangzhou Military

Command, the MR images were acquired using a GE signa 3 Tesla scanner.

Functional images were acquired using a T2*-weighted EPI sequence (TR/TE/θ =

2000ms/30ms/90°, FOV = 240 × 240 mm, matrix = 64 × 64, 35 slices with 4-mm

thickness, gap = 0 mm, 240 scans). For each participant, a high-resolution

T1-weighted anatomical image was also acquired for functional image registration

and localization.

Preprocessing

For all participants across the three datasets, the same preprocessing analysis

procedures were performed, using the CONN toolbox (CONN;

http://www.nitrc.org/projects/conn, version 21.a) based on the Statistical Parametric

Mapping (SPM) 12 program (http://www.fil.ion.ucl.ac.uk/spm, version 7771)

implemented in MATLAB 2019a. For each participant, a standard preprocessing

pipeline was adopted, following recent studies29,30, which included the following steps:
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(1) removal of the initial four functional volumes; (2) functional realignment and

motion correction; (3) functional slice-timing correction; (4) identification of outlier

volumes for subsequent regression using the artifact detection tool (ART,

http://www.nitrc.org/ projects/artifact_detect), in which the default CONN settings of

5 global signal Z-values and 0.9 mm was chosen; (5) spatial normalization into

standard Montreal Neurological Institute (MNI) space (resampled to 3 mm isotropic

spatial resolution); (6) segmentation of functional and structural data into grey matter,

white matter, and CSF tissue; (7) spatial smoothing using a Gaussian kernel of 6mm

full-width at half-maximum. In each step, the processed functional and anatomical

images were carefully checked with visual inspections. After the preprocessing steps,

9 participants with over 20% outlier volumes identified with ART were excluded from

the subsequent analysis (6 from dataset DOC-HS, 3 from dataset DOC-ZJ).

To further reduce cardiac and motion artifacts, the anatomical component-based noise

correction method (aCompCor)31 was applied to denoise the functional data, as

implemented in CONN toolbox was applied to denoise the functional data.

Specifically, the aCompCor method denoises functional data by regressing out several

potential confounding effects: five potential noise components from the white matter

and cerebrospinal fluid signals, estimated motion parameters (3 translation and 3

rotation parameters plus their associated first-order derivatives), the artifacts

identified by ART; the main effect of scanning condition. Finally, a linear detrending

was applied, following a temporal band-pass filtering between 0.01 and 0.1 Hz, to

minimize both low-frequency drift effects and high-frequency noise. The above

denoising procedures have been used by several recent rs-fMRI studies that focused

on DOC, which were proved to be advantageous in keeping the temporal integrity of
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the data.32 Please see Supplementary Figure 1 for the effect of the denoising

procedures on an example.

Definition on Regions of Interest

The pipeline of data analysis was shown in Figure 1. A well-established network

template was used to be slightly modified according to previous studies33, to obtain

the regional time series. As shown in Figure 1A, this template contained 226

functional regions (5 mm radius spheres, 33 voxels per sphere), each assigned to one

of 10 functional networks: auditory (AN), cingulo-opercular task control (COTC),

default mode (DMN), dorsal attention (DAN), fronto-parietal task control (FPTC),

salience (SAN), sensory/somatomotor (SMN), subcortical (Sub), ventral attention

(VAN), and visual networks (VN). For each region of interest (ROI), time series was

obtained by averaging the signals of every voxel within the ROI.

Global And Regional Temporal Stability Analysis

Firstly, dynamic functional connectivity matrices were obtained using an overlapping

sliding window method (window length = 22 TRs, step size = 1 TR, TR = 2 s).

Specifically, for each subject, all BOLD time series were segmented into k

overlapping time windows. Within each temporal window of 22 TRs, a pairwise 226

× 226 FC matrix was built by computing the Pearson correlation coefficient between

the BOLD (Blood-oxygen-level-dependent) signals from a pair of ROIs. As a result, a

set of FC matrices was obtained, i.e., [FC1, FC2, ..., FCk]. 22 TRs (44s) of window

length was chosen according to previous studies, which suggested that a window in

the range of 30–60 s has sufficient time points to be robust enough in detecting the

rs-fMRI FC fluctuation for a reliable network identification.20
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Secondly, given a set of FC matrices [FC1, FC2, ..., FCk] for each window, we

introduced the measure of global temporal stability between each pair of FC

matrices.24,34 Specifically, the Pearson correlation coefficient was used to measure

spatial similarity between the upper-triangular parts of the FC matrices across time

windows:





k

jiji
jiglobal FCTriUpperFCTriUppercorr

kk
TS

,1,
))(),((

)1(
1

(1)

where TriUpper(FCi) stands for the upper triangle of the FC matrix at time window i,

and corr(TriUpper(FCi), TriUpper(FCj)) stands for the correlation coefficient between

two FC matrices. As illustrated in Fig. 1B, the temporal similarity matrix was firstly

obtained, which depicted the spatial similarity between any pair of FCs, i.e., the

stability of global FC pattern across time windows. The global temporal stability was

then defined as the mean value of the off-diagonal elements of the temporal similarity

matrix.

Finally, to characterize the temporal stability of the FC pattern associated with a given

ROI, we introduced the measure of regional temporal stability that was slightly

modified from recent studies.25,35 As shown in Figure 1C, the functional architecture

of the region r across different time windows was extracted, which represented the

overall FC pattern of region r across time windows, then the temporal stability of this

region was defined as:





k

jiji
jir rFCrFCcorr

kk
TS

,1,
:)),(:),,((

)1(
1

(2)

where FCi(r,:) stands for the FC pattern between the region r and all other regions at
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time window i, and corr(FCi(r,:), FCj(r,:)) stands for the correlation coefficient

between two FC patterns. The regional temporal stability was then defined as the

average correlation coefficient among all FC patterns of brain region r across time

windows.

Classification Analysis

Following the above procedures, a total of 227 features (1 global temporal stability

and 226 regional temporal stability) were extracted for each participant. Prior to

model training, all features were normalized into Z-scores. Then, as shown in Figure

1D, to test the predictive value of the calculated features (i.e., temporal stability) for

classifying controls and DOC, a linear support vector machine (SVM) algorithm was

applied using scikit-learn with default settings. Specifically, the SVM classifier were

trained and evaluated on the dataset DOC-HS (n = 52) using a leave-one-subject-out

(LOSO) cross-validation, where controls were labeled as 1, and DOC (including

MCS/UWS) patients as 0. In each LOSO cross-validation fold, we used a method of

SVM recursive feature elimination with cross-validation (SVM-RFECV, implemented

in scikit-learn with default settings) to select the most informative features and reduce

the risk of overfitting, in which model performance is iteratively tested with and

without specific features.36 Furthermore, since the selected features are different in

each LOSO cross-validation fold, we used the voting approach to choose features that

occurred in at least 50% of the folds of cross-validation as the most important

features.35 This yielded a smaller subset of 41 features of regional temporal stability

(see Supplementary Figure 2). To test for robustness, using the selected features, we

also evaluated whether the fully trained SVM model could generalize to the

independent dataset DOC-ZJ (n = 56). Finally, to evaluate the capacity of the model to
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correctly identified DOC patients who was subsequently diagnosed as CMD, the same

SVM model was also applied to the independent dataset CMD-GH/ZJ (n = 11).

Specifically, a prediction was considered correct when a DOC patient was predicted

as label 1 (as controls) and his/her subsequent BCI diagnosis was CMD, and vice

versa.

Statistical Analysis

For the difference of global and regional temporal stability, an independent

two-sample t-test (two-sided) was applied between controls and DOC for dataset

DOC-HS (16 CON vs. 36 DOC). To quantify the classification performance, receiver

operating characteristic (ROC) analysis was used to calculate the area under the curve

(AUC), which measures the ability of the SVM model in discriminating controls,

CMD or DOC, and potential non-CMD. The value of the AUC ranges from 0 to 1,

where 0 denotes 100% inaccurate predictions, an 1 denotes 100% accurate predictions.

In addition, for each dataset, a confusion matrix was generated to measure results of

the SVM classification. A  2 test was then used to assess the statistical significance

between the labels predicted by the classifier and the actual class labels. For the above

statistic comparison, a Bonferroni correction at alpha < 0.05 was applied.

Data Availability

The data that support the findings of the current study may be requested from the

corresponding author upon reasonable request.

Results
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Impaired Global Temporal Stability in Patients with DOC

Firstly, we investigated the difference of global temporal stability between controls

and DOC, by measuring the similarity of their global FC pattern across different time

windows. In Figure 2A, two examples were shown for visualization of the temporal

similarity matrix (window length = 22 TRs, i.e., 44 s), one is a control (top row) and

the other a DOC patient (bottom row). For each matrix, its elements represent the

Pearson correlation coefficient of the global FC pattern between every pair of time

windows. In general, temporal similarity of the DOC was markedly impaired, which

reflected an unstable or unsynchronized global FC pattern across time windows.

In addition, we quantified the difference of global temporal stability between the

controls and DOC at a group-level, by averaging off-diagonal elements of each

individual temporal similarity matrix. In the top row of Figure 2B, it can be seen that

the global temporal stability was impaired in DOC relative to controls, at a window

length of 22 TRs (two-sample t-test, p = 0.015). To validate the robustness of different

window lengths, we performed the global temporal stability analysis at two different

window ranges: a “short” range (from 5 to 20 TRs) and a “long” range (from 21 to 35

TRs). The results were consistent as the above, both in the mean value at the two

window ranges (Figure 2C, two-sample t-test, p = 0.017 for “short” range, p = 0.015

for “long” range), and the distribution (Figure 2D, two-sample Kolmogorov-Smirnov

test, p = 0.002 for “short” range, p < 0.001 for “long” range). All p values above were

Bonferroni-corrected.

(Fig.2)
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Impaired Regional Temporal Stability in Patients with DOC

We further investigated the difference of regional temporal stability between controls

and DOC, measuring the stability of FC pattern between the region and all other

regions across time. Figure 3A shows the regional temporal stability (window length

= 22 TRs) at a group level, where the stability value was significantly lower in DOC

compared with controls, especially in the range of the DMN. This confirmed that the

regional temporal stability in COTC, DMN, FPTC, SAN was significantly impaired in

DOC patients (Figure 3B, p < 0.05, Bonferroni-corrected), and this finding is

consistent at a network-level (Figure 3C, p value < 0.01, Bonferroni-corrected).

(Fig.3)

Correct Identification of CMD Using Temporal Stability

Finally, we trained an SVM classifier with selected features to test whether the model

could discriminate controls and DOC in dataset DOC-HS, and validated it in the

independent dataset DOC-ZJ. Additionally, the fully-trained model was further

applied to the independent CMD-GH/ZJ dataset, to test its capacity in correctly

identifying CMD from potential non-CMD. Specifically, the SVM recursive feature

elimination with cross-validation (SVM-RFECV) method (implemented in

scikit-learn with default settings) was used to select the most informative features,

where 41 features of regional temporal stability were selected (see Supplementary

Figure 2). In general, the SVM model showed a robust classification performance

(accuracy = 90%) in discriminating controls and DOC in dataset in DOC-HS using a

leave-one-subject-out cross-validation (Figure 4A), and showed good generalizability

(accuracy = 82%) in the dataset DOC-ZJ (Figure 4B). More interestingly, as shown in
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Figure 4C, we also observed that the classifier generalized very well to the

independent dataset CMD-GH/ZJ (Accuracy: 91%). Most importantly, all four DOC

patients (3 UWS and 1 MCS at the time of rs-fMRI scanning) with a subsequent

CMD diagnosis in BCI were correctly classified by the SVM model. Note that one

DOC patient (being in UWS at the time of scanning) was misclassified as a control

(i.e., being in fully conscious state), while his subsequent BCI diagnosis was potential

non-CMD.

(Fig.4)

Specifically, in the left column of the Figure 4A-C, the area under the ROC curves

(AUC) was calculated for dataset DOC-HS (AUC = 0.94), dataset DOC-ZJ (AUC =

0.85), and dataset CMD-GH/ZJ (AUC =0.86), respectively. The middle column of the

Figure 4A-C plots the confusion matrix generated by the SVM for each dataset, in

which a chi-squared test was used to estimate the classifier’s performance. The test

showed consistently significant results for the dataset DOC-HS (  2 = 30.92, p <

0.001), DOC-ZJ ( 2 = 21.13, p < 0.001), and CMD-GH/ZJ ( 2 = 7.54, p = 0.018),

respectively. Finally, the right column of the Figure 4A-C showed the result of

individual classification for each dataset, which depicted the proportional value of the

distance for each individual from the separating hyperplane.

For validation purposes, we also performed the same classification analysis, using

only the significant features (1/21 global/regional temporal stability) from dataset

DOC-HS, and found a lowered classification performance (accuracy for dataset

DOC-HS, DOC-ZJ, CMD-GH/ZJ: 73%, 70%, 82%). This suggests that choosing

features according to its group-level significance might lose some meaningful
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information for classification, which is consistent with previous studies.32,37

Discussion

The current study investigated the difference of temporal stability between fully

conscious participants and patients with DOC, and tested its capacity in detecting

covert awareness in CMD, whose awareness may be intact and yet unable to be

detected with behavioral assessment. Our results showed impaired temporal stability

in DOC, especially in the network of COTC, DMN, FPTC, and SAN. More

importantly, using temporal stability as features, our classification analysis showed

that the SVM model could not only discriminate DOC and controls with a high

performance, but also able to correctly identify CMD. Overall, the current findings

showed that consciousness was likely to rely on a stable functional architecture over

time. Based on the current results, we believe that we could have developed an

alternative way for diagnosing CMD patients that is highly convenient.

The most important finding of the current study is that the alteration of temporal

stability could be informative in identifying CMD. Among the 11 DOC patients, our

model correctly classified 10 patients, which was consistent with their subsequent

BCI diagnosis, including 4 CMD and 6 potential non-CMD patients. In line with

previous studies, our finding supported that a proportion of DOC patients may

maintain covert awareness while fail to be detected with behavioral assessment.9,13

Current studies testing the patients’ awareness used either task-based fMRI (e.g.,

mental imagery tasks)10 or EEG-based BCI paradigms (e.g., item-selection task),38

both of which require several cognitive functions, e.g., working memory, and object
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recognition.39As a result, some DOC patients diagnosed as potential non-CMD due to

his/her deficit of memory or fluctuations of attention, could still maintain covert

awareness. This issue was emphasized in a previous study that, a non-significant BCI

accuracy was not definitive in proving absence of awareness (i.e., potential

non-CMD), and false-negative findings in BCI experiments were possible,11 which

could be the case for the one DOC patient (being in UWS at the time of fMRI

scanning) misclassified by our model in the current study.

Furthermore, we found that the temporal stability in regions of several functional

networks were impaired in DOC, including COTC, DMN, FPTC, and SAN, which

highlights the importance of these networks in sustaining normal awareness. Among

these functional networks, the DMN is involved in mind-wandering, and processing

of the autobiographical and self-related information,40 and reduction in the functional

connectivity in this network was consistently observed during neuropathological (e.g.,

DOC),14,41 pharmacological (e.g., propofol-induced sedation),30,42 and physiological

(e.g., non-rapid eye movement sleep) unconscious states.43 The FPN and COTC on

the other hand, are two major task-positive functional networks, which were found

associated with goal-directed behaviors and perceptual processing,44 thus playing a

central hub-like role in supporting human consciousness.45,46 The SAN, which has

been implicated in interoceptive information processing47, has also been found to be

reduced in its functional connectivity in multiple unconscious states.48,49 Beyond the

existing evidence, our results showed that DOC suffered from a loss of stable

functional architecture across time, reflected by an impaired temporal stability, which

could mean that a fully conscious states might be characterized by the opposite, i.e.,

maintaining a stable functional organization over time. This assumption was
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supported by a previous study, where functional connectivity during DOC and

anesthesia states exhibited a significant reduction in the temporal states of high

integration,29 suggesting that unconscious states could be dominated by a

fragmentized and unstable (i.e., with a low temporal integration) functional

architecture. In summary, our findings highlighted the importance of temporal

stability in supporting consciousness.

Several issues should be noted. Firstly, the sample size of DOC patients who

underwent the rs-fMRI and BCI experiment was relatively small (n = 11). Although

our classification results exhibited a good performance (10 of 11 patients were

correctly classified), showing a potential of rs-fMRI in detecting covert awareness in

the DOC, more studies in the future are needed to further test its robustness. Secondly,

in the current study, the rs-fMRI scanning and BCI assessment were not performed at

the same time (mean time interval between rs-fMRI and BCI assessment: 116 days),

and it was possible that patients’ conscious states may vary between the two

assessments. Although, among the 11 patients, 9 patients had consistent behavioral

diagnosis (i.e., Coma Recovery Scale-Revised, CRS-R scale) between the time of

rs-fMRI and the BCI assessment, as well as consistent SVM classification outcomes

with the BCI diagnosis. Furthermore, even the two patients who were behaviorally

diagnosed as UWS (at the time of rs-fMRI scanning) and emerged to MCS (at the

time BCI assessment), were both classified as having awareness using the

resting-state temporal stability. It is therefore possible, that these two patients might

had covert awareness, which failed to be detected by the behavioral assessment.7,9,18

Thirdly, although participants were asked to keep their eyes open before the

experiment, we cannot fully rule out the possibility that some of the participants may
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felt drowsy and slept during the scanning,50 which might lead to some fully conscious

participants (i.e., controls) misclassified as DOC in the current study.

In conclusion, our results exhibited that the temporal stability was impaired in patients

with DOC. Specifically, patients with DOC were accompanied by a reduction of

temporal stability in several functional networks, including COTC, DMN, FPTC, and

SAN. More interestingly, we built an SVM model that used temporal stability as

features, and showed a good performance in correctly identifying potential CMD.

Taken together, the current study offered new insight into the neural mechanism of

consciousness, and showed a potential diagnostic value of rs-fMRI for CMD patients.
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Figure legends

Figure 1 Pipeline of the Data Analysis. (A) To obtain the dynamic functional

connectivity matrix, a sliding window approach (window length = 44 s, step = 2s) was

used, where the Pearson’s correlation coefficient was calculated between each pair of

brain regions based on a pre-defined brain template. Then the (B) global (i.e.,

whole-brain) and (C) regional temporal stability were defined as the similarity (using

Pearson’s correlation) of the global and regional functional connectivity patterns

across the time windows. (D) Finally, the temporal stability was used as features, and

an SVM classifier was trained and evaluated in the first DOC dataset to investigate its

performance in discriminating controls and DOC. The fully-trained SVM model was

applied to the second independent dataset to test its generalizability. The model was
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further applied to the third independent dataset to test whether it could correctly

identify patients with CMD. W = window length; FC = functional connectivity; AN =

auditory network; COTC = cingulo-opercular task control network; DMN = default

mode network; DAN = dorsal attention network; FPTC = fronto-parietal task control

network; SAN = salience network; SMN = sensory/somatomotor network; Sub =

subcortical network; VAN = ventral attention network; VN = visual network; CON =

controls with full awareness; DOC = disorders of consciousness; CMD = cognitive

motor dissociation; SVM = Support Vector Machine.
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Figure 2 Comparison of Global Temporal Stability Between Patients With DOC

and Controls. It should be noted that all results presented in the figure were obtained

from the dataset DOC-HS. (A) Temporal similarity matrix for one representative

control and DOC participant, respectively, which measures the similarity (using

Pearson’s correlation) of the global (i.e., whole-brain) functional connectivity patterns

across different time windows. (B) The group-level comparison of the global temporal

stability between the DOC and control group was performed, where a window length

of 22 TRs (i.e., 44s) was used. (C) The group-level difference was further validated

for both short (mean value over window length from 5 to 20 TRs) and long window

(mean value over window length from 21 to 35 TRs) ranges, (D) as well as their

distribution. CON = controls with full awareness; DOC = disorders of consciousness;

* means p < 0.05, ** means p < 0.01, Bonferroni corrected.

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted October 21, 2022. ; https://doi.org/10.1101/2022.10.17.512475doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.17.512475


35

Figure 3 Comparison of Regional Temporal Stability Between Patients With

DOC and Controls. It should be noted that all results presented in the figure were

obtained from the dataset DOC-HS. (A) The regional temporal stability (window

length = 22 TRs) value for each control and DOC participant across the ten functional

networks. (B) Brain regions with significantly (p < 0.05 Bonferroni corrected) higher

regional temporal stability for controls than the DOC patients, where the size and

color of the node denotes the t-value and its corresponding network. (C) Group-level

comparison of network mean temporal stability (by averaging the corresponding

regions for each network). AN = auditory network; COTC = cingulo-opercular task

control network; DMN = default mode network; DAN = dorsal attention network;

FPTC = fronto-parietal task control network; SAN = salience network; SMN =

sensory/somatomotor network; Sub = subcortical network; VAN = ventral attention

network; VN = visual network; CON = controls with full awareness; DOC = disorders

of consciousness; ** means p < 0.01, Bonferroni corrected.
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Figure 4 Classification Results of the Three Datasets. The temporal stability was

used as features to build an SVM model, to test its performance in discriminating

controls and DOC, as well as in identifying CMD. (A) The model was firstly trained

and validated in the first dataset (DOC-HS) using a leaving-one-subject-out cross

validation method, with which the ROC curve, confusion matrix, and individual

classification outcome was displayed. (B) The fully-trained model was further applied

to the independent dataset DOC-ZJ to test its generalizability. (C) The same model

was then applied to the independent dataset CMD-GH/ZJ, to test its capacity in

correctly identifying patients with CMD. ROC = receiver operating characteristic;

AUC = area under curve; CON = controls with full awareness; DOC = disorders of

consciousness; CMD = cognitive motor dissociation;
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Table

Table 1. Demographic and Clinical Information for the Three DOC Datasets

Dataset Group
Sample

Size

Mean Age

(SD)
Sex

Days Since

Injury (SD)

Traumatic

Injury

Diagnosis

(UWS/MCS)
CMD

DOC-HS
BI 16 40 (17) 10M/6F 97 (153) 12 - -

DOC 36 43 (14) 29M/7F 85 (87) 25 26/10 -

DOC-ZJ
HC 21 32 (10) 10M/11F - - - -

DOC 35 43 (15) 21M/14F 74 (56) 13 26/9 -

CMD-GH/ZJ CMD 11 45 (13) 9M/2F 78 (60) 5 8/3 4

Note: For the dataset DOC-HS and DOC-ZJ, BI and HC were both considered as controls, whose

awareness were intact compared with the DOC patients. For the dataset CMD-GH/ZJ, 11 DOC patients

underwent both the resting-state fMRI scanning and brain-computer interface experiment. BI = fully

conscious participants with a history of brain injury; DOC = disorders of consciousness; HC = healthy

controls; CMD = cognitive motor dissociation; UWS = unresponsive wakefulness syndrome; MCS =

minimally conscious state; SD = standard deviation. “-” means not applicable.
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Supplementary material:

Supplementary Table 1. Detailed Demographic and Clinical Information for Dataset

DOC-HS
Patient

Number
Age Sex Aetiology

Days Since

Injury
CRS-R Diagnosis

P1 52 M TBI 210 6 UWS

P2 47 M SIH 315 6 UWS

P3 35 M SIH 300 4 UWS

P4 46 M TBI 168 1 UWS

P5 53 M TBI 30 3 UWS

P6 26 M TBI 143 6 UWS

P7 45 M TBI 12 6 UWS

P8 67 F TBI 10 3 UWS

P9 38 M TBI 81 3 UWS

P10 35 F TBI 21 5 UWS

P11 17 M TBI 16 6 UWS

P12 46 M TBI 25 2 UWS

P13 62 M TBI 24 4 UWS

P14 57 F TBI 15 3 UWS

P15 57 M SIH 33 2 UWS

P16 39 F TBI 31 6 UWS

P17 46 M SIH 18 2 UWS

P18 46 M TBI 162 5 UWS

P19 44 M TBI 21 3 UWS

P20 52 F SIH 51 4 UWS

P21 43 F SIH 162 8 UWS

P22 39 M SIH 221 4 UWS

P23 46 M Anoxic 23 3 UWS

P24 51 M TBI 100 4 UWS

P25 60 M SIH 109 6 UWS

P26 24 M Anoxic 5 7 UWS

P27 16 M TBI 4 12 MCS

P28 56 M TBI 18 8 MCS

P29 48 M TBI 19 10 MCS

P30 18 M TBI 30 6 MCS

P31 32 F TBI 73 12 MCS

P32 17 M TBI 44 12 MCS

P33 36 M TBI 82 13 MCS

P34 44 M TBI 98 8 MCS

P35 64 M SIH 157 8 MCS

P36 30 M TBI 240 8 MCS

P37 54 F TBI 4 23 BI
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P38 34 M TBI 4 23 BI

P39 24 F TBI 139 23 BI

P40 52 F TBI 137 23 BI

P41 29 F TBI 6 23 BI

P42 18 M TBI 182 23 BI

P43 46 M TBI 43 23 BI

P44 50 F SIH 9 23 BI

P45 49 M TBI 57 23 BI

P46 18 M TBI 105 23 BI

P47 33 F SIH 4 23 BI

P48 70 M TBI 11 23 BI

P49 46 M SIH 41 23 BI

P50 64 M SIH 30 23 BI

P51 21 M TBI 621 23 BI

P52 24 M TBI 165 23 BI

Note: UWS = unresponsive wakefulness syndrome; MCS = minimally conscious state; BI = fully

conscious participants with brain injury history; CRS-R = Coma Recovery Scale-Revised; SIH =

spontaneous intracerebral hemorrhage; TBI = traumatic brain injury.
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Supplementary Table 2. Detailed Demographic and Clinical Information for Dataset

DOC-ZJ
Patient

Number
Age Sex Aetiology

Days Since

Injury
CRS-R Diagnosis

P1 60 F TBI 25 4 UWS

P2 53 M SIH 179 2 UWS

P3 56 M Anoxic 55 6 UWS

P4 42 M TBI 42 1 UWS

P5 27 F Anoxic 25 7 UWS

P6 32 F Anoxic 75 5 UWS

P7 56 F TBI 73 4 UWS

P8 39 M Anoxic 48 2 UWS

P9 18 M Anoxic 56 6 UWS

P10 39 M SIH 97 1 UWS

P11 48 M SIH 110 4 UWS

P12 36 F Anoxic 62 6 UWS

P13 13 M TBI 35 6 UWS

P14 50 F Anoxic 32 5 UWS

P15 34 M TBI 38 6 UWS

P16 67 F Anoxic 45 5 UWS

P17 35 F Anoxic 62 6 UWS

P18 40 M Anoxic 67 8 UWS

P19 39 M SIH 116 3 UWS

P20 22 M TBI 47 5 UWS

P21 46 M SIH 62 3 UWS

P22 58 M TBI 153 8 UWS

P23 55 M TBI 195 6 UWS

P24 69 F Anoxic 35 5 UWS

P25 64 M TBI 71 3 UWS

P26 55 F Anoxic 37 3 UWS

P27 52 M Anoxic 34 10 MCS

P28 30 F TBI 78 7 MCS

P29 23 M SIH 31 8 MCS

P30 36 M TBI 89 15 MCS

P31 46 F SIH 115 12 MCS

P32 58 M SIH 29 11 MCS

P33 49 F SIH 42 7 MCS

P34 20 M TBI 287 10 MCS

P35 53 F TBI 31 7 MCS

Note: UWS = unresponsive wakefulness syndrome; MCS = minimally conscious state; CRS-R = Coma

Recovery Scale-Revised; SIH = spontaneous intracerebral hemorrhage; TBI = traumatic brain injury;

“-” means not applicable.
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Supplementary Table 3. Detailed Demographic and Clinical Information for Dataset

CMD-GH/ZJ

Patient

Number
Age Sex Aetiology

Days Since

Injury

CRS-R at

rs-fMRI

Diagnosis at

rs-fMRI

CRS-R

at BCI

Diagnosis

at BCI

BCI

Accuracy

P1 48 M Anoxic 19 3 UWS 7 UWS 66

P2 39 M Anoxic 67 5 UWS 5 UWS 72

P3 39 M TBI 7 5 UWS 6 UWS 52

P4 46 M TBI 73 5 UWS 5 UWS 62

P5 51 M TBI 45 6 UWS 11 MCS 52

P6 50 M SIH 106 3 UWS 9 MCS 66

P7 58 M Anoxic 140 5 UWS 5 UWS 52

P8 15 F Anoxic 33 12 MCS 12 MCS 60

P9 35 M TBI 42 6 UWS 6 UWS 62

P10 56 F Anoxic 208 12 MCS 12 MCS 66

P11 58 M TBI 117 8 MCS 9 MCS 58

Note: UWS = unresponsive wakefulness syndrome; MCS = minimally conscious state; CMD =

cognitive motor dissociation; BCI = brain-computer interface; CRS-R = Coma Recovery Scale-Revised;

SIH = spontaneous intracerebral hemorrhage; TBI = traumatic brain injury; “-” means not applicable;

BCI accuracies significantly higher than chance level (i.e., potential DOC patients with CMD) are

highlighted in bold.
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Supplementary Figure 1

Supplementary Figure 1 Illustration for the Effect of Denoise Procedure on an

Example DOC Participant. The two carpetplots show the voxel-wise time series

before (top one) and after (bottom one) the denoise procedure, where the

corresponding bottom lines show the outlier time points (i.e., extreme global signal

and motion value) detected by the ART toolbox.
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Supplementary Figure 2

Supplementary Figure 2 The most Important Features After Feature Selection.

The brain nodes denote the regional temporal stability selected as important features

with the SVM recursive feature elimination with cross-validation (SVM-RFECV)

method. The color of each node denotes their corresponding functional networks. AN

= auditory network; COTC = cingulo-opercular task control network; DMN = default

mode network; DAN = dorsal attention network; FPTC = fronto-parietal task control

network; SAN = salience network; SMN = sensory/somatomotor network; Sub =

subcortical network; VAN = ventral attention network; VN = visual network.
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