
Local prediction-learning enables neural networks to plan

Christoph Stöckl and Wolfgang Maass
Institute of Theoretical Computer Science

Graz University of Technology
{stoeckl,maass}@igi.tugraz.at

17th October 2022

Abstract

The capability to plan a sequence of actions toward a given goal is a cornerstone of higher
cognitive function. But compelling models for planning in the brain, or more generally in any
type of neural network, are missing. We present a simple model for planning in neural networks,
the Cognitive Map Learner (CML), that can achieve high performance on a variety of tasks by
learning a cognitive map of the environment. The way how the CML constructs a cognitive
map is based on a fundamental insight from neuroscience: Observations from the environment
acquire meaning for the organism primarily through performing actions that change them. The
CML also provides a viable alternative to reinforcement learning in robotics, since it learns
faster and becomes more flexible, due to its task-agnostic design principles. The design of the
CML is also of interest from the perspective of the relationship between self-attention networks
(Transformers) and neural networks, since it combines attractive features of both.

Introduction
Planning capability is a cornerstone of higher brain function. But it remains one of the most
elusive cognitive processes at the neural implementation level (Mattar and Lengyel, 2022). Optimal
planning algorithms have been developed in AI, such as Dijkstra’s algorithm (see Methods Alg.
1), which allows finding a trajectory of shortest distance in a graph. An extension to Dijkstra’s
algorithm is the A* algorithm, which can improve the speed at which the goal is found by using
a heuristic that prioritizes visiting nodes that are closer to the goal. The A* implementation
requires data structures and algorithms with nested loops that can be efficiently implemented in
a digital computer, but not in a neural network. Furthermore, A* requires complete knowledge
of the planning space a-priori, it provides no method for learning it, e.g., by using experienced
trajectories. Both factors make it unlikely that the brain employs a similar method for planning.
A related open problem from the perspective of neuroscience and cognitive science is the nature
of internal representations of states in the planning space which the brain employs. Cognitive
maps have emerged as the leading metaphor for the internal representation of these states (Tolman,
1948; Behrens et al., 2018; Whittington, McCaffary et al., 2022). These models are inspired by
the results about the representations of locations in a 2D maze through specialized neural network
architectures in the hippocampus and entorhinal cortex (E. I. Moser, Kropff, M.-B. Moser et al.,
2008). Recent experimental data suggest that the organisation of these cognitive maps for navigation
in a 2D environment encodes not only the spatial structure through place- and grid cells, but also
specific actions that lead from one location to another (Shelley and Nitz, 2021; Green et al., 2022).
Furthermore, humans are able to plan a trajectory to a goal state not only in low-dimensional
spatial environments, but also in abstract high-dimensional concept spaces (Behrens et al., 2018).
Some experimental evidence suggests that the brain employs some form of a cognitive map also for
that. But it has remained open how these cognitive maps are learnt and used for planning in neural
networks of the brain. One intriguing suggestion for the representation and organisation of state

1

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for thisthis version posted October 21, 2022. ; https://doi.org/10.1101/2022.10.17.512572doi: bioRxiv preprint

https://doi.org/10.1101/2022.10.17.512572

representations in the brain was made by (Buzsáki, 2019): Sensory inputs acquire meaning for the
brain primarily through self-initiated actions which change them, such as making a step forward or
turning off the light. Hence state representations and cognitive maps should fuse information from
the environment that characterises states with information about the actions that change these
states.

Based on this brain-derived principle we propose a simple model, a Cognitive Map Learner
(CML), for learning and using cognitive maps. The self-supervised learning on which it is based can
be implemented with simple local rules for synaptic plasticity that are consistent with experimental
data. For planning domains where actions are reversible it can nevertheless plan in the cognitive
maps that it has learnt from random exploration almost as well as the less flexible and neural-
network-implementation-unfriendly gold standard A* that requires complete knowledge of the
environment. We demonstrate the capabilities of the CML in applications to the arguably most
difficult planning scenario, a non-planar random graph, as well as on a 2D navigation task that
requires spatial generalization, and a third completely different task: robot control for a quadruped.

Results

Design principles for a cognitive map learner (CML) that is able to plan
Basic ideas and concepts

The core component of the CML is its high dimensional state space S ∈ Rns , which loosely
corresponds to its cognitive map (Behrens et al., 2018), i.e., to the brain representation of the
environment and/or configurations of the body. Taking actions amounts in the CML to navigation
in the state space S. In contrast to many other approaches, we do not assume that this state-space
is given a-priori. Rather, it emerges through self-supervised local prediction-learning: by observing
how an action changes the environment or the body. In particular, prediction-learning re-organizes
the geometry of the state space so that Euclidean distance between two states reflects the number of
actions that are needed to move from one to the other, rather than their similarity or spatial distance.
Since the distance between two states A and B is symmetric, this intuition is only applicable if one
can move from back from state B to a state A by inverting the actions of a trajectory from A to B.

State representations in the CML are shaped by two constraints:

i) The transformation that maps (embeds) sensory inputs and/or internal feedback from the
body, lumped together under the term "observations" in the following, into a corresponding state is
linear.

ii) The prediction of the next state that results from an action can be approximated by a linear
function applied to the preceding state and a suitable internal representation of the action.

The second constraint induces two benefits for biologically oriented models and neuromorphic
hardware. One is that these maps can be represented by a single layer of neurons, see the layers
marked green in Fig. 1 a, b, and learnt by simple local rules for online synaptic plasticity. In
particular, they do not require complex offline learning schemes such as BPTT which is needed for
training transformers(Vaswani et al., 2017). Another essential benefit is that the inverse map is
also linear, and hence can also be learnt by a single layer of (linear) neurons through Hebbian-like
local synaptic plasticity. Having a linear inverse model also greatly simplifies planning, since the
sequence of actions that is needed to reach a given goal is produced by the CML as a linear sum of
these actions. Hence a simple nonlinear operation can extract from this sum that action which
has the largest affordance (Khetarpal et al., 2020) in the current state, and propose it as the next
action to be executed. Affordances are learnt by the CML along with predictions of the next state
through self-supervised learning.

2

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for thisthis version posted October 21, 2022. ; https://doi.org/10.1101/2022.10.17.512572doi: bioRxiv preprint

https://doi.org/10.1101/2022.10.17.512572

Network structure

A neural network implementation of this CML consists of two pools of linear neurons, marked green
in Fig. 1 a, b. During exploration, actions can be generated by some arbitrary exploration strategy.
Only linear computational operations, represented through three matrices, are applied by the CML
to process these experiences, see Fig. 1 a. During planning, three simple nonlinear operations are
applied, as indicated in the blue box ("planning core") of Fig. 1 b, c. Sigmoid functions are used
for producing estimates for the affordance (applicability) of each possible action in the current
state. The result is element-wise multiplied with the current "utility" of each possible action for
the current planning goal s∗. Winner-Take-All (WTA) is applied to the resulting vector in order to
determine the action that the CML applies next.

Learning and planning

CMLs have two modes of operation: learning of state predictions and affordances from autonomous
explorations and using learnt information for planning action sequences (trajectories) to arbitrarily
given target states s∗. Although self-supervised learning can continue during planning, for simplicity
we describe here learning and planning as two separate phases:

1. In the learning mode the CML is allowed to explore autonomously, using any exploration
strategy it likes, starting at its current state. This results in a sequence (ot, at) of observations
ot and actions at for every step t of the exploration sequence. Three matrices Wq, Wk,
and Wv are optimised through self-supervised learning during this exploration, see Fig. 1
a. The matrix Wq embeds observations into the state space S. The matrix Wk maps state
representations to values which estimate the affordance of each action in the current state.
Most importantly, the matrix Wv maps actions to estimates of what change in the state they
are likely to cause. Its learning is directly driven by prediction-errors. The inverse of this
matrix provides the key for planning, but no explicit matrix inversion is needed for that: An
approximation of the inverse of Wv can be learnt online during the learning mode, together
with the matrix itself.

Note that replay of exploration episodes (ot, at) during learning reduces in general the required
amount of exploration.

2. In the planning mode, the CML uses the learnt cognitive map for solving online planning
tasks. To reach a given target state s∗, which typically results from embedding a target
observation o∗ into the state space with the learnt linear map Wq, the CML computes with
the help of the inverse of Wv a utility score ut for every action. This utility score provides
information on how useful each of them would be for moving towards s∗. The resulting vector
ut is multiplied element-wise in a shallow nonlinear planning core, depicted as a blue box in
Fig. 1 c, with a vector gt. This vector estimates, with the help of Wk, the affordance of each
action in the current state. The next action at is selected from the resulting vector through a
Winner-Take-All (WTA) operation.

Practically, the CML can also learn during planning. This not only speeds up the process, but
also has the advantage that learnt internal representations become most precise for those parts
of the state space that are most frequently visited for actually arising planning tasks. A separate
prior learning or exploration phase is only needed to make sure that for each state a fair number of
possible actions is tried out.

We will present applications of the CML to three very different planning scenarios. For simplicity,
we completed there the learning mode before activating the planning mode, using a uniform random
selection of actions during learning. But besides continuing to learn during subsequent planning one
can also interleave prediction-learning and planning phases, so that more sophisticated exploration
strategies arise during learning that take outcomes of preceding planning phases into account.

Note that in contrast to using A* for planning a trajectory, the CML breaks down the planning
of a trajectory into iterated real-time planning and execution of the next action, thereby eliminating

3

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for thisthis version posted October 21, 2022. ; https://doi.org/10.1101/2022.10.17.512572doi: bioRxiv preprint

https://doi.org/10.1101/2022.10.17.512572

Figure 1: Structure of the Cognitive Map Learner (CML) a Components of the CML used
in the learning mode, where local synaptic plasticity is primarily driven by prediction errors for
the outcomes of actions. Internal predictions of the next state st + 1 are produced by adding
to the current state st a learnt linear embedding of the action at that is applied at step t. The
action selection process (marked in blue) can be implemented in the learning mode with any
exploration strategy. b Components of the CML used in the planning mode. Here the action
selection process (marked again in blue) is implemented by the planning core, which applies simple
nonlinear operations such as softmax and multiplication in order to propose a next action at that is
both feasible in the current state and moves in the direction of the target state in the learnt state
space (cognitive map). c Detailed description of the inner workings of the planning core of the
CML. Note that the learning mode can run concurrently with planning as soon as a planned action
is executed.

4

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for thisthis version posted October 21, 2022. ; https://doi.org/10.1101/2022.10.17.512572doi: bioRxiv preprint

https://doi.org/10.1101/2022.10.17.512572

the need to store a planned trajectory. It also makes the planning more flexible, since suddenly
appearing contingencies, e.g. a roadblock, or modifications of the goal can effortlessly be taken into
account. Surprisingly, the trajectories that result from this online planning approach of the CML
turn out to rival in their efficiency the performance of the gold standard A*, as we will demonstrate
for planning in a random graph. But in contrast to A*, for planning in 2D mazes the CML is able
to take the geometry of this environment into account and propose shortcuts during planning that
it never encountered during exploration. Finally, the CML can also be used for online control of
complex plants, as we will show in our last demo.

Mathematical description of the CML
We describe here the previously sketched computations and learning processes of a CML with
precise formulas. First, the mapping of an observation ot ∈ Rno to a state st ∈ Rns is computed
by the matrix Wq ∈ R(ns,no), where ns is the used-defined dimension of the state space and no is
the dimension of the observation space (which may also reflect the internal state of the body of a
mobile agent in an application to motor control):

st = Wqot. (1)

During the learning phase, we consider ot to arise directly from the environment during online
exploration, or also from replay of exploration strategies, which allows for the same trajectories to
be used multiple times during the learning process. In the planning phase, ot originates directly
from the environment. The current state st can also be thought of as location in a learnt cognitive
map.
Self-supervised learning mode:
The prediction of the next state ŝt+1 ∈ Rns is computed by embedding the action into the state
space with the matrix Wv and adding the result to the current state st:

ŝt+1 = st +Wvat. (2)

The value matrix Wv ∈ R(ns,na) specifies for each action how it will change the state. More precisely,
Wv stores in its column i the impact that action at[i] (ith element of the vector at) would have
on the state. We assume that the one-hot encoded actions at are produced by some exploration
strategy during learning. In our demos, we simply chose them uniformly randomly among all
possible actions. If the chosen action could not be executed at the current state, another action
was randomly chosen.

The model accounts for the fact that different actions could be available at different locations in
state space. Hence, the CML computes for each potential action at the affordance gating value
gt ∈ Rna , where na is the number of dimensions of the action space:

gt = fg(Wkst), (3)

where fg is a user-defined function (e.g. WTA, softmax, sigmoid). In this report fg was always
chosen to be the sigmoid function unless stated otherwise. Importantly, gt is not directly used
during in the learning mode (only in the subsequent planning mode), but it is necessary to compute
it nevertheless for optimizing the matrix Wk. Note that the matrix Wk ∈ R(na,ns) that is used to
estimate affordances has some similarity to keys in self-attention networks (Vaswani et al., 2017).
Thereby the planning of the CML attends to the currently available actions. More precisely, Wk

has a row for every possible action where it produces during learning an estimate of the ideal state
for applying this action. If the current state is similar to this ideal state, the affordance value gt
will be close to 1, while it will be close to 0 if this action was never applied in the current state
during exploration.

For self-supervised learning the CML uses the well-known delta rule (Hertz, Krogh and Palmer,
2018). This local Hebbian-like rule for synaptic plasticity is an extension of the perceptron learning

5

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for thisthis version posted October 21, 2022. ; https://doi.org/10.1101/2022.10.17.512572doi: bioRxiv preprint

https://doi.org/10.1101/2022.10.17.512572

rule for regression tasks. In fact, it implements stochastic gradient descent learning for a single
layer of linear gates, analogous to backpropagation in multi-layer networks:

∆Wk(t) = lk(at − gt)s
T
t (4)

∆Wv(t) = lv(st+1 − ŝt+1)a
T
t (5)

∆Wq(t) = lq(ŝt+1 − st+1)o
T
t+1, (6)

where lk, lv and lq represent corresponding learning rates. In our demos, we accumulated for
simplicity the weight updates over an entire trajectory before applying them to the weights.

Furthermore, a weight regularization scheme was applied:

W =
W

||W ||2
, (7)

where the || · ||2 operator refers to the Euclidean norm along the axis that corresponds to the
state of the CML. The weights Wk ∈ Rna,ns were restricted to have a maximum norm of 1 along
the second axis, which was enforced using the update rule in equation 7 if the Euclidean norm
was larger than 1. The values Wv ∈ Rns,na were normalized column-wise according to equation
7 after every weight update. This regularization has the important consequence that the state
difference vector that is caused by an action has unit length, thereby inducing a metric in the
state space that is governed by the number of actions that are needed to move from one state to
another. In particular, it creates clusters of states that can be reached from each other with few
actions. The matrix Wq, that transforms observations into state representations, is reminiscent of a
corresponding linear operation in self-attention networks or transformers (Vaswani et al., 2017).
But whereas training of these functionally extremely powerful models requires BPTT, an offline
learning process whose biological plausibility is debated and which poses an obstacle for efficient
implementation in neuromorphic hardware, the linear transformation Wq of a CML can be learnt
through local synaptic plasticity.
Planning mode:
An essential idea of the CML is that it produces a state space (or cognitive map) whose geometry is
such that the vector pointing from the current state to the target state, dt = s∗− st,∈ Rns , informs
the model in which direction in the state space it should move, like for planning in a Euclidean
space. Surprisingly, this strategy also works for planning in generic random graphs, where the
planning space has no obvious relation to the geometry of a Euclidean space. The utility scores ut

indicate to what extent each action would move the current state st into the direction of the target
state s∗. It can be simply computed by:

ut = W−1
v dt (8)

The next action at is computed by combining these utility values ut with the affordance values
gt:

at = fa(gt ⊙ ut) ∈ Rna , (9)

where fa is a non-linear function (e.g. WTA, softmax) and ⊙ corresponds to the Hadamard product
(element-wise multiplication), and gt is computed using Equ. 3. In this report, we always use WTA
as this selection function fa, yielding a one-hot encoded action. Note that it is commonly assumed
that WTA-like selection functions are computed with the help of lateral inhibition in generic motifs
of cortical microcircuits, see e.g. (Jonke et al., 2017).

Evaluation of the CML for planning on abstract graphs
The first demo considers a planning task on abstract graphs, consisting of nodes and undirected
edges. One can view this graph as a representation of some arbitrary problem solving domain with

6

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for thisthis version posted October 21, 2022. ; https://doi.org/10.1101/2022.10.17.512572doi: bioRxiv preprint

https://doi.org/10.1101/2022.10.17.512572

reversible actions that may bear no relation to navigation in a physical space. We use the simplest
approach where a learning phase is followed by a planning phase. In the learning phase, the CML
takes 200 random walks of length 32. In this task an action corresponds to traversing an edge in a
specific direction, hence there are two actions for every edge.

In the planning phase, the model is placed on a random starting node and is given an arbitrary
target node. The goal is to use the previously constructed cognitive map of the abstract graph
to find a short path from the start node to the target node. For the offline version of this task,
where the complete graph is known from the beginning, one can solve this task also by applying the
Dijkstra graph search algorithm (see Methods), or the A* search algorithm that is often described
as a gold standard for problem-solving in AI, but also for planning in the brain Mattar and Lengyel,
2022. A characteristic feature of these two algorithms is that they can only be used for offline
planning, while CMLs excel at online planning (see Mattar and Lengyel, 2022 for details). Online
planning involves the challenge to pick an action with a limited time budget and limited information
about the graph, so that exhaustive search is not an option. A CML selects an action within
constant time, i.e., in real-time, no matter how large the graph is and how far the target node
is away. In contrast, Dijkstra’s algorithm and A* need to first compute a complete trajectory to
the target node before they can produce the first action. Furthermore, A* has to be run again
from scratch if the start or goal node change. Dijkstra’s Algorithm has to do that also if the start
node changes. In contrast, the CML can apply its learnt weights for online planning from any start
to any goal state. For this task, we consider four types of abstract graphs, each posing different
challenges.

Random graphs

The first category of graphs is randomly connected undirected graphs consisting of 32 nodes, where
every node has between two and five edges to other nodes. One instance of this family of graphs
is depicted in Fig. 3. The CML was able to plan after learning for this graph a trajectory from
an arbitrary start node to an arbitrarily given target node using an average of 3.515 steps (std.
deviation 1.425). This is very close to the average shortest possible path of 3.464 (std. deviation
1.352), which can be found using the Dijkstra algorithm.

While the plotting style chosen might give the intuition that these graphs are planar, especially
the graph in Fig. 5, there is no spatial aspect to these graphs at all. To make this point even clearer,
Fig. 2 depicts the same random graphs twice using two different graph embedding techniques.

Fig. 3 sheds some light onto the inner workings of the CML, where in the first column the
values of ut are depicted. Intuitively, the utility value should indicate how useful taking a certain
action is for moving toward the target state s∗. As can be seen in Fig. 3 directed edges pointing
toward the goal state have a higher utility, especially when they are between the current node and
the target node. The affordance values in the second column indicate which actions are available to
the CML in the current state. As can be seen in Equ. 9, the action selected by the CML is related
to the product of the utilities and the affordance gating variables, which conceptually is a way of
selecting the best available action.

Another search task on the same graph can be found in Fig. 4, where only the utilities have
been plotted.

7

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for thisthis version posted October 21, 2022. ; https://doi.org/10.1101/2022.10.17.512572doi: bioRxiv preprint

https://doi.org/10.1101/2022.10.17.512572

Figure 2: Two different styles of plotting a randomly connected abstract graph. On the left the
nodes have been arranged randomly and on the right a force-directed graph embedding scheme
(Kamada, Kawai et al., 1989) has been applied to make it look quasi-planar, although it is not
planar.

Figure 4: Another planning task on the same graph, where only the utilities have been plotted for
6 different time steps. Note, how all directed edges pointing towards the target node tend to be of
high utility, especially when they are between the current node and the target node, while edges
pointing away from the target node tend to have a low utility value.

8

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for thisthis version posted October 21, 2022. ; https://doi.org/10.1101/2022.10.17.512572doi: bioRxiv preprint

https://doi.org/10.1101/2022.10.17.512572

Figure 3: Inner workings of the CML while solving a graph traversal problem. The two rows
correspond to two time steps, while the columns illustrate the values of different variables used in
the CML. The first column indicates the utilities ut, which indicate how useful the CML considers
at the current time step traversing a given edge would be for moving towards the target node.
The second column shows the affordance gating variable gt, which informs the CML about the
availability of certain actions in the current state and the third column depicts the chosen action,
which is obtained by combining the utilities ut with the affordance gating gt as shown in Fig. 1 c.

9

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for thisthis version posted October 21, 2022. ; https://doi.org/10.1101/2022.10.17.512572doi: bioRxiv preprint

https://doi.org/10.1101/2022.10.17.512572

Graphs with multiple paths of the same length

One may worry that a heuristic problem solver such as the CML has problems if there exist multiple
paths of the same length to a goal, since dealing with such ambiguity might require more global
knowledge of the graph structure. But we found that this feature did not impede the performance
of the CML for the class of graphs with multiple paths to the same goal that we tried: The CML
needed on average 2.477 (std. deviation 1.105) steps to reach the goal (average over 1000 trials),
which is the same as the optimum computed using Dijkstra. In other words, the model managed to
find one of the many shortest paths in every single trial. A sample trajectory can be found in Fig. 5

Figure 5: Utilities on a sample trial on the graph with multiple paths of the same length. One sees
that mutliple options are concurrently favored by high utilities, instead of favoring only selected
alternatives that might have previously been used during learning. This feature supports effective
replanning in case that one of the actions becomes suddenly not available.

Graphs with dead ends

Another challenge for heuristic planners such as the CML are graphs with dead ends. These dead
ends, and backing out of them, is frequently encountered during exploration, and one might suspect
that such useless detours to dead ends become parts of planned trajectories to other goal states.
We considered a graph consisting of 32 nodes, where half of them are dead ends. The CML was
able to handle this difficulty well, reaching a goal in on average 3.133 (std. deviation 1.146) steps.
This is close to the theoretical optimum of 3.121 (std. deviation 1.128) (averaged over 1000 trials).
The analysis can be found in Fig. 6.

10

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for thisthis version posted October 21, 2022. ; https://doi.org/10.1101/2022.10.17.512572doi: bioRxiv preprint

https://doi.org/10.1101/2022.10.17.512572

Figure 6: Utilities on a sample trial on the graph with multiple dead ends. A learning based
planning method might be tempted to use segments into and out of dead ends as detours for
reaching a goal state because these "detours" occurred during exploration. Note the CML does not
fall into this trap, although the general uselessness of the detours was not apparent to the CML
during exploration, where no target states or quality measurements were provided.

Small world graphs

Also small world graphs can be seen as challenges for heuristic planning, since it may be hard
to escape from a local cluster. Therefore we tested the CML on a graph that had four clusters
each consisting of 6 densely interconnected nodes, but only a single connection from one cluster
to the next. Surprisingly, even for this task the CML solved planning tasks with only 4.652 (std.
deviation 2.8) steps on average (over 1000 trials), which is theoretically optimal according to the
Dijkstra algorithm. In Fig. 7 only the utilities ut have been plotted.

11

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for thisthis version posted October 21, 2022. ; https://doi.org/10.1101/2022.10.17.512572doi: bioRxiv preprint

https://doi.org/10.1101/2022.10.17.512572

Figure 7: Utilities on a sample trial on the graph small worlds for 9 time steps of a planning process
of the CML. The planned trajectory immediately moves in each cluster (small world) to that node
which provides access to the next cluster.

Application of the CML for spatial navigation
Cognitive maps were first proposed to model the navigation of rodents in 2D mazes. They were
found to enable a quite non-trivial generalization capability of rodents: They integrated short-cuts
into their planning which they had never encountered during exploration (Gupta et al., 2010).

12

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for thisthis version posted October 21, 2022. ; https://doi.org/10.1101/2022.10.17.512572doi: bioRxiv preprint

https://doi.org/10.1101/2022.10.17.512572

Therefore we tested CMLs also for this task domain. To test the spatial navigation capabilities of
the CML, we designed a challenging task which requires fast learning and spatial generalization
capabilities, and was inspired by the task design in Ritter et al., 2020 and Whittington, Muller
et al., 2020. The environment consists of a regular grid, where on each field a certain unique sensory
stimulus is located that is presented as observation to the CML through one-hot coding (, see Fig.
8b and d, where the icons correspond to the different sensory stimuli). Note that no information
about the spatial location of these stimuli were given to the CML. This domain provides a nice test
scenario for the capability of the CML to create a suitable cognitive map, since a perfect cognitive
map (the 2D map of the maze) is known to us, but not to the CML. CML explored the environment
by taking a single trajectory visiting most fields only once, see Fig. 8a, b, and c. If a chosen action
was not executable during exploration, the next possible action in a fixed sequence of possible
actions was chosen. Note, that the CML does not have any prior knowledge about the geometry of
the environment. Instead, this property emerges naturally in the internal cognitive map during the
learning process when the CML tries to make sense of observed loops, see Fig. 8a.

In the subsequent planning phase, the CML is placed on a random starting location in the
environment and is tasked to navigate to a target sensory stimulus which defines a target state as
indicated in Fig. 1 b, c. Fig. 8c and e show that the CML is capable of finding a path of minimal
length, although it has never seen these actions being selected in these locations during training,
highlighting the generalization capabilities of CMLs.

13

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for thisthis version posted October 21, 2022. ; https://doi.org/10.1101/2022.10.17.512572doi: bioRxiv preprint

https://doi.org/10.1101/2022.10.17.512572

14

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for thisthis version posted October 21, 2022. ; https://doi.org/10.1101/2022.10.17.512572doi: bioRxiv preprint

https://doi.org/10.1101/2022.10.17.512572

Figure 8: Results on spatial navigation. Panel a illustrates how the CML receives as input
during the learning phase a sequence of sensory stimuli as observations, which are depicted using
icons, together with the corresponding sequence of actions, indicated by the arrows between the
icons. During the learning process, the CML integrates such sequences into a consistent internal
cognitive map, which represents the underlying 2D environment. Note, that the CML has to infer
the geometry of this 2D environment based on the loops that it encounters in the trajectories of
observations and actions. Panel b and d illustrate all actions that were encountered during the
learning phase, in the exploration trajectories taken by the CML, which all started in the bottom
left field. All icons illustrate an unique sensory stimulus (given as one-hot code) that the CML has
to remember. Panel c and e show planning trials of the CML in the respective environments. Note,
how the CML manages to generalize over the geometry of the environment, finding the shortest
paths even if these paths require taking certain actions in certain states that were never taken
during learning.

As can be seen in Fig. 8 and Fig. 9, the CML manages to construct a complete cognitive map
of the environment, which enables it to find optimal trajectories for arbitrarily given start and goal
locations. We applied PCA (principal component analysis) in order to she light on the organization
of the geometry of the state space that emerged in the CML after exploration. Fig. 9 shows that
the CML has morphed its state space during learning into a perfect 2D map of the spatial relations
between the sensory stimuli.

Figure 9: Principal component analysis of the state space of the CML after learning. The learnt
cognitive map is visualized by performing a principal component analysis of the state space
embedding of the sensory stimuli. Additionally, the same dimensionality reduction has also been
applied to Wv to illustrate the movement in state space that would be caused by taking the
corresponding actions. Panel a depicts the first two principal components for the rectangular grid
and panel b for the hexagonal grid.

15

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for thisthis version posted October 21, 2022. ; https://doi.org/10.1101/2022.10.17.512572doi: bioRxiv preprint

https://doi.org/10.1101/2022.10.17.512572

Application of the CML for learning to control locomotion of
a quadruped
Our last demo shows that the CML can also be applied to a very different domain: Motor control.
In fact, its planning capabilities appear to make the CML in many cases a viable alternative to
traditional Reinforcement Learning (RL) approaches, which typically require large numbers of
trials, and have the disadvantage that it is difficult to transfer learnt knowledge to a variation of
the task. The beauty of the CML approach to motor control is that it can instantly be applied to
a new task, also in cases where the target state quickly varies over time. We demonstrate these
capabilities for a standard benchmark task for motor control: Locomotion of a quadruped robot
(see Fig. 10a), commonly referred to as ant (in spite of the fact that ants have more than 4 legs).
This task was adapted from a popular reinforcement benchmark, (Todorov, Erez and Tassa, 2012;
Brockman et al., 2016). While in the original task the goal is to move the ant as fast as possible in
direction of the x-axis, we consider here the more demanding tasks to navigate to a dynamically
moving target object, or to escape a predator. An action of the CML consists in this case of a
vector of torque values to each of the eight joints of the ant, which will be applied in the next
time step of the simulated environment (1000 time steps per episode). This environment provides
29 dimensional observations ot, which contains information about the angles of the joints, their
respective speed, and about the orientation of the ant, see Tab. 1 for details.

In the learning phase, the CML explores the environment by randomly selecting actions (often
referred to as motor babbling), see the video video 1.

In the simplest planning challenge, the CML was tasked to navigate the ant to arbitrarily given
goal locations in a distance of 10 meters away from the starting position (see video2). Resulting
trajectories of the ant are depicted in Fig. 10b, where the stars indicate the goal location and the
line plotted in the corresponding color indicates the path taken by the center of the ant.

Fig. 10c illustrates the correlation between the state prediction error and the performance of the
CML in terms of the remaining distance to the target location. Importantly, the CML was never
optimized to move to a goal location - it only received 200 trajectories taking random actions - but
it can solve this task nevertheless, with a remaining average distance to the target of less than 2.

Due to the task agnostic nature of the CML it is possible to formulate also more complicated
tasks, for example fleeing from a predator (video 3) or chasing a target (video4).

Neuromorphic hardware
CMLs are of special interest for neuromorphic hardware, as they are capable of learning with
local learning rules only, not requiring multi-layer backpropagation or backpropagation through
time. Therefore, neuromorphic hardware platforms promise very energy-efficient implementations
of CMLs, especially if the state st is designed in a way to promote sparseness. Note also that
the operations of the CML (multiplication of vectors with learnt matrices) is well suited for an
in-memory computing approach (Verma et al., 2019), where a crossbar of memristors (Strukov et al.,
2008) or other clever devices represents the learnt matrix, and each multiplication of a matrix with
a vector can be carried out in one computation step. In addition, both the SpiNNaker approach
(Khan et al., 2008) and several more recent energy-efficient neuromorphic hardware designs support
the implementation of neurons that emit a package of several bits instead of just spikes, thereby
supporting a direct implementation of the CML without first porting it into spiking neural networks.
One difficulty that can be encountered when working on neuromorphic hardware is limited precision
for weights, often limited to eight bits (Davies et al., 2021). To test whether this limitation could
pose a problem for CMLs, a control experiment was performed on the abstract random graph,
where the bit precision was reduced to just 8 bits. We found that this did not have a large impact

1https://drive.google.com/file/d/1rNfcpz_s-uYnxiEBiO3Az_5DxGWpUxC8/view?usp=sharing
2https://drive.google.com/file/d/1bEj-phDtQ_Fy0BXZxyv9oD3VqIFfYxOd/view
3https://drive.google.com/file/d/1IXSTY8a1nlq7wAn1UUqasO5lnBZldBJB/view?usp=sharing
4https://drive.google.com/file/d/1jvnqyywef7OZYWLemiX2WILVxaiEjjy9/view?usp=sharing

16

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for thisthis version posted October 21, 2022. ; https://doi.org/10.1101/2022.10.17.512572doi: bioRxiv preprint

https://drive.google.com/file/d/1rNfcpz_s-uYnxiEBiO3Az_5DxGWpUxC8/view?usp=sharing
https://drive.google.com/file/d/1bEj-phDtQ_Fy0BXZxyv9oD3VqIFfYxOd/view
https://drive.google.com/file/d/1IXSTY8a1nlq7wAn1UUqasO5lnBZldBJB/view?usp=sharing
https://drive.google.com/file/d/1jvnqyywef7OZYWLemiX2WILVxaiEjjy9/view?usp=sharing
https://doi.org/10.1101/2022.10.17.512572

Figure 10: Application of the CML to motor control. Panel a depicts the quadruped (“ant”). Panel
b illustrates the performance of the CML on this navigation task for 6 sample targets. The blue
circle in the middle of the panel indicates the starting position of the ant while the stars correspond
to 6 different goal states, where the corresponding filtered trajectory has been plotted in the same
color. Six trajectories are shown in this panel, where the ant is reset to the center location after
every episode. Note that no re-learning was required for moving to a different goal. Panel c
visualizes the correlation between the next state prediction error and the average distance to the
target location after the end of the episode. One sees that good planning capability sets in shortly
after the prediction learning is working well.

17

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for thisthis version posted October 21, 2022. ; https://doi.org/10.1101/2022.10.17.512572doi: bioRxiv preprint

https://doi.org/10.1101/2022.10.17.512572

on the performance. A degeneration in the capabilities of the CML was only detected if 6 or fewer
bits were available for encoding the weights.

Related Work
As mentioned already before, some aspects of CMLs are reminiscent of the self-attention mechanism
described in (Vaswani et al., 2017), the work horse behind the Transformer architecture. There one
computes:

Attention(Q,K, V) = softmax
(
QKT

√
dk

)
V, (10)

where Q corresponds to a matrix containing the queries, K to a matrix containing the keys, V a
matrix containing the values and dk is a scaling constant. There are attempts in the literature
to port the attention mechanism to neural networks, see (Ramsauer et al., 2020; Whittington,
Warren and Behrens, 2021; Krotov and Hopfield, 2020). Although these network models do exhibit
an approximation of the attention mechanism, other aspects of Transformers remain unreachable.
For example, the neural network approximations always consider a single input token, while a
Transformer uses a sequence of such tokens as input. Additionally, Transformers using self-attention
compute the key, query and value matrices from the input while in the neural network counterparts
they are fixed and stored in the weights of the network.

Usually, these models are based on the idea of computing a dot-product between a query qt and
a matrix containing the keys Wk. Similarly as in Equ. 10 the softmax function is applied to the
result to obtain an attention vector. As the last step, this attention vector is also multiplied against
a matrix containing the values. Due to the fact that these models are often viewed as variants of
Hopfield networks, the matrices Wk and Wv are considered to be the same, resulting in a two layer
network with symmetric connections. As an example, the model of Ramsauer et al., 2020, which is
the same as the model B proposed in Krotov and Hopfield, 2020, can be written as:

ξt+1 = softmax(βξTX)XT , (11)

where ξ corresponds to the query or state st in CMLs and X is both the keys Wk and the values
Wv, and β corresponds to a heat parameter.

Equ. 11 exhibits some similarities with CMLs. For example, the computation of the softmax
can be related to Equ. 3, and the product of the softmax with the values corresponds to Equ. 2. In
Equ. 2 the current state st is added to the result of matrix multiplication with the values, which is
reminiscent of the residual connections used in Transformers (Vaswani et al., 2017). Whereas in 11
the softmax function is used, CMLs use the WTA function, which becomes increasingly similar to
softmax for higher values of β. One further salient difference between these models is that CMLs
computes the attention vector by combining the affordance gt and the utilities ut, see Equ. 9.

Thus altogether, CMLs combine some Transformer-like features with other ingredients that have
no correspondence with Transformers. Furthermore, CMLs port these Transformer-like features
into a light-weight setting where no offline optimization of parameters through BPTT is required.

Discussion
Planning capability is a key function of the brain, but it is largely open how it is implemented in
neural networks of the brain (Mattar and Lengyel, 2022). We have shown that a simple neural
network architecture, a Cognitive Map Learner (CML), can learn to plan through self-supervised
learning with simple local rules for synaptic plasticity. Surprisingly, its planning performance is in
the cases with reversible actions that we tried close to the gold standard for planning in AI: the
A* algorithm. However, in contrast to the A* algorithm, the CML does not require that complete
knowledge of the environment is provided a-priori, it can learn a cognitive map autonomously
through exploration. Furthermore, the CML is a substantially more flexible planner, because it can
be applied to any start and goal location without new learning or computational overhead. It is

18

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for thisthis version posted October 21, 2022. ; https://doi.org/10.1101/2022.10.17.512572doi: bioRxiv preprint

https://doi.org/10.1101/2022.10.17.512572

also more suitable for online planning since it can deal intelligently with contingencies, for example,
if some action is currently not feasible in some node. Additionally, we have shown that CMLs
exhibit generalization capabilities in a spatial 2D navigation task which are beyond the reach of
planning with A*: The CML manages to infer spatial relations to find a shortest path to a target
location using path segments that it had never encountered during learning. Finally, the CML can
be applied also to motor control in high-dimensional action spaces. In fact, it provides a viable
alternative to the more common Reinforcement Learning (RL) approach, since it is substantially
more flexible. Furthermore, whereas RL in high dimensional state- or action-spaces spaces is plagued
by the large number of trials that are needed to learn, the CML just requires a moderate set of
exploration trials. This makes it interesting as a new approach towards understanding biological
motor control. But it appears to be also of interest as a lightweight but functionally powerful
architecture for robots and other edge devices. In fact, the simple synaptic plasticity rules that the
CML requires can be easily be implemented in most types of neuromorphic hardware. Furthermore,
the multiplications of a learnt matrix with a vector can be implemented very efficiently with one
operation through "in-memory computing", where the weights of the matrix are represented by
memristors in a cross-bar array.

A key idea of the CML is to create through self-supervised learning a representation of high-
dimensional states that are intimately linked to the representation of actions that cause transitions
between states. This approach can be seen as an application of the general view expressed in
(Buzsáki, 2019), that neural codes for sensory inputs and internal states acquire meaning for an
organism by relating them to the outcomes of actions: A key ingredient of the CML is that it
induces an action-oriented geometry in high-dimensional state spaces, whereby states move closer
together when it turns out that an action causes a transition from one to the other.

One obvious method to improve the performance and application range of the CML is to add
fixed nonlinear pre-processing modules, which can be viewed as kernels, liquids, or reservoirs, before
the matrices Wq and Wk. This enables the CML to learn nonlinear embeddings of observations into
the state space, and a nonlinear transformation from the state space into the planning core, while
still requiring only simple synaptic plasticity rules for linear readouts from such pre-processing
modules. Another expansion option is to engage two CMLs in parallel for planning in physical
environments, where one CML creates abstract space representations as in our demo for a random
graph, and the other a state space that takes the 2D or 3D structure of the environment into
account. The former representation has the advantage that efficient trajectories to a goal are
produced by the CML even if they involve detours in the physical environment. On the other hand,
a more spatially oriented representation offers additional generalization capabilities that enable
the planning to use never before encountered shortcuts. A hybrid model with two CML modules
can therefore combine the best of both approaches. This hybrid architecture gives also rise to an
experimentally testable prediction for the brain: It predicts that the brain employs different state
representations, say in hippocampal areas and in the PFC, whose role in planning depends on the
concrete planning challenge.

We made no effort to optimize the exploration strategy of the CML, we just used actions
randomly. But since the exploration strategy is independent of the inner workings of the CML,
it can easily be combined with more efficient exploration heuristics, that could for example be
driven by curiosity or novelty, that are likely to further reduce the amount of exploration that
the CML needs as a basis for efficient planning. Furthermore, learning can also continue online
during planning whenever a planned action is executed, thereby automatically improving state
representations and planning performance in those regions of the state space where more planning
challenges arise.

The CML appears to satisfy many of the constraints that are expected from the organization of
planning in the brain (Mattar and Lengyel, 2022). In particular, it shows how close to optimal
planning performance can emerge from simple always-on local prediction learning mechanisms. We
did not make here an effort to implement the concept of a CML in a network of spiking neurons
with synaptic plasticity rules that are commonly considered in computational neuroscience, but
this step seems to pose no obstacles. The most obvious experimentally testable hypothesis of the

19

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for thisthis version posted October 21, 2022. ; https://doi.org/10.1101/2022.10.17.512572doi: bioRxiv preprint

https://doi.org/10.1101/2022.10.17.512572

CML model is that internal state representations of the brain are malleable, more precisely, those
state representations become more similar when the individual learns that one state can be reached
from the other with one or few actions. One prominent experimental support for this hypothesis
was reported for area IT (Li and DiCarlo, 2008) for the case of a saccade as action. Our theory
suggests that this effect also takes place in other cortical areas, such as PFC, independently of the
type of action. Also commonly found representational drift of neural codes in the brain (Rule,
O’Leary and Harvey, 2019; Driscoll, Duncker and Harvey, 2022) can be seen as support for the
malleable nature of internal state representations that are inherent for the CML model, but more
difficult to explain for RL-based models.

With regard to the question which learning processes of the brain can better be modelled by
RL, and which by a CML-like planning process. one has to take into account that model-based
learning also proposes that a model of the impact of actions on states is learnt. However, one usually
assumes in RL models that state-representations are fixed during learning, whereas the CML model
proposes that these are continuously adapted during learning. On the neural implementation level,
the CML proposes that some skills can also be learnt without neuromodulators such as dopamine,
which are corner-stones of RL-based models, but are not vital for the CML model. Hence from the
CML-perspective, dopamine could play a modified role in brain learning, such as shaping motivation
or habits. This question can be tested experimentally through inactivation of DA-ergic neurons
during learning.

Finally, we have addressed the relation between the CML and Transformers (Vaswani et al.,
2017), a learning architecture that is increasingly outpacing traditional neural network models
in current AI. The CML contains some ingredients of the Transformer architecture, but is a
substantially more light-weight model that does not require complex offline learning processes
such as BPTT. Hence it arguably combines some of the simplicity and functional superiority
of Transformers with constraints on learning that arise both in the brain and in neuromorphic
hardware.

Methods

Details to planning on abstract graphs
In the planning on abstract graphs task every node is encoded with a unique one-hot encoded
observation ot. To explore the different graphs the CMLs were allowed to traverse the graph, taking
200 random trajectories through the environment where each trajectory was of length 32 steps.

As a baseline comparison, the Dijkstra graph search algorithm (see Alg. 1) was employed. It is
noteworthy that in this task only graphs with equally weighted edges are considered, and therefore
A∗ search is equivalent to Dijkstra.

The affordance gating function fg was chosen to be a generalised sigmoid function in the form:

σ̂(x) = clip
(
σ(x)− σ(0)

σ(α)− σ(0)
, 0, 1

)
, (12)

where σ corresponds to the sigmoid function and α is a constant defining the saturation point of
the function. During the learning phase, α was chosen to be 1 and during the planning phase α
was set to 0.1.

The matrix Wk was initialized with zeros, while the initial values for Wq and Wv were drawn
from a Gaussian distribution with µ = 0 and σ = 0.1, where for Wv sigma = 1 was used.

In all tasks the function fa was chosen to be a Winner-Take-All (WTA) function, which takes a
vector as an argument and returns a vector indicating the position of the highest valued element of
the input vector with a 1 and setting all other elements to 0, see Equ 13.

WTA(x) = v, where vi =

{
1 xi = max(x)
0 else (13)

20

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for thisthis version posted October 21, 2022. ; https://doi.org/10.1101/2022.10.17.512572doi: bioRxiv preprint

https://doi.org/10.1101/2022.10.17.512572

Algorithm 1 Dijkstra graph search algorithm
Require: Graph G
Require: source S
Require: target

for each vertex v in G.vertices do
dist[v]←∞
prev[v]← null
add v to Q

end for
dist[S] ← 0
while Q is not empty do

u← vertex in Q with min dist[u]
remove u from Q
for each neighbor v of u still in Q do

alt ← dist[u] + G.edges(u, v)
if alt < dist[v] then

dist[v] ← alt
prev[v] ← u

end if
end for

end while
S ← empty sequence ▷ To find the sequence to a target node
u← target
if prev[v] is defined or u = source then

while u is defined do
insert u at the beginning of S
u← prev[u]

end while
end if

21

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for thisthis version posted October 21, 2022. ; https://doi.org/10.1101/2022.10.17.512572doi: bioRxiv preprint

https://doi.org/10.1101/2022.10.17.512572

Details to 2D navigation
In this task, a sensory stimulus is implemented as a unique one-hot encoded observation ot.
Two different environment geometries are considered in this task: rectangular and hexagonal
environments. An action corresponds to moving from a field to the neighbouring field, hence
there are four actions in the rectangular environments while there six actions in the hexagonal
environments. In the environment of the 2D navigation task all actions are available to the model
in every state. To account for this special case, the affordance gating function fg was chosen to
return the constant value 1 for all inputs.

The initial values for Wk and Wq were set to zeros, while the initial values for Wv were drawn
from a Gaussian distribution, with µ = 0 and σ = 1..

Details to controlling a quadruped
Details to relating actions at to actions in the environment An action remapping scheme is
used to remap a one-hot encoded action resulting from the WTA to a dense action consisting of 8
torque values that can be used to control the ant model. For this mapping only torques of strength
±0.125 were considered. As there are 8 controllable joints, this yields a set with a total of 28 = 256
different combinations of considered torques. These combinations were enumerated in a list and
the one-hot encoded action at was used as an index for selecting a combination of torques in this
list. The affordance gating function fg was chosen to be the same as for the planning on abstract
graphs task. Furthermore, a single action was applied 10 times in the environment to guarantee a
larger change in the observation.

The initial values for all three matrices Wq, Wk and Wv were drawn from a Gaussian distribution,
with µ = 0 and σ = 0.1, where for Wv σ = 1 was used.

Details to the observation of the ant A detailed table explaining the 29 dimensional vector of
the observation ot can be found in Tab. 1.

22

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for thisthis version posted October 21, 2022. ; https://doi.org/10.1101/2022.10.17.512572doi: bioRxiv preprint

https://doi.org/10.1101/2022.10.17.512572

index Description
1 x-coordinate of the torso
2 y-coordinate of the torso
3 z-coordinate of the torso
4 x-orientation of the torso (quaternions)
5 y-orientation of the torso (quaternions)
6 z-orientation of the torso (quaternions)
7 w-orientation of the torso (quaternions)
8 angle between torso and first link on front left
9 angle between the two links on the front left
10 angle between torso and first link on front right
11 angle between the two links on the front right
12 angle between torso and first link on back left
13 angle between the two links on the back left
14 angle between torso and first link on back right
15 angle between the two links on the back right
16 x-coordinate velocity of the torso
17 y-coordinate velocity of the torso
18 z-coordinate velocity of the torso
19 x-coordinate angular velocity of the torso
20 y-coordinate angular velocity of the torso
21 z-coordinate angular velocity of the torso
22 angular velocity of angle between torso and front left link
23 angular velocity of the angle between front left links
24 angular velocity of angle between torso and front right link
25 angular velocity of the angle between front right links
26 angular velocity of angle between torso and back left link
27 angular velocity of the angle between back left links
28 angular velocity of angle between torso and back right link
29 angular velocity of the angle between back right links

Table 1: Components of the observation ot

Details to the computation of the target vector One key feature of the CML is that every
type of task is formulated as a navigation problem to a target state s∗ in state space, where s∗

can easily be computed by embedding the desired target observation o∗ using Wq. Consequently,
it is possible to design a desired target observation o∗, which can be passed to the CML, which
then in turn tries to find a sequence of actions with the intent of receiving a current observation
ot from the environment which matches the target observation o∗. The resulting flexibility is
underlined by the three different types of problems presented in this work: moving to a target
location, fleeing from an adversary and chasing a target. For each of these tasks, different target
observations o∗ are computed and passed to the model. All three tasks are based on navigation
and therefore use the first two fields in the observation (see Tab. 1) to set a desired target location
using cartesian coordinates. In the moving to target location task, the target location is chosen
to be fixed and has an initial distance of 10 meters away from the ant. In the chasing a target
task, the target location is moving and is therefore updated every time step. In the fleeing from
an adversary task, the target location is updated every time step as well and set to 5 meters
away from the ant, in the direction pointing directly away from the adversary. Furthermore, the
target location is passed to the ant relative to itself and not the absolute location as defined by
the global coordinate system. To transform the absolute location to a target location relative
to the ant first a vector vat which points from the ant to the target location is computed. This
vector can be written in polar coordinates, where |vat| is the magnitude and ϕat corresponds
to the angle. To correct for the error that would occur if the ant itself is rotated, we deduct
the angle of the ant itself (to the x-axis) ϕa from ϕat. Finally, the target coordinates can be

23

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for thisthis version posted October 21, 2022. ; https://doi.org/10.1101/2022.10.17.512572doi: bioRxiv preprint

https://doi.org/10.1101/2022.10.17.512572

computed by adding the polar vector with the angle ϕat − ϕa and magnitude |vat| to the current
position of the ant. As can be seen in Tab. 1 the observation also consists of 27 other fields in
addition to the coordinates. The remaining fields of o∗t are chosen to be equal to ot, as this prompts
in the CML on only focusing on changing the current position and not on any other variables from ot.

Details to the regularization of Wq During the learning process the CML might try to
focus on embedding preferably parts of the observation ot which are easily predictable to minimize
the prediction error. An example for components of the observation ot that is easy to predict are
the angles of the joints, while the spatial position of the ant are harder to predict. A problem can
therefore arise when the CML assigns the spatial position very little impact on the embedding in
state space, as these components would be used to give the CML a target position using o∗. To
ensure that important variables for planning are represented in state space, the embedding matrix
Wq is regularized such that every column has a minimum norm of 1.

Details to the sampling of actions To allow the CML to explore the environment, actions are
sampled randomly, where actions correspond to a torque value applied to the joints of the model of
the ant. The sampling process takes the bounds of the angles into account, selecting torque values
which are unlikely to move the joint too close to the bound with a higher probability.

Approximating the inverse of Wv

Computing the inverse of Wv is problematic from a biological perspective as well as for neuromorphic
hardware applications. Fortunately there are two alternatives to using the inverse matrix.

First, a decent approximation can be found by using the transpose, WT
v . Conceptually, if the

Wv is an orthonormal matrix, the transpose would equal the inverse, which would be the case if all
actions have an orthogonal impact on the state space. Another intuition of why the transpose could
be useful is that according to Equ. 8, it would result in computing the inner products between
the target vector dt and the vector encoding the impact of an action on the state space. As the
inner product can be used to measure similarities, this would result in giving a higher utility to
more similar actions, which would be the desired outcome. Using the transpose yielded very similar
performances on all graphs planning tasks compared to the inverse. While using the transpose
could be a suitable option for neuromorphic hardware it is still problematic from the biological
perspective, as it would require symmetric weights in the brain for which there is little evidence.

The second alternative would be to simply introduce a new inverse matrix Wi, which replaces
the inverse W−1

v , and optimizing it alongside the other parameters using the following update rule:

∆Wi(t) = li(at − ut)d
T
t , (14)

where li corresponds to a learning rate. A control experiment on the planning on abstract graphs
task using Wi instead of W−1

v yielded a slight decrease in performance, where on average one more
node was used in the trajectories.

Details to the optimization process
The loss function used for the optimization of Wq and Wv is the mean squared error of the next
state prediction error and can be found in Equ. 15.

Ls =
1

ns

ns∑
i=1

(st[i]− ŝt[i])
2 (15)

For the optimization of Wk the mean squared error of the gating and the action was employed, as
can be seen in Equ. 16.

La =
1

na

na∑
i=1

(at[i]− gt[i])
2 (16)

24

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for thisthis version posted October 21, 2022. ; https://doi.org/10.1101/2022.10.17.512572doi: bioRxiv preprint

https://doi.org/10.1101/2022.10.17.512572

To decrease the number of required trajectories in the environment, experienced trajectories
were stored in an episodic memory replay buffer and reused during the learning mode.

Furthermore, the weight updates as described in Equ. 4, 5, and 6 were accumulated over a
single trajectory and applied at the end of the trajectory.

Acknowledgements
We would like to thank Christopher Summerfield, Guozhang Chen, and Yujie Wu for helpful
comments on an earlier version of this paper. This research was partially supported by the Human
Brain Project (Grant Agreement number 785907) of the European Union and a grant from Intel.

References
Behrens, Timothy EJ et al. (2018). ‘What is a cognitive map? Organizing knowledge for flexible

behavior’. In: Neuron 100.2, pp. 490–509.
Brockman, Greg et al. (2016). ‘Openai gym’. In: arXiv preprint arXiv:1606.01540.
Buzsáki, György (2019). The brain from inside out. Oxford University Press.
Davies, Mike et al. (2021). ‘Advancing neuromorphic computing with loihi: A survey of results and

outlook’. In: Proceedings of the IEEE 109.5, pp. 911–934.
Driscoll, Laura N, Lea Duncker and Christopher D Harvey (2022). ‘Representational drift: Emerging

theories for continual learning and experimental future directions’. In: Current Opinion in
Neurobiology 76, p. 102609.

Green, Laura et al. (2022). ‘Action-driven remapping of hippocampal neuronal populations in
jumping rats’. In: Proceedings of the National Academy of Sciences 119.26, e2122141119.

Gupta, Anoopum S et al. (2010). ‘Hippocampal replay is not a simple function of experience’. In:
Neuron 65.5, pp. 695–705.

Hertz, John, Anders Krogh and Richard G Palmer (2018). Introduction to the theory of neural
computation. CRC Press.

Jonke, Zeno et al. (2017). ‘Feedback inhibition shapes emergent computational properties of cortical
microcircuit motifs’. In: Journal of Neuroscience 37.35, pp. 8511–8523.

Kamada, Tomihisa, Satoru Kawai et al. (1989). ‘An algorithm for drawing general undirected
graphs’. In: Information processing letters 31.1, pp. 7–15.

Khan, Muhammad Mukaram et al. (2008). ‘SpiNNaker: mapping neural networks onto a massively-
parallel chip multiprocessor’. In: 2008 IEEE International Joint Conference on Neural Networks
(IEEE World Congress on Computational Intelligence). Ieee, pp. 2849–2856.

Khetarpal, Khimya et al. (2020). ‘What can I do here? A Theory of Affordances in Reinforcement
Learning’. In: International Conference on Machine Learning. PMLR, pp. 5243–5253.

Krotov, Dmitry and John Hopfield (2020). ‘Large associative memory problem in neurobiology and
machine learning’. In: arXiv preprint arXiv:2008.06996.

Li, Nuo and James J DiCarlo (2008). ‘Unsupervised natural experience rapidly alters invariant
object representation in visual cortex’. In: science 321.5895, pp. 1502–1507.

Mattar, Marcelo G and Máté Lengyel (2022). ‘Planning in the brain’. In: Neuron.
Moser, Edvard I, Emilio Kropff, May-Britt Moser et al. (2008). ‘Place cells, grid cells, and the

brain’s spatial representation system’. In: Annual review of neuroscience 31.1, pp. 69–89.
Ramsauer, Hubert et al. (2020). ‘Hopfield networks is all you need’. In: arXiv preprint arXiv:2008.02217.
Ritter, Sam et al. (2020). ‘Rapid task-solving in novel environments’. In: arXiv preprint arXiv:2006.03662.
Rule, Michael E, Timothy O’Leary and Christopher D Harvey (2019). ‘Causes and consequences of

representational drift’. In: Current opinion in neurobiology 58, pp. 141–147.
Shelley, Laura E and Douglas A Nitz (2021). ‘Locomotor action sequences impact the scale of

representation in hippocampus and posterior parietal cortex’. In: Hippocampus 31.7, pp. 677–689.
Strukov, Dmitri B et al. (2008). ‘The missing memristor found’. In: nature 453.7191, pp. 80–83.

25

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for thisthis version posted October 21, 2022. ; https://doi.org/10.1101/2022.10.17.512572doi: bioRxiv preprint

https://doi.org/10.1101/2022.10.17.512572

Todorov, Emanuel, Tom Erez and Yuval Tassa (2012). ‘Mujoco: A physics engine for model-based
control’. In: 2012 IEEE/RSJ international conference on intelligent robots and systems. IEEE,
pp. 5026–5033.

Tolman, Edward C (1948). ‘Cognitive maps in rats and men.’ In: Psychological review 55.4, p. 189.
Vaswani, Ashish et al. (2017). ‘Attention is all you need’. In: Advances in neural information

processing systems, pp. 5998–6008.
Verma, Naveen et al. (2019). ‘In-memory computing: Advances and prospects’. In: IEEE Solid-State

Circuits Magazine 11.3, pp. 43–55.
Whittington, James CR, David McCaffary et al. (2022). ‘How to build a cognitive map: insights

from models of the hippocampal formation’. In: arXiv preprint arXiv:2202.01682.
Whittington, James CR, Timothy H Muller et al. (2020). ‘The Tolman-Eichenbaum machine:

Unifying space and relational memory through generalization in the hippocampal formation’.
In: Cell 183.5, pp. 1249–1263.

Whittington, James CR, Joseph Warren and Timothy EJ Behrens (2021). ‘Relating transformers
to models and neural representations of the hippocampal formation’. In: arXiv preprint
arXiv:2112.04035.

26

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for thisthis version posted October 21, 2022. ; https://doi.org/10.1101/2022.10.17.512572doi: bioRxiv preprint

https://doi.org/10.1101/2022.10.17.512572

