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The ability to predict and understand the complex molecular motions occurring over diverse timescales rang-
ing from picoseconds to seconds and even hours occurring in biological systems remains one of the largest
challenges to chemical theory. Markov State Models (MSMs), which provide a memoryless description of the
transitions between different states of a biochemical system, have provided numerous important physically
transparent insights into biological function. However, constructing these models often necessitates perform-
ing extremely long molecular simulations to converge the rates. Here we show that by incorporating memory
via the time-convolutionless generalized master equation (TCL-GME) one can build a theoretically transpar-
ent and physically intuitive memory-enriched model of biochemical processes with up to a three orders of
magnitude reduction in the simulation data required while also providing a higher temporal resolution. We
derive the conditions under which the TCL-GME provides a more efficient means to capture slow dynamics
than MSMs and rigorously prove when the two provide equally valid and efficient descriptions of the slow
configurational dynamics. We further introduce a simple averaging procedure that enables our TCL-GME
approach to quickly converge and accurately predict long-time dynamics even when parameterized with noisy
reference data arising from short trajectories. We illustrate the advantages of the TCL-GME using alanine
dipeptide, the human argonaute complex, and FiP35 WW domain.

I. INTRODUCTION

Biomolecules, such as proteins, dynamically change
conformations to perform their functions and thus play
a critical role in processes such as protein misfolding and
aggregation and protein-ligand recognition. Therefore,
investigating biomolecular dynamics is essential for dis-
covering next generation therapeutics, developing novel
antibiotic targets, and elucidating protein folding mecha-
nisms that underlie diseases such as Alzheimer’s, Parkin-
son’s and Cystic Fibrosis.1 Indeed, all-atom molecular
dynamics (MD) computer simulations can offer insight at
resolutions beyond standard experimental setups. How-
ever, since small atomic motions such as vibrations occur
on the order of femtoseconds, whereas the complex mo-
tions at the heart of large conformational changes that
drive processes such as protein folding and allostery span
timescales from microseconds to seconds, a direct atom-
istic simulation of such long-timescale motions is only
feasible for relatively small biological systems.

Markov state models (MSMs) are a powerful approach
that have emerged to tackle this grand challenge.2–12
Currently, widely used open-source libraries offer robust
implementations for constructing MSMs.13–15 MSMs
benefit from massive parallelism by exploiting many
short molecular dynamics simulations to capture the
long-time configurational dynamics that reveal the mech-
anisms of biomolecular processes.16 This is accomplished
by partitioning configuration space into a set of states:
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distinct structures whose component configurations in-
terconvert on a faster timescale than with those belong-
ing to different structures. Identifying the slowest in-
terconverting structures, however, remains a formidable
problem.7,17–25 This difficulty arises from the fact that, to
perform a perfect partitioning, one needs detailed knowl-
edge of the full free energy landscape of a complex con-
densed phase system. Instead, one is generally limited
to a set of states that evolve on slow timescales but are
not optimally partitioned.16,26 With such a set of config-
urations, an MSM then provides a discrete-time kinetic
description of the interstate conversion, enforcing an ef-
fective separation of timescales by requiring transitions
between states have no dependence on the history of the
system. In this memory-less, or Markovian, limit the rate
constants in the kinetic scheme are time-independent.
This kinetic description provides an approximation to the
true dynamics and its accuracy depends on the extent of
timescale separation. For a sufficiently accurate (‘valid’)
MSM, the maximum resolution in time (minimum time
step) allowed by the approximate description is termed
the ‘Markovian lag time’. Formally, the intrastate relax-
ation establishes a lower bound to the lag time,16 which
is the minimum simulation time required for MD data to
parameterize the model.

Ultimately, what one would want is a handful of states
that provide chemical interpretability for understanding
complex biomolecular mechanisms. However, algorithms
designed to maximize this timescale separation usually
produce many, physically obscure states. This is because
downfolding to a biologically intuitive space subsumes
slower interstate dynamics of the many-state space into
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the intrastate dynamics of the reduced space,27 increas-
ing the lag time. For example, to model the millisecond
folding of the NTL9 peptide using the available simula-
tion data, Pande and coworkers required an MSM con-
taining 2,000 states (with a lag time of 12 ns),28 while
recent work on the RNA Polymerase (RNAP) II back-
tracking necessitated MSMs consisting of 800 states to
reach Markovianity within the affordable trajectory.29
Therefore there is a balance to be drawn: one wants to
coarse-grain aggressively to facilitate interpretability, yet
this generally leads to long lag times, which result in both
poor temporal resolution and the need to perform longer
MD simulations.

Recent work has demonstrated that one can employ
non-Markovian theories to resolve the tensions at the
heart of the MSM, increasing the resolution to be equal to
the MD time step,30–34 while simultaneously using only
a fraction of the data in the models’ construction.35 Of
these, the GME, recently used in its time-convolution
form as quasi-MSMs (qMSM), provides a particularly
useful tool. Indeed, qMSMs have proven useful in tack-
ling important problems such as the gate opening mo-
tion of a bacterial RNAP and the mechanism of messen-
ger RNA recognition and inhibition via the RNA-induced
silencing complex.36,37 Like MSMs, GMEs are most ef-
ficient when there is a separation of timescales between
intra- and interstate dynamics. Unlike MSMs, GMEs en-
code the intrastate dynamics into a time-dependent fric-
tion function—a memory kernel—removing the approxi-
mation of perfect timescale separation. It is this explicit
description of the non-Markovianity that allows the im-
proved resolution in time. Yet, their construction lacks
conceptual appeal, as they require a convolution integral
with the memory kernel which precludes interpretation of
the dynamics as a simple kinetic scheme. This motivates
the question: is it possible to combine the interpretabil-
ity of the MSM with the improved accuracy, resolution,
and efficiency of GMEs?

In this work, we employ a time-convolutionless (TCL)
GME approach that, like the qMSM, encodes the non-
Markovian dynamics associated with intrastate motions
but, unlike the qMSM, conserves the chemically intu-
itive nature of MSMs through the action of a generalized
non-Markovian rate matrix. We show this easy, accu-
rate, and efficient GME-based approach can capture the
biomolecular dynamics of systems of varying complexity,
with the resulting dynamics constituting an improvement
that combines the advantages, while removing the limita-
tions, of both qMSM and MSM approaches. Indeed, not
only does the TCL-GME approach perform just as well
as the qMSM on systems that can be exhaustively sam-
pled, but in more difficult cases where all methods strug-
gle to treat statistically underconverged MD data, the
TCL-GME can be systematically improved in a manner
that has no apparent analogue in the qMSM (or MSM)
case. We achieve this through a simple averaging pro-
tocol that leverages the onset of Markovian behavior to
tame the deleterious effect of noise. Upon reformulating

the TCL-GME in discrete-time,38 our averaging proce-
dure provides a simple and robust scheme to capture the
complex dynamics of biomolecular motions, even in cases
that suffer from poor temporal resolution. Finally, in the
extreme case where our averaging procedure includes the
entire non-Markovian region, our TCL-GME reduces to
a high-resolution version of the analogous MSM, recapit-
ulating its identity as the non-Markovian generalization
of the conventional MSM and fully elucidating the source
of improvement over the traditional time-local approach.
We demonstrate that our discrete-time method remains
robust even when benchmarked against MD data that
extends into the microsecond regime: two orders of mag-
nitude longer than the time required to parameterise the
model in question. The strict improvement of our time-
local approach is epitomized by its ability to converge
an computational sensitive experimental observable (the
folding time) using less than half of the data required by
the traditional MSM.

II. CONNECTING MARKOVIAN AND NON-MARKOVIAN
EVOLUTION

Whether one wants to directly use a long MD trajec-
tory or many short MD simulations to elucidate complex
biomolecular processes, the first task is to find the states
that will provide one with the basis of a mechanistic in-
terpretation. The second task is to construct an accurate
and efficient description of the dynamics of such config-
urations. As we mentioned in the Introduction, below
we do not consider how one identifies these configura-
tional basins (the interested reader can see, for instance,
Refs. 18–21, 23–25, and 39), but rather focus on the sec-
ond problem: given a set of configurations whose dynam-
ics one can only afford for only short times, how does one
construct a dynamical framework to accurately and effi-
ciently capture the dynamics of these configurations over
all time?

To characterize the time-dependent transitions con-
necting states, it is natural to focus on their equilibrium
time-correlation functions,

Ck,j(t) = π−1
j

∫
dp

∫
dq

e−βH(q,p)

Z
χk(qt)χj(q0), (1)

where πj =
∫

dp
∫

dq e−βH(q,p)

Z χj(q) is the equilibrium
probability of state j, the {χk} are mutually orthogo-
nal indicator functions that define the continuous sets of
configurations that compose each state, Z is the canon-
ical partition function of the system, and q and p are
the coordinates and momenta of all atoms in the system.
Since the states are mutually disjoint, C(0) = 1. These
correlation functions, together the transition probability
matrix (TPM), correspond to the conditional probabil-
ity of finding the biomolecular complex in configuration
k at time t given that it started in configuration j at
t = 0. We now turn to both Markovian (MSMs) and
non-Markovian (GMEs) descriptions of the dynamics of
the TPM, C(t).
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A. MSMs and qMSMs

After configuration space has been partitioned into
non-overlapping states,22 to obtain a valid Markovian
description of the TPM dynamics, the MSM frame-
work requires one to identify the smallest time scale τL
such that the TPM satisfies the Chapman-Kolmogorov
condition,18,40

C[(n+ 1)τL] = eMτLC(nτL). (2)

Here, M is a time-independent rate matrix and τL is
defined to be the Markovian lag time. In practice, Eq. 2
is rearranged such that τL is found by identifying the
onset of a plateau in the implied time scale (ITS), defined
as

ITS(t) = −t[log C(t)]−1. (3)

This time scale is associated with the time taken for de-
grees of freedom within the aggregated states to achieve
equilibrium and thus for the systems to become mem-
oryless, or Markovian. Once τL is identified, the con-
figurational dynamics can be predicted at integer mul-
tiples of τL. In other words, τL defines the interval at
which a given (non-Markovian) biomolecular process can
be viewed as Markovian. Consequently, the resulting dy-
namics are discontinuous,40 thus obscuring the observa-
tions of dynamical processes which may occur on the in-
terval [nτL, (n + 1)τL]. Furthermore, Eq. 2 implies τL
sets the lower bound on MD simulation time required to
parameterize the MSM that describes C(t).20 There is,
however, no guarantee that intrastate equilibration will
occur within an affordable time scale to perform MD.16

Recent work has shown that it is possible to employ
a GME approach to account for the effect of memory
(non-Markovian) behavior at early times, allowing one
to construct a quasi-Markov State Model (qMSM), given
by

d

dt
C(t) = Ċ(0)C(t) +

∫ t

0

dsK(s)C(t− s). (4)

Here, the potentially complex intrastate dynamics are
encoded into the time dependent memory kernel K.35
Crucially, K decays to zero on a characteristic time-scale
τK , termed the kernel cutoff time, enabling one to ap-
proximate the upper limit of the integral in Eq. 4 as
min {τK , t}. It has been further shown that τK ≤ τL,
illustrating that the qMSM approach strictly improves
upon the MSM. It does this both by reducing the amount
of simulation time needed to capture the exact dynam-
ics, while simultaneously giving access to the dynamical
events occurring between multiples of τL. Indeed, the
qMSM offers remarkable accuracy, temporal resolution,
and often requires much less MD simulation time to fully
construct the generator of the dynamics, i.e., the memory
kernel K(t).35 The qMSM has been profitably applied to,
for example, understand the significance of the β-lobe of
RNA polymerase during transcriptional initiation,36 and
elucidate the mechanisms used by the RNA-induced si-
lencing complex to recognize and target mRNAmolecules
in a sequence specific manner.41

Unfortunately, the qMSM is not without its problems.
First, evaluation of a convolution integral becomes com-
putationally cumbersome as the dimension of the TPM
increases. Second, constructing K requires the first and
second derivatives of C,42 giving rise to numerical insta-
bilities which we will analyze in a later section. Third,
from a qualitative perspective, the qMSM approach ob-
fuscates the physical interpretation of the MSM in terms
of “states and rates”. Specifically, the MSM provides a
physically intuitive rate matrix,M, whose diagonals can
be interpreted as the likelihood of remaining in a partic-
ular state, and whose off-diagonals describe the probabil-
ity of making a transition from one state to another. In
contrast, the memory kernel appears under a convolution
integral in the equation of motion for the TPM, Eq. 4,
and therefore cannot be understood separately from its
cumulative effect over the history of the TPM. Hence, the
qMSM does not appear to offer a simple way to interpret
the memory kernel matrix elements in terms of instan-
taneous transition rates, e.g., where a number twice as
large can be immediately identified as taking half as long
to move between two states in a given chemical scheme.
These complications motivate the search for an alterna-
tive method that accurately and efficiently captures the
exact dynamics in a robust, accurate, and intuitive man-
ner.

B. The TCL-GME

For a non-Markovian theory, such as the qMSM, to be
interpreted in terms of rates one would want to write it in
a time-local form, comparable to Eq. 2. For this reason,
we adopt the time-convolutionless (TCL) GME,43–45

d

dt
C(t) = R(t)C(t), (5)

whereR is the time-local generator that encodes the non-
Markovian dynamics arising from imperfect timescale
separation between intra- and interstate dynamics, and
can be understood as a generalized time-dependent rate
matrix. Furthermore, the matrix elements of the time-
local generator plateau at a characteristic timescale,
τR,38,45 allowing one to separate the time over which non-
Markovian evolution takes place (0 ≤ t < τR) and when
Markovian evolution begins,

C(t ≥ τR) = eR∞(t−τR)C(τR), (6)

where C(τR) = exp→[
∫ τR

0
dsR(s)]C(0) is the value of the

TPM at τR given by the action of the time-ordered prop-
agator on the initial condition, C(0) = 1, and R∞ ≡
R(t ≥ τR) is the long-time limit of the time-local gen-
erator. R∞ is the time-independent rate matrix that
encodes the true Markovian evolution of C(t) beyond τR
and elucidates the connection with Eq. 2.

Since the two timescales, τL and τR, determine the
minimal amount of simulation data required to fully con-
struct the MSM and TCL-GME, respectively, it would
be profitable to derive a relationship connecting the two
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quantities. In Appendix A, we analytically demonstrate
that

ITS(t ≥ τR) = −
(
R∞ +

Λ

t

)−1

, (7)

where Λ =
∫ τR

0
[R(s) − R∞] ds quantifies the deviation

that intrastate motions causes on otherwise Markovian
interstate transition rates. Comparing this to Eq. 3 al-
lows us to state that

τR ≤ τL. (8)

Importantly, Eq. 8 demonstrates that the only cases
where an MSM can be as data-efficient as the TCL-
GME, albeit at the cost of a lower temporal resolution,
is when Λ = 0. This inequality thus enforces a new lower
bound on the amount of required simulation time and
is one of the central results to the paper, demonstrating
that the TCL-GME always provides a description that is
more data-efficient or, at worst, as data-efficient, as the
MSM while retaining a high temporal resolution. What
remains to be shown is the relative accuracy and effi-
ciency of the TCL-GME approach in comparison with
the qMSM. We will achieve this by comparing the per-
formance of each dynamical approach on three different
protein systems of varying levels of complexity: alanine
dipeptide,35 the human argonaute complex,41 and the
FiP35 WW domain.35,46

0 10 20
Time [ps]

0.90

0.95

1.00

11
(t)

(b)

L = K = R = 1.5 ps

0 10 20
Time [ps]

(c)

L = K = R = 10 ps

0 1.5 10 [ps]
0.0

0.3

0.6

RM
SE

(a)
MSM qMSM TCL-GME MD

FIG. 1. Application of the TCL-GME to alanine dipep-
tide with comparisons to the MSM and qMSM. (a) Root
mean square error (RMSE) curve for the MSM, qMSM,
and TCL-GME. Vertical lines show the errors associated
with cutoffs (τ) of 1.5 ps and 10 ps. Alanine dipeptide
is shown (2 residues). (b) TPM dynamics (C11(t)) com-
puted with MSM, qMSM, and TCL-GME approaches with
τL = τK = τR = 1.5 ps. (c) CK test for C11(t) computed with
τL = τK = τR = 10 ps. The 4-state TPMs parameterized
with τK = τR = 1.5 ps and τL = 10 ps are shown in SI Fig. 1.
Error bars were obtained using a bootstrapping approach as
shown in Ref. 35.

III. ALL-ATOM PROTEIN SYSTEMS

In what follows, we apply the TCL-GME to three
systems of varying complexity—alanine dipeptide, arg-
onaute, and FiP35 WW domain—and compare these
predicted dynamics to those calculated by both the
MSM and qMSM. Here, as previously stated, we do not
consider the specifics of how to construct the reduced
space but rather restrict our attention to their dynamics.
Firstly, for alanine dipeptide we consider a 4 state model
with metastable states corresponding to the molecule’s
free energy projected onto the backbone torsional an-
gles {ψ, φ}, as constructed in Ref. 35. Secondly, for arg-
onaute, we use another 4 state model from structures
corresponding to local minima in the free energy land-
scape of the first two slowest modes, as constructed in
Ref. 41. Finally, for FiP35 WW domain, we use two
reduced models: the first contains 3 states and its con-
struction is detailed in Appendix B; the second contains
4 states corresponding to a folded state composed of two
β-hairpins, an unfolded state, and structures correspond-
ing to both on- and off-pathways, and its construction is
outlined in Ref. 35. To clearly benchmark each method
while illustrating its advantages and disadvantages, we
show only one of the time-dependent conditional proba-
bilities for each protein system. The full time-dependent
conditional probability matrices are available in the Sup-
porting Information.

A. Alanine Dipeptide

We begin our analysis of the TCL-GME and illustrate
the utility of the inequality in Eq. 8 using a simple test
system, alanine dipeptide. After obtaining TPM dynam-
ics from MD simulation, we construct an MSM as dis-
cussed in Ref. 35, and we construct both the qMSM and
TCL-GME as described in the Materials and Methods
section. In Fig. 1(a) we identify the values of τR, τK ,
and τL using a root mean square error (RMSE) analysis
(see Appendix F) that quantifies the deviation of the dy-
namics predicted as a function of τL, τR, and τK from the
reference dynamics. We use a convergence threshold of
4% of the final value in the RMSE, which leads to graph-
ical accuracy in the resulting dynamics. For the qMSM
and the TCL-GME, this leads to τR = τK = 1.5 ps, while
for the MSM the lag time at the same error is τL = 10 ps.
The results in Fig. 1(b) show the dynamics that would
result if one could only use TPM data, obtained from the
MD, for the first 1.5 ps; such a choice of τL leads the MSM
to severely overestimate the equilibration rate. In con-
trast, Fig. 1(c) shows how a valid MSM is able to capture
the exact dynamics, albeit with severely reduced tempo-
ral resolution. The drawback of the finite resolution is
visible at earlier times, where the (negative) curvature of
the MD data is neglected by the MSM but captured by
the GMEs. Together, the results of Fig. 1 show that the
TCL-GME suffers no loss of performance with respect to
the qMSM, with both GMEs able to make accurate high
resolution predictions using only 15% of the MD data
required to construct a valid MSM.
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FIG. 3. Instability of the qMSM and TC-GME in the
case of the Argonaute protein and demonstration of the
robustness of our 〈U〉-GME approach. (a) The transpar-
ent line shows the memory kernel K22(t) as a function of
time. From the RMSE (see SI Fig. 2(a)), we observe that
K(t) converges by 30 ns. The solid line shows the replace-
ment of K22(t) with zero after this time. (b) Dynamics
predicted using the qMSM with τK ∈ {25, 35, 45, 55} ns,
where decreasing transparency corresponds to increasing
values of τK . (c) Similar to (a), the transparent line shows
the time-local generator R22(t) as a function of time, and
the solid line shows the replacement of R(t) with R(τR)
after τR = 30 ns. (d) Dynamics predicted using the TCL-
GME with τR ∈ {25, 35, 45, 55} ns, where decreasing trans-
parency corresponds to increasing values of τR. (e) The
transparent line showsR22(t) as a function of time, and the
solid line shows the replacement of R(t) with its average
over the window [20, 30] ns afterτR = 30 ns. (f) Dynam-
ics predicted using the 〈R〉-GME. (g) The transparent line
shows the propagator U22(t) as a function of time, and the
solid line shows the replacement of U(t) with its average
over the window [20, 30] ns after τR = 30 ns. (h) Dynamics
predicted using the 〈U〉-GME. In (b), (d), (f), and (h) we
show an MSM parameterized with τL = 50 ns. The MD
data and error bars were computed using the bootstrap-
ping approach (see Ref. 41 for details).

0 75 150
Time [ns]

0

5

10

IT
S 

[µ
s]

ITS3
ITS2
ITS1

FIG. 2. Demonstration that the massive spatial and temporal
scales of the argonaute protein present a challenge to MSMs.
Left: ITS plot of Eq. 3, for the three non-unitary eigenvalues,
whose plateau time corresponds to the Markovian lag time,
τL. Diamonds show the choice of τL in Fig. 3, but one can
appreciate that no choice for this window of MD data would
be satisfactory. Using the 〈U〉-GME approach (discussed in
this section), Markovianity is found to require ∼ 1200 times
as much simulation data. Right: Rendering of the argonaute
protein containing the mRNA strand used to obtain the MD
data. The protein itself is composed of 831 residues.

B. Argonaute

Will the simplistic form of Eq. 6 maintain a comparable
level of performance to the qMSM for a much more com-
plicated system? To address this, we consider the target
recognition of human argonaute 2 complex.37,47 It is chal-
lenging to obtain sufficient MD sampling to model the dy-
namics of this complex process, which involves coupled
conformational changes of messenger RNA, microRNA,
and the Argonaut protein. In fact, the ITS curves shown
in Fig. 2 do not plateau over the available time window,

demonstrating that the available TPM time is not suf-
ficient to construct a valid MSM. That is to say, con-
structing an MSM is unaffordable at the same level of
dimensionality reduction as the faithful qMSM.41

Owing to the statistical noise that arises from aver-
aging over limited MD data to construct the TPM,41
the numerically extracted K(t) and R(t) in Fig. 3(a) and
(c) also display noise that makes it difficult to graph-
ically identify their cutoff times, τK and τR, respec-
tively. To illustrate how both GMEs behave as the cutoff
time τ is increased, we display the dynamics predicted
from each method using representative cutoff choices of
τR, τK ∈ {25, 35, 45, 55} ns in Fig. 3(b),(d). Interestingly,
the qMSM and TCL-GME perform similarly, with K and
R predicting dynamics within the MD error bars using
cutoff times of 35 ns. Disappointingly, neither GME ex-
hibits stability with respect to increasing τR or τK , and
the resulting RMSE curves do not monotonically con-
verge towards zero (see SI Fig. 2).

This lack of controlled convergence can be rational-
ized by recalling that constructing the GME requires
time derivatives of the MD data (See Materials and
Methods, Eq. C2). This is true for both K and R.
One might hypothesize that the noise in these under-
converged MD data is sufficient to compromise the sta-
bility of both GME approaches for argonaute. Since
TPMs at longer times—like other equilibrium time cor-
relation functions—are constructed from from averaging
over less MD data, TPMs at longer times are beset by
worse statistical errors.6,48 Hence, working with the hy-
pothesis that the fluctuations at later times correspond
to noise from statistically under-converged dynamics, we
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posit a method which averages the noise in R at long
times. In fact, during the qMSM approach, truncation
at τK equates to replacing K with its long-time average.
However, while K(t → ∞) → 0 for dissipative problems
that equilibrate, we can only estimate it for R.

Visually, Fig. 3(c) suggests that R(t) starts to oscil-
late around its long-time limit around t = 10 ns. Thus
we introduce an averaging scheme where at τR we re-
place R with 〈R∞〉, its time average over the interval
[tr, τR]. Here, we choose tr to be the time where the
time-local generator appears to have plateaued (See Ap-
pendix D). We identify tr = 10 ns and show the corre-
sponding R22 matrix element for τR = 30 ns in Fig. 3(e).
As Fig. 3(f) shows, with this simple adjustment the TCL-
GME converges to the reference dynamics within 55 ns,
which strictly improves upon both the MSM and qMSM
constructed from the same data. Moreover, the conver-
gence of the TCL-GME with increasing values of τR is
monotonically decreasing (see SI Fig. 3).

A closer look at Fig. 3(f) reveals that the averaging
scheme approaches the reference dynamics from below,
but does not actually obtain perfect agreement within
these 150 ns. To remedy this, one could average R(t)
for longer to get a better estimate for R(τR). However,
this would run counter to our objective of working with
the minimal possible MD data. Additionally, as one can
appreciate from Eq. 6, error in the estimation of 〈R∞〉 is
exponentiated when predicting the GME dynamics. To
this end, we propose an alternative route to employ the
TCL-GME formalism without requiring any time deriva-
tives or exponentiation of noisy data.38 This simply

0 200 400
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1.0

22
(t)

(b)
0 100 200
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0.985

0.995

1.000

22
(t)

(c)

0 100 200
 [ns]

0

0.3

0.6

RM
SE

(a)

tr = 2 ns
tr = 10 ns
tr = 20 ns
MSM

FIG. 4. Ability of our 〈U〉-GME to accurately predict the
dynamics of the FiP35 WW domain. (a) TPM dynamics
(C22(t)) computed using 〈U〉-GME and MSM approaches with
τR = 25 ns (` = 5 ns) and τL = 25 ns. (b) The propagator
U22(t) as a function of time, showing that U has been re-
placed with its average at 25 ns. (c) RMSE curves for the
MSM and the 〈U〉-GME as a function of τL and τR, while
varying choices of tr to illustrate convergence. The structure
of the FiP35 WW domain is shown (35 residues).

requires re-casting Eq. 6 as
C(t) = U(t, t0) C(t0). (9)

That is, we now work directly with the time-dependent
propagator,49 U(t, t0), whose construction is detailed in
Appendix E. This obviates integration of Eq. 5, and so
the noise in the data is never exponentiated during our
calculations. Moreover, this method has shown to be
robust with respect to low resolution dynamical data in
quantum dynamical problems.38 Importantly for the pro-
tein folding problem, both the time-local interpretability
and frugality that result from the plateau at τR are un-
affected by this manipulation.

Here we extend the protocol proposed in Ref. 38 by
combining the direct calculation of U with the aforemen-
tioned averaging scheme. This results in our most direct
and noise resilient TCL-GME formulation. We identify
tr to be 10 ns and, in Fig. 3(g)–(h), we show the results
of this 〈U〉-GME. Here, with only minimal adjustments
to the original formulation, the 〈U〉-GME monotonically
converges to the MD data within 55 ns, maintaining the
strict improvements of the TCL-GME over both MSM
and qMSM approaches.

With the convergent and stable 〈U〉-GME dynamics
obtained above, we can now determine the true lag time
required for a valid MSM description of the dynamics of
the 4 states used to elucidate mRNA recognition in the
argonaute complex in Ref. 41. To do this, we employ the
〈U〉-GME to predict the TPM dynamics at long times
and use Eq. 3 to obtain obtain the ITS plot (SI Fig. 4).
We observe that the ITS curves only plateau by t ∼ 60 µs,
indicating that τL is 1200 times larger than the MSM con-
structed Ref. 41. By comparison the time-local generator
cutoff used in our 〈U〉-GME, τR ∼ 50 ns, is more than 3
orders of magnitude smaller, demonstrating that the our
approach provides a highly compact and efficient means
to fully capture the short- as well as long-time dynamics
of complex biomolecular systems.
C. FiP35 WW-domain

The 〈U〉-GME method requires two convergence pa-
rameters: tr, the beginning of the averaging window, and
τR, the total amount of MD simulation time required to
parameterize the model (see Appendix E). This begs
an important practical question: how does one choose tr
when the onset of the plateau in U is hidden under the
noise? After all, one might expect to observe a lack of
convergence when tr is chosen to be too early. However,
by considering a 4-state model of FiP35 WW domain, we
find that this is not the case. In this system, where the
plateau is not visually obvious (see Fig. 4(c)), we observe
that for every choice of tr, there is a value of τR capable of
accurately capturing the reference dynamics. In Fig. 4(a)
we demonstrate that the τR required for the 〈U〉-GME to
provide accurate dynamics merely increases as tr is re-
duced to zero. Indeed, since we know from Eq. 8 that
τR is bounded above by τL, if tr is given the extreme
value of zero then the 〈U〉-GME reduces to the MSM,
with the important distinction that it is able to capture
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the dynamics between MSM points (see SI Fig. 5; we
also give the mathematical justification for this result in
Appendix E). In this sense, the 〈U〉-GME parameterized
with tr = 0 constitutes a higher-resolution MSM. The
practical implication of this is that while one may make
a poor choice of tr to begin averaging from, one will only
pay for this in the length of MD data required to con-
struct the model, τR, and not in the final accuracy of the
〈U〉-GME dynamics.

The best, earliest choice of τR is therefore parametri-
cally dependent on tr, but well defined. Since all choices
of tr converge to the same RMSE value, τR is robustly
identified by a common convergence threshold. To iden-
tify the optimal (tr, τR) pair, we simply find the mini-
mum of the plot of τR as a function tr. Choosing a value
of 5% error as converging to the MD dynamics within
visual accuracy (see Appendix F), for these FiP35 WW
domain data we identify tr = 20 ns, τR = 25 ns, and
τL = 200 ns, as shown in Fig. 4(a). For comparison, we
display the dynamics predicted by both the MSM and
〈U〉-GME when parameterized using only these 30 ns of
MD data in Fig. 4(b). In Fig. 4(c), we show the re-
placement of U with its average 〈U〉 (obtained over the
averaging interval of [20, 25] ns). We observe that MSM
dynamics predicted using only 25 ns of the MD data set
overestimates the equilibration rate, as was the case with
alanine dipeptide and the argonaute complex, whereas
the 〈U〉-GME parameterized with the same amount of
reference data accurately captures the MD data until
∼ 375 ns. The small deviation that starts at ∼ 375 ns
disappears at longer times, where the 〈U〉-GME correctly
captures the long-time limit (see SI Fig. 6). Thus, our
analysis shows that accurate predictions of the dynam-
ics from the 〈U〉-GME require only 15% of the MD data
needed to construct a valid MSM.

We now consider the ability of the 〈U〉-GME to cap-
ture the long-time dynamics through a different, experi-
mentally accessible measure: the folding time of the pro-
tein. For this, we will consider a 3-state model of FiP35
WW domain (for construction details, see Appendix B)
with states one, two, and three corresponding to mis-
folded, unfolded, and folded structures of the protein,
respectively.46 Here, we compute the folding time using
the mean first passage time (MFPT) procedure outlined
in the Materials and Methods section. First, we use the
reference dynamics to compute the folding time to be
τref = 18.65 µs (SI Fig. 8), which is taken to be the exact
result for this model, which is in reasonable agreement
with the experimentally measured value of 14± 1.5 µs.50
In particular, if the clustering algorithm does not cor-
rectly identify configurations with the folded, unfolded,
and misfolded states, this may cause the folding time to
appear artificially long. Hence, we focus not on the de-
viation from the experimental value but rather on the
internal consistency between the reference dynamics and
the predictions from the 〈U〉-GME and the MSM ap-
proaches. To obtain the 〈U〉-GME predictions of the
MFPT, we first identify tr = 50 µs. As described in

Appendix G, we compute the MFPTs corresponding to
increasing values of τR and τL and observe that both the
〈U〉-GME and MSM approaches converge to the refer-
ence result at long times (see SI Fig.8). We also find
that the MSM continuously underestimates τref and ap-
pears to continue increasing at times beyond 1000 ns (see
SI Fig. 8). In contrast, the 〈U〉-GME remains within 8%
of the reference value for the duration of available MD
data. Indeed, to converge within 5% error, the 〈U〉-GME
requires data up to 168 ns, whereas the MSM does not
reach this threshold until 452 ns, suggesting that the 〈U〉-
GME provides, even in the estimation of folding times, a
more efficient means to capture the long-time dynamics
of complex biomolecular systems.
IV. CONCLUSION

In this work, we have developed and applied a for-
mally exact, chemically intuitive, and systematically im-
provable approach to modeling non-Markovian biomolec-
ular dynamics. While previous work had exploited the
memory of the MSM’s intrastate motions to construct
an exact qMSM that could significantly reduce the com-
putational cost required to efficiently predict protein dy-
namics at long times, it eluded a simple and intuitive
chemical interpretation and, as we show here, is highly
sensitive to statistical noise in the reference TPM dy-
namics from which it must be constructed. Here, we
have abandoned the time-nonlocal qMSM by moving to
a time-convolutionless formulation which admits a simple
formal integration, elucidating the analytical connection
between GMEs and MSMs and permits a simple interpre-
tation. In particular, not only does this allow the time-
local generator to be interpreted as a time-dependent
rate matrix, it also allows for systematic improvement
in regimes of noisy data. Specifically, we have identified
that for cases where the reference TPM suffers from sta-
tistical noise (e.g., the argonaute system), a straightfor-
ward averaging scheme allows our time-convolutionless
approaches (both R(t) and U(t)) to uniformly converge
to the reference dynamics. In contrast, the time-nonlocal
approach displays instabilities with increasing simulation
time that have no comparable solution without resort-
ing to manipulations of the qMSM formalism.51 Fur-
thermore, using alanine dipeptide, FiP35 WW Domain,
and argonaute, we have demonstrated that the time-
local GME can accurately and efficiently capture short-,
intermediate-, and long-time dynamics with no loss of
performance. Not only does this approach require an
equivalent amount of data as the qMSM, the 〈U〉-GME
requires minimal numerical and physical complexity by
eliminating the need for both time-convolution integrals
and numerical time derivatives of potentially noisy data.
By providing a theoretically robust and physically trans-
parent method to capture the non-Markovian dynamics
of a given set of states, we expect the 〈U〉-GME to pro-
vide a robust scaffold to construct novel methods to find
optimal configuration clusters and offer a framework to
investigate the mechanisms of complex biomolecular con-
formational changes.
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Appendix A: Rigorous Connection of MSM with TCL-GME

Here, we derive Eq. 7 and Eq. 8 from the main text,
which rigorously connect the MSM to the TCL-GME. We
begin by considering some time t that is strictly greater
than τR and re-writing C(t) as

C(t) = exp→

(∫ t

0

R(s) ds

)
C(0)

= exp
(
R∞(t− τR)

)
exp→

(∫ τR

0

R(s) ds

)
= exp

(
R∞(t− τR)

)
UnM (τR, 0) (A1)

where we have used the fact that the initial condition
is the identity matrix, C(0) = 1 and have introduced
UnM (τR, 0) as the propagator over the non-Markovian
region. This is equivalent to Eq. 6 in the main text.
We insert the above result into the implied time scale
equation, defined in Eq. 3, to obtain the result in the
main text,

ITS(t) = −
(
R∞ +

Λ

t

)−1

, (7)

where

eΛ ≡ e−R∞τRUnM (τR, 0). (A2)

Equation Eq. A2 is exact and easy to calculate given
the framework presented here for obtaining the non-
Markovian propagator; it can be interpreted as the to-
tal deviation in the propagation due to non-Markovian
behavior. Keeping in mind that the MSM lag time is
taken to be the minimum time-scale associated with the
onset of a plateau in an ITS plot, we see see that the
right-hand-side of Eq. 7 does not necessarily stabilize for
times immediately after τR. This allows us to conclude
the inequality presented in the main text, that

τR ≤ τL. (8)

To further simplify its interpretation, one can neglect
the effect of time-ordering in the definition of the non-
Markovian propagator, which yields the following, mod-
ified expression for Λ,

Λ ≈
∫ τR

0

[R(s)−R∞] ds. (A3)

Here, it is clear that Λ approximately corresponds to the
integral deviation between the time-local generator over
its non-Markovian variation, and its long-time limit.

Appendix B: TPM Construction

The TPM is computed from the transition count ma-
trix (TCM). We first computed the TCM from the MD
trajectories. For each lag time τ , the raw TCMs (T raw)
were first counted from transition pairs between frames at
t and t+τ : T raw

ij (τ) = 〈χi(t+τ)χj(t)〉, where χi(t) is the
indicator function that determines whether the frames at
time t is in state i. Here, t = 0, ∆t, 2∆t, ...,(Ntraj−1)∆t−
τ , where ∆t is the saving interval of trajectories, and
Ntraj is the length of trajectories. Normally, detailed bal-
ance requires that the TCM be symmetric, i.e., Tij = Tji.
However, since the raw TCMs are normally not symmet-
ric, we further symmetrize the raw TCMs to satisfy the
detailed balance: Tij(τ) = (T raw

ij (τ) + T raw
ji (τ))/2.5 Fi-

nally, we calculated TPMs by column-normalizing the
TCM: Cij(τ) = Tij(τ)/

∑
j Tij(τ).

In our TPM construction, the raw TCM was directly
counted from the macrostate models. The four state
model of the Alanine dipeptide was constructed with a
splitting-and-lumping approach. We first split all the
available MD conformations into 1000 microstates using
the K-Centers clustering algorithm.52–54 Then we lumped
the 1000 microstates into 4 macrostates via the PCCA+
(Perron Cluster Cluster Analysis),55,56 with the lagtime
of 2 ps.

We constructed the three state model of the FiP35
WW domain using tICA (Time-lagged Independent
Component Analysis),57,58 K-Centers clustering,52–54
and PCCA+ (Perron Cluster Cluster Analysis)55,56
lumping from MD trajectories provided by D. E. Shaw
research. We first performed tICA analysis with pair-
wise distances between all α carbon atoms of the peptide
with a lag time of 10ns. Then we used the K-Centers
algorithm to generate a 1000-state model based on the
top three tICs (Time-lagged Independent Components)
of tICA. Finally, we performed the PCCA+ clustering to
generate the three state model based on the 1000-state
TPM computed at the lagtime of 10 ns.

We constructed the four state model of the Argonaut
using spectral oASIS,59 tICA, APLoD clustering and
PCCA.55,60 We employed spectral oASIS to reduce the
number of input features, followed by tICA for the dimen-
sionality reduction. Then we grouped the conformations
into 81 clusters from the APLoD clustering algorithm,
based on the top 4 tICs from the tICA. Finally, we used
the PCCA+ algorithm to group the microstates into four
macrostates.

Appendix C: qMSM Construction

To solve the integro-differential equation in Eq. 4, we
must first construct the memory kernel, K(t), as a func-
tion of time directly from the TPM data. We follow
Ref. 42 and derive the classical analogue of the self-
consistent expansion of the memory kernel

K(t) = K(1)(t) +

∫ t

0

dτ K(3)(t− τ)K(τ), (C1)
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where

K(1)(t) = C̈(t)− {Ċ(0), Ċ(t)}+ Ċ(0)C(t)Ċ(0)

K(3)(t) = Ċ(0)C(t)− Ċ(t)
(C2)

are the projection-free auxiliary kernels.
To compute both Ċ and C̈, and to thus compute K(1)(t)

and K(3b)(t), we numerically differentiate the TPM data,
C(t). With these auxiliary kernels, we compute K ac-
cording to Eq. C1 using the discretization procedure in
Ref. 61. For completeness, we summarize the algorithm.
At the initial time and first timestep, K(t0) = K(1)(t0)
and

K(t1) =
[
1− ∆t

2 K
(3)(t0)

]−1 [
K(1)(t1)

+ ∆t
2 K

(3)(t1)K(t0)
]
.

(C3)

For all subsequent times (n ≥ 2),

K(tn) =
[
1− ∆t

2 K
(3)(t0)

]−1 [
K(1)(tn)

+ ∆t
2 K

(3)(tn)K(t0) + ∆t
n−1∑
j=1

K(3)(tn−j)K(tj)
]
.

(C4)

Here 1 is the identity matrix and we employ equally
spaced time intervals, such that ∆t ≡ tj+1 − tj .

Once we construct K(t), we employ Heun’s method
(second-order accurate with respect to ∆t) to integrate
Eq. 4 and obtain C(t). Then we identify an appropriate
memory kernel cutoff time, τK , by applying the RMSE
analysis in Appendix C. We approximate the upper limit
of the integral in Eq. 4 with τK , enabling us to predict
the dynamics for times beyond the duration of the MD
simulation.

Appendix D: TCL-GME Construction

To reap the benefits of the time-local formalism, we
first calculate R(t) from the TPMs obtained from MD
simulation. We do this by rearranging Eq. 5 via matrix
inversion to obtain

R(t) = Ċ(t)[C(t)]−1, (D1)

where we calculate Ċ by numerically differentiating the
TPM data. As we have discussed, the matrix elements
of R plateau on a timescale, τR, associated with the con-
clusion of non-Markovian evolution, allowing us to set
R(t > τR) = R∞ ≡ R(τR). With this definition, we
can describe the dynamics after the onset of Markovian
evolution, as shown in Eq. 6.

Once we find R(t), we employ Heun’s method to inte-
grate Eq. 5 and obtain C(t). Similar to the discussion in
Appendix C, we identify an appropriate generator cut-
off time, τR, using the RMSE analysis discussed in Ap-
pendix F.

Appendix E: 〈U〉-GME Construction

We first formally integrate the TCL-GME in Eq. 5 to
obtain

C(t+ ∆t) = U(t+ ∆t, t)C(t), (E1)

where we have defined U(t + ∆t, t) ≡
exp→[

∫ t+∆t

t
dsR(s)] with the “+” subscript denot-

ing the chronological time-ordering of the exponential,
as above. We then compute the value of U(t + ∆t, t)
through direct matrix inversion

U(t+ ∆t, t) = C(t+ ∆t)[C(t)]−1, (E2)

as introduced in Ref. 38. Because R becomes constant at
τR, the propagator U also becomes a constant. Hence, we
define U∞(∆t) ≡ exp[R∞∆t]. We compute the dynamics
beyond τR according to

C(τR + n∆t) = [U∞(∆t)]nC(τR). (E3)

As discussed in our analysis of the Argonaute com-
plex, we developed and implemented a simple averaging
scheme capable of taming noise arising from statistically
underconverged MD estimates of the TPM. We begin by
applying the RMSE stability analysis in Appendix F to
determine a valid generator cutoff time; here, we denote
this cutoff by tr. We then introduce another parameter `
that represents the number of high quality TPMs after tr
and denote the corresponding time as tr+`. This number
is, of course, limited by data availability. To predict the
dynamics beyond tr+`, we compute the time average of
U on the time interval [tr, tr+`] using

〈U〉 =
1

`

r+`−1∑
n=r

U(tn+1, tn). (E4)

Because our 〈U〉-GME requires at least r + ` data
points to circumvent the instabilities imposed by noise
in biomolecular systems, we generalize our the definition
of the generator cutoff time to be τR = tr+`, representing
not the generator cutoff but rather the minimum amount
of data needed to accurately predict the true TPM dynam-
ics. Ultimately, we recommend that the user performs a
rigorous stability analysis with respect to the choices of
r and `.

It can be seen by equating expressions Eq. 6 and Eq. 2
given the same first time step (τ = τL = τR),

expMτ = exp→

(∫ τ

0

R(s) ds

)
≈ exp

(∫ τ

0

R(s) ds

)
,

(E5)

where the right-hand side of Eq. E5 uses the explicit form
of the propagator (see Appendix A for details). If this
time-ordering of the exponential can be neglected, then
we can identify M ≈ 〈R〉. The practical implication of
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this is that, if we can replace 〈expRτ〉 with exp 〈R〉τ in
the 〈U〉-GME, we will obtain exact agreement with the
MSM parameterized by the same τ (at integer multiples
of τ). The requirement for this to be true is that U ∼ 1,
which we show to be satisfied by panel (c) of Fig. 4. Since
R and therefore U are formally exact before cutoff (by
construction they return the reference dynamics),38 the
dynamics between these MSM points is also accessible
to the 〈U〉-GME. This explains why Fig. 4(c) shows that
limtr→0(τR) = τL.

Appendix F: RMSE Analysis

To determine values of τx ∈ {τL, τR, τK}, we find
the lowest time by which the time-averaged root mean
squared error (RMSE), given by

RMSE(τx) =

 1

Nt

∑
j,k

Nt∑
i=0

[
CMD
j,k (i)− Cj,k(i; τx)

]21/2

,

(F1)
becomes and stays sufficiently small. We identify τx to
be this minimum amount of time. How small the RMSE
should be for any particular application is a choice for the
user to determine. In our results, we choose the RMSE to
be ∼ 5%, which results in graphical agreement between
the reference and GME or MSM dynamics. In Eq. (F1),
Nt is the number of time steps in the data set.

Appendix G: MFPT method

We apply our newly developed 〈U〉-GME to compute
folding times for FiP35 WW Domain. To do so, we con-
sider a three state model where states one, two, and
three are defined to be the misfolded, folded, and un-
folded structures, respectively. To employ Meyer’s mean-
first passage time (MFPT) method,62,63 we construct the
time-dependent MFPT matrix, M , as

Mij(t) = t+
∑
k 6=i

Mik(t)Ckj(t). (G1)

The elementM32 then corresponds to the folding time in
this problem.

Practically, one solves Eq. G1 as a system of linear
equations.64 To solve for the MFPT corresponding to
passage to state 3, the folded state, we consider the row 3
MFPT matrix elements and obtain the following system
of equations

M31(τ) = τ +M31(τ)C11(τ) +M32(τ)C21(τ)

M32(τ) = τ +M31(τ)C12(τ) +M32(τ)C22(τ),
(G2)

We recast the system in terms of matrices and obtain the
final form by matrix inversion,[

M31

M32

]
= τ

[
1− C11 C21

C12 1− C22

]−1 [
1
1

]
. (G3)

As the dynamics approach equilibrium, the inverse ma-
trix on the right-hand-side of Eq. G3 becomes constant.

In practice, we define the folding time to be when M32/τ
is within 5% of M32(τfinal)/τfinal for the rest of time.
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SUPPORTING INFORMATION
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FIG. 5. Predicting the 4-state TPM dynamics of alanine dipeptide with MSM (τL = 10 ps), qMSM (τK = 1.5 ps), and
TCL-GME (τR = 1.5 ps) approaches, illustrating that the GMEs require 1.5% of the reference data needed to construct an
accurate MSM.
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FIG. 6. Illustrating the error associated with direct cutoffs of the memory kernel and time-local generator. (a) Root mean
square error (RMSE) curve for the MSM, qMSM, and TCL-GME. The vertical line shows shows the error associated with a
cutoff choice of (τ) of 30 ns. (b)-(e) Chapman-Kolmogorov test for the MSM, qMSM, and TCL-GME dynamics computed with
τL = τK = τR = 30 ns.
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FIG. 7. Convergence of the dynamics as predicted using the 〈R〉-GME and 〈U〉-GME approaches. (a) Root mean square error
(RMSE) curve for the MSM, 〈R〉-, and 〈U〉-GME. The vertical line denotes the choice of tr, and thus the start of the averaging
window. (b)-(e) Chapman-Kolmogorov test for the MSM, 〈R〉-, and 〈U〉-GME approaches with tr = 20 ns and τR = 60 ns.

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 20, 2022. ; https://doi.org/10.1101/2022.10.17.512620doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.17.512620
http://creativecommons.org/licenses/by-nd/4.0/


16

0 60 80
 [ s]

0

60

130
IT

S 
[

s]
(a)

ITS1
ITS2
ITS3

0 75 150
 [ns]

0

5

10

IT
S 

[µ
s]

(b)

FIG. 8. Extrapolating the MSM lagtime of the 4-state model of the human argonaute complex by employing the 〈U〉-GME. (a)
The 4-state implied time scales of computed with τR = 50 ns, from which we determine the true MSM lag time to be ∼ 60 µs.
(b) The 4-state ITS computed from the reference dynamics, as displayed in Fig. 2 in the main text.

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 20, 2022. ; https://doi.org/10.1101/2022.10.17.512620doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.17.512620
http://creativecommons.org/licenses/by-nd/4.0/


17

0 50 100
 [ns]

0.0

0.3

0.6
RM

SE
MSM

-GME (tr = 1 ns)

FIG. 9. Illustrating that the errors, computed using an RMSE analysis, of calculating the 〈U〉-GME with tr = 1 ns and the
MSM are roughly equivalent.
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FIG. 11. Illustrating the error associated with various cutoffs of the time-local generator to construct the 〈U〉 − GME. (a)
Root mean square error (RMSE) curve for the MSM and 〈U〉-GME approaches (tr = 20 ns). The vertical line shows shows the
error associated with a cutoff choice of (τ) of 50 ns. (b)-(e) Chapman-Kolmogorov test for the MSM, qMSM, and TCL-GME
dynamics computed with τL = τK = τR = 50 ns.
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