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ABSTRACT

The ability to identify B-cell epitopes is an essential step in vaccine design, immunodiagnostic tests, and

antibody production. Several computational approaches have been proposed to identify, from an antigen protein,

which residues are likely to be part of an epitope, but have limited performance on relatively homogeneous data

sets and lack interpretability, limiting biological insights that could be derived. To address these limitations, we

have developed epitope1D, an explainable machine learning method capable of accurately identifying linear

B-cell epitopes, leveraging two new descriptors: a graph-based signature representation of protein sequences,

based on our well established CSM (Cutoff Scanning Matrix) algorithm and Organism Ontology information.

Our model achieved Area Under the ROC curve of up to 0.935 on cross-validation and blind tests, demonstrating

robust performance and outperforming state-of-the-art tools. epitope1D has been made available as a

user-friendly web server interface and API at http://biosig.lab.uq.edu.au/epitope1d.
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MAIN

B-Cell epitopes encompass a class of antigenic determinants that are dependent on the amino acids arrangement

on the surface of the antigen protein structure. Contiguous stretches of residues along the primary sequence form

linear epitopes, whereas non-adjacent residues, though nearby placed due to protein folding, form the

discontinuous (or conformational) epitopes. Both forms impose a significant role upon the binding with its

counterparts, the Immunoglobulins, that could be either in the form of membrane bound receptors or as

antibodies, which are versatile macromolecules capable of recognising foreing threats [1], [2].

Identifying and selecting the appropriate epitope that could elicit an effective immune reaction in the

host, and thus creating a protective memory immunity, is the fundamental basis of vaccine development [3], [4].

Being an extremely complex and multifactorial process, the amount of time spent in vaccine development is on

average a decade and it can cost over 2 billion dollars for it to reach the market [5], [6]. Consequently,

effectively aiding the selection of epitope candidates with computational techniques holds a promising role in

this field in terms of substantial decreasing development time and cost.

Linear B-Cell epitopes account for only 10% among the two classes and although in silico prediction

methods have significantly evolved over the past decades, varying from amino acid propensity scale scores

[7]–[10], to combining physicochemical attributes and more robust machine learning techniques [11]–[15], their

performance are still biassed towards specific data sets, leading to limited generalisation capabilities. A recently

published approach [16], attempted to address these gaps by systematically cross-testing several previous

benchmark data sets on their machine learning model and thus proposing two final models: a generalist and other

specifically tailored for viral antigens. However, the general model was trained on data predominantly from HIV

virus epitopes, which could be potentially non-representative, with the virus-specific model still presented

modest performance, reaching a maximum MCC of 0.26 on blind-tests.

To fill these gaps, here we propose an explainable machine learning classifier based on the largest

experimentally curated linear epitope data set so far, covering large span of organisms, presenting robust

performance with different validation techniques, in addition to two new feature representation approaches:

Graph-based signatures of protein sequences labelled with physicochemical properties, and Organism ontology

identification of each input peptide, leveraging the classifier distinction between epitopes and non-epitopes.
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RESULTS

Two scenarios of evaluation were considered to assess the ability of epitope1D to accurately identify linear

epitopes, based on the dataset employed and direct comparison with previous methods. The first comprises the

use of well-established benchmarks: the BCPred set assessed, assessed under 10-fold cross-validation, followed

by external validation with different independent blind test sets, as previously described (ABCPred-1,

ABCPred-2, AAP, LBtope, iBCE-EL-1 and iBCE-EL-2). This scenario impartially compares the performance of

our models with recent developments and identifies feature importance and their current limitations.

The second scenario consists of our newly curated, large-scale data set extracted from the IEDB database

which includes organism information. Data sets filtered at different sequence similarity levels were employed:

with internal validation evaluated using 10-fold cross-validation, and models assessed externally via blind tests.

Furthermore, recently development methods, including BepiPred-3.0 [34], EpitopeVEC and EpiDope, also had

their performance assessed on the same blind test to determine differences in performance.

Comparison with alternative methods using the BCPred data set

Feature Representation: What makes up a linear epitope?

The data set extracted from BCPred, composed of 1,402 peptide sequences with a balanced class ratio of 1:1,

was used to train and test several supervised learning models as a classification task. Their ability to distinguish

between epitopes and non-epitopes was assessed and most predictive features identified. Outstanding features

identified in this scenario include: (i) the maximum and minimum value of Antigenicity ratios in terms of amino

acid triplets (AAT, measuring how overrepresented some amino acid are in the epitope class of this data set); (ii)

the Composition pattern (CTD) of physicochemical and structural properties (hydrophobicity, normalised van

der Waals volume, polarity, secondary structure and solvent accessibility); and (iii) the Graph-based signatures

using both types of labelling: physicochemical properties (Acidic, Apolar, Polar Neutral, Basic and Aromatic)

and Parker hydrophilicity prediction scale.

Using the interpretable classifier, EBM, to understand feature importance (Figure S1 of Supplementary

Materials), we observed that the antigenicity ratio features were in the top three most relevant: the maximum
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value within a peptide sequence (AAT_max), the interaction amid the maximum and the minimum (AAT_max x

AAT_min) and the minimum value (AAT_min); followed by its interaction with specific Graph-based and

Composition physicochemical descriptors, such as Apolar:Aromatic-8 (pairs of apolar and aromatic amino acids

within a sequence distance cutoff of 8) and the amino acid composition in terms of Hydrophobicity (G1:Polar,

G2: Neutral, G3: Hydrophobicity).

Further exploring interpretability, Figure 3 depicts the rationale behind the model’s decision considering

only the top most significant feature, the maximum AAT value, the cumulative sum of the antigenicity ratio scale

for all possible amino acid triples within a peptide sequence. In the top chart, the horizontal axis details the

feature range values, while the vertical axis shows the class, with the decision mark between the two classes set

to 0 (above zero a higher probability of being an epitope and non-epitope otherwise). A clear decision point has

been learned when AAT_max ranges from 4 to 6 (more precisely, larger than 5), which is also the average value

of this feature for this data set. A possible interpretation of this result, in terms of the data set that includes

20-mer peptides only, can be that if at least 5 combinations of amino acid triplets are overrepresented in the

sequence, there is a higher chance of it being an epitope. The bottom chart of the figure depicts the feature value

distribution.

Figure 3. Behaviour of the feature AAT_max, which represents the maximum rate of Antigenicity for amino

acid triplets, over its possible values ranging from -0.889 to 11.2. The epitope class probability increases when

the AAT_max becomes larger than 5 (Score above 0). The bottom chart depicts the distribution of the

corresponding data points in each feature interval.
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Machine Learning Models

Under 10-fold cross-validation, the best performing models include Random Forest (RF) and Explainable

Boosting Machine (EBM), both reaching an MCC of 0.72 and AUC of 0.92 and 0.93, respectively. Similar

performance was observed using 5-fold cross validation. Table 1 provides a comparison of epitope1D with the

previous methods that employed this data set including BCPred and EpitopeVec. Both methods used a Support

Vector Machine (SVM) approach.

Table 1. Performance comparison of epitope1D using two different algorithms (EBM and RF) with BCPred and

EpitopeVec methods under 10-fold cross-validation using the BCPred data set.

METHOD MCC ROC-AUC F1

BCPred 0.360 0.758 -a

EpitopeVec 0.620 0.880 0.810

epitope1D (RF) 0.720 0.920 0.850

epitope1D (EBM) 0.720 0.930 0.860
a Metric unavailable in original publication.

In order to externally validate our model and assess its generalisation capabilities, different blind test sets were

presented to the epitope1D (EBM) model as detailed in Table 2 and in Table S2 of Supplementary Materials,

where we can also examine the performance achieved by previous methods such as BepiPred, BepiPred-2.0,

EpiDope and EpitopeVec. Significant performance differences were observed for the methods when trained and

tested using different data sources (i.e., Bcipep and IEDB databases). For instance, with the AAP data set

(originally derived from Bcipep) in the first part of the Table 2, epitope1D and EpitopeVec (both trained using

data from Bcipep database) achieved higher performances (MCC of 0.815 and 0.770, respectively) compared to

the other methods that were trained using data derived from IEDB database (iBCE-EL, BepiPred and EpiDope).

Alternatively, when applying the iBCE-EL testing data set (extracted from IEDB), our model and EpitopeVec

achieved lower values of MCC, 0.092 and 0.095, compared to the model trained on data from this source (which
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reached a MCC of 0.454). However, in this scenario, some models trained using the same data source (e.g.

BepiPred, BepiPred-2.0 and EpiDope), did not perform well either.

Regarding the machine learning process, this behaviour raises concerns of potential biases in these data

sets or lack of representativeness. Both cases lead to a lack of generalisation and can occur due to a variety of

reasons, some of which we might conjecture: (i) all previous benchmark datasets listed here were adjusted to a

highly balance ratio for epitope and non-epitope classes, which do not represent the biological truth; (ii) Bcipep

database, as originally stated, are predominantly composed of viruses (HIV virus predominantly), which induces

an underrepresentation of other organisms; (iii) Truncation/Extension approaches adopted by part of the methods

to define a fixed peptide length, change the originally validated epitope sequence and may impose a learning bias

towards an artificial set; (iv) The use of non-experimentally validated sequences to populate the non-epitope

class, strategy adopted by some of the benchmarks, could lead the machine learning model to learn from

imprecise or even erroneous data.

Table 2. Performance comparison with previous methods using three distinct blind test sets: AAP, ABCPred-2,

and LBTope.

METHOD MCC ROC-AUC F1 ACCURACY

Data set: AAP

iBCE-EL -0.036 0.528 0.350 0.494

BepiPred 0.217 0.665 0.600 0.604

BepiPred-2.0 -0.021 0.424 0.400 0.493

EpiDope 0.061 0.559 0.350 0.507

EpitopeVec 0.770 0.958 0.880 0.883

epitope1D 0.815 0.907 0.909 0.907

Data set: ABCPred-2

ABCPred -a -a -a 0.664

AAP 0.292 0.689 -a 0.646

iBCE-EL -0.227 0.501 0.320 0.434
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BepiPred 0.132 0.627 0.570 0.566

BepiPred-2.0 0.181 0.62 0.480 0.555

EpiDope 0.091 0.541 0.360 0.508

EpitopeVec 0.445 0.778 0.720 0.718

epitope1D 0.543 0.841 0.848 0.781

Data set: LBTope

iBCE-EL 0.135 0.619 0.39 52.20

BepiPred 0.092 0.566 0.55 54.57

BepiPred-2.0 -0.001 0.476 0.42 49.95

EpiDope 0.036 0.559 0.35 50.34

EpitopeVec 0.065 0.548 0.51 52.98

epitope1D 0.067 0.527 0.333 52.80
a Metric unavailable in original publication.

Performance on a newly curated benchmark data set from the IEDB database

Feature Importance and Organism-aware Predictions

To address the potentially unrepresentative nature of the data, we curated an experimentally validated, large scale

data set, integrated with high-level taxonomy organism information that incorporates the three main

superkingdoms: Virus, accounting for 83% of the data and enclosed in 8 classes (Riboviria, Duplodnaviria,

Monodnaviria, Varidnaviria, Ribozyviria, Anelloviridae, Naldaviricetes, Adnaviria), followed by 15% of

Eukaryota with 5 classes (Metamonada, Discoba, Sar, Viridiplantae, Opisthokonta); and 2% of Bacteria with 7

classes (Terrabacteria group, Proteobacteria, PVC group, Spirochaetes, FCB group, Thermodesulfobacteria,

Fusobacteria), totalising 20 binary categories. Organism taxonomy information was included in the set of

features previously used (detailed in Table S3 of Supplementary), composed of four main categories

Graph-based signatures, AAT Antigenicity ratio, Composition features and Organism taxonomy.

To better understand individual feature contributions to model outcomes, a post-hoc analysis using the SHAP

[35] was employed using the Random Forest model. The importance order of each descriptor in this scenario can
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be understood as a ranked summary depicted in Figure S2 of Supplementary. The Antigenicity ratio group, with

AAT maximum and minimum values, are very predictive features with higher values strongly correlating with

the epitope class. The next most important feature is part of the Composition group, charge.G3, denoting a

higher number of negatively charged amino acids in the epitope class. The fourth most important feature was

organism taxonomy, particularly the Riboviria, potentially showing what the model learned as a consequence of

the class imbalance data, where 87% of the Riboviria sequences belong to the non-epitopes, thus correlating the

epitope class with organisms other than Riboviria. Graph-based signature features also play an important role to

the model decision (e.g., Apolar:PolarNeutral-9 feature), denoting pairs of residues (polar and apolar) far apart

from each other in sequence, though contributing to the epitope class (particularly for Riboviria sequence, Figure

S3).

Machine Learning Models

In this second analysis, EBM and RF classifiers were assessed and performed equally, with Random Forest

presenting a slightly faster training time, the reason why it has been chosen. 10-fold cross validation was

performed using the epitope1D training set, followed by the blind-test evaluation with the independent blind test.

Performance of state-of-the-art methods BepiPred-3.0, EpitopeVec and EpiDope on the same blind test were

compared. Table 3 outlines the performance metrics for the cross-validation and blind tests, with epitope1D

reaching a MCC of 0.613 and 0.608, respectively, in contrast with the best performing alternative method,

EpitopeVEC, only achieving up to 0.139 MCC and BepiPred-3.0 achieving -0.007. Although the EpiDope

method was trained using data from the same source, IEDB, we did not perform a homology removal check on

the test set to guarantee direct comparison and avoid data contamination.

Table 3. Performance metrics on cross-validation (CV) and blind test, using epitope1D data set. State-of-the-art

methods for linear b-cell epitope prediction were also appraised using the blind test: BepiPred-3.0, EpitopeVEC

and EpiDope.

Method MCC ROC-AUC F1
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epitope1D (CV) 0.613 0.935 0.658

epitope1D (blind test) 0.608 0.935 0.654

EpitopeVec (blind test) 0.139 0.618 0.306

EpiDope (blind test) 0.051 0.610 0.024

BepiPred-3.0 (blind test) -0.007 0.586 0.290

To better visualise model performance and Sensitivity/Specificity tradeoff for all the methods on the blind test,

ROC curves were created (Figure 6), for the data set filtered at different similarity level cutoffs. The epitope1D

curve, displayed in red, reached a significantly better ROC-AUC value of 0.935, compared to 0.618 from

EpitopeVEC in yellow, 0.610 from EpiDope in blue and 0.586 from BepiPred-3.0 in green (for a 95% similarity

cutoff - Figure 6A). Further analysis with different cutoffs of 90%, 80% and 70% (Figure 6B-D, respectively)

applied in the independent testing set are likewise depicted, demonstrating that epitope1D consistently and

significantly outperforms all alternative methods, with a small decrease in performance, further highlighting its

robustness.
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Figure 6. Performance comparison via ROC curves using the epitope1D test set at different similarity levels

(95%, 90%, 80% and 70% for panels, A, B, C, and D, respectively). epitope1D achieved significantly higher

AUC values of up to 0.935 (in red), followed by EpitopeVEC (in yellow), EpiDope (in blue) and BepiPred-3.0

(in green).
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Web server and API

epitope1D was made available as a friendly-user web server interface, where the user can input the protein or

peptide sequence in fasta format, and select from a drop-down menu the equivalent organism taxonomy

representation (Figure S4). In addition, an Application Programming Interface (API) enables for batch

submissions and integration to standard analytical pipelines, contributing to reproducibility and usability of the

resource.

CONCLUSIONS

Linear B-cell epitope prediction is yet an extremely challenging task in which the sophisticated biological

mechanism underlying the binding among Antibody-Antigen poses challenges to computational and

experimental methods. The majority of previous benchmark data sets dated from up to 15 years ago, also

suggesting a potential bias and lack of organism representativeness, leading to weak to poor generalisation

capabilities.

epitope1D fills these gaps via an explainable machine learning method, built on the largest

non-redundant experimentally validated data set to date, composed of over 150,000 data points, consisting of a

diverse set of organisms within Virus, Eukaryota and Bacteria superkingdoms. epitope1D leverages

well-established as well as novel features engineered to model epitopes, including a new graph-based signature

to train and test taxonomy-aware and accurate predictors.

A comprehensive comparison of our method with state-of-the-art tools showed robust performance

across distinct blind-test sets, with epitope1D significantly outperforming all methods, thus highlighting its

generalisation capabilities. We believe epitope1D will be an invaluable tool assisting vaccine and

immunotherapy development and have made it freely available to the community as an easy-to-use web interface

and API at http://biosig.lab.uq.edu.au/epitopde1d.
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METHODS

epitope1D has four general steps, as can be seen in Figure 1: (1) Data collection and curation; (2) Feature

Engineering: evaluation of current used features and new proposed features to represent peptide sequences; (3)

Explainable Machine Learning: assessment of several supervised learning algorithms and further comparison

among previous work using different data sources and explainability resources; and (4) Web server interface:

development of an easy-to-use platform for end users.

Figure 1. epitope1D workflow with 4 main stages: (1) Data Collection and Curation, which includes the

selection of benchmarks and also the curation of an updated large-scale data set; (2) Feature Engineering,

representing the step where all descriptors were calculated; (3) Explainable Machine Learning, in which the

supervised machine learning classifiers were analysed in terms of their predictive power, explainability, and

assessed via cross-validation and blind-test approaches; (4) Web Server Interface, where epitope1D is made

publicly available as a user-friendly web interface and API.

Data Collection

Well-established reference data sets were used to train, test and validate supervised learning algorithms, as a

classification task. A comprehensive list of benchmark data sets, derived from ABCPred method [11], BCPred

[17], AAP [18], LBtope [13], and iBCE-EL [12] was further employed to impartially evaluate the predictive

power of our selected model against the original ones and state-of-the-art tools such as EpitopeVec [16],
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BepiPred [19] and BepiPred-2.0 [14]. A detailed review of them is located in Supplementary. Subsequently,

given that most data sets were outdated (dated from 5 to 16 years ago), we have curated a newly updated data set

derived from IEDB database [20], which will be used as the final basis for our model. Table 1 summarises the

information of all data used in this work and further analysis can be read below.

Table 1. Description of the data sets applied to train and evaluate epitope1D. The first column, named "Data

Set", is the name we are referring them to throughout the text; "Original Method" is where the set originally is

derived from; "Epitopes'' and "Non Epitopes'' correspond to the total amount of labelled data within the set;

"Experimentally Defined" indicates if the data from the two classes were experimentally assessed; "Data Source''

specify the database from which the set was extracted; "Peptide Length" indicate the size of the peptides within

the data set (specify the length - if fixed; or Assorted); "Validation" column designates if we apply the set for

cross-validation or blind-testing purposes.

Data Set Original
Method

#Epitopes #Non
Epitopes

Experimentally
Defined

Data Source Peptide
Length

Validation

General Benchmark  Data Sets

BCPred BCPred 701 701 Only Epitopes Bcipep and
SwissProt

20 mer Cross-validation

ABCPred-1 ABCPred 700 700 Only Epitopes Bcipep and
SwissProt

20 mer Blind

ABCPred-2 ABCPred 187 200 Only Epitopes Bcipep/SDAP and
SwissProt

Assorted Blind

AAP AAP 872 872 Only Epitopes Bcipep and
SwissPro

20 mer Blind

LBtope LBTope 7,824 7,853 Yes IEDB 20 mer Blind

iBCE-EL-1 iBCE-EL 4,440 5,485 Yes IEDB Assorted Blind

iBCE-EL-2 iBCE-EL 1,110 1,408 Yes IEDB Assorted Blind

New curated large-scale benchmark data set

epitope1D
Training

epitope1D 20,638 103,281 Yes IEDB Assorted Cross-validation

epitope1D
Testing

epitope1D 5,264 25,716 Yes IEDB Assorted Blind
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Curating a New Experimental Benchmark Data Set

We have curated a new set derived from the IEDB database aiming to reflect data availability on experimentally

confirmed linear b-cell epitopes and also non-epitopes. Our main motivation arises because most of the

previously mentioned data sets were collected more than 10 years ago and their negative class sets (non-epitope

sequences) weren't empirically proven. In addition, epitope sequences derived from the Bcipep database [21] can

impose an obstacle to model generalisation, given that around 80% of them refers only to HIV virus. Therefore,

organism information from each sequence in the new data is taken into account to assess whether the taxonomy

can aid distinguish epitopes from non-epitopes, in a variety of subspecies.

The curation process of the new experimental data set comprises the following steps: (1) Download all

possible (any host and disease) linear peptides of B-cell epitopes and non-epitopes as of June/2022; (2) Keep

only the epitopes and non-epitopes confirmed in two or more different assays; (3) Consider solely the peptides

with length between 6 and 25 amino acids, since 99% of linear epitopes range within these lengths [1], [12],

[14]; (3) Remove sequences that were present in both classes simultaneously; (4) Exclusively retain entries that

contain information about the source organism; (5) Perform a systematic sequence redundancy removal step

using CD-HIT at different thresholds (95%, 90%, 80% and 70%) to assess the overall learning efficiency within

high to medium similarity. Considering that a single antigen may contain several different epitope stretches that

lead to distinct antibody bindings, it is worth accommodating the majority of available epitope sequences

belonging to each antigen protein [2].

The final set, with a maximum of 95% similarity, is composed of 154,899 data points, in which 25,902

are epitopes, encompassing 1192 sub-species that were aggregated into a higher taxonomy parent organism

lineage of 20 classes, each belonging to the superkingdom of Virus, Eukaryota or Bacteria. The final set was

randomly divided into a training set with 123,919 data points, in which 20,638 are epitopes (ratio 1:6) and

corresponds to 80% of the data, and the remain 20% as an independent test set with 30,980 data points with the

same epitope/non-epitope proportion.
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Feature Engineering

To better characterise peptide sequences that might compose an epitope, previously used descriptors as well as

novel features were evaluated. To reduce model complexity, a forward stepwise greedy feature selection

algorithm was applied [22] to retain only the most representative set. The description of new proposed features is

introduced here, while auxiliary features are described in Supplementary Materials. An overall summary is also

provided in Table S1.

Graph-based signatures. We have designed a new graph-based feature, tailored for modelling linear epitopes of

flexible length, inspired by the CSM algorithm [22]–[25]. The key idea was to model distance patterns among

residues (nodes) at different distance cutoffs (each distance inducing the edges of a graph), which are

summarised in two approaches: cumulative and non-cumulative distributions. Sequence graphs were labelled in

two ways: (1) the corresponding scales of hydrophilicity prediction [8], beta turn prediction [26], surface

accessibility [9] and antigenicity [10]; and (2) the amino acid physicochemical properties, such as Apolar,

Aromatic, Polar Neutral, Acid or Basic, as done previously [22], [27], [28]. Figure 2 shows the steps comprising

the new graph-based feature.
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Figure 2. Modelling linear epitopes using graph-based signatures. The first step comprises the selection of

residue pairs at incremental sequence distances and apply different types of labelling approaches on them. The

third and final step is to vectorize the output as cumulative distances between different label pairs.

Organism Identification. The organism source information, extracted from the IEDB database together with

each peptide sequence, is expressed by its ontology identifier deriving from two sources: (1) The Ontobee data

server [29] for the NCBI organismal taxonomy; and (2) The Ontology of Immune Epitopes (ONTIE), which is

an internal web resource from IEDB that was then converted back to the corresponding NCBI taxonomy term for

standardisation. This information was used aiming to contribute with epitope identification addressing the pain

point in the machine learning process that arises from high heterogeneity in organism classes [16], [30]. To

transform the 20 ontological terms, described in Table S1, from categorical data into numerical, a one-hot

encoding process was imposed. This descriptor was applied in the new curated benchmark data set only.

Machine Learning Methods

As epitope identification could be described as a binary classification task, various supervised learning

algorithms were assessed using the SciKit Learn Python library [31]. These included Support Vector Machine
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(SVM), Adaptive Boosting (Adaboost), Gradient Boosting (GB), Random Forest (RF), Extreme Gradient

Boosting (XGBoost), Extra Trees, K-nearest neighbour (KNN), Gaussian Processes and Multi-Layer Perceptron

(MLPC). In addition, an inherently interpretable method named Explainable Boosting Machine (EBM), a type of

Generalised Additive 2 Model (GA2M) and considered as a glassbox model, was assessed via the open-source

Python module InterpretML [32]. The goal of interpretable machine learning models is to provide a rationale

behind prediction that would allow for meaningful biological insights to be derived, also assisting in the

possible biases and errors as well as highly predictive features.

Performance evaluation for each model was done based on Matthew’s Correlation Coefficient (MCC),

which is a robust statistical measure appropriate for imbalance data sets [33]. Complementary performance

metrics were also used including F1-score, Balanced Accuracy and Area Under the ROC Curve (AUC).

Performance between internal validation (k-fold cross validation) and external validation (blind tests) was

contrasted to infer generalisation capabilities.

SUPPLEMENTARY DATA

Supplementary data are available online at https://academic.oup.com/bib.

DATA AVAILABILITY

epitope1D and associated data sets are available through a user-friendly and freely available web

interface and API at http://biosig.lab.uq.edu.au/epitope1d, enabling seamless integration with

bioinformatics pipelines and supporting quick assessment of sequences to support diagnosis and

vaccine design.
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