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Abstract 
Associative memory is the ability to encode and retrieve relations between different stimuli. To better 20 

understand its neural basis, we investigated whether associative memory involves precisely timed 
spiking of neurons in the medial temporal lobes that exhibit stimulus-specific tuning. Using single-
neuron recordings from epilepsy patients performing an associative object–location memory task, we 
identified the object- and place-specific neurons that encoded the separate elements of each memory. 
When patients encoded and retrieved particular memories, the relevant object- and place-specific 25 

neurons activated synchronously during hippocampal ripples. This ripple-locked coactivity of 
stimulus-specific neurons emerged over time as the patients’ associative learning progressed. Our 
results suggest a cellular account of associative memory, in which hippocampal ripples coordinate 
the activity of specialized cellular populations to facilitate links between stimuli.  
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Introduction 30 

Associative memory is an essential cognitive function for everyday life that allows us to learn and 
remember relations between different stimuli (1). Impairments in associative memory caused by 
aging and memory disorders (2, 3) are thus a growing problem for society, which makes it important 
to better understand its neural basis. A large body of research has implicated the hippocampus and 
neighboring medial temporal lobe (MTL) regions in the encoding and retrieval of associative 35 

memories (4, 5). Here, we sought to further elucidate the mechanisms underlying associative memory 
in the human MTL at the single-cell level. Given prior theories on temporally precise neural binding 
in perception and memory (6–8), we considered that the individual stimuli contributing to particular 
associative memories are encoded by separate sets of stimulus-specific neurons and that these neurons 
interact transiently when subjects encode and retrieve the memories (Fig. 1A). 40 

We examined the neural basis of associative memory in the setting of object–location associations. 
We hypothesized that the encoding and retrieval of such object–location memories is supported by 
the simultaneous activation of object cells, which represent specific objects (9, 10), and place cells, 
which code for particular spatial locations (11, 12). We specifically hypothesized that these 
coactivations would occur in a temporally precise manner during hippocampal ripples, which are 45 

bouts of high-frequency oscillations (13–15). Such ripple-locked coactivity of object and place cells 
could underlie the encoding and retrieval of associative object–location memories by inducing and 
activating synaptic connections between the object and place cells that represent the different memory 
elements (16). In addition, ripple-locked coactivity of stimulus-specific neurons could elicit 
conjunctive memory representations in downstream neurons that only respond to the unique 50 

combination of all memory elements (17–20). 

We reasoned that hippocampal ripples might coordinate the coactivity of object and place cells 
because they synchronize neural activity across close and distant brain regions (13, 14, 21–24). 
Hippocampal ripples may thus help induce and activate large-scale cellular networks (16), which we 
considered instrumental in linking and coordinating otherwise unconnected neurons for the encoding 55 

and retrieval of associative memories. Prior studies in rodents showed that ripples are linked to 
precisely organized multicellular activity (25–30) in the service of learning, memory, and planning 
(13, 14, 31, 32). Similarly, neural recordings in epilepsy patients indicated that ripples correlate with 
various cognitive functions in humans, including memory encoding, retrieval, and consolidation (33–
42). How human ripples coordinate the activity of stimulus-specific single neurons to support 60 

associative memory has remained elusive, however. 

We thus examined the hypothesis that human hippocampal ripples support the formation and retrieval 
of associative memories by defining time windows for the coactivity of stimulus-specific neurons. 
To test this idea, we conducted single-neuron and intracranial electroencephalographic (EEG) 
recordings from the MTL of human epilepsy patients who performed an associative object–location 65 

memory task in a virtual environment (9). In line with our hypothesis, we show that object- and place-
specific neurons that represent the separate elements of particular object–location associations 
activate together at the moments of hippocampal ripples. Our work therefore suggests that ripple-
locked coactivity of stimulus-specific neurons constitutes a neural mechanism for the formation and 
retrieval of associative memories in the human brain. 70 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted October 21, 2022. ; https://doi.org/10.1101/2022.10.17.512635doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.17.512635


 

4 
 

 
Fig. 1. Hypothesis and associative object–location memory task. (A) Illustration of the hypothesis that human associative 
object–location memory is linked to the coactivity of object cells and place cells during hippocampal ripples. We propose that 
the coactivity is specific to pairs of object and place cells that encode “associative information,” which are those cell pairs where 
the location of the preferred object of the object cell is inside the place field of the place cell. (B) Subjects performed an 75 
associative object–location memory task while navigating freely in a virtual environment. After collecting eight different objects 
from their associated locations during an initial encoding period (not shown), subjects performed a series of test trials. At the 
beginning of each test trial, after an inter-trial interval (“ITI”), one of the eight objects was presented (“Cue”), which the subject 
placed as accurately as possible at its associated location during retrieval (“Retrieval”). Subjects received feedback depending 
on the accuracy of their response (“Feedback”) and collected the then visible object from its correct location (“Re-encoding”). 80 
Insets show histograms of the self-paced durations of retrieval (yellow) and re-encoding (green) periods. (C) Example paths 
during retrieval (yellow) and re-encoding (green) in one trial. The subject’s response location is indicated by a star. (D) Left: 
memory performance during the first versus the second data half showing that subjects improved their memories over time. Blue 
thick line, mean across sessions; thin lines, session-wise data (black, sessions with single-neuron recordings). Right: memory 
performance as a function of normalized time. Black, mean across sessions; gray, SEM across sessions. FR, firing rate. 85 

 

Results 
Ripples in the human hippocampus during an associative object–location memory task 

To study the neural mechanisms underlying human associative memory, we recorded single-neuron 
activity and intracranial EEG from the MTL of epilepsy patients undergoing presurgical monitoring 90 

(Materials and Methods; Table S1) (43, 44). During the recordings, subjects performed an associative 
object–location memory task in a virtual environment (Fig. 1, B–C). In this task (9), subjects encoded 
the locations of eight different objects once during an initial encoding period and then performed a 
series of test trials that included periods for retrieving and re-encoding the object–location 
associations. Briefly, each test trial started with an inter-trial interval (ITI), followed by a cue period 95 

where the subject viewed one of the eight objects that they had encountered during the initial encoding 
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period. Then, in the retrieval phase, subjects navigated to the remembered location of this object and 
received feedback depending on their response accuracy. After feedback, in the re-encoding phase, 
the object appeared in its correct location and subjects traveled to this location, allowing them to 
refine their associative memory for this object–location pair. Thirty subjects contributed a total of 41 100 

sessions and performed 103 trials per session on average (for detailed information on all statistics in 
the main text, see Table S2). They successfully formed associative memories between the eight 
objects and their corresponding locations, as their memory performance increased over the course of 
the task [paired t-test: t(40) = -4.788, P < 0.001; Fig. 1D]. 

We identified human hippocampal ripples during the task by examining local field potentials (LFPs) 105 

from bipolar macroelectrode channels, which were mostly located in the CA1 region of the anterior 
hippocampus (Fig. 2, A–D; Fig. S1). Following previous ripple-detection algorithms (34, 39, 45), we 
recorded a total of 35,948 ripples across all sessions (Fig. 2, E–G). Before ripple detection, we 
conservatively excluded interictal epileptic discharges (IEDs; Text S1; Fig. S2) to help interpret our 
ripples and ripple-related findings as physiological phenomena (15). We characterized the identified 110 

ripples with regard to various properties and confirmed that they reflected time periods with strongly 
elevated power at about 90 Hz (Fig. 2H; Fig. S3), consistent with previous human studies (34, 39, 
45). These periodic high-frequency events are presumably the human homolog of rodent sharp-wave 
ripples, although their overlap with human high-gamma or epsilon oscillations (46, 47) as well as 
their relation to ripples in animal models is not yet fully clear (15). When we examined the relation 115 

between ripples and low-frequency (delta, 0.5–2 Hz) activity of the LFPs, we found that the ripples 
were preferentially locked to a mean delta phase of 34° (Rayleigh test: z = 5.614, P = 0.003; Fig. 2I). 
Thus, consistent with previous results (21, 33, 48), ripples in this dataset generally appeared at the 
descending phase of hippocampal slow oscillations (Fig. 2H), which may have a role in triggering the 
ripples (49). 120 

We furthermore asked how hippocampal ripples related to the subjects’ behavioral state and memory 
performance in our associative memory task (Text S2). We observed that ripple rates varied as a 
function of trial period; that increased ripple rates during cue periods were associated with better 
performance in the subsequent retrieval periods; and that retrieval periods with poorer performance 
were followed by increased ripple rates during re-encoding (Fig. S4). These direct associations 125 

between hippocampal ripples and behavior in our object–location memory task replicate and extend 
the previously established links between hippocampal ripples and various memory processes in 
humans, which together suggest that hippocampal ripples are functionally important for encoding and 
retrieving memories (33, 36–41, 50). 
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 130 

Fig. 2. Hippocampal ripples are associated with changes in LFP power and firing rates across the human MTL. (A) 
Location of an example bipolar hippocampal channel (blue arrow). Blue circles, electrode contacts contributing to the bipolar 
channel; orange circles, other contacts. (B) Probability distribution of all bipolar hippocampal channels, overlaid on the subjects’ 
average MRI scan. (C) MTL regions used for the recordings of LFPs and single-neuron activity. (D) Illustration of the two 
innermost electrode contacts of an intracranial EEG macroelectrode with microelectrodes protruding from its tip. (E) Analysis 135 
procedure for identifying ripples. Top to bottom: raw macroelectrode LFP; macroelectrode LFP filtered in the 80–140 Hz ripple 
band; smoothed envelope of the ripple-band macroelectrode LFP; spectrogram of the macroelectrode LFP. (F) Action potentials 
of two clusters from a microelectrode simultaneously recorded with the macroelectrode data. (G) Raw voltage trace of an 
example hippocampal ripple (green) in the time domain (left) and its relative power spectrogram in the time-frequency domain 
(right). Time 0, ripple peak. (H) Grand-average voltage trace of hippocampal ripples across all channels in the time domain (left) 140 
and their power spectrogram in the time-frequency domain (right). Voltage traces are baseline-corrected with respect to ±3 s 
around the ripple peak. Ripple power is shown as the relative change with respect to the average power within ±3 s around the 
ripple peak. Time 0, ripple peak. (I) Delta-phase locking of hippocampal ripples. Black histogram, ripple-associated delta phase 
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for each channel. Gray histogram, delta phases of surrogate ripples. (J) Cross-correlations between hippocampal ripples and 
ripples in extrahippocampal MTL regions (temporal pole, amygdala, entorhinal cortex, parahippocampal cortex). Blue and gray 145 
numbers indicate the number of ipsilateral and contralateral channel pairs, respectively. Time 0, peak of hippocampal ripples. 
Cross-correlations are smoothed with a Gaussian kernel of 0.2-s duration and normalized by z-scoring cross-correlation values 
over time lags of ±0.5 s. Shaded region, SEM across channels pairs. Black shading at top indicates cross-correlations from both 
ipsilateral and contralateral channel pairs significantly above 0 (cluster-based permutation test: P < 0.05). (K) Time–frequency 
resolved LFP power (z-scored relative to the entire experiment) in extrahippocampal MTL regions during hippocampal ripples. 150 
Power values are smoothed over time with a Gaussian kernel of 0.2-s duration. Time 0, ripple peak. Black contours, significantly 
increased power; white contours, significantly decreased power (two-sided cluster-based permutation tests: P < 0.025). (L) 
Normalized LFP power extracted from the time periods of hippocampal ripples and averaged over time. (M) Single-neuron firing 
rates (z-scored relative to the entire experiment) in hippocampal and extrahippocampal regions during hippocampal ripples. 
Firing rates are smoothed over time with a Gaussian kernel of 0.2-s duration. Blue and gray numbers indicate the number of 155 
ipsilateral and contralateral neuron–ripple channel pairs, respectively. Black shading at top indicates firing rates of ipsilateral 
and contralateral pairs significantly above 0 (cluster-based permutation test: P < 0.05). AMY, amygdala; EC, entorhinal cortex; 
HC, hippocampus; PHC, parahippocampal cortex; TP, temporal pole. CH, contralateral hemispheres; IH, ipsilateral hemispheres. 
LFP, local field potential; RC, relative change; RP, relative power; X-Correlation, cross-correlation. 

 160 

Hippocampal ripples are associated with changes in LFP power and firing rates across the 
human MTL 

Hippocampal ripples are neural events with brain-wide effects that are considered optimal for 
inducing synaptic plasticity (13, 21, 51). We thus reasoned that hippocampal ripples could support 
associative memory by triggering brain states in which otherwise separate neural representations 165 

become linked. To assess the potential for awake hippocampal ripples to generally modulate neural 
activity across the human MTL, we performed an array of analyses to quantify the effects of ripples 
on single-neuron spiking and LFP changes in various regions of the human MTL (temporal pole, 
entorhinal cortex, amygdala, hippocampus, and parahippocampal cortex; Figs. S5 and S6). 

We first tested whether ripple events that appeared in extrahippocampal MTL regions were coupled 170 

to hippocampal ripples. We identified ripples in extrahippocampal MTL regions using the same 
procedure as for hippocampal ripples and found that extrahippocampal MTL ripples occurred in 
temporal proximity with hippocampal ripples using cross-correlation analyses (cluster-based 
permutation test: P < 0.001; Fig. 2J; Fig. S5B). High-frequency oscillatory events therefore seem to 
be synchronized across the human MTL, in line with previous studies in rodents and humans showing 175 

that hippocampal ripples are temporally coupled to ripples in various other brain areas (23, 33, 37, 
52). This ripple coupling may help to bind separate groups of neurons from different brain regions 
together. 

We also examined how hippocampal ripples related to brain-state changes as reflected in the power 
of LFP oscillations. Across all macroelectrode channels in both ipsilateral and contralateral 180 

extrahippocampal MTL regions, we found that the normalized LFP power at higher frequencies (>20 
Hz) increased during hippocampal ripples (cluster-based permutation test across all extrahippocampal 
MTL channels ipsilateral to hippocampal ripple channels: P = 0.018; contralateral: P < 0.001). 
Inversely, normalized power at lower frequencies decreased during hippocampal ripples (ipsilateral: 
P < 0.001; contralateral: P < 0.001; Fig. 2, K–L; Fig. S5C). These MTL-wide power changes were 185 

strongest at the exact moments when hippocampal ripples occurred but started before and ended after 
them [see also (53)]. Given that increased high-frequency power and decreased low-frequency power 
are indicators of elevated neuronal excitation (54), these results suggest that hippocampal ripples are 
associated with an overall excitatory state of the human MTL. This increased excitation further 
indicates that hippocampal ripples support brain states that are suitable for inducing and activating 190 

synaptic connections between otherwise segregated neurons. 
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In a third analysis of the large-scale effects of hippocampal ripples, we examined coincident single-
neuron spiking across the MTL at the moments of hippocampal ripples. Across all 27 sessions with 
single-neuron recordings, we recorded a total of 1063 neurons across multiple regions (Fig. 2, C and 
F; Fig. S6) including temporal pole, entorhinal cortex, amygdala, hippocampus, and parahippocampal 195 

cortex. Overall, neuronal firing rates increased when hippocampal ripples occurred (cluster-based 
permutation test: P < 0.001), where neuronal firing rates started to rise at about 0.25 s before the 
ripples peaked (Fig. 2M). This increased spiking during hippocampal ripples was strongest for 
neurons in the hippocampus itself and the amygdala but was also present across cells in the other 
MTL regions (Fig. S5D). Behavior-related analyses showed that ripple-locked firing-rate increases 200 

were largely similar across the different trial phases and for varying levels of memory performance 
(Text S3; Fig. S4E). 

Overall, these results show that hippocampal ripples are associated with broad changes in neural 
activity across the human MTL. When hippocampal ripples occurred, there was an increased 
probability of ripples in extrahippocampal MTL regions; a shift in LFP power from lower to higher 205 

frequencies in these regions; and an increase in MTL-wide neuronal spiking activity. Related long-
range effects of hippocampal ripples have been described in both animals and humans (21, 22, 24, 
37, 53, 55). Through these excitatory effects, hippocampal ripples may play a key role in the 
formation and retrieval of associative memories by coordinating and combining diverse patterns of 
neural activity from multiple regions. 210 

 

Neurons in the human MTL encode objects and spatial locations 

To examine whether ripples in the human hippocampus are linked to synchronized activity of object- 
and place-specific cells during associative memory processes, we next tested for these cell types in 
our data. We identified neurons as object cells if they increased their firing rates in response to a 215 

particular object (9, 10), and we considered neurons as place cells if they activated when the subject 
was at a particular spatial location in the virtual environment (11, 12). 

Each object cell had a particular “preferred object” in response to which they activated most strongly 
during the cue period. For example, the first object cell shown in Fig. 3A exhibited its highest firing 
when the subject viewed object 7. We observed 120 object cells (11% of all neurons; binomial test, 220 

P < 0.001; Table S1), which were most prevalent in the entorhinal cortex, parahippocampal cortex 
and temporal pole (Fig. 3B). Object cells activated most strongly in response to their preferred object 
during the first second after cue onset (Fig. 3C); their firing rates returned to baseline shortly after the 
object disappeared from screen (Fig. 3D); and their tuning curves were overall stable over time [one-
sample t-test: t(118) = 10.387, P < 0.001; Fig. 3E]. Most object cells were pure object cells in the 225 

sense that they did not also meet the criteria for being place cells (81% of all object cells; Fig. 3F). 
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Fig. 3. Neurons in the human MTL encode objects and spatial locations. (A) Example object cells. For each cell, from left 
to right: action potentials as density plot; locations of the objects in the environment; absolute firing rates in response to the 
different objects during the cue period; time-resolved firing rates (baseline-corrected relative to -1 to 0 s before cue onset) for 230 
the preferred and the non-preferred objects; spike raster for all trials. Time 0, cue onset. Orange, data for the preferred object; 
gray, data for unpreferred objects. Error bars, SEM across trials. Black shading below the time-resolved firing rates, significant 
difference between firing rates (cluster-based permutation test: P < 0.05). (B) Distribution of object cells across brain regions; 
red line, 5% chance level. (C) Distribution of significant time windows across object cells (mean ± SEM). (D) Tuning strength 
across object cells (mean ± SEM). Orange, data for the preferred object; gray, data for unpreferred objects. (E) Temporal stability 235 
of object-cell tuning. Red line, mean. (F) Overlap between object and place cells. (G) Example place cells. For each cell, from 
left to right: action potentials as density plot; navigation path of the subject through the environment (gray line); smoothed firing-
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rate map (unvisited areas are shown in white); empirical t-statistic (red line) and surrogate t-statistics (gray histogram); color bar, 
firing rate. (H) Distribution of place cells across brain regions; red line, 5% chance level. (I) Spatial distribution of the place 
fields of all place cells (in percent relative to the spatial distribution of the firing-rate maps). (J) Histogram of place-field sizes, 240 
in percent relative to the sizes of the firing-rate maps; red line, mean. (K) Firing rate of place cells inside versus outside the place 
fields; error bars, SEM. (L) Temporal stability of the firing-rate maps of place cells; red line, mean. AMY, amygdala; EC, 
entorhinal cortex; FG, fusiform gyrus; HC, hippocampus; PHC, parahippocampal cortex; TP, temporal pole. *P < 0.05; **P < 
0.01; ***P < 0.001. 

 245 

Each place cell activated preferentially when the subject was at a particular location in the virtual 
environment (Fig. 3G). Over the past decades, studies in rodents have provided ample evidence for 
such place tuning in neurons of the hippocampus and surrounding brain areas (11, 56). Across all 
neurons, we identified 109 place cells (10%; binomial test, P < 0.001) and found them at significant 
levels in multiple regions, including the entorhinal cortex, hippocampus, and parahippocampal cortex 250 

(Fig. 3H), consistent with earlier work (57). The firing fields of place cells were broadly distributed 
across the virtual environment (Fig. 3, I–J), showing that all parts of the environment were neurally 
represented. The cells’ firing rates were about 20% higher inside versus outside the place fields (Fig. 
3K) and their firing patterns were stable over time [one-sample t-test: t(108) = 7.080, P < 0.001; Fig. 
3L], indicating that spatial information was robustly encoded by the place cells of our dataset. Place 255 

and object tuning was largely independent of each other because place and object cells only 
marginally overlapped with conjunctive cells, which exhibited significant place tuning solely during 
trials with one particular object (Fig. S7). 

Together, these results show that cells in the human MTL encoded the separate elements of to-be-
established and to-be-remembered object–location memories in our task: object cells encoded 260 

individual objects and place cells encoded particular spatial locations. This allowed us to next probe 
the coactivity of object and place cells during hippocampal ripples as a potential neural correlate of 
associative memory. 

 

Ripple-locked coactivity of object and place cells during the retrieval and formation of 265 

associative memories 

Having examined hippocampal ripples and stimulus-specific (object and place) neurons separately, 
we next tested our principal hypothesis that object and place cells would activate together during the 
same hippocampal ripples when subjects formed and retrieved associative memories that linked the 
separate elements these neurons encoded (Fig. 1A). We reasoned that coactivity during memory 270 

formation would facilitate synaptic connections between the stimulus-specific neurons (58) and that 
coactivity during memory retrieval would reflect their reciprocal activation through their previously 
established synaptic connections. 

To investigate our hypothesis, we analyzed whether simultaneously recorded object and place cells 
were active during the same ripples and performed this analysis separately for ripples during retrieval 275 

and during re-encoding. Briefly, for each combination of an object cell, a place cell, and a ripple 
channel, we computed coactivity scores between the two cells across ripples that indicated how often 
both cells were (in)active during the same ripples (controlling for the overall activity level of both 
cells). We systematically and independently varied the ripple-locked time point for determining the 
underlying activity of both cells and thus obtained a two-dimensional time-by-time coactivity map 280 

for each cell pair. These coactivity maps showed the coactivity scores at various time points 
between -0.25 s and +0.25 s around the ripple peaks, where high coactivity scores indicated a 
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consistent across-ripple coactivation of both cells at specific time points relative to the ripple peaks 
(Fig. 4A; Fig. S8). 

Based on our principal hypothesis (Fig. 1A), our analysis focused on the ripple-locked coactivity of 285 

pairs of object and place cells where the preferred object of the object cell was located inside the place 
field of the place cell. Cells in these “associative cell pairs” represented the different pieces of 
information that the subjects had to associate with each other (Fig. 4B). For retrieval periods, the 
location of the preferred object of the object cell was defined by the subject’s response locations, 
whereas during re-encoding periods it was defined by the object’s true location. We hypothesized 290 

that coactivations of associative object and place cells during retrieval would indicate that the subject 
remembered a particular location given a specific object, whereas their coactivations during re-
encoding would indicate that the subject aimed at (re)learning the correct location of a given object. 
Overall, we thus reasoned that the coactivity of associative cell pairs could underlie the encoding and 
retrieval of particular associative memories. 295 

To evaluate the statistical significance of the coactivity for pairs of object and place cells encoding 
associative information on each trial, we designed a series of three complementary statistical tests 
(Fig. S9). These tests contrasted the coactivity maps (i) against chance to see whether the cell pairs 
showed a positive increase in coactivity; (ii) against coactivity maps from a baseline period to show 
that the coactivity increases were specific to the timing of ripples; and (iii) against the coactivity maps 300 

of non-associative object and place cell pairs (where the preferred object of the object cell was located 
outside the place cell’s place field) to demonstrate that the coactivity increases were unique to cell 
pairs representing the exact components of the associative memories. Together, these three tests 
provided robust information about whether associative pairs of object and place cells exhibited 
coactivity during hippocampal ripples. 305 

We first examined ripple-locked coactivity of associative object cell–place cell pairs during retrieval 
(Fig. 4, C–E; Fig. S10, A–C; Fig. S11A). Across all retrieval periods, we found indications of ripple-
locked coactivity in associative cell pairs as their coactivity scores were significantly positive and 
significantly greater than in control cell pairs that did not encode associative information (cluster-
based permutation test vs. chance: P = 0.001; vs. non-associative cell pairs: P = 0.001; Fig. 4C). The 310 

comparison against the coactivity maps from the baseline period was not significant (P = 0.208), 
however, which indicates that ripple-locked coactivity of object and place cells during retrieval was 
not fully developed when estimated across the entire task. We therefore performed this analysis 
separately for “early” hippocampal ripples (first half of all ripples per session) and “late” ripples 
(second half of all ripples per session) because we hypothesized that retrieval-related coactivity would 315 

be expressed more strongly during late ripples, after the subjects had already formed associations 
between the objects and their corresponding locations (Fig. 1D). Indeed, when only considering late 
ripples, we found clear ripple-locked coactivity of object cell–place cell pairs representing associative 
information as the coactivity maps of these cell pairs were significant for all three statistical tests (vs. 
chance: P = 0.001; vs. baseline: P = 0.005; vs. non-associative cell pairs: P = 0.004; P-values are 320 

Bonferroni corrected for performing this analysis on both early and late ripples; Fig. 4E). Similarly 
strong effects were not present when considering early ripples (vs. chance: P = 0.048; vs. baseline: P 
= 0.860; vs. non-associative cell pairs: P = 0.020; Bonferroni corrected; Fig. 4D), which explains why 
ripple-locked coactivity during retrieval was not fully developed when considering all ripples. 

These findings demonstrate that ripples from later retrieval periods were associated with coactivations 325 

in pairs of object and place cells that represented associative information of to-be-retrieved 
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associative memories. We assume that the synaptic connections between object and place cells 
gradually developed over time, which is why the ripple-locked coactivity of associative object and 
place cells was not robustly visible during early retrieval periods. Follow-up analyses confirmed these 
results by showing that ripple-locked coactivity was present at the level of individual cell pairs (Fig. 330 

S12) and that the same effects appeared with another method for estimating coactivity maps based on 
Pearson correlations (Fig. S13). The coactivity maps showed that the increased coactivations occurred 
at the moment of the ripple peaks for object cells and slightly after the ripple peaks for place cells 
(Fig. 4E; Fig. S14A), which may be related to the propagation of information from the hippocampus 
to extrahippocampal regions during retrieval. 335 

To next understand the contribution of ripple-coordinated single-neuron activity to the formation of 
associative memories, we examined ripple-locked coactivity of the object cell–place cell pairs that 
represented associative information during the re-encoding periods of our task (Fig. 4, F–H; Fig. S10, 
D–F; Fig. S11B). Similar to our retrieval-related results, we found indications of increased coactivity 
in associative object cell–place cell pairs when considering ripples from all re-encoding periods, 340 

whereby the comparisons against chance and non-associative cell pairs were significant, but the 
comparison against the baseline period was not significant (vs. chance: P < 0.001; vs. baseline: P = 
0.072; vs. non-associative cell pairs: P < 0.001; Fig. 4F). Parallel to our coactivity analyses during 
retrieval, we therefore examined re-encoding-related coactivations separately for early and late 
ripples. Indeed, we found again that when only late ripples were considered associative pairs of object 345 

and place cells showed robust increases in coactivity that were significant for all three statistical tests 
(vs. chance: P = 0.001; vs. baseline: P = 0.040; vs. non-associative cell pairs: P < 0.001; P-values are 
Bonferroni corrected for performing this analysis on both early and late ripples; Fig. 4H; Figs. S12 
and S13). In contrast, such coactivations were not present for early re-encoding-related ripples (vs. 
chance: P = 0.650; vs. baseline: P = 1; vs. non-associative cell pairs: P = 0.212; Bonferroni corrected; 350 

Fig. 4G), which again explains why ripple-locked coactivity during re-encoding was not fully 
developed when measured across the entire session. 

This set of results demonstrates that ripple-locked coactivity between associative object and place 
cells occurred when subjects re-encoded object–location associations during later periods of the task. 
During these later task periods, the subjects were already familiar with the associations. We therefore 355 

speculate that ripple-locked coactivity during re-encoding is more closely related to the stabilization, 
updating, or early consolidation of associative object–location memories rather than to their initial 
formation (6, 14, 31). In contrast to the timing of ripple-locked coactivity during retrieval, the 
increased coactivations during late re-encoding-related ripples shifted to slightly precede the 
hippocampal ripples (Fig. 4H; Fig. S14B), which may reflect the propagation of information from 360 

extrahippocampal regions to the hippocampus during memory encoding. 
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Fig. 4. Ripple-locked coactivity of object and place cells during the retrieval and formation of associative memories. (A) 
Analysis of ripple-locked coactivity of object and place cells (illustration). High coactivity z-values occur when the object cell 
and the place cell are (in)active during the same ripples (top). Two-dimensional coactivity z-score maps are calculated across 365 
ripples for pairs of object and place cells, separately for various time points relative to the ripple peak (bottom). (B) Example 
pairs of object and place cells with associative (top) and non-associative information (bottom). In cell pairs with associative 
information, the place field of the place cell contains the remembered location (retrieval) or the correct location (re-encoding) of 
the preferred object of the object cell. (C) Coactivity maps estimated using all ripples during retrieval periods, considering only 
trials in which the subject is asked to remember the location of the preferred object of the object cell and in which the subject’s 370 
response location is inside the place field of the place cell. Left, comparison of the coactivity maps against chance (i.e., 0). 
Middle, comparison against baseline coactivity maps. Right, comparison against coactivity maps estimated using ripples from 
trials in which the subject is asked to remember the location of the preferred object of the object cell and in which the subject’s 
response location is outside the place field of the place cell. (D) Same as in C for the first half of all retrieval-related hippocampal 
ripples. (E) Same as in C for the second half of all retrieval-related hippocampal ripples. (F) Coactivity maps estimated using all 375 
ripples from the re-encoding periods, considering only trials in which the subject is asked to re-encode the correct location of the 
preferred object of the object cell and in which the object’s correct location is inside the place field of the place cell. Left, 
comparison of the coactivity maps against chance (i.e., 0). Middle, comparison against baseline coactivity maps. Right, 
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comparison against coactivity maps estimated using ripples from trials in which the subject is asked to re-encode the location of 
the preferred object of the object cell and in which the object’s correct location is outside the place field of the place cell. (G) 380 
Same as in F for the first half of all re-encoding-related hippocampal ripples. (H) Same as in F for the second half of all re-
encoding-related hippocampal ripples. White lines delineate significant clusters based on cluster-based permutation tests, which 
control for multiple comparisons and whose P-values are stated in the upper left corners of the coactivity maps (see the main 
text for Bonferroni corrected P-values). AMY, amygdala; FG, fusiform gyrus; pref., preferred. 

 385 

To further investigate whether the distinction between early and late ripples paralleled a distinction 
between ripples occurring before versus after the initial formation of the object–location memories, 
we estimated the time of strongest improvement in memory performance for each object. We 
reasoned that this time reflected the moment when the object–location associations emerged initially. 
We then grouped the ripples according to whether they occurred before or after this time of strongest 390 

memory improvement. Ripple-locked coactivations of object and place cells before and after initial 
memory formation appeared very similar to their coactivity patterns during early and late ripples, 
respectively (Fig. S15). This suggests that the coactivations during late ripples from both retrieval 
and re-encoding periods were at least partly dependent upon an initial formation of the object–location 
associations. 395 

Studies in rodents highlighted the functional relevance of ripples during immobility (31, 32). We thus 
differentiated between ripples from movement or non-movement periods and examined whether the 
coactivity effects appeared preferentially during non-movement-related ripples. As hypothesized, the 
increased ripple-locked coactivity between associative object and place cells were driven by ripples 
occurring during non-movement periods (Fig. S16). 400 

Overall, these results provide empirical support for our principal hypothesis that human hippocampal 
ripples are associated with coactivations of stimulus-specific neurons (which represent particular 
objects and locations in this study) during the formation and retrieval of associative memories. 

 

Discussion 405 

Associative memory allows us to learn and later retrieve new links and relations between previously 
unrelated stimuli and is thus an essential cognitive function for everyday life (1). Here, we conducted 
neural recordings in epilepsy patients performing an associative object–location memory task in a 
virtual environment (Fig. 1) to investigate the role of stimulus-specific single neurons and 
hippocampal ripples for human associative memory. We found that object- and place-specific neurons 410 

(Fig. 3) are simultaneously active during hippocampal ripples (Fig. 2) when subjects form and retrieve 
particular associative object–location memories (Fig. 4). This mechanism of ripple-locked coactivity 
of stimulus-specific neurons suggests a cellular account of how humans interconnect previously 
unrelated stimuli and how they recall a stimulus from memory after being cued with another stimulus. 
Hippocampal ripples may support these functions by binding distinct cellular populations together. 415 

 

Neural mechanisms of associative memory 

Different theories suggest explanations of how neural circuits in the brain encode associative 
memories (1). Following the “conjunctive hypothesis,” the relevant neural circuits may contain 
conjunctive representations as a neural substrate for associative memories, in which neurons encode 420 

the unique combination of two or more stimuli (17). Such conjunctive neurons do not respond to the 
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different stimuli in isolation but only when the stimuli are encoded or retrieved together (18–20, 59). 
In contrast, following the “coactivity hypothesis,” associative memories may be enabled by stimulus-
specific neurons that encode the individual elements of associative memories and that coactivate 
temporarily when subjects encode or recall these associative memories (6–8). Coactivity during 425 

memory encoding would establish synaptic connections between the stimulus-specific neurons (51, 
58), and coactivity during retrieval would reflect the reciprocal activation of stimulus-specific 
neurons based on their previously established synaptic connections. 

In line with the “conjunctive hypothesis,” several studies described the existence of conjunctive cells 
in MTL regions. For example, in rodents, the spiking of hippocampal neurons encodes particular 430 

object–location associations and this conjunctive code strengthens with learning (19). Similarly, 
single neurons in the monkey hippocampus change their firing rates when monkeys learn particular 
scene–eye movement associations (18), which indicates that these neurons represent a particular eye 
movement in a given spatial context after associative learning has occurred [see also (60)]. In humans, 
MTL neurons rapidly adapt their selectivity to represent person–scene conjunctions (20) and 435 

hippocampal neurons respond to unique combinations of more than two stimuli (59). These studies 
support the view that associative memory is linked to conjunctive neural coding. 

Our study provides empirical support for the “coactivity hypothesis” of associative memory by 
identifying single-neuron representations of the separate memory elements and by demonstrating how 
these separate neural representations are simultaneously active at particular time points. Specifically, 440 

our results show that stimulus-specific object and place cells coactivate during hippocampal ripples 
when humans encode or retrieve object–location associations. We found that this ripple-locked 
coactivity was specific to object and place cells jointly representing associative information (Fig. 4), 
that it was significantly expressed only during the second half of the task (Fig. 4), and that it occurred 
mostly after initial memory formation had taken place (Fig. S15). These results support the “coactivity 445 

hypothesis” by indicating that precisely timed cellular coactivations play a role in human associative 
memory. Given that not only associative memories require an interplay between different mental 
contents, we propose that these findings are relevant to various cognitive functions that involve 
transient interactions between otherwise independent neural representations. For example, episodic 
memories comprise event, time, and place information and may thus rely on transient interactions 450 

between concept cells containing semantic information (10), time cells coding temporal information 
(61), and spatially modulated cells representing locations and directions (9, 11, 12). 

The “conjunctive hypothesis” and the “coactivity hypothesis” are not mutually exclusive. One 
possible scenario is that neural activity in line with the “coactivity hypothesis” leads to the emergence 
of neural activity proposed by the “conjunctive hypothesis.” For instance, simultaneous coactivity in 455 

object and place cells may induce conjunctive object–place coding in downstream neurons. 

 

Hippocampal ripples and cognition 

A large body of previous work, primarily performed in rodents, suggests that hippocampal ripples 
serve multiple cognitive functions including memory encoding, consolidation, and retrieval (13, 14, 460 

31, 32). For example, classical findings in rodents demonstrated that the suppression of sharp-wave 
ripples during post-training sleep impairs spatial memory (62), providing evidence for a role of ripples 
in memory consolidation. Studies in awake humans showed that ripple rates increase when subjects 
encode new memories (36, 41) and when they freely recall memories (36, 41, 50), implicating ripples 
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in both memory encoding and retrieval. Moreover, ripple-associated place-cell sequences depict the 465 

animal’s future paths through an environment, which indicates that hippocampal ripples help plan 
future behavior (13, 27, 29). 

In this study, we extended the evidence for important roles of hippocampal ripples in cognition by 
detailing their involvement in human associative memory. Specifically, hippocampal ripples may 
define time windows for coactive spiking by stimulus-specific neurons that represent different types 470 

of information. During the retrieval of object–location memories, we observed this ripple-locked 
coactivity on trials when the subject was asked to recall the location of the preferred object of the 
object cell and in which the subject’s response location was inside the place field of the place cell. 
This result implicates human ripples in the retrieval of associative memories and also supports their 
implication in planning future behavior, as the coactivity occurred on trials in which the subject’s 475 

response location—which is the location the subject was heading to—was located inside the place 
field of the place cell. As we observed significant coactivations only during the second half of each 
session, it suggests that subjects first had to establish some intuition about the locations of the 
different objects before ripple-locked coactivity during retrieval could emerge. 

During re-encoding periods of our object–location memory task, we observed coactivity of object and 480 

place cells on trials when the subject was asked to re-encode the correct location of the preferred 
object of the object cell and when the correct location of the object was inside the place field of the 
place cell. This coactivity of object and place cells during re-encoding may thus have helped the 
subjects to build or stabilize accurate associations between the different objects and their spatial 
locations, implicating ripples in memory formation. We again observed significant ripple-locked 485 

coactivity of object and place cells only during the second half of the recording sessions. We therefore 
propose that ripple-locked coactivity during re-encoding relates more closely to the stabilization, 
updating, or early consolidation of associative memories rather than to their initial formation (6, 14, 
31, 63, 64). The differences between memory initialization, stabilization, updating, and early 
consolidation are not exactly defined, though, and hippocampal ripples may be involved in all of these 490 

cognitive operations (32). 

Our results suggest that the ripple-locked timing of neuronal coactivity shifts between different 
behavioral states. During retrieval, the strongest object cell–place cell coactivity occurred shortly 
after the peaks of hippocampal ripples, whereas during re-encoding the coactivations mainly preceded 
hippocampal ripple peaks (Fig. 4; Fig. S14). This timing shift may reflect task-related changes in the 495 

direction of information flow during hippocampal ripples. Specifically, hippocampal ripples during 
retrieval may induce the coactivity of stimulus-specific neurons and may support the propagation of 
information from the hippocampus to extrahippocampal regions. Conversely, during re-encoding, 
hippocampal ripples may be triggered by stimulus-specific neuronal activity and may be involved in 
information transfer from extrahippocampal regions to the hippocampus, which could also generate 500 

conjunctive hippocampal representations. Our finding of object cell–place cell coactivity starting 
prior to hippocampal ripples is in line with prior results in rodents showing that place-cell sequences 
can start about 100 ms earlier than the hippocampal ripple (26, 27) and that the reactivation of brain-
wide neural representations of word pairs, faces, and scenes emerges already about 100 ms before 
hippocampal ripples in humans (36, 37). This temporal delay raises the question whether hippocampal 505 

ripples actually trigger the (re)activation of stimulus-specific neural representations or whether 
another mechanism—for example, the excitatory sharp wave (13, 32)—is in fact the trigger event for 
both the (re)activation of stimulus-specific neural representations and the hippocampal ripples. 
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A further way in which our study implicates hippocampal ripples in human associative memory is by 
showing that ripple rates correlated with the subjects’ behavioral state and memory performance in 510 

our task (Fig. S4). Ripple rates increased during memory cues prior to good memory retrieval and 
during re-encoding periods after poor memory retrieval. These observations match previous reports 
that hippocampal ripples are important for the accurate encoding and retrieval of human memories 
(33, 35–42, 50) and help extend the functional role of hippocampal ripples from the rodent to the 
human brain (15). Moving forward, these insights may have translational relevance, as augmenting 515 

ripples (30) might be a useful target for improving cognitive performance in patients with memory 
disorders (for further discussion points, see Text S4). 

 

References and Notes 
1.  M. J. Kahana, Foundations of Human Memory (Oxford University Press, New York, 2014). 520 

2.  M. Naveh-Benjamin, Adult age differences in memory performance: Tests of an associative 
deficit hypothesis. J. Exp. Psychol. Learn. Mem. Cogn. 26, 1170–1187 (2000). 

3.  C. Bastin, M. A. Bahri, F. Miévis, C. Lemaire, F. Collette, S. Genon, J. Simon, B. Guillaume, 
R. A. Diana, A. P. Yonelinas, E. Salmon, Associative memory and its cerebral correlates in 
Alzheimer׳s disease: evidence for distinct deficits of relational and conjunctive memory. 525 

Neuropsychologia. 63, 99–106 (2014). 

4.  L. R. Squire, C. E. L. Stark, R. E. Clark, The Medial Temporal Lobe. Annu. Rev. Neurosci. 27, 
279–306 (2004). 

5.  G. Neves, S. F. Cooke, T. V. P. Bliss, Synaptic plasticity, memory and the hippocampus: a 
neural network approach to causality. Nat. Rev. Neurosci. 9, 65–75 (2008). 530 

6.  G. Buzsaki, R. Llinas, W. Singer, A. Berthoz, Y. Christen, Eds., Temporal Coding in the Brain 
(Springer, Berlin ; New York, 1994). 

7.  W. Singer, C. M. Gray, Visual Feature Integration and the Temporal Correlation Hypothesis. 
Annu. Rev. Neurosci. 18, 555–586 (1995). 

8.  C. von der Malsburg, The What and Why of Binding: The Modeler’s Perspective. Neuron. 24, 535 

95–104 (1999). 

9.  L. Kunz, A. Brandt, P. C. Reinacher, B. P. Staresina, E. T. Reifenstein, C. T. Weidemann, N. 
A. Herweg, A. Patel, M. Tsitsiklis, R. Kempter, M. J. Kahana, A. Schulze-Bonhage, J. Jacobs, 
A neural code for egocentric spatial maps in the human medial temporal lobe. Neuron. 109, 
2781-2796.e10 (2021). 540 

10.  R. Quiroga, Plugging in to Human Memory: Advantages, Challenges, and Insights from 
Human Single-Neuron Recordings. Cell. 179, 1015–1032 (2019). 

11.  J. O’Keefe, J. Dostrovsky, The hippocampus as a spatial map. Preliminary evidence from unit 
activity in the freely-moving rat. Brain Res. 34, 171–175 (1971). 

12.  A. D. Ekstrom, M. J. Kahana, J. B. Caplan, T. A. Fields, E. A. Isham, E. L. Newman, I. Fried, 545 

Cellular networks underlying human spatial navigation. Nature. 425, 184–188 (2003). 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted October 21, 2022. ; https://doi.org/10.1101/2022.10.17.512635doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.17.512635


 

18 
 

13.  Buzsáki, Hippocampal sharp wave-ripple: A cognitive biomarker for episodic memory and 
planning. Hippocampus. 25, 1073–1188 (2015). 

14.  L. L. Colgin, Rhythms of the hippocampal network. Nat. Rev. Neurosci. 17, 239–249 (2016). 

15.  A. A. Liu, S. Henin, S. Abbaspoor, A. Bragin, E. A. Buffalo, J. S. Farrell, D. J. Foster, L. M. 550 

Frank, T. Gedankien, J. Gotman, J. A. Guidera, K. L. Hoffman, J. Jacobs, M. J. Kahana, L. Li, 
Z. Liao, J. J. Lin, A. Losonczy, R. Malach, M. A. van der Meer, K. McClain, B. L. 
McNaughton, Y. Norman, A. Navas-Olive, L. M. de la Prida, J. W. Rueckemann, J. J. Sakon, 
I. Skelin, I. Soltesz, B. P. Staresina, S. A. Weiss, M. A. Wilson, K. A. Zaghloul, M. Zugaro, 
G. Buzsáki, A consensus statement on detection of hippocampal sharp wave ripples and 555 

differentiation from other fast oscillations. Nat. Commun. 13, 6000 (2022). 

16.  J. H. L. P. Sadowski, M. W. Jones, J. R. Mellor, Ripples Make Waves: Binding Structured 
Activity and Plasticity in Hippocampal Networks. Neural Plast. 2011, e960389 (2011). 

17.  R. C. O’Reilly, J. W. Rudy, Conjunctive representations in learning and memory: principles of 
cortical and hippocampal function. Psychol. Rev. 108, 311–345 (2001). 560 

18.  S. Wirth, M. Yanike, L. M. Frank, A. C. Smith, E. N. Brown, W. A. Suzuki, Single Neurons 
in the Monkey Hippocampus and Learning of New Associations. Science. 300, 1578–1581 
(2003). 

19.  R. W. Komorowski, J. R. Manns, H. Eichenbaum, Robust conjunctive item-place coding by 
hippocampal neurons parallels learning what happens where. J. Neurosci. Off. J. Soc. Neurosci. 565 

29, 9918–9929 (2009). 

20.  M. J. Ison, R. Quian Quiroga, I. Fried, Rapid Encoding of New Memories by Individual 
Neurons in the Human Brain. Neuron. 87, 220–230 (2015). 

21.  N. K. Logothetis, O. Eschenko, Y. Murayama, M. Augath, T. Steudel, H. C. Evrard, M. 
Besserve, A. Oeltermann, Hippocampal–cortical interaction during periods of subcortical 570 

silence. Nature. 491, 547–553 (2012). 

22.  J. Karimi Abadchi, M. Nazari-Ahangarkolaee, S. Gattas, E. Bermudez-Contreras, A. Luczak, 
B. L. McNaughton, M. H. Mohajerani, Spatiotemporal patterns of neocortical activity around 
hippocampal sharp-wave ripples. eLife. 9, e51972 (2020). 

23.  C. W. Dickey, I. A. Verzhbinsky, X. Jiang, B. Q. Rosen, S. Kajfez, B. Stedelin, J. J. Shih, S. 575 

Ben-Haim, A. M. Raslan, E. N. Eskandar, J. Gonzalez-Martinez, S. S. Cash, E. Halgren, 
Widespread ripples synchronize human cortical activity during sleep, waking, and memory 
recall. Proc. Natl. Acad. Sci. 119, e2107797119 (2022). 

24.  N. Nitzan, R. Swanson, D. Schmitz, G. Buzsáki, Brain-wide interactions during hippocampal 
sharp wave ripples. Proc. Natl. Acad. Sci. 119, e2200931119 (2022). 580 

25.  A. K. Lee, M. A. Wilson, Memory of Sequential Experience in the Hippocampus during Slow 
Wave Sleep. Neuron. 36, 1183–1194 (2002). 

26.  D. J. Foster, M. A. Wilson, Reverse replay of behavioural sequences in hippocampal place 
cells during the awake state. Nature. 440, 680–683 (2006). 

27.  K. Diba, G. Buzsáki, Forward and reverse hippocampal place-cell sequences during ripples. 585 

Nat. Neurosci. 10, 1241–1242 (2007). 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted October 21, 2022. ; https://doi.org/10.1101/2022.10.17.512635doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.17.512635


 

19 
 

28.  G. Dragoi, S. Tonegawa, Preplay of future place cell sequences by hippocampal cellular 
assemblies. Nature. 469, 397–401 (2011). 

29.  B. E. Pfeiffer, D. J. Foster, Hippocampal place-cell sequences depict future paths to 
remembered goals. Nature. 497, 74–79 (2013). 590 

30.  A. Fernández-Ruiz, A. Oliva, E. F. de Oliveira, F. Rocha-Almeida, D. Tingley, G. Buzsáki, 
Long-duration hippocampal sharp wave ripples improve memory. Science. 364, 1082–1086 
(2019). 

31.  M. F. Carr, S. P. Jadhav, L. M. Frank, Hippocampal replay in the awake state: a potential 
substrate for memory consolidation and retrieval. Nat. Neurosci. 14, 147–153 (2011). 595 

32.  H. R. Joo, L. M. Frank, The hippocampal sharp wave–ripple in memory retrieval for immediate 
use and consolidation. Nat. Rev. Neurosci. 19, 744–757 (2018). 

33.  N. Axmacher, C. E. Elger, J. Fell, Ripples in the medial temporal lobe are relevant for human 
memory consolidation. Brain. 131, 1806–1817 (2008). 

34.  B. P. Staresina, T. O. Bergmann, M. Bonnefond, R. van der Meij, O. Jensen, L. Deuker, C. E. 600 

Elger, N. Axmacher, J. Fell, Hierarchical nesting of slow oscillations, spindles and ripples in 
the human hippocampus during sleep. Nat. Neurosci. 18, 1679–1686 (2015). 

35.  H. Zhang, J. Fell, N. Axmacher, Electrophysiological mechanisms of human memory 
consolidation. Nat. Commun. 9, 4103 (2018). 

36.  Y. Norman, E. M. Yeagle, S. Khuvis, M. Harel, A. D. Mehta, R. Malach, Hippocampal sharp-605 

wave ripples linked to visual episodic recollection in humans. Science. 365, eaax1030 (2019). 

37.  A. P. Vaz, S. K. Inati, N. Brunel, K. A. Zaghloul, Coupled ripple oscillations between the 
medial temporal lobe and neocortex retrieve human memory. Science. 363, 975–978 (2019). 

38.  A. P. Vaz, J. H. Wittig, S. K. Inati, K. A. Zaghloul, Replay of cortical spiking sequences during 
human memory retrieval. Science. 367, 1131–1134 (2020). 610 

39.  Y. Y. Chen, L. Aponik-Gremillion, E. Bartoli, D. Yoshor, S. A. Sheth, B. L. Foster, Stability 
of ripple events during task engagement in human hippocampus. Cell Rep. 35, 109304 (2021). 

40.  Y. Norman, O. Raccah, S. Liu, J. Parvizi, R. Malach, Hippocampal ripples and their 
coordinated dialogue with the default mode network during recent and remote recollection. 
Neuron. 109, 2767-2780.e5 (2021). 615 

41.  S. Henin, A. Shankar, H. Borges, A. Flinker, W. Doyle, D. Friedman, O. Devinsky, G. Buzsáki, 
A. Liu, Spatiotemporal dynamics between interictal epileptiform discharges and ripples during 
associative memory processing. Brain. 144, 1590–1602 (2021). 

42.  D. Lachner-Piza, L. Kunz, A. Brandt, M. Dümpelmann, A. Thomschewski, A. Schulze-
Bonhage, Effects of Spatial Memory Processing on Hippocampal Ripples. Front. Neurol. 12, 620 

237 (2021). 

43.  I. Fried, C. L. Wilson, N. T. Maidment, J. Engel, E. Behnke, T. A. Fields, K. A. Macdonald, J. 
W. Morrow, L. Ackerson, Cerebral microdialysis combined with single-neuron and 
electroencephalographic recording in neurosurgical patients. J. Neurosurg. 91, 697–705 
(1999). 625 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted October 21, 2022. ; https://doi.org/10.1101/2022.10.17.512635doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.17.512635


 

20 
 

44.  U. Rutishauser, L. Reddy, F. Mormann, J. Sarnthein, The Architecture of Human Memory: 
Insights from Human Single-Neuron Recordings. J. Neurosci. 41, 883–890 (2021). 

45.  H.-V. Ngo, J. Fell, B. Staresina, Sleep spindles mediate hippocampal-neocortical coupling 
during long-duration ripples. eLife. 9, e57011 (2020). 

46.  G. Buzsáki, F. L. da Silva, High frequency oscillations in the intact brain. Prog. Neurobiol. 98, 630 

241–249 (2012). 

47.  G. Buzsáki, X.-J. Wang, Mechanisms of Gamma Oscillations. Annu. Rev. Neurosci. 35, 203–
225 (2012). 

48.  S. A. Weiss, I. Song, M. Leng, T. Pastore, D. Slezak, Z. Waldman, I. Orosz, R. Gorniak, M. 
Donmez, A. Sharan, C. Wu, I. Fried, M. R. Sperling, A. Bragin, J. Engel, Y. Nir, R. Staba, 635 

Ripples Have Distinct Spectral Properties and Phase-Amplitude Coupling With Slow Waves, 
but Indistinct Unit Firing, in Human Epileptogenic Hippocampus. Front. Neurol. 11, 174 
(2020). 

49.  G. T. Neske, The Slow Oscillation in Cortical and Thalamic Networks: Mechanisms and 
Functions. Front. Neural Circuits. 9 (2016). 640 

50.  J. J. Sakon, M. J. Kahana, Hippocampal ripples signal contextually mediated episodic recall. 
Proc. Natl. Acad. Sci. 119, e2201657119 (2022). 

51.  J. H. L. P. Sadowski, M. W. Jones, J. R. Mellor, Sharp-Wave Ripples Orchestrate the Induction 
of Synaptic Plasticity during Reactivation of Place Cell Firing Patterns in the Hippocampus. 
Cell Rep. 14, 1916–1929 (2016). 645 

52.  D. Khodagholy, J. N. Gelinas, G. Buzsáki, Learning-enhanced coupling between ripple 
oscillations in association cortices and hippocampus. Science. 358, 369–372 (2017). 

53.  I. Skelin, H. Zhang, J. Zheng, S. Ma, B. A. Mander, O. Kim McManus, S. Vadera, R. T. Knight, 
B. L. McNaughton, J. J. Lin, Coupling between slow waves and sharp-wave ripples engages 
distributed neural activity during sleep in humans. Proc. Natl. Acad. Sci. U. S. A. 118, 650 

e2012075118 (2021). 

54.  R. Gao, E. J. Peterson, B. Voytek, Inferring synaptic excitation/inhibition balance from field 
potentials. NeuroImage. 158, 70–78 (2017). 

55.  X. Jiang, J. Gonzalez-Martinez, E. Halgren, Coordination of Human Hippocampal Sharpwave 
Ripples during NREM Sleep with Cortical Theta Bursts, Spindles, Downstates, and Upstates. 655 

J. Neurosci. 39, 8744–8761 (2019). 

56.  E. I. Moser, M.-B. Moser, B. L. McNaughton, Spatial representation in the hippocampal 
formation: a history. Nat. Neurosci. 20, 1448–1464 (2017). 

57.  J. Jacobs, C. T. Weidemann, J. F. Miller, A. Solway, J. F. Burke, X.-X. Wei, N. Suthana, M. 
R. Sperling, A. D. Sharan, I. Fried, M. J. Kahana, Direct recordings of grid-like neuronal 660 

activity in human spatial navigation. Nat. Neurosci. 16, 1188–1190 (2013). 

58.  G. Bi, M. Poo, Synaptic modification by correlated activity: Hebb’s postulate revisited. Annu. 
Rev. Neurosci. 24, 139–166 (2001). 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted October 21, 2022. ; https://doi.org/10.1101/2022.10.17.512635doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.17.512635


 

21 
 

59.  L. D. Kolibius, F. Roux, G. Parish, M. T. Wal, M. V. D. Plas, R. Chelvarajah, V. Sawlani, D. 
T. Rollings, J. Lang, S. Gollwitzer, K. Walther, R. Hopfengärtner, G. Kreiselmeyer, H. Hamer, 665 

B. P. Staresina, M. Wimber, H. Bowman, S. Hanslmayr, Hippocampal neurons code individual 
episodic memories in humans. bioRxiv (2021), doi:10.1101/2021.06.28.450149. 

60.  W. F. Asaad, G. Rainer, E. K. Miller, Neural Activity in the Primate Prefrontal Cortex during 
Associative Learning. Neuron. 21, 1399–1407 (1998). 

61.  H. Eichenbaum, Time cells in the hippocampus: a new dimension for mapping memories. Nat. 670 

Rev. Neurosci. 15, 732–744 (2014). 

62.  G. Girardeau, K. Benchenane, S. I. Wiener, G. Buzsáki, M. B. Zugaro, Selective suppression 
of hippocampal ripples impairs spatial memory. Nat. Neurosci. 12, 1222–1223 (2009). 

63.  E. J. Wamsley, Memory Consolidation during Waking Rest. Trends Cogn. Sci. 23, 171–173 
(2019). 675 

64.  S. Cheng, L. M. Frank, New Experiences Enhance Coordinated Neural Activity in the 
Hippocampus. Neuron. 57, 303–313 (2008). 

65.  C. F. Doeller, J. A. King, N. Burgess, Parallel striatal and hippocampal systems for landmarks 
and boundaries in spatial memory. Proc. Natl. Acad. Sci. 105, 5915–5920 (2008). 

66.  L. Kunz, T. N. Schröder, H. Lee, C. Montag, B. Lachmann, R. Sariyska, M. Reuter, R. 680 

Stirnberg, T. Stöcker, P. C. Messing-Floeter, J. Fell, C. F. Doeller, N. Axmacher, Reduced 
grid-cell–like representations in adults at genetic risk for Alzheimer’s disease. Science. 350, 
430–433 (2015). 

67.  P. Berens, CircStat: A MATLAB Toolbox for Circular Statistics. J. Stat. Softw. 31, 1–21 
(2009). 685 

68.  R. Oostenveld, P. Fries, E. Maris, J.-M. Schoffelen, FieldTrip: Open Source Software for 
Advanced Analysis of MEG, EEG, and Invasive Electrophysiological Data. Comput. Intell. 
Neurosci. 2011, 1–9 (2011). 

69.  J. Miller, A. J. Watrous, M. Tsitsiklis, S. A. Lee, S. A. Sheth, C. A. Schevon, E. H. Smith, M. 
R. Sperling, A. Sharan, A. A. Asadi-Pooya, G. A. Worrell, S. Meisenhelter, C. S. Inman, K. A. 690 

Davis, B. Lega, P. A. Wanda, S. R. Das, J. M. Stein, R. Gorniak, J. Jacobs, Lateralized 
hippocampal oscillations underlie distinct aspects of human spatial memory and navigation. 
Nat. Commun. 9, 2423 (2018). 

70.  L. Kunz, L. Wang, D. Lachner-Piza, H. Zhang, A. Brandt, M. Dümpelmann, P. C. Reinacher, 
V. A. Coenen, D. Chen, W.-X. Wang, W. Zhou, S. Liang, P. Grewe, C. G. Bien, A. Bierbrauer, 695 

T. N. Schröder, A. Schulze-Bonhage, N. Axmacher, Hippocampal theta phases organize the 
reactivation of large-scale electrophysiological representations during goal-directed 
navigation. Sci. Adv. 5, eaav8192 (2019). 

71.  F. J. Chaure, H. G. Rey, R. Quian Quiroga, A novel and fully automatic spike-sorting 
implementation with variable number of features. J. Neurophysiol. 120, 1859–1871 (2018). 700 

72.  J. Jacobs, M. J. Kahana, A. D. Ekstrom, M. V. Mollison, I. Fried, A sense of direction in human 
entorhinal cortex. Proc. Natl. Acad. Sci. 107, 6487–6492 (2010). 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted October 21, 2022. ; https://doi.org/10.1101/2022.10.17.512635doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.17.512635


 

22 
 

73.  J. F. Miller, M. Neufang, A. Solway, A. Brandt, M. Trippel, I. Mader, S. Hefft, M. Merkow, 
S. M. Polyn, J. Jacobs, M. J. Kahana, A. Schulze-Bonhage, Neural Activity in Human 
Hippocampal Formation Reveals the Spatial Context of Retrieved Memories. Science. 342, 705 

1111–1114 (2013). 

74.  M. Tsitsiklis, J. Miller, S. E. Qasim, C. S. Inman, R. E. Gross, J. T. Willie, E. H. Smith, S. A. 
Sheth, C. A. Schevon, M. R. Sperling, A. Sharan, J. M. Stein, J. Jacobs, Single-Neuron 
Representations of Spatial Targets in Humans. Curr. Biol. 30, 245-253.e4 (2020). 

75.  S. E. Qasim, I. Fried, J. Jacobs, Phase precession in the human hippocampus and entorhinal 710 

cortex. Cell. 184, 3242-3255.e10 (2021). 

76.  M. Sosa, H. R. Joo, L. M. Frank, Dorsal and Ventral Hippocampal Sharp-Wave Ripples 
Activate Distinct Nucleus Accumbens Networks. Neuron. 105, 725-741.e8 (2020). 

77.  T. A. Guth, L. Kunz, A. Brandt, M. Dümpelmann, K. A. Klotz, P. C. Reinacher, A. Schulze-
Bonhage, J. Jacobs, J. Schönberger, Interictal spikes with and without high-frequency 715 

oscillation have different single-neuron correlates. Brain. 144, 3078–3088 (2021). 

78.  J. H. Aarts, C. D. Binnie, A. M. Smit, A. J. Wilkins, Selective cognitive impairment during 
focal and generalized epileptiform EEG activity. Brain J. Neurol. 107 (Pt 1), 293–308 (1984). 

79.  U. Vivekananda, D. Bush, J. A. Bisby, B. Diehl, A. Jha, P. Nachev, R. Rodionov, N. Burgess, 
M. C. Walker, Spatial and episodic memory tasks promote temporal lobe interictal spikes. Ann. 720 

Neurol. 86, 304–309 (2019). 

80.  R. Olsen, S. Moses, L. Riggs, J. Ryan, The hippocampus supports multiple cognitive processes 
through relational binding and comparison. Front. Hum. Neurosci. 6 (2012). 

81.  A. P. Yonelinas, C. Ranganath, A. D. Ekstrom, B. J. Wiltgen, A contextual binding theory of 
episodic memory: systems consolidation reconsidered. Nat. Rev. Neurosci. 20, 364–375 725 

(2019). 

82.  D. I. G. Wilson, R. F. Langston, M. I. Schlesiger, M. Wagner, S. Watanabe, J. A. Ainge, Lateral 
entorhinal cortex is critical for novel object-context recognition. Hippocampus. 23, 352–366 
(2013). 

83.  K. M. Igarashi, L. Lu, L. L. Colgin, M.-B. Moser, E. I. Moser, Coordination of entorhinal–730 

hippocampal ensemble activity during associative learning. Nature. 510, 143–147 (2014). 

84.  B. P. Staresina, T. P. Reber, J. Niediek, J. Boström, C. E. Elger, F. Mormann, Recollection in 
the human hippocampal-entorhinal cell circuitry. Nat. Commun. 10, 1503 (2019). 

85.  C. A. Symanski, J. H. Bladon, E. T. Kullberg, P. Miller, S. P. Jadhav, Rhythmic coordination 
of hippocampal-prefrontal ensembles for odor-place associative memory and decision making 735 

(2022), p. 2020.06.08.140939. 

86.  J. Y. Lee, H. Jun, S. Soma, T. Nakazono, K. Shiraiwa, A. Dasgupta, T. Nakagawa, J. L. Xie, 
J. Chavez, R. Romo, S. Yungblut, M. Hagihara, K. Murata, K. M. Igarashi, Dopamine 
facilitates associative memory encoding in the entorhinal cortex. Nature. 598, 321–326 (2021). 

87.  B. Vandrey, D. L. F. Garden, V. Ambrozova, C. McClure, M. F. Nolan, J. A. Ainge, Fan Cells 740 

in Layer 2 of the Lateral Entorhinal Cortex Are Critical for Episodic-like Memory. Curr. Biol. 
30, 169-175.e5 (2020). 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted October 21, 2022. ; https://doi.org/10.1101/2022.10.17.512635doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.17.512635


 

23 
 

88.  C. M. A. Pennartz, E. Lee, J. Verheul, P. Lipa, C. A. Barnes, B. L. McNaughton, The Ventral 
Striatum in Off-Line Processing: Ensemble Reactivation during Sleep and Modulation by 
Hippocampal Ripples. J. Neurosci. 24, 6446–6456 (2004). 745 

89.  S. N. Gomperts, F. Kloosterman, M. A. Wilson, VTA neurons coordinate with the hippocampal 
reactivation of spatial experience. eLife. 4, e05360 (2015). 

90.  J. Patel, E. W. Schomburg, A. Berényi, S. Fujisawa, G. Buzsáki, Local Generation and 
Propagation of Ripples along the Septotemporal Axis of the Hippocampus. J. Neurosci. 33, 
17029–17041 (2013). 750 

91.  D. Osipova, A. Takashima, R. Oostenveld, G. Fernández, E. Maris, O. Jensen, Theta and 
Gamma Oscillations Predict Encoding and Retrieval of Declarative Memory. J. Neurosci. 26, 
7523–7531 (2006). 

92.  P. B. Sederberg, A. Schulze-Bonhage, J. R. Madsen, E. B. Bromfield, B. Litt, A. Brandt, M. J. 
Kahana, Gamma Oscillations Distinguish True From False Memories. Psychol. Sci. 18, 927–755 

932 (2007). 

93.  J. Yamamoto, J. Suh, D. Takeuchi, S. Tonegawa, Successful Execution of Working Memory 
Linked to Synchronized High-Frequency Gamma Oscillations. Cell. 157, 845–857 (2014). 

94.  B. P. Staresina, S. Michelmann, M. Bonnefond, O. Jensen, N. Axmacher, J. Fell, Hippocampal 
pattern completion is linked to gamma power increases and alpha power decreases during 760 

recollection. eLife. 5, e17397 (2016). 

95.  M. S. Treder, I. Charest, S. Michelmann, M. C. Martín-Buro, F. Roux, F. Carceller-Benito, A. 
Ugalde-Canitrot, D. T. Rollings, V. Sawlani, R. Chelvarajah, M. Wimber, S. Hanslmayr, B. P. 
Staresina, The hippocampus as the switchboard between perception and memory. Proc. Natl. 
Acad. Sci. 118, e2114171118 (2021). 765 

 

Acknowledgements 
We are very grateful to all patients who participated in this study. We thank the clinical team of the 
Freiburg Epilepsy Center, Freiburg, Germany, for their continuous support. We thank Daniel 
Lachner-Piza for help with data collection and Kamran Diba, John J. Sakon, Serra E. Favila, and 770 

Tamara Gedankien for comments on the manuscript. 

 

Funding 
L.K. received funding via the German Research Foundation (DFG; KU 4060/1-1). L.K., A.B., 
T.A.G., and A.S.-B. were supported by the Federal Ministry of Education and Research (BMBF; 775 

01GQ1705A) and by NIH/NINDS grant U01 NS113198-01. B.P.S. was supported by an ERC 
Consolidator grant (101001121). P.C.R. received research grants from the Fraunhofer Society 
(Munich, Germany) and from the Else Kröner-Fresenius Foundation (Bad Homburg, Germany). J.J. 
was supported by NIH grant MH104606 and the National Science Foundation (NSF). 

 780 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted October 21, 2022. ; https://doi.org/10.1101/2022.10.17.512635doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.17.512635


 

24 
 

Author contributions 
L.K. developed hypotheses and designed the study; L.K., J.J., and A.S.-B. acquired funding; L.K., 
P.C.R., A.B., and A.S.-B. recruited study participants; P.C.R. implanted electrodes; L.K., A.B., and 
T.A.G. collected the data; L.K. analyzed the data; L.K., J.J., and B.P.S. discussed the results; L.K. 
and J.J. wrote the paper; all authors reviewed and revised the final manuscript. 785 

 

Competing interests 

The authors declare no competing interests. 

 

Data and materials availability 790 

Further information and requests for resources and reagents should be directed to and will be fulfilled 
by the lead contact, Lukas Kunz (drlukaskunz@gmail.com). All custom MATLAB code generated 
during this study for data analysis and the data to recreate the figures will be made publicly available 
upon publication. Raw data are not publicly available because they could compromise research 
participant privacy, but are available upon request from the lead contact, Lukas Kunz. Any additional 795 

information required to reanalyze the data reported in this paper is available from the lead contact 
upon request.  

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted October 21, 2022. ; https://doi.org/10.1101/2022.10.17.512635doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.17.512635


 

25 
 

Supplementary Materials 
 

Materials and Methods 800 

Human subjects 

We tested N = 35 human subjects, who were epilepsy patients undergoing treatment for 
pharmacologically intractable epilepsy at the Freiburg Epilepsy Center, Freiburg, Germany. Of those, 
5 patients had to be excluded because of technical issues (n = 1); no hippocampal electrode contacts 
(n = 2); hippocampal channels that were close to the resection border of a previous surgery (n = 1); 805 

and a very low number of ripples (n = 1). This resulted in a final sample of n = 30 subjects (16 female; 
age range, 19–61 years; mean age ± SEM, 36 ± 2 years), contributing a total of n = 41 experimental 
sessions with intracranial EEG recordings including the left and/or right hippocampus (n = 62 
hippocampal bipolar channels). For 20 of these 30 subjects, additional single-neuron recordings from 
various MTL regions were available (n = 27 sessions; n = 43 hippocampal bipolar channels). Further 810 

subject information is presented in Table S1. The study conformed to the guidelines of the ethics 
committee of the University Hospital Freiburg, Freiburg, Germany, and all patients provided 
informed written consent. 

 

Neurophysiological recordings 815 

Patients were surgically implanted with intracranial depth electrodes in the MTL for diagnostic 
purposes in order to isolate their epileptic seizure focus for potential subsequent surgical resection. 
The exact electrode numbers and locations varied across subjects and were determined solely by 
clinical needs. Electrodes were provided by Ad-Tech (Ad-Tech, Racine, WI, USA). Macroelectrode 
recordings were performed at a sampling rate of 2 kHz using a Compumedics system (Compumedics, 820 

Abbotsford, Victoria, Australia). Microelectrode recordings were performed using Behnke-Fried 
electrodes (Ad-Tech, Racine, WI, USA) at a sampling rate of 30 kHz using a NeuroPort system 
(Blackrock Microsystems, Salt Lake City, UT, USA). Each Behnke-Fried electrode contained a 
bundle of 9 platinum–iridium microelectrodes with a diameter of 40 µm that protruded from the tip 
of the macroelectrode (43). The first eight microelectrodes were used to record action potentials and 825 

local field potentials. The ninth microelectrode served as reference. Microelectrode coverage included 
amygdala (AMY), entorhinal cortex (EC), fusiform gyrus (FG), hippocampus (HC), insula, 
parahippocampal cortex (PHC), temporal pole (TP), and visual cortex (VC). Temporal pole refers to 
a broader area in the anterior temporal lobe, situated ventral and anterior to the amygdala and 
entorhinal cortex. 830 

 

Associative object-location memory task 

During the invasive neural recordings, patients sat in their hospital bed and performed an associative 
object–location memory task in a virtual environment on a laptop computer (Fig. 1), which was 
adapted from previous studies (9, 65, 66). The task was developed using Unreal Engine 2 (Epic 835 

Games, Cary, NC, USA). 
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During the task, subjects first learned the locations of eight everyday objects by collecting each object 
from its location once (this initial encoding period was excluded from all analyses because it only 
lasted a few minutes). Afterwards, subjects completed variable numbers of test trials depending on 
compliance. Each test trial started with an inter-trial-interval (“ITI”) of 3–5-s duration (uniformly 840 

distributed). Subjects were then shown one of the eight objects (“cue”; duration of 2 s). During the 
subsequent retrieval period (“retrieval”; self-paced), subjects navigated to the remembered object 
location and indicated their arrival with a button press. Next, subjects received feedback on the 
accuracy of their response using one of five different emoticons (“feedback”; duration of 1.5 s). The 
retrieved object then appeared in its correct location and the subjects collected it from there to further 845 

improve their associative object–location memories (“re-encoding”; self-paced). Across all trials, the 
average duration of the retrieval periods was 13.415 ± 0.218 s (mean ± SEM) and the average duration 
of the re-encoding periods was 7.685 ± 0.158 s (mean ± SEM). The subjects could use several 
different strategies to retrieve the locations of the objects, including allocentric, egocentric, and 
landmark-based strategies (9). 850 

The virtual environment comprised a grassy plain with a diameter of ~10000 virtual units (vu), 
surrounded by a cylindrical cliff. There were no landmarks within the environment. The background 
scenery comprised a large and a small mountain, clouds, and the sun. All distal landmarks were 
rendered at infinity and remained stationary throughout the task. Subjects were asked to complete up 
to 160 trials but were instructed to pause or quit the task whenever they wanted. Subjects navigated 855 

the virtual environment using the arrow keys of the laptop computer (forward; turn left; turn right). 
Instantaneous virtual locations and heading directions (which are identical with viewing directions in 
our task) were sampled at 50 Hz. We aligned the behavioral data with the macroelectrode and 
microelectrode data using visual triggers, which were detected by a phototransistor attached to the 
screen of the laptop computer. The phototransistor signal was recorded together with the 860 

macroelectrode and microelectrode data at temporal resolutions of 2 kHz and 30 kHz, respectively. 

 

General information on statistics 

All analyses were carried out in MATLAB 2020b (The MathWorks, Inc., Natick, MA, USA) using 
MATLAB toolboxes, the CircStat toolbox (67), FieldTrip (version 20210614; 865 

http://fieldtriptoolbox.org) (68), and custom MATLAB scripts. All custom MATLAB scripts will be 
publicly available on GitHub upon publication. 

Unless otherwise indicated, we considered results statistically significant when the corresponding P-
value fell below an alpha level of α = 0.05. Analyses were two-sided, unless otherwise specified. 
Binomial tests evaluated the significance of proportions of neurons relative to a chance level of 5%, 870 

unless otherwise specified. Surrogate statistics were one-sided to assess whether an empirical test 
statistic significantly exceeded (or fell below) a distribution of surrogate statistics, unless otherwise 
specified. Correction for multiple comparisons was applied when necessary. All cluster-based 
permutation tests controlled for multiple comparisons across all relevant data dimensions. 

 875 

Behavioral analysis 

For each trial, we quantified the subject’s associative memory performance by calculating the 
Euclidean distance between the subject’s response location and the object’s correct location (“drop 
error”). Drop errors were transformed into memory performance values by ranking each drop error 
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within a distribution of surrogate drop errors (n = 107). Surrogate drop errors were generated 880 

synthetically as the distances between the trial-specific correct object location and random locations 
within the virtual environment. The transformation into memory performance values accounted for 
the fact that the possible range of drop errors is smaller for object locations in the center of the virtual 
environment as compared to object locations in the periphery of the virtual environment (9, 69): For 
objects in the environment center, the potential drop errors are in the range between [0, r], whereas 885 

they are in the range between [0, 2*r] for objects in the periphery of the arena, where r is the arena 
radius. Using the transformation procedure, performance values are mapped onto a range between [0, 
1], irrespective of whether the associated objects are located in the center or the periphery of the 
environment. A memory performance value of 1 represents the smallest possible drop error, whereas 
a memory performance value of 0 represents the largest possible drop error. 890 

To quantify performance increases within sessions, we computed the change in memory performance 
between the first and the second half of all trials (averaged across trials). We observed a significant 
increase in memory performance across all subjects and when only considering subjects with 
microelectrodes (Table S2). We also estimated memory-performance values per normalized time bin 
(20 bins; averaged across trials falling into a given normalized time bin) and calculated a Pearson 895 

correlation between bin index and average memory performance afterwards (averaged across 
sessions). 

 

Intracranial EEG: preprocessing 

Intracranial macroelectrode recordings were performed to identify ripples on hippocampal channels 900 

and to examine the MTL-wide effects of hippocampal ripples on local field potentials. Signals were 
sampled at 2 kHz and initial recordings were referenced to a common surface EEG contact (Cz). We 
visually inspected the data from each channel and removed channels without reasonable signals (for 
example, because they were located outside the brain). This resulted in a total number of 2,897 
intracranial EEG channels across all 41 sessions (519 out of 3,416 channels were removed because 905 

of artifactual data). 

To eliminate potentially system-wide artifacts or noise and to better sense ripples locally, we then 
applied bipolar re-referencing between pairs of neighboring contacts (37, 38, 50). Following bipolar 
re-referencing, we used band-stop filters to perform line-noise removal at 50, 100, 150, and 200 Hz 
(±2 Hz; two-pass 4th order Butterworth filter) in FieldTrip. 910 

To remove time periods with ripple-like artifacts that were present on the majority of all intracranial 
EEG channels, we computed the grand-average signal across all intracranial EEG channels (36, 40). 
This grand-average signal was also band-stop filtered at 50, 100, 150, and 200 Hz to remove line 
noise. 

 915 

Intracranial EEG: electrode locations 

To identify which bipolar channels were located inside the hippocampus and could thus be used to 
detect hippocampal ripples, we visually inspected all hippocampal electrodes on the post-
implantation MRI scans (Fig. S1). Following the hippocampal segmentation in (36), we assigned the 
hippocampal bipolar channels to particular hippocampal subregions, which showed that most bipolar 920 

channels were located in CA1. We similarly inspected all amygdala, entorhinal cortex, 
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parahippocampal cortex, and temporal pole electrodes to identify which bipolar channels were located 
in these regions (to examine the MTL-wide effects of hippocampal ripples). The locations of all 
bipolar channels in the different regions are displayed in Fig. S5A. 

To display a summary of all hippocampal bipolar channels, we determined the location of each 925 

macroelectrode channel in MNI space using PyLocator (http://pylocator.thorstenkranz.de/), 
following our previous procedure (70), and estimated the location of each bipolar channel as the mean 
of the MNI coordinates of the two contributing channels. We display the distribution of all 
hippocampal bipolar channels as a probability map on the group-average MRI scan (Fig. 2B). 

 930 

Intracranial EEG: interictal epileptic discharges (IEDs) 

To reduce the probability that the detected ripples were a result of IEDs (38), we identified IEDs 
before ripple detection using an automated procedure, which we double-checked with visual 
inspection. We automatically detected IEDs following previously established methods (33, 34, 45). 
The raw data was filtered using a high-pass filter of 0.5 Hz (two-pass 5th-order Butterworth filter) to 935 

remove slow-frequency drifts and a low-pass filter of 150 Hz (two-pass 6th-order Butterworth filter) 
in Fieldtrip. A time point was considered belonging to an IED, if (i) its amplitude exceeded four inter-
quartile ranges above or below the median amplitude calculated across the entire recording; if (ii) the 
gradient to the next time point exceeded four interquartile ranges above or below the median gradient; 
or if (iii) the sum power across the frequencies 1–60 Hz (30 logarithmically spaced frequencies; time-940 

frequency decomposition using Morlet wavelets with 7 cycles, followed by taking the natural 
logarithm and frequency-specific z-scoring across time) exceeded four interquartile ranges above the 
median sum power. The rationale behind these criteria was that IEDs exhibit high amplitudes, sharp 
amplitude changes, and power increases across a broad frequency range. We used interquartile ranges 
instead of standard deviations to reduce the influence of outliers. We inspected the output of our 945 

automated IED detection, which appeared suitable for detecting IEDs. Example IEDs are shown in 
Fig. S2A. 

 

Intracranial EEG: relationship between IEDs and behavior 

To test for systematic relationships between hippocampal IEDs and behavior, we estimated the 950 

prevalence of IEDs per trial phase. Using a repeated measures ANOVA (dependent variable: IED 
prevalence, averaged across trials; independent variable: trial phase; Tukey-Kramer correction for 
multiple comparisons), we tested whether the occurrence of IEDs varied as a function of trial phase.  

To understand whether IEDs were associated with memory performance, we performed partial 
correlations between IED prevalence and memory-performance values across trials, separately for 955 

each trial phase (controlling for trial index and the interaction between memory performance and trial 
index). We then computed one-sample t-tests across channels to see whether the correlations were 
significantly above or below 0, including Bonferroni correction for the number of trial phases. 
Moreover, to test whether IEDs increased or decreased over the course of the task, we performed 
partial correlations between IED prevalence and trial indices across trials, separately for each trial 960 

phase (controlling for memory performance and the interaction between memory performance and 
trial index). To corroborate the results from the partial correlations, we also computed linear mixed 
models with IED prevalence as dependent variable and various independent variables (Table S3). 
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Intracranial EEG: ripples 965 

We detected hippocampal ripples on bipolar channels of hippocampal macroelectrodes. If a subject 
was implanted bilaterally, hippocampal channels from both hemispheres were used for ripple 
detection. We first ensured reasonable signals on each hippocampal ripple channel by visually 
inspecting the raw intracranial EEG traces during preprocessing. If the signal of the most medial 
bipolar hippocampal channel did not have sufficient quality (which was the case in 5 of the 62 970 

hippocampal channels), we used the second most medial bipolar hippocampal channel for ripple 
detection. In one patient, the hippocampal electrode was implanted from posterior to anterior along 
the longitudinal axis of the hippocampus—in this case, we selected the two most anterior 
hippocampal channels so that the resulting bipolar channel was located in a similar hippocampal 
subregion as the channels from all other patients (i.e., in the anterior hippocampus). For each bipolar 975 

hippocampal channel, we visually verified that it was located inside the hippocampus. Most 
hippocampal channels were located in the CA1 region (Fig. S1). In total, 62 hippocampal channels 
were included (33 from the right hemisphere). 43 of these channels were from subjects with 
microelectrode recordings. 

Ripple detection was preceded by a detection of IEDs (see above) and ripple-like events in the grand-980 

average signal to exclude those time periods from ripple detection. To reduce the probability that the 
detected ripples were a result of artifacts, we conservatively excluded ±1 s around each detected IED 
(34) and each time point that co-occurred with a ripple-like event in the grand-average signal. 

To detect ripple candidates, we filtered the raw LFP between 80 and 140 Hz (two-pass 4th order 
Butterworth filter) and computed the instantaneous analytic amplitude within that band using a 985 

Hilbert transform (37, 38). We then smoothed the amplitudes using a smoothing time window of 20 
ms (45). Time points with artifacts were excluded (i.e., set to NaNs) in the smoothed amplitude time 
series. Next, we computed the mean and standard deviation of the smoothed amplitudes across the 
entire recording and detected candidate ripple events as time periods in which the signal exceeded 2 
standard deviations above the mean (37–39). Each candidate event then had to fulfill additional 990 

criteria to qualify as a putatively physiological ripple: (i) the peak of the smoothed amplitude had to 
exceed 3 standard deviations above the mean (37, 38); (ii) the duration had to last longer than 20 ms 
(36) and be shorter than 500 ms (39); (iii) the bandpass signal needed to have at least 3 peaks and at 
least 3 troughs (45); and (iv) the power spectrum, computed for frequencies between 30 and 190 Hz 
in steps of 2 Hz (using Morlet wavelets with 7 cycles) and divided by the power spectrum estimated 995 

across the entire recording, had to exhibit a global peak between 80 and 140 Hz. Only candidate 
events that fulfilled all these criteria were considered as ripples. 

Next, for each ripple, we extracted its peak time as the time point at which the band-pass signal was 
highest. Ripple duration was defined as the time difference between the start and end time of a given 
ripple. The frequency of a ripple was estimated based on the average temporal delay between the 1000 

peaks and troughs in the band-pass signal. To show the time-domain signal, the frequency-domain 
power spectrum (2 to 200 Hz in steps of 4 Hz), and the time–frequency-domain power spectrogram 
of the ripples (2 to 200 Hz in steps of 4 Hz), we extracted the raw LFP within ±3 s around each ripple. 
Fig. S3 shows various ripple characteristics including ripple rates, durations, frequencies, power 
spectra, and inter-ripple intervals. 1005 
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To compare the putatively physiological ripples against an identical number of “surrogate ripples” 
(Fig. 2I; Fig. S3C), we selected a random time point within ±60 s of each putatively physiological 
ripple (excluding time periods with artifacts), which we denoted as the peak time of the corresponding 
surrogate ripple (45). 

 1010 

Intracranial EEG: delta-phase locking of hippocampal ripples 

To investigate whether ripples were locked to particular phases of low-frequency oscillations (21, 
33), we filtered the hippocampal intracranial EEG with a two-pass finite impulse response (FIR) filter 
using MATLAB’s designfilt and filtfilt functions (filter order, 8000; lower cutoff frequency, 0.5 Hz; 
upper cutoff frequency, 2 Hz). We then estimated the phases of this delta-band filtered data using a 1015 

Hilbert transform. For each ripple, we extracted its corresponding delta phase at the ripple peak time, 
and averaged the ripple-locked delta phases afterwards. Across channels, we tested whether the 
average delta phases were clustered using a Rayleigh test (67). 

To assess statistical significance of ripple-phase coupling, we compared the empirical Rayleigh z 
value against 1001 surrogate Rayleigh z values, which we generated by performing the same steps as 1020 

described above with the only difference that the inter-ripple intervals were randomly shuffled. We 
computed the P-value of the empirical Rayleigh z value in comparison to the surrogate Rayleigh z 
values as P = 1 - rank, where rank is the fraction of surrogate Rayleigh z values that were smaller 
than the empirical Rayleigh z value. This analysis showed that the delta-phase locking of empirical 
ripples was significantly stronger than in surrogate ripples with shuffled inter-ripple intervals (P = 1025 

0.017). To also test whether the empirical average delta phases (one per channel) were different from 
the surrogate average delta phases (one per channel in each of 1001 surrogate rounds), we performed 
a two-sample Kuiper’s test (67). This showed that the empirical preferred delta phases were 
significantly different from the preferred delta phases of surrogate ripples (Kuiper’s test: k = 
1132988.000, P = 0.001). 1030 

 

Intracranial EEG: extrahippocampal ripple detection 

To characterize the MTL-wide effects of hippocampal ripples, we detected ripples on bipolar channels 
from the amygdala, entorhinal cortex, parahippocampal cortex, and temporal pole using the same 
procedure as for hippocampal ripples (see above). 1035 

We then performed cross-correlations between the ripple time series of a given hippocampal channel 
and the ripple time series of another channel (where each ripple time series is a vector of zeros and 
ones, with values of 1 indicating ripple periods). We considered maximum time lags of ±5 s between 
both time series and used unbiased estimations of the cross correlations by means of MATLAB’s 
xcorr function. We smoothed the pairwise cross-correlations with a Gaussian filter (kernel length of 1040 

0.2 s) and z-scored the cross-correlations across time lags. To evaluate whether the z-scored cross-
correlations were significantly positive, we then performed a cluster-based permutation test against 0 
across channels (1001 surrogates). 

In this cluster-based permutation test, we first applied a one-sample t-test to the empirical data, 
separately for each time lag, and identified contiguous clusters of time lags in which the uncorrected 1045 

P-value of the t-test was significant (α = 0.05) and the t-value was positive. For each cluster, we 
computed an empirical cluster statistic by summing up all t-values that were part of that cluster (tcluster-
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empirical). We then compared the empirical cluster statistics against surrogate cluster statistics, which 
we obtained by inverting the sign of the cross-correlation values of a random subset of the cross-
correlation series (69), performing exactly the same steps as described above for the empirical data, 1050 

and keeping only the maximum cluster statistic (resulting in 1001 tmax-cluster-surrogate values). We 
considered an empirical cluster statistic (tcluster-empirical) significant if it exceeded the 95th percentile of 
all surrogate maximum cluster statistics (tmax-cluster-surrogate). 

 

Intracranial EEG: LFP power during hippocampal ripples 1055 

To characterize the MTL-wide effects of hippocampal ripples, we computed ripple-aligned time–
frequency-resolved power spectrograms in different MTL regions. Across the 41 sessions with 
macroelectrode recordings, 400 combinations of electrodes in the left/right hippocampus and 
electrodes in the left/right amygdala, left/right entorhinal cortex, left/right hippocampus, left/right 
parahippocampal cortex, or left/right temporal pole were available (240 in ipsilateral and 160 in 1060 

contralateral hemispheres). 45 macroelectrode channels were located in the left amygdala (26 
ipsilateral to their co-recorded hippocampal channel), 48 in the right amygdala (29 ipsilateral), 11 in 
the left entorhinal cortex (7 ipsilateral), 33 in the right entorhinal cortex (21 ipsilateral), 50 in the left 
hippocampus (29 ipsilateral), 54 in the right hippocampus (33 ipsilateral), 33 in the left 
parahippocampal cortex (18 ipsilateral), 31 in the right parahippocampal cortex (20 ipsilateral), 45 in 1065 

the left temporal pole (26 ipsilateral), and 50 in the right temporal pole (31 ipsilateral). 

For each macroelectrode channel, we computed the time–frequency spectrogram across the entire 
recording (using Morlet wavelets with 7 cycles at 50 logarithmically spaced frequencies between 1 
and 200 Hz). Power values at time points with IEDs were excluded (i.e., set to NaN). Power values 
were then z-scored across time (using MATLAB’s normalize function), separately for each 1070 

frequency. Around each hippocampal ripple (±3 s), we extracted the z-scored power values, averaged 
across ripples in each channel, and smoothed the average spectrograms with a Gaussian filter across 
time (kernel length, 0.2 s). Spectrograms were then truncated to ±0.5 s around the ripple peak time 
point. Next, we averaged the z-scored power spectrograms across channels for depiction and 
performed cluster-based permutation tests (1001 surrogates) across channels to statistically evaluate 1075 

whether hippocampal ripples were associated with significant changes in LFP power in other MTL 
regions. 

In these cluster-based permutation tests, we first applied a one-sample t-test to the empirical data, 
separately for each time–frequency bin, and identified contiguous clusters of time–frequency bins in 
which the uncorrected P-value of the t-test was significant (α = 0.025). For each cluster, we computed 1080 

an empirical cluster statistic by summing up all t-values being part of that cluster (tcluster-empirical). We 
then compared the empirical cluster statistics against surrogate cluster statistics, which we obtained 
by flipping the sign of the power values of a random subset of the power spectrograms, performing 
exactly the same steps as described above for the empirical data, and keeping only the maximum 
cluster statistic (resulting in 1001 tmax-cluster-surrogate values). We considered an empirical cluster statistic 1085 

(tcluster-empirical) significant if it exceeded the 97.5th percentile or if it fell below the 2.5th percentile of 
all surrogate maximum cluster statistics (tmax-cluster-surrogate). We used a first-level alpha of α = 0.025 
(for identifying significant time–frequency bins in the power spectrograms) and a second-level alpha 
of α = 0.025 (for identifying significant clusters of significant time–frequency bins), because the 
cluster-based permutation tests tested for both increases and decreases in power. 1090 
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Intracranial EEG: relationship between hippocampal ripples and behavior 

Given previous findings on associations between hippocampal ripples and human behavior (36–41), 
we asked whether hippocampal ripples were modulated by the subjects’ behavior in our associative 
object–location memory task. To test whether ripple characteristics varied as a function of trial period 1095 

(i.e., ITI, cue, retrieval, feedback, and re-encoding), we estimated their rate, duration, and frequency 
in each trial phase. We then tested for significant associations between ripple characteristics and 
behavior using repeated measures ANOVAs (dependent variable: ripple characteristic, averaged 
across trials; independent variable: trial phase; Tukey-Kramer correction for multiple comparisons) 
and linear mixed models (Tables S4 and S5). 1100 

To test whether ripple rates were correlated with memory performance, we computed a partial 
correlation between trial-wise ripple rate and memory performance for each channel, separately for 
each trial phase (controlling for trial index and the interaction between memory performance and trial 
index). Across channels, we then tested whether the correlation values were significantly different 
from 0 using one-sample t-tests including Bonferroni correction for the number of trial phases. We 1105 

also tested whether ripple rates were associated with trial index (i.e., time within the task) using partial 
correlations as described above for memory performance (controlling for memory performance and 
the interaction between memory performance and trial index). To corroborate the results from the 
partial correlations, we also performed linear mixed models (Tables S4 and S5).  

To describe the time course of ripple rates during the trial phases, we computed peristimulus time 1110 

histograms for the occurrence of ripples relative to the start and end time of the different trial phases 
(i.e., relative to the start for the cue and the feedback periods; relative to the end for the ITI, retrieval, 
and re-encoding periods). For each hippocampal ripple channel, we computed the time course of 
instantaneous ripple rates during trials with good memory performance and bad memory performance 
(based on a median split of each subject’s memory performance values) and used two-sided cluster-1115 

based permutation tests in Fieldtrip to evaluate whether time-resolved ripple rates changed during 
particular periods of the different trial phases between trials with good versus bad memory 
performance. Although the ITI, retrieval, and re-encoding periods had variable durations across trials, 
we restricted our analysis of their time-resolved ripple rates to -3 to +1 s relative to the end of these 
periods to examine ripple rates as a function of absolute time. We obtained very similar results when 1120 

we examined ripple rates in normalized time, where we split each period into a fixed number of time 
bins (data not shown). 

 

Single-neuron recordings: spike detection and sorting 

Neuronal spikes were detected and sorted using Wave_Clus 3 (71). We used default settings with the 1125 

following exceptions (9): “template_sdnum” was set to 1.5 to assign unsorted spikes to clusters in a 
more conservative manner; “min_clus” was set to 60 and “max_clus” was set to 10 in order to avoid 
over-clustering; and “mintemp” was set to 0.05 to avoid under-clustering. All clusters were visually 
inspected and judged based on their spike shape and its variance, inter-spike interval (ISI) distribution, 
and the presence of a plausible refractory period. If necessary, clusters were manually adjusted or 1130 

excluded. Spike waveforms are shown as density plots in all figures. Spike times were aligned to the 
macroelectrode time axis using the trigger timestamps in order to investigate the relationship of 
single-neuron activity to events in the macroelectrode and behavioral data. 
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In total, we identified N = 1063 clusters (also referred to as “units,” “neurons,” or “cells” throughout 
the manuscript) across 27 experimental sessions from 20 patients that had microelectrodes implanted. 1135 

We localized the tips of the depth electrodes to brain regions based on post-implantation MRI scans 
to assign neurons recorded from the corresponding microelectrodes to these regions (e.g., Fig. S6A). 
We recorded n = 340 neurons from the amygdala, n = 214 neurons from the entorhinal cortex, n = 24 
neurons from the fusiform gyrus, n = 213 neurons from the hippocampus, n = 2 neurons from the 
insula, n = 126 neurons from the parahippocampal cortex, n = 135 neurons from the temporal pole, 1140 

and n = 9 from the visual cortex. Due to low numbers of neurons in fusiform gyrus, insula, and visual 
cortex, we excluded these regions from region-specific analyses. Fourteen microelectrode patients of 
this study were also part of a previous study (9). 

For recording quality assessment (Fig. S6), we calculated the number of units recorded on each 
microelectrode (for all microelectrodes with at least one unit); the ISI refractoriness of each unit; the 1145 

mean firing rate of each unit; and the waveform peak signal-to-noise ratio (SNR) of each unit (9). 
The ISI refractoriness was assessed as the percentage of ISIs with a duration of <3 ms. The waveform 
peak SNR was determined as: SNR = Apeak/SDnoise, where Apeak is the absolute amplitude of the peak 
of the mean waveform, and SDnoise is the standard deviation of the raw data trace (filtered between 
300 and 3000 Hz). 1150 

 

Single-neuron recordings: neuronal activity during hippocampal ripples 

We were interested in understanding how the firing rates of neurons in various MTL regions behaved 
during hippocampal ripples (Fig. 2M; Fig. S5D). Thus, in subjects with single-neuron recordings, we 
computed instantaneous firing rates across the entire experiment (smoothed with a Gaussian filter 1155 

with a kernel length of 0.2 s) and z-scored the firing rates across time. We then extracted the smoothed 
and z-scored firing rates during ±3 s relative to the hippocampal ripple peak time points and averaged 
across ripples afterward (separately for each neuron–ripple channel combination). 

To test whether neuronal firing rates were significantly elevated during hippocampal ripples, we 
performed cluster-based permutation tests (1001 surrogates). In these cluster-based permutation tests, 1160 

we first performed a one-sample t-test against 0, separately for each time bin. We then identified 
contiguous clusters of time bins with uncorrected P-values of P < 0.05 and calculated the sum t-value 
for each cluster (tcluster-empirical). To create surrogate cluster statistics, we inverted the sign of a random 
subset of the neuronal firing rates 1001 times. Using each set of surrogate data, we performed exactly 
the same steps as described above (time bin-wise one-sample t-tests against 0; identification of 1165 

contiguous clusters of time bins with uncorrected P-values of P < 0.05; calculation of the sum t-value 
for each cluster). In each surrogate round, we kept the maximum sum t-value (tmax-cluster-surrogate). We 
then considered tcluster-empirical significant if it exceeded the 95th percentile of all tmax-cluster-surrogate values. 
We separately tested for significantly elevated neuronal firing rates during hippocampal ripples 
depending on the regions in which the neurons were located (Fig. S5D). 1170 

We also examined the ripple-associated firing rates in different trial periods, separately for trials with 
good or bad memory performance (Fig. S4E). We tested whether the ripple-locked firing rates were 
significantly different between trials with good versus bad memory performance using cluster-based 
permutation tests (1001 surrogates) in Fieldtrip (68), by calculating surrogate cluster statistics based 
on surrogate data that were created by randomly re-assigning ripple-locked firing rates to trials with 1175 

good or bad memory performance. 
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Single-neuron recordings: object cells 

We designed the analysis of object cells to identify neurons that exhibited significant firing-rate 
increases in response to one particular object during the cue period. Hence, each object cell had to 1180 

fulfill two criteria: (1) The absolute average firing rates during cue periods with the cell’s “preferred” 
object had to be significantly higher than the absolute average firing rates during cue periods with the 
other, “unpreferred” objects; (2) the time-resolved firing rates during cue periods with the preferred 
object had to exhibit a significant cluster of time points in which the relative firing rates (relative to 
a 1-s baseline period immediately before the onset of the cue period) were significantly higher than 1185 

during trials with the unpreferred objects. We used criterion 2 in addition to criterion 1 to ensure that 
the cell’s preferred object was associated with a circumscribed firing-rate increase during the cue 
period. 

To evaluate criterion 1, we performed the following steps: We computed the average firing rate of 
the cell during each cue period; we designated the object with the highest associated grand-average 1190 

firing rate as the “preferred object”; we performed a two-sample t-test between the average firing 
rates from cue periods with the preferred object versus the average firing rates from cue periods with 
the unpreferred objects (tempirical); we created 1001 surrogate statistics (tsurrogate) by performing the 
previous steps on randomly shuffled average firing rates (breaking up the assignment between 
average firing rates and object identity); and we then considered a cell as fulfilling criterion 1, if 1195 

tempirical exceeded the 95th percentile of tsurrogate. 

To evaluate criterion 2, we performed the following steps: We computed the time-resolved firing 
rates of the cell during each cue period (temporal resolution, 0.01 s; smoothing with a Gaussian filter 
with a kernel length of 0.5 s); we baseline-corrected the time-resolved firing rates relative to a 1-s 
baseline period (immediately preceding the onset of the cue period); and we then used a cluster-based 1200 

permutation test in Fieldtrip (68) to examine whether there was a time window during the cue period 
in which the baseline-corrected, time-resolved firing rates were significantly higher during cue 
periods with the preferred object as compared to cue periods with the unpreferred objects (1001 
surrogates; one-sided α = 0.05). We then labeled a neuron as an object cell if both criteria were 
fulfilled. The cells’ preferred objects are indicated by orange color in all object cell-related figures. 1205 

To characterize object cells in greater detail (Fig 3, B–E), we calculated the percentage of object cells 
in the different MTL regions. To further understand their tuning, we calculated the sum of all 
significant time windows across object cells and their average time-resolved firing rates in response 
to the preferred and unpreferred objects. To examine the temporal stability of their tuning, we 
estimated each object cell’s time-resolved firing rate in response to the cell’s preferred object in the 1210 

first and second half of the data and then compared the two tuning curves using a Pearson correlation 
across time. We present the results regarding the tuning strength and temporal stability of object cells 
mainly for illustration purposes because these analyses are not fully independent from our procedure 
of identifying the object cells. 

 1215 

Single-neuron recordings: place cells 

We designed the analysis of place cells to identify cells that exhibited significant firing-rate increases 
when the subject was at a particular location of the virtual environment. Similar to previous single-
neuron studies in humans (9, 12, 57, 72–75), the firing-rate profiles of our human place cells were 
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less specific than those of spatially tuned cells in rodent studies, which is why these cells are 1220 

sometimes referred to as “place-like cells” (9, 74). Our analysis nevertheless ensured that our human 
place cells exhibited distinct place fields in the virtual environment in which the cells’ firing rates 
were significantly higher than in the other parts of the environment. The weaker spatial tuning of 
human place cells is presumably due to several different reasons including the fact that the epilepsy 
patients did not physically navigate but rather performed virtual navigation. 1225 

To identify place cells in our dataset, we first resampled the behavioral information about the subject’s 
(x/y)-position in the environment to a time resolution of 10 Hz (9, 72) and calculated the neuronal 
firing rate (Hz) in each 0.1-s time bin. We then estimated the average firing rate within each bin of a 
25 x 25 grid overlaid onto the environment (edge length of 400 vu) and excluded areas of the 
environment that the subject traversed less than two times. Time periods in which the subject did not 1230 

move or did not turn around for more than 2 s were excluded from this firing-rate map (in order to 
exclude periods when the subject was idle). The firing-rate map was then smoothed with a Gaussian 
kernel (kernel size, 5; standard deviation, 1.5; using MATLAB’s fspecial and conv2 functions). Next, 
we thresholded the firing-rate map at the 75th percentile of the firing-rate values and considered 
contiguous bins with firing rates above this threshold as candidate place fields. We kept the candidate 1235 

place field with the highest sum firing rate as the potential place field of this cell. We quantified the 
strength of this potential place field as the t-statistic of a two-sample t-test comparing the firing rates 
when the subject was inside the place field with the firing rates when the subject was outside the place 
field. We considered the empirical t-statistic (tempirical) significant if it exceeded the 95th percentile of 
1001 surrogate t-statistics (tsurrogate), which we obtained by performing exactly the same procedure as 1240 

described above with the only difference that we circularly shifted the firing rates relative to the 
behavioral data by a random lag (with the end of the session wrapped to the beginning), following 
previous studies [e.g., (9, 75)]. If tempirical was above the 95th percentile of all tsurrogate values, we 
considered the place field significant and designated the cell as a place cell. 

To characterize place cells (Fig. 3, H–L), we estimated the percentage of place cells in the different 1245 

MTL regions. We also calculated the cumulative distribution of place fields across the virtual 
environment (relative to the cumulative distribution of the firing-rate maps across the environment) 
and the size of the place fields across all place cells (expressed as percentages relative to the spatial 
extent of the firing-rate maps). We furthermore estimated the average firing rate of place cells inside 
versus outside the place fields and quantified the temporal stability of the place cells by performing 1250 

a Pearson correlation between the firing-rate map estimated using the first half of the data and the 
firing-rate map estimated using the second half of the data. We assessed the statistical significance of 
the temporal stability values by performing a one-sample t-test of the correlation values against 0. 
We present the results regarding the tuning strength and temporal stability of place cells mainly for 
illustration because these analyses are not fully independent from our procedure of identifying place 1255 

cells. 

 

Single-neuron recordings: conjunctive object–place cells 

We defined conjunctive object–place cells as cells that exhibited significant place tuning only during 
trials with one particular object (but not during trials with any other object). To identify conjunctive 1260 

object–place cells, we performed the place-cell analysis (as described above) eight times for each 
cell, each time only considering the trials with a particular object (for an example, see Fig. S7A). If a 
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cell exhibited significant place tuning at a Bonferroni-corrected alpha-level of α = 0.05/8 for exactly 
one object, we considered the cell as a conjunctive object–place cell. 

To characterize conjunctive cells (Fig. S7, B–D), we estimated the percentage of conjunctive cells in 1265 

different MTL regions and estimated their overlap with object cells and place cells. To provide 
supplemental evidence for the fact that conjunctive cells exhibited spatial tuning that was specific to 
trials with one particular object—instead of demonstrating overall spatial tuning as in place cells—
we estimated the pairwise similarity of the spatial firing-rate maps between trials with different 
objects using Pearson correlations (and averaged the similarity values across all pairwise comparisons 1270 

afterward). We then performed one-sample t-tests against 0 to show that these similarity values were 
not significantly above 0 for conjunctive cells (in line with spatial tuning being specific to trials with 
a particular object) but significantly above 0 for place cells (in line with spatial tuning being stable 
across time and thus independent of particular objects). 

 1275 

Single-neuron recordings and intracranial EEG: coactivity of object cells and place cells during 
hippocampal ripples 

Our main hypothesis pertained to the question whether object and place cells activated together during 
the same hippocampal ripples. To answer this question, we performed the following procedure. 

For each neuron–ripple channel combination (n = 1,716), we first estimated whether the neuron was 1280 

active in various time bins relative to the ripple peaks (301 time bins at -0.75 to 0.75 s relative to the 
ripple peaks with a bin width of 0.1 s and a step size of 0.005 s; 95% overlap between neighboring 
time bins). In total, there were 192 neuron–ripple channel combinations in which the neuron was an 
object cell, and there were 182 neuron–ripple channel combinations in which the neuron was a place 
cell. 1285 

Next, for each simultaneously recorded pair of an object and a place cell, we quantified the coactivity 
of both cells using a previously developed coactivity z-score (76). For a given combination of time 
bins used to estimate the activations of both cells, we calculated the coactivity z-score as: 

𝑧𝑧 =
𝑛𝑛𝐴𝐴𝐴𝐴 − 𝑛𝑛𝐴𝐴𝑛𝑛𝐵𝐵𝑁𝑁

�𝑛𝑛𝐴𝐴𝑛𝑛𝐵𝐵�𝑁𝑁−𝑛𝑛𝐴𝐴��𝑁𝑁−𝑛𝑛𝐵𝐵�
𝑁𝑁2(𝑁𝑁−1)

  

where N is the total number of ripples, nA is the number of ripples in which cell A spiked, nB is the 1290 

number of ripples in which cell B spiked, and nAB is the number of ripples in which both cells spiked. 
An illustration of the coactivity score is shown in Fig. S8. Because we estimated the activity of each 
cell at various time points relative to the ripple peaks (see above), we were able to compute the 
coactivity z-score for various combinations of time bins (i.e., for all possible time bins iA and jB of 
cell A and cell B, respectively). By considering all possible time-bin combinations, this procedure 1295 

resulted in a two-dimensional time-by-time coactivity map for each cell pair that showed the cells’ 
coactivity at various time points relative to the hippocampal ripple peaks. Example coactivity maps 
of individual cell pairs are shown in Fig. S12. 

To statistically evaluate the coactivity maps across all associative object cell–place cell pairs, we used 
a series of cluster-based permutation tests. During retrieval, associative cell pairs were selected as 1300 

cell pairs in which the subject’s response location in response to the object cell’s preferred object was 
inside the place field of the place cell. During re-encoding, associative cell pairs were selected as the 
pairs in which the correct location of the preferred object of the object cell was inside the place field 
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of the place cell. We used the cluster-based permutation tests to compare the coactivity maps (±0.25 
s around the ripple peaks) against chance (denoted as “> 0” or as “> surrogates” in the figure legends); 1305 

against coactivity maps from a baseline period (-0.75 to -0.25 s before the ripple peaks and 0.25 to 
0.75 s after the ripple peaks, averaged across these two time windows; denoted as “> baseline” in the 
figure legends); and against the coactivity maps of object cell–place cell pairs encoding non-
associative information (denoted as “> pref. object & response location outside place field” or “> 
pref. object and object location outside place field” in the figure legends). We reasoned that together 1310 

these three tests would provide robust information about the significance of ripple-locked coactivity 
of object and place cells. 

The different cluster-based permutation tests are illustrated in Fig. S9. When using cluster-based 
permutation tests to compare the coactivity maps against chance, we proceeded as follows. We 
performed a one-sample t-test of the coactivity z-values against zero across all object cell–place cell–1315 

ripple channel combinations, separately for each bin of the two-dimensional time-by-time coactivity 
maps. We next identified clusters of contiguous bins, for which the uncorrected P-value was 
significant (α = 0.05) and the t-statistic was above zero (given our a priori hypothesis of increased 
object cell–place cell coactivity during hippocampal ripples). For each cluster, we then computed the 
sum of all t-values (tcluster-empirical) and compared these empirical cluster statistics against 1001 1320 

surrogate statistics. To obtain each of the surrogate statistics, we inverted the sign of the coactivity z-
values of a random subset of the empirical coactivity maps. We then estimated the surrogate cluster 
statistics exactly as for the empirical data and kept the maximum surrogate cluster statistic (tmax-cluster-

surrogate; n = 1001). For each empirical cluster statistic (tcluster-empirical), we finally tested whether it 
exceeded the 95th percentile of all maximum surrogate cluster statistics (tmax-cluster-surrogate). If so, the 1325 

empirical cluster was considered significant. We also performed a variant of this cluster-based 
permutation test against chance (Fig. S10), where we subtracted a surrogate coactivity map from each 
corresponding empirical coactivity map before calculating the statistics across cell pairs. The 
surrogate coactivity map of a given cell pair was estimated by circularly shifting the ripple-locked 
activity levels of the object cell relative to the ripple-locked activity levels of the place cell by a 1330 

random latency before calculating the two-dimensional coactivity map. The statistics across 
associative cell pairs were then performed as described above for the comparison against zero. 

When using cluster-based permutation tests to compare the coactivity maps of associative object cell–
place cell–ripple channel combinations (set A) against baseline data or against the coactivity maps of 
non-associative object cell–place cell–ripple channel combinations (set B), we proceeded as follows. 1335 

We performed a two-sample t-test between the coactivity z-values of the two sets of coactivity maps, 
separately for each bin of the two-dimensional time-by-time coactivity maps. We next identified 
clusters of contiguous bins, for which the uncorrected P-value was significant (α = 0.05) and the t-
statistic was positive. For each cluster, we then computed the sum of all t-values (tcluster-empirical) and 
compared these empirical cluster statistics against 1001 surrogate statistics. To obtain each of the 1340 

surrogate statistics, we swapped a random subset of the set A and set B coactivity maps (when 
comparing the coactivity maps against baseline coactivity maps) or randomly reassigned the 
coactivity maps to the two sets A and B (when comparing the coactivity maps against coactivity maps 
of non-associative cell pairs). We then estimated cluster statistics exactly as for the empirical data 
and kept the maximum cluster statistic (tmax-cluster-surrogate). For each empirical cluster statistic (tcluster-1345 

empirical), we finally tested whether it exceeded the 95th percentile of all maximum surrogate cluster 
statistics (tmax-cluster-surrogate). If so, the empirical cluster was considered significant. 
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To further describe the data underlying the coactivity maps in Fig. 4, Fig. S11 shows the number of 
object cell–place cell–ripple channel combinations contributing to the coactivity maps (which can 
vary between the bins in the coactivity maps); the total number of ripples underlying the coactivity 1350 

maps (which can also vary between the different bins in the coactivity maps); the individual coactivity 
z-scores underlying the maxima in the coactivity maps; and the brain regions of the object cells and 
place cells contributing to the maxima in the coactivity maps. To validate using z-scores to compute 
coactivations (Fig. 4), we also computed the coactivations using Pearson correlations (between the 
activity vectors of object cells and place cells) and obtained qualitatively identical results (Fig. S13). 1355 

In our main results (Fig. 4, C–H), we separately considered early and late ripples (i.e., the first and 
the second half of all ripples, respectively). To understand whether this distinction mainly followed 
a distinction between ripples occurring before the initial formation and ripples occurring after the 
initial formation of associative memories, we performed a separate analysis in which we estimated 
the trial in which the subject exhibited the strongest improvement in memory performance, separately 1360 

for each object. We identified the object-specific trial of strongest memory improvement by (1) 
estimating the memory performance on each trial; (2) smoothing these performance values with a 
running average of three trials (to attenuate the effect of potential outliers); (3) iteratively computing 
a two-sample t-test between the memory-performance values from trials (i+1):n and those from trials 
1:i, where i is the current trial index and n is the total number of trials; (4) smoothing the resulting t-1365 

statistics with a running average of three trials (again to attenuate the effect of potential outliers); and 
by (5) identifying the trial with the largest t-statistic (where the t-statistics of the first and last trial 
were not considered in order to exclude the possibility that they were selected as the trial with the 
largest t-statistic). We considered all ripples occurring before or in the trial with the largest t-statistic 
as ripples occurring “before initial memory formation.” All other ripples (occurring after the trial with 1370 

the largest t-statistic) were considered as ripples occurring “after initial memory formation.” The 
results for ripples occurring before initial memory formation and those occurring after initial memory 
formation were very similar to the results for early versus late ripples (Fig. S15), suggesting that the 
significant object cell–place cell–coactivations during late ripples were at least partly dependent on 
an initial formation of the associative memories. 1375 

To understand whether the key coactivity results (Fig. 4, E and H) were driven by ripples occurring 
during movement or during non-movement, we categorized each time point of the task according to 
whether or not the subject was moving, and analyzed the data separately for both conditions. We 
observed that the cellular coactivations were mainly driven by ripples occurring during non-
movement periods (Fig. S16).  1380 
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Supplementary Text 
 

Supplementary Text S1: Epileptic activity, ripples, and behavior 

Between epileptic seizures, epilepsy patients exhibit interictal epileptiform discharges (IEDs), which 
are pathological bursts of neuronal activity. IEDs are readily visible in intracranial EEG recordings 1385 

based on their high amplitudes, sharp amplitude changes, and power increases across a broad 
frequency range (Fig. S2A) (34, 77). 

IEDs complicate the detection of ripples in human epilepsy patients. Following previously established 
procedures for the automated detection of IEDs (34, 39, 45), we therefore identified IEDs in our 
dataset and conservatively excluded 16.591 ± 2.692% (mean ± SEM; n = 62 channels) of the data 1390 

because of IEDs. We additionally excluded a small amount of the data due to ripple-like phenomena 
in the grand-average signal, which are presumably muscle or other artifacts, leading to 17.380 ± 
2.668% (mean ± SEM; n = 62 channels) of the data being excluded before ripple detection. As 
expected, we observed that a higher prevalence of IEDs was correlated with lower ripple rates across 
channels, both when computing ripple rates relative to the entire data and relative to data periods 1395 

without artifacts (Spearman’s rho = -0.740, P < 0.001 and Spearman’s rho = -0.451, P < 0.001, 
respectively; n = 62 channels), potentially indicating that the detected ripples were indeed physiologic 
and that IEDs lead to a reduction of such physiological ripples (41). 

Previous studies showed that IEDs lead to transitory cognitive impairments and that they impede the 
encoding and retrieval of associative memories (41, 78). We therefore analyzed the relationship 1400 

between IEDs and behavior in our associative object–location memory task and found that the 
prevalence of IEDs in a given trial was modulated by trial phase [repeated measures ANOVA: F(4, 
244) = 3.705, P = 0.006; Fig. S2C]. Specifically, IEDs were less prevalent during cue periods as 
compared to ITI and retrieval periods (post-hoc comparisons: PTukey-Kramer = 0.012 and PTukey-Kramer < 
0.001, respectively). We did not observe significant relationships between IED prevalence and 1405 

memory performance (Fig. S2D), which replicates a previous report with a similar paradigm and 
which may be due to the self-paced nature of this task (79). Instead, we found that IED prevalence 
slightly increased with time, which was most clearly visible for the ITI period [one-sample t-test 
against 0: t(60) = 2.985, P = 0.021, Bonferroni corrected for five tests] and the feedback period [one-
sample t-test against 0: t(57) = 3.339, P = 0.007, Bonferroni corrected for five tests; Fig. S2E], but 1410 

also irrespective of trial phase [one-sample t-test of channel-wise correlation coefficients between 
trial index and IED prevalence versus 0: t(61) = 2.207, P = 0.031; Fig. S2F]. 

We furthermore used a linear mixed model to investigate the relationship between IEDs and behavior. 
This linear mixed model used IED prevalence in a given trial phase as dependent variable and trial-
wise memory performance, trial index, and trial phase as fixed effects (Table S3). Channel index was 1415 

included as a random effect. In line with the above-mentioned results, the linear mixed model showed 
that memory performance was not related to IED prevalence and that trial index was positively 
correlated with IED prevalence. As compared to the ITI period, the cue period and the feedback 
period showed a lower prevalence of IEDs. Together, these results indicate that IEDs are modulated 
by our associative object–location memory task, but that they are not directly related to memory 1420 

performance in this task. 
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Supplementary Text S2: Hippocampal ripples and behavior 

Previous studies demonstrated that characteristics of hippocampal ripples can vary between different 
cognitive tasks, between different components of the same task, and as a function of the subjects’ 1425 

behavioral performance (33, 36–41, 50). Hence, we aimed at understanding whether hippocampal 
ripples were related to the subjects’ behavioral state and memory performance in our object–location 
memory task. 

We first tested whether ripple characteristics (rate, duration, and frequency) varied between the 
different phases of each trial (ITI, cue, retrieval, feedback, and re-encoding; Fig. 1B). In line with 1430 

previous results (36, 39), ripple rates were increased during the ITI and cue periods, when subjects 
rested and viewed pictures of the objects that cued them to remember particular locations in the 
environment, respectively [repeated measures ANOVA: F(4, 244) = 19.942, P < 0.001; post-hoc 
comparisons between ITI and retrieval, feedback, or re-encoding: all PTukey-Kramer < 0.024; post-hoc 
comparisons between cue and retrieval, feedback, or re-encoding: all PTukey-Kramer < 0.001; Fig. S4A]. 1435 

Ripple durations showed a similar modulation pattern [repeated measures ANOVA: F(4, 236) = 
2.463, P = 0.046; Fig. S4A], but post-hoc comparisons were unsignificant (all PTukey-Kramer > 0.138). 
Ripple frequency was not modulated by trial phase [repeated measures ANOVA: F(4, 236) = 0.562, 
P = 0.690; Fig. S4A]. These results demonstrate that the rate of human hippocampal ripples changes 
with the subjects’ behavioral state in our associative object–location memory task. 1440 

We next examined the memory relevance and temporal stability of hippocampal ripple rates. To this 
end, we estimated across-trial correlations between ripple rates and memory performance or trial 
index, separately for each channel, and tested for a consistent relationship across channels. During 
the cue period, ripple rates correlated positively with memory performance, i.e., with more frequent 
ripples predicting better memory performance in the subsequent retrieval period [one-sample t-test 1445 

against 0: t(60) = 2.763, P = 0.038, Bonferroni corrected for five tests; Fig. S4B]. During re-encoding, 
ripple rates correlated negatively with memory performance meaning that higher ripple rates followed 
memory responses with lower memory performance [one-sample t-test against 0: t(60) = -4.181, P < 
0.001, Bonferroni corrected for five tests; Fig. S4B]. This result implicates hippocampal ripples in 
the formation, or updating, of associative memories as subjects corrected their memories by viewing 1450 

the objects in their true locations during the re-encoding periods. 

Exploratory time-resolved analyses showed that during the cue period the difference in ripple rates 
between good and bad trials (defined by a median split of each subject’s memory performance values) 
was strongest at 1.162–1.470 s after cue onset (cluster-based permutation test: tcluster = 1023.281, P = 
0.011), whereas the difference during re-encoding was broadly distributed over time (Fig. S4C). 1455 

Ripple rates did not correlate with memory performance during the retrieval period and ripple rates 
did not increase at a fixed interval prior to successful retrieval (Fig. S4, B–C), which is presumably a 
result of the self-paced nature of the task. When we investigated the relationship between ripple rates 
and trial index, we found that ripple rates were largely stable across the course of the experiment, 
with a decrease of ripples over time during the feedback period [one-sample t-test against 0: t(59) = 1460 

-3.178, P = 0.012, Bonferroni corrected for five tests; Fig. S4D]. 

To corroborate these results (Fig. S4), we performed follow-up analyses using linear mixed models 
where we also controlled for the trial-wise prevalence of artifacts and obtained qualitatively identical 
results (Tables S4 and S5). In these linear mixed models, ripple rates were entered as the dependent 
variable and memory performance, trial index, and trial phase were modeled as fixed effects. We 1465 

included channel index as a random effect. In the second linear mixed model (Table S5), the trial- 
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and phase-wise prevalence of artifacts (i.e., IEDs and ripple-like events in the grand-average signal) 
was included as a covariate. Both linear mixed models showed that ripple rates were higher during 
the cue period and lower during the retrieval, feedback, and re-encoding periods as compared to the 
ITI period. As compared to the ITI period, ripple rates and memory performances were more 1470 

positively correlated with each other during the cue period and more negatively correlated with each 
other during the re-encoding period. Furthermore, ripple rates during the cue period and the feedback 
period decreased with increasing trial index. 

These findings demonstrate that the rate of human hippocampal ripples is associated with the subjects’ 
behavioral state and memory performance in our associative object–location memory task. Increased 1475 

ripple rates during the cue period preceded the successful retrieval of associative memories, which 
implicates hippocampal ripples in retrieval processes. Increased ripple rates during the re-encoding 
period followed the unsuccessful retrieval of associative memories, suggesting an additional role for 
hippocampal ripples in establishing or updating associative memories. These observations thus 
extend the previously established links between hippocampal ripples and memory processes in awake 1480 

humans (33, 36–41, 50). 

 

Supplementary Text S3: Ripple-locked neuronal firing and behavior 

Our analyses in the main text showed that hippocampal ripples were associated with a state of 
increased neural activations across the human MTL (Fig. 2, J–M), including a general increase of 1485 

single-neuron firing during hippocampal ripples (Fig. 2M). To further understand the functional 
relevance of this recruitment of neuronal activity during hippocampal ripples, we asked whether 
ripple-related single-neuron firing would differ as a function of trial phase and the subjects’ memory 
performance (using a median split of each subject’s memory performance values across trials). 

We found that ripple-locked firing rates during re-encoding periods following inferior memory 1490 

responses were significantly increased as compared to re-encoding periods after better memory 
responses (cluster-based permutation test: tcluster1 = -357.511, P = 0.002, 0.113–0.385 s relative to the 
ripple peaks; tcluster2 = -206.887, P = 0.010, -0.115–0.033 s; n = 1716 neuron–ripple-channel 
combinations; Fig. S4E). In the other trial phases (ITI, cue, retrieval, and feedback), ripple-locked 
firing rates exhibited similar increases during trials with better as compared to inferior memory 1495 

performance (Fig. S4E). Together with the increased ripple rates during re-encoding periods 
following inferior memory retrieval (Fig. S4B), this elevated single-neuron firing supports the idea 
that neuronal resources are broadly recruited in situations following inferior memory performance—
potentially to newly establish or update existing memory representations. 

 1500 

Supplementary Text S4: Supplementary discussion 

Associative memory and the lateral entorhinal cortex 

In the main text we discussed two broader hypotheses on the possible neural implementation of 
associative memories (the “conjunctive hypothesis” and the “coactivity hypothesis”). Both 
hypotheses align with the common view that the hippocampus holds a crucial function in binding the 1505 

separate elements of associative memories together (23, 80, 81). 

In addition to these two hypotheses, associative memory presumably rests upon multiple other neural 
mechanisms as well. In particular, several recent studies indicate that the lateral entorhinal cortex 
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holds a crucial function in associative memory, as rats with lesions to the lateral entorhinal cortex are 
unable to recognize object–context associations (82). Furthermore, over the course of associative 1510 

learning, oscillatory coupling at frequencies between 20–40 Hz evolves between the lateral entorhinal 
cortex and the dorsal hippocampus (83), suggesting that interregional (entorhinal–hippocampal) 
neural communication contributes to associative memory (84, 85). Specifically, fan cells of the lateral 
entorhinal cortex may be important for associative memory as inhibiting them optogenetically impairs 
the learning of new associative memories (86, 87). These studies provide strong evidence that cells 1515 

and oscillations in the lateral entorhinal cortex are key components of the neural substrate of 
associative memories. Some of our object and place cells may have indeed been located in the lateral 
entorhinal cortex and this brain region may thus have significantly contributed to our coactivity 
results. 

Neural changes during hippocampal ripples 1520 

We found that hippocampal ripples did not only coincide with highly specific coactivations of object 
cells and place cells, but that they were also associated with broad increases in neural activity across 
the human MTL (Fig. 2; Fig. S4E; Fig. S5). Specifically, we observed that hippocampal ripples 
occurred simultaneously with ripples in extrahippocampal MTL regions; that they were associated 
with elevated high-frequency power and decreased low-frequency power in these regions; and that 1525 

they were coupled to increased single-neuron spiking across the human MTL. Such brain states of 
increased excitation may provide a basis for establishing and activating connections between 
previously unconnected neurons. Hippocampal ripples may thus support various cognitive functions 
that rely on interactions between separate and widespread neural representations. 

Our finding of wide-ranging neural changes during hippocampal ripples aligns with previous reports 1530 

in both animals and humans. In rodents, hippocampal sharp-wave ripples are accompanied by 
widespread cortical and subcortical activations (22, 88, 89) and coincide with transient brain-wide 
increases in functional connectivity (24). In humans, hippocampal ripples are coupled with ripples in 
many cortical areas (23, 33, 37) and are accompanied by increased high-frequency broadband activity 
in widely distributed neocortical sites (40). They coincide with memory-specific high-frequency 1535 

broadband activity in high-order visual areas during memory retrieval (36) and support the 
reinstatement of memory-specific single-neuron sequences in the temporal cortex (38). These studies 
support our conclusion that ripples in the hippocampus provide a time window for increased 
activation and excitation across the brain, which may support associative memory by establishing and 
reactivating connections between separate neural elements. 1540 

Ripples in the anterior hippocampus versus ripples in the posterior hippocampus 

We recorded ripples solely from the anterior human hippocampus because this was the part of the 
hippocampus with the most frequent electrode coverage, given that the patients’ implantation 
schemes were determined by clinical needs. The human anterior hippocampus corresponds to the 
rodent ventral hippocampus, which poses a challenge when trying to directly compare our results to 1545 

studies on hippocampal sharp-wave ripples in rodents, which typically record sharp-wave ripples 
from the dorsal hippocampus. 

Prior rodent studies showed that ripples in the ventral segment of the hippocampus are often isolated 
from ripples in the intermediate and dorsal segments of the hippocampus (76, 90). Accordingly, 
ripples in different parts of the hippocampus may play different functional roles and may process 1550 

different types of information. Indeed, it has been shown that sharp-wave ripples in the dorsal 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted October 21, 2022. ; https://doi.org/10.1101/2022.10.17.512635doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.17.512635


 

43 
 

hippocampus of the rat are strongly enhanced by novel and rewarding experiences, whereas ventral 
hippocampal sharp-wave ripples are not modulated by novelty and reward (76). Concordantly, ripples 
in the dorsal and ventral hippocampus activate distinct and opposing patterns of spiking activity in 
the nucleus accumbens, whereby only those neurons of the nucleus accumbens are tuned to task- and 1555 

reward-related information whose activity is coupled to ripples in the dorsal hippocampus (76). These 
results point at differences between sharp-wave ripples in the dorsal versus ventral rodent 
hippocampus. Building on these findings in rodents, future studies in humans should thus investigate 
whether ripples in the anterior versus posterior human hippocampus have similar or different 
physiological and functional properties. 1560 

Ripples versus gamma and epsilon oscillations 

It is of ongoing debate whether the periods of elevated power around 80–140 Hz in this and other 
human studies [e.g., (33, 36–41, 50)] are the human homolog of ripples in rodents (15). Furthermore, 
whereas the frequency band of ripples in rodents (about 150–250 Hz) is different from the frequency 
bands of gamma (about 30–90 Hz) and epsilon (about 90–150 Hz) oscillations (46), the ripple band 1565 

in human studies (about 80–140 Hz) overlaps with the frequency ranges of gamma and epsilon 
oscillations. It could thus be the case that the transient high-frequency events that we referred to as 
ripples are actually pronounced gamma or epsilon oscillations. 

Furthermore, if human ripples indeed occur at frequencies of about 80–140 Hz, currently employed 
ripple-detection algorithms in human studies may detect a mixture of human ripples, gamma 1570 

oscillations, and epsilon oscillations. For example, the ripples that we detected during the cue period 
and for which we found a positive relationship to memory performance in the subsequent retrieval 
period (Fig. S4B) might also constitute increased power of gamma or epsilon oscillations (elicited by 
the visual presentation of the objects), for which a positive relationship with successful recall has 
been demonstrated before (91–95). 1575 

In addition, it is still unclear how physiological ripples can exactly be distinguished from pathological 
ripples in iEEG recordings of human epilepsy patients (42). In this study, we used a conservative 
rejection of IEDs and required ripple candidates to pass several criteria in order to increase the 
likelihood of only including physiological ripples in our analyses. Nevertheless, despite our best 
efforts these putatively physiological ripples may still have contained some pathological ripples. 1580 

Future studies may identify more precise markers to differentiate between physiological and 
pathological ripples and thus enable the investigation of strictly physiological ripples in human 
epilepsy patients.  
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Supplementary Tables 
 1585 

Table S1. Subject information. 

Subject 
index 

Session 
index 

Number 
of trials 

AMY 
channels 

EC 
channels 

HC 
channels 

PHC 
channels 

TP 
channels 

Micro-
electrode 
data 

Number 
of object 
cells 

Number 
of place 
cells 

FR001 1 52 L; R - L; R L; R L; R N - - 

FR002a 2 130 R R R R R N - - 

FR002b 3 152 R R R R R N - - 

FR003 4 41 L; R - L; R - L; R N - - 

FR004a 5 160 L R L; R L; R L; R N - - 

FR004b 6 131 L R L; R L; R L; R N - - 

FR005a 7 91 R R R - R N - - 

FR005b 8 85 R R R - R N - - 

FR006a 9 39 L; R R L; R L L; R Y 2 4 

FR006b 10 78 L; R R L; R L L; R Y 4 8 

FR007 11 34 R R R R R Y 1 4 

FR008a 12 160 L - L - L Y 4 2 

FR008b 13 160 L - L - L Y 0 0 

FR009a 14 160 L; R - L; R L; R L; R Y 5 4 

FR009b 15 160 L; R - L; R L; R L; R Y 4 5 

FR010 16 54 L; R - L; R L L; R Y 0 2 

FR011 17 98 L; R L L; R L; R R Y 3 4 

FR012a 18 151 L - L - L N - - 

FR012b 19 81 L - L - L N - - 

FR013 20 36 - - R R R Y 0 0 

FR014 21 67 L L L L L Y 2 3 

FR015b 22 113 R - R R R N - - 

FR016 23 126 R L; R L; R R R N - - 

FR017 24 160 R - L; R R L; R Y 11 12 

FR018 25 84 - - L - - N - - 

FR019 26 82 R - R R R N - - 

FR020 27 102 R R R - R Y 2 3 

FR021 28 54 L; R - L; R L; R L; R Y 3 3 

FR022 29 102 L; R - L; R - L; R Y 5 2 
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FR023a 30 160 L; R L; R L; R L L Y 6 7 

FR023b 31 160 L; R L; R L; R L L Y 0 3 

FR024 32 94 - R R R R Y 19 10 

FR025a 33 111 L; R R L; R L L; R Y 9 2 

FR025b 34 106 L; R R L; R L L; R Y 5 1 

FR025c 35 108 L; R R L; R L L; R Y 3 2 

FR026 36 80 L; R R L; R R L; R Y 5 9 

FR027 37 117 R R R R R Y 0 1 

FR028a 38 111 L L L L L Y 6 2 

FR028b 39 33 L L L L L Y 5 2 

FR029 40 112 L; R R L; R R L; R Y 12 7 

FR030 41 72 R R R R R Y 4 7 

AMY, amygdala; EC, entorhinal cortex; HC, hippocampus; PHC, parahippocampal cortex; TP, 
temporal pole. L, left; R, right. N, no; Y, yes. 
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Table S2. Detailed statistical information for analyses in the main text. 1590 

Test Descriptive and inferential statistics 
Fig. 1: Hypothesis and associative object–location memory task 
Average duration of retrieval periods (Fig. 1B) 13.415 ± 0.218 s (mean ± SEM), n = 4184 

retrieval periods 
Average duration of the re-encoding periods 
(Fig. 1B) 

7.685 ± 0.158 s (mean ± SEM), n = 4175 re-
encoding periods 

Section “Ripples in the human hippocampus during an associative object–location memory task” 
Total number of subjects n = 30 
Number of subjects with single-neuron 
recordings 

n = 20 

Total number of sessions n = 41 
Number of sessions with single-neuron 
recordings 

n = 27 

Number of trials per session 103 ± 6 (mean ± SEM); range, 33–160 
Duration per session (minutes) 49 ± 3 (mean ± SEM); range, 22–150 
Paired t-test between memory performance 
during the first versus the second data half (Fig. 
1D, left) 

t(40) = -4.788, P < 0.001 when considering all 
sessions; t(26) = -3.926, P < 0.001 when only 
considering sessions with single-neuron 
recordings 

Pearson correlation between normalized time 
and average memory performance (Fig. 1D, 
right) 

r = 0.865, P < 0.001, n = 20 time bins 

Total number of hippocampal ripples n = 35948 
Total number of hippocampal bipolar channels n = 62 
Number of hippocampal bipolar channels 
during sessions with single-neuron recordings 

n = 43 

Phase locking of hippocampal ripples to 
hippocampal delta phases (Fig. 2I) 

34 ± 68º (circular mean ± circular SD); 
Rayleigh test: z = 5.614, P = 0.003; comparison 
of the empirical Rayleigh z-value against 
surrogate Rayleigh z-values based on surrogate 
ripples with shuffled inter-ripple intervals: P = 
0.017; n = 62 channels; two-sample Kuiper’s 
test to examine whether empirical delta phases 
were different from surrogate delta phases: k = 
1132988.000, P = 0.001 

Section “Hippocampal ripples are associated with changes in LFP power and firing rates across 
the human MTL” 
Cluster-based permutation test on the z-scored 
cross-correlation values against 0 to show that 
ripple events in extrahippocampal MTL regions 
were coupled to hippocampal ripples (Fig. 2J) 

tcluster = 1897.513, P < 0.001, n = 296 
extrahippocampal–intrahippocampal channel 
pairs 

Cluster-based permutation test on normalized 
LFP power against 0 across all 
extrahippocampal MTL channels ipsilateral to 
hippocampal ripple channels, positive direction 
(Fig. 2K, left) 

tcluster = 22317.700, P = 0.018, n = 178 
ipsilateral channels 

Cluster-based permutation test on normalized 
LFP power against 0 across all 
extrahippocampal MTL channels contralateral 

tcluster = 70525.690, P < 0.001, n = 118 
contralateral channels 
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to hippocampal ripple channels, positive 
direction (Fig. 2K, right) 
Cluster-based permutation test on normalized 
LFP power against 0 across all 
extrahippocampal MTL channels ipsilateral to 
hippocampal ripple channels, negative 
direction (Fig. 2K, left) 

tcluster = -151182.988, P < 0.001, n = 178 
ipsilateral channels 

Cluster-based permutation test on normalized 
LFP power against 0 across all 
extrahippocampal MTL channels contralateral 
to hippocampal ripple channels, negative 
direction (Fig. 2K, right) 

tcluster = -196032.061, P < 0.001, n = 118 
contralateral channels 

Total number of neurons n = 1063 
Number of neurons in different brain regions Amygdala: n = 340; entorhinal cortex: n = 214; 

fusiform gyrus: n = 24; hippocampus: n = 213; 
insula: n = 2; parahippocampal cortex: n = 126; 
temporal pole: n = 135; visual cortex: n = 9 

Number of neuron–ripple channel 
combinations 

n = 1716 

Cluster-based permutation on z-scored single-
neuron firing rates during hippocampal ripples 
against 0 (Fig. 2M) 

tcluster = 4202.806, P < 0.001, n = 1716 neuron–
ripple channel combinations 

Section “Neurons in the human MTL encode objects and spatial locations” 
Number and prevalence of object cells 120; 11.289% of all cells 
Binomial test of object-cell prevalence against 
5% chance 

P < 0.001 

Pearson correlation between the preferred-
object tuning curve from the first data half and 
the preferred-object tuning curve from the 
second data half to demonstrate temporal 
stability of object-cell tuning (Fig. 3E) 

Pearson’s r = 0.368 ± 0.035 (mean ± SEM); 
one-sample t-test of correlation values against 
0: t(118) = 10.387, P < 0.001 

Number of pure object cells (Fig. 3F) 97; 80.833% of all object cells 
Number and prevalence of place cells 109; 10.254% 
Binomial test of place-cell prevalence against 
5% chance 

P < 0.001 

Pearson correlation between the firing-rate map 
from the first data half and the firing-rate map 
from the second data half to demonstrate 
temporal stability of place-cell tuning (Fig. 3L) 

r = 0.147 ± 0.021 (mean ± SEM); one-sample 
t-test of correlation values against 0: t(108) = 
7.080, P < 0.001 

Section “Ripple-locked coactivity of object and place cells during the retrieval and formation of 
associative memories” 
Total number of combinations of between 
object cells, place cells, and ripple channels 

n = 1104 

Cluster-based permutation test on the coactivity 
maps of associative cell pairs versus 0, retrieval 
(Fig. 4C, left) 

tcluster = 1806.271, P = 0.001 

Cluster-based permutation test on the coactivity 
maps of associative cell pairs versus baseline 
coactivity maps, retrieval (Fig. 4C, middle) 

tcluster = 390.563, P = 0.208 

Cluster-based permutation test on the coactivity 
maps of associative cell pairs versus the 

tcluster = 1753.851, P = 0.001 
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coactivity maps of non-associative cell pairs, 
retrieval (Fig. 4C, right) 
Cluster-based permutation test on the coactivity 
maps of associative cell pairs versus 0, 
retrieval, early ripples (Fig. 4D, left) 

tcluster = 911.469, P = 0.048 (Bonferroni 
corrected for performing this analysis on both 
early and late ripples) 

Cluster-based permutation test on the coactivity 
maps of associative cell pairs versus baseline 
coactivity maps, retrieval, early ripples (Fig. 
4D, middle) 

tcluster = 202.215, P = 0.860 (Bonferroni 
corrected for performing this analysis on both 
early and late ripples) 

Cluster-based permutation test on the coactivity 
maps of associative cell pairs versus the 
coactivity maps of non-associative cell pairs, 
retrieval, early ripples (Fig. 4D, right) 

tcluster = 1170.103, P = 0.020 (Bonferroni 
corrected for performing this analysis on both 
early and late ripples) 

Cluster-based permutation test on the coactivity 
maps of associative cell pairs versus 0, 
retrieval, late ripples (Fig. 4E, left) 

tcluster = 1688.581, P = 0.001 (Bonferroni 
corrected for performing this analysis on both 
early and late ripples) 

Cluster-based permutation test on the coactivity 
maps of associative cell pairs versus baseline 
coactivity maps, retrieval, late ripples (Fig. 4E, 
middle) 

tcluster = 1378.822, P = 0.005 (Bonferroni 
corrected for performing this analysis on both 
early and late ripples) 

Cluster-based permutation test on the coactivity 
maps of associative cell pairs versus the 
coactivity maps of non-associative cell pairs, 
retrieval, late ripples (Fig. 4E, right) 

tcluster = 1571.685, P = 0.004 (Bonferroni 
corrected for performing this analysis on both 
early and late ripples) 

Cluster-based permutation test on the coactivity 
maps of associative cell pairs versus 0, re-
encoding (Fig. 4F, left) 

tcluster = 3202.072, P < 0.001 

Cluster-based permutation test on the coactivity 
maps of associative cell pairs versus baseline 
coactivity maps, re-encoding (Fig. 4F, middle) 

tcluster = 622.631, P = 0.072 

Cluster-based permutation test on the coactivity 
maps of associative cell pairs versus the 
coactivity maps of non-associative cell pairs, 
re-encoding (Fig. 4F, right) 

tcluster = 2903.404, P < 0.001 

Cluster-based permutation test on the coactivity 
maps of associative cell pairs versus 0, re-
encoding, early ripples (Fig. 4G, left) 

tcluster = 304.802, P = 0.650 (Bonferroni 
corrected for performing this analysis on both 
early and late ripples) 

Cluster-based permutation test on the coactivity 
maps of associative cell pairs versus baseline 
coactivity maps, re-encoding, early ripples 
(Fig. 4G, middle) 

tcluster = 113.665, P = 1 (Bonferroni corrected 
for performing this analysis on both early and 
late ripples) 

Cluster-based permutation test on the coactivity 
maps of associative cell pairs versus the 
coactivity maps of non-associative cell pairs, 
re-encoding, early ripples (Fig. 4G, right) 

tcluster = 504.950, P = 0.212 (Bonferroni 
corrected for performing this analysis on both 
early and late ripples) 

Cluster-based permutation test on the coactivity 
maps of associative cell pairs versus 0, re-
encoding, late ripples (Fig. 4H, left) 

tcluster = 2670.873, P = 0.001 (Bonferroni 
corrected for performing this analysis on both 
early and late ripples) 

Cluster-based permutation test on the coactivity 
maps of associative cell pairs versus baseline 
coactivity maps, re-encoding, late ripples (Fig. 
4H, middle) 

tcluster = 947.243, P = 0.040 (Bonferroni 
corrected for performing this analysis on both 
early and late ripples) 
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Cluster-based permutation test on the coactivity 
maps of associative cell pairs versus the 
coactivity maps of non-associative cell pairs, 
re-encoding, late ripples (Fig. 4H, right) 

tcluster = 2231.542, P < 0.001 (Bonferroni 
corrected for performing this analysis on both 
early and late ripples) 
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Table S3. Linear mixed model to analyze the prevalence of interictal epileptic discharges (IEDs; 
dependent variable) as a function of behavior. 

Predictor t DF P 
Memory performance -0.031 32133 0.975 
Trial index 2.398 32133 0.017* 
Cue -5.247 32133 <0.001*** 
Retrieval 1.781 32133 0.075 
Feedback -2.134 32133 0.033* 
Re-encoding -1.787 32133 0.074 
Memory performance : trial index 1.458 32133 0.145 
Memory performance : cue -0.004 32133 0.996 
Memory performance : retrieval 0.407 32133 0.684 
Memory performance : feedback 1.329 32133 0.184 
Memory performance : re-encoding 1.628 32133 0.103 
Trial index : cue 0.093 32133 0.926 
Trial index : retrieval -1.802 32133 0.071 
Trial index : feedback 0.826 32133 0.409 
Trial index : re-encoding -0.837 32133 0.403 
Memory performance : trial index : cue -0.711 32133 0.477 
Memory performance : trial index : retrieval -0.285 32133 0.776 
Memory performance : trial index : feedback -1.029 32133 0.304 
Memory performance : trial index : re-encoding -0.690 32133 0.490 

*P < 0.05; ***P < 0.001. DF, degrees of freedom; :, interaction. 1595 

Model formula: IED prevalence ~ 1 + memory performance * trial index + memory performance * 
trial phase + trial index * trial phase + memory performance : trial index : trial phase + (1 | channel 
index).  
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Table S4. Linear mixed model to analyze ripple rates (dependent variable) as a function of 
behavior. 1600 

Predictor t DF P 
Memory performance -0.106 32133 0.915 
Trial index 0.343 32133 0.732 
Cue 3.351 32133 <0.001*** 
Retrieval -4.815 32133 <0.001*** 
Feedback -9.416 32133 <0.001*** 
Re-encoding -5.808 32133 <0.001*** 
Memory performance : trial index 1.351 32133 0.177 
Memory performance : cue 2.599 32133 0.009** 
Memory performance : retrieval 0.250 32133 0.803 
Memory performance : feedback 0.583 32133 0.560 
Memory performance : re-encoding -2.754 32133 0.006** 
Trial index : cue -3.483 32133 <0.001*** 
Trial index : retrieval -0.801 32133 0.423 
Trial index : feedback -2.824 32133 0.005** 
Trial index : re-encoding 1.259 32133 0.208 
Memory performance : trial index : cue -1.327 32133 0.185 
Memory performance : trial index : retrieval -1.672 32133 0.094 
Memory performance : trial index : feedback -1.333 32133 0.183 
Memory performance : trial index : re-encoding -0.173 32133 0.862 

**P < 0.01; ***P < 0.001. DF, degrees of freedom; :, interaction. 
Model formula: ripple rate ~ 1 + memory performance * trial index + memory performance * trial 
phase + trial index * trial phase + memory performance : trial index : trial phase + (1 | channel 
index). 
  1605 
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Table S5. Linear mixed model to analyze ripple rates (dependent variable) as a function of 
behavior and artifacts. 

Predictor t DF P 
Artifact prevalence -22.317 32132 <0.001*** 
Memory performance -0.119 32132 0.905 
Trial index 0.628 32132 0.530 
Cue 2.685 32132 0.007** 
Retrieval -4.696 32132 <0.001*** 
Feedback -9.772 32132 <0.001*** 
Re-encoding -6.166 32132 <0.001*** 
Memory performance : trial index 1.564 32132 0.118 
Memory performance : cue 2.613 32132 0.009** 
Memory performance : retrieval 0.308 32132 0.758 
Memory performance : feedback 0.775 32132 0.438 
Memory performance : re-encoding -2.568 32132 0.010* 
Trial index : cue -3.495 32132 <0.001*** 
Trial index : retrieval -1.021 32132 0.307 
Trial index : feedback -2.747 32132 0.006** 
Trial index : re-encoding 1.149 32132 0.251 
Memory performance : trial index : cue -1.438 32132 0.150 
Memory performance : trial index : retrieval -1.722 32132 0.085 
Memory performance : trial index : feedback -1.464 32132 0.143 
Memory performance : trial index : re-encoding -0.268 32132 0.788 

*P < 0.05; **P < 0.01; ***P < 0.001. DF, degrees of freedom; :, interaction. 
Model formula: ripple rate ~ 1 + artifact prevalence + memory performance * trial index + memory 
performance * trial phase + trial index * trial phase + memory performance : trial index : trial phase 1610 

+ (1 | channel index).  
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Supplementary Figures 
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Fig. S1. Depiction of the hippocampal macroelectrode channels from all 41 sessions. The locations of the hippocampal 
electrodes are presented on coronal slices of the post-operative MRI scans. Red arrow, first electrode channel contributing to the 1615 
bipolar channel; yellow arrow, second electrode channel contributing to the bipolar channel. Black bold large numbers indicate 
the session numbers. Numbers right and above the images indicate the y-coordinate of the coronal slice in MNI space. Red labels, 
hippocampal subregions based on visual inspection following (36). CA1, cornu ammonis region 1; CA2/3, cornu ammonis region 
2 or 3; DG, dentate gyrus; presub, presubiculum; sub, subiculum. HAL, hippocampus anterior left; HAR, hippocampus anterior 
right; HL, hippocampus left.  1620 
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Fig. S2. Interictal epileptiform discharges (IEDs). (A) Examples of IEDs from five different sessions, which were identified 
using an automated procedure. Around each IED, an additional time period of ±1 s was excluded (34). Black, local field potential 
(not filtered); red, local field potential with an IED and thus excluded from subsequent ripple detection. (B) Histogram showing 
the prevalence of IEDs in each session. On average, 16.591 ± 2.692% (mean ± SEM; n = 62 channels) of the data was designated 1625 
as belonging to an IED. (C) Prevalence of IEDs in different trial phases. A repeated measures ANOVA identified a significant 
modulation of IED prevalence by trial phase [F(4, 244) = 3.705, P = 0.006]. Post-hoc comparisons showed that the prevalence 
of IEDs was significantly reduced during the cue period as compared to the ITI period (PTukey-Kramer = 0.012) and the retrieval 
period (PTukey-Kramer < 0.001). (D) Correlation between the prevalence of IEDs and memory performance, separately for each trial 
phase. Correlations were computed separately for each channel and then averaged across channels. Correlation coefficients were 1630 
not significantly different from 0 (one-sample t-tests across channel-wise correlation coefficients: all t < 0.899, all P = 1, 
Bonferroni corrected for five tests). (E) Correlation between the prevalence of IEDs and trial index, separately for each trial 
phase. Correlations were computed separately for each channel and then averaged across channels. Correlation coefficients were 
significantly above 0 for ITI [one-sample t-test across channel-wise correlation coefficients: t(60) = 2.985, P = 0.021, Bonferroni 
corrected for five tests] and feedback [t(57) = 3.339, P = 0.007, Bonferroni corrected for five tests]. (F) Correlation between the 1635 
prevalence of IEDs and trial index, irrespective of trial phase. Correlation coefficients were significantly above 0, indicating that 
the prevalence of IEDs increased over the course of a session [one-sample t-test: t(61) = 2.207, P = 0.031]. *P < 0.05; **P < 
0.01. 
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 1640 

Fig. S3. Characteristics of hippocampal ripples. (A) Different ripple characteristics including ripple rates, inter-ripple 
intervals, ripple durations, and ripple frequencies. The identified ripples occurred at a rate of 0.136 ± 0.008 ripples/s (mean ± 
SEM; n = 62 channels; 0.159 ± 0.007 ripples/s when only considering artifact-free time periods) and exhibited an average inter-
ripple interval of 7.382 ± 0.084 s (mean ± SEM; n = 35886 inter-ripple intervals). The ripples had an average duration of 45.210 
± 0.086 ms (mean ± SEM; n = 35948 ripples) and an average frequency of 92.603 ± 0.036 Hz (mean ± SEM; n = 35948 ripples). 1645 
These ripple characteristics are comparable to previous studies using similar ripple-detection algorithms [e.g., (34, 39, 45)]. (B) 
Ripple rates during first sessions were not different from ripple rates during second or third sessions [two-sample t-test: t(60) = 
-0.307, P = 0.760, n = 44 channels in first sessions, n = 18 channels in second or third sessions]. (C) Raw and relative power 
spectrum of hippocampal ripples and hippocampal surrogate ripples. Relative power was estimated by dividing the power values 
during the ripples by the mean power values averaged across the entire experiment (separately for each frequency). As expected, 1650 
raw and relative power spectra of ripple periods showed marked peaks at about 93 Hz. 
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Fig. S4. Hippocampal ripple rates are linked to behavioral state and memory performance in the associative memory 
task. (A) Ripple characteristics (rate, duration, and frequency) during the different trial phases. As compared to inter-trial interval 1655 
(ITI) periods, ripple rates were significantly increased during cue periods and significantly reduced during retrieval, feedback, 
and re-encoding periods. Ripple durations showed a similar pattern as ripple rates (but no significant post-hoc comparisons). 
Ripple frequency was not modulated by trial phase. (B) Correlation between ripple rates and memory performance, separately 
for the different trial phases. (C) Correlation between ripple rates and trial index, separately for the different trial phases. (D) 
Time-resolved ripple occurrence across all trials as a function of absolute time relative to the onset (cue and feedback) or offset 1660 
(ITI, retrieval, and re-encoding) of a given trial phase (dashed vertical lines), separately for the different trial phases. Each dot is 
a ripple (colored dots, ripples during good-performance trials; gray dots, ripples during bad-performance trials). Colored lines 
and shadings, ripple rates during good-performance trials (“good trials”; mean ± SEM across channels); gray lines and shadings, 
ripple rates during bad-performance trials (“bad trials”; mean ± SEM across channels). Black shadings at top indicate time 
periods with significant differences between good and bad trials (two-sided cluster-based permutation tests across the entire 1665 
depicted time window: P < 0.025). For ITI, retrieval, and re-encoding, the plots focus on the last three seconds before the end of 
these periods (at time 0), although their durations differed between trials. (E) Neuronal firing rates during hippocampal ripples 
occurring in specific trial phases. Firing rates are smoothed with a Gaussian kernel of 0.2-s duration and z-scored relative to the 
entire experiment. Colored lines and shadings (mean ± SEM) indicate firing rates during ripples from trials with good memory 
performance; gray lines and shadings (mean ± SEM) indicate firing rates during ripples from trials with bad memory 1670 
performance. Time 0, hippocampal ripple peak. Black shadings at the top of the subpanels indicate significantly different firing 
rates during ripples from good-performance trials versus firing rates during ripples from bad-performance trials (two-sided 
cluster-based permutation tests across the entire depicted time window: P < 0.025). Colored numbers indicate the number of 
neuron–ripple channel combinations contributing to the data. ITI, inter-trial interval. *P < 0.05; ***P < 0.001. 

  1675 
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Fig. S5. Hippocampal ripples are associated with changes in LFP power and firing rates across the human MTL. (A) 
Probabilistic visualizations of regions of interest including temporal pole (TP), entorhinal cortex (EC), amygdala (AMY), 
hippocampus (HC), and parahippocampal cortex (PHC), listed according to their anterior–to–posterior position in the human 
brain. White dots, locations of bipolar electrode contacts pooled across subjects; ȳ, average MNI y-value of the contacts in a 1680 
given region of interest. (B) Cross-correlations between hippocampal ripples and ripples in the different MTL regions. Blue and 
gray numbers indicate the number of channel pairs from ipsilateral and contralateral hemispheres, respectively. Time 0 indicates 
the peak of the hippocampal ripples; cross-correlation maxima at positive time lags indicate that the ripples from a particular 
region of interest numerically precede hippocampal ripples. Cross-correlations are smoothed with a Gaussian kernel of 0.2-s 
duration and are normalized by z-scoring cross-correlation values over the displayed time lags of ±0.5 s. Shaded region, SEM 1685 
across channels pairs. Black shadings at top indicate z-scored cross-correlations from both ipsilateral and contralateral channel 
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pairs being significantly above 0 (one-sided cluster-based permutation tests across the entire depicted time window: P < 0.05). 
The blue line in the subpanel for hippocampal channels is the smoothed temporal autocorrelation and is only shown for the sake 
of completeness. (C) Time-frequency resolved LFP power (z-scored relative to the entire experiment) in the different MTL 
regions during hippocampal ripples, both for ipsilateral channel pairs (left column) and contralateral channel pairs (right column). 1690 
Power values are smoothed over time with a Gaussian kernel of 0.2-s duration. Time 0 indicates the peak of the hippocampal 
ripples. Black contours, significantly increased power; white contours, significantly decreased power (two-sided cluster-based 
permutation tests across the entire depicted time window: P < 0.025). (D) Neuronal firing rates (z-scored relative to the entire 
experiment) in hippocampal and extrahippocampal regions (recorded using microelectrodes) during hippocampal ripples 
(recorded using macroelectrodes). Firing rates are smoothed over time with a Gaussian kernel of 0.2-s duration. Blue and gray 1695 
numbers indicate the counts of ipsilateral and contralateral neuron–ripple channel pairs, respectively. Black shadings at top 
indicate firing rates from both ipsilateral and contralateral neuron–ripple channel combinations significantly above 0 (one-sided 
cluster-based permutation tests across the entire depicted time window: P < 0.05). IH, ipsilateral hemispheres; CH, contralateral 
hemispheres. AMY, amygdala; EC, entorhinal cortex; HC, hippocampus; PHC, parahippocampal cortex; TP, temporal pole. A, 
anterior; D, dorsal; L, left; R, right. X-Correlation, cross-correlation.  1700 
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Fig. S6. Single-neuron recordings: anatomical locations and quality assessment. (A–E) Example microelectrodes in 
amygdala (AMY), entorhinal cortex (EC), hippocampus (HC), parahippocampal cortex (PHC), and temporal pole (TP). Electrode 
contacts of macroelectrodes appear as dark circles on the MRI scans. Red arrows point at putative microelectrode locations, 
which protrude 3–5 mm from the tip of the depth electrode (often not visible on MRI scans). White triangles indicate the borders 1705 
of the different brain regions. (F) Histogram of units per wire. On average, 1.570 ± 0.032 (mean ± SEM) units per wire were 
recorded (only considering wires with at least one unit). (G) Histogram of the percentages of inter-spike intervals (ISIs) that 
were shorter than 3 ms. On average, units exhibited 0.507 ± 0.024% (mean ± SEM) ISIs that were shorter than 3 ms. (H) 
Histogram of mean firing rates (FRs). On average, units exhibited mean FRs of 2.402 ± 0.108 (mean ± SEM) Hz, which is 
comparable to previous human single-neuron studies [e.g., (38)]. (I) Histogram of the mean waveform peak signal-to-noise ratio 1710 
(SNR) of each unit. On average, the SNR of the mean waveform peak was 9.181 ± 0.160 (mean ± SEM). 
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Fig. S7. Conjunctive cells. (A) Example conjunctive cell. The eight different panels show the cell’s place tuning when only 
considering data from trials with a particular object. This example conjunctive cell exhibited significant place tuning at a 1715 
Bonferroni-corrected alpha-level of α = 0.05/8 only during trials with object #3 (first row, third column). For each panel, from 
left to right: action potentials as density plot; entire (gray line) and object-specific (black line) navigation path of the subject 
through the environment; smoothed firing-rate map (unvisited areas are shown in white); empirical t-statistic (red line) and 
surrogate t-statistics (gray histogram); color bar, firing rate. Candidate place fields are outlined in black. (B) Distribution of 
conjunctive cells across brain regions; red line, 5% chance level. (C) Overlap between object cells, place cells, and conjunctive 1720 
cells. The large majority of object and place cells were not also conjunctive cells. (D) Similarity of place tuning across trials with 
the eight different objects, which we estimated using pairwise Pearson correlations between the firing-rate maps from trials with 
different objects. Place tuning was significantly similar (and, thus, stable) across trials with different objects for place cells [one-
sample t-test, t(108) = 4.417, P < 0.001], but not for conjunctive cells [t(95) = 1.056, P = 0.294] and also not for object cells 
[t(119) = 1.888, P = 0.061]. Place-tuning similarity was significantly higher in place cells than in conjunctive cells [two-sample 1725 
t-test: t(203) = 2.772, P = 0.006] and also significantly higher in place cells than in object cells [t(227) = 2.550, P = 0.011]. These 
results underline the general spatial coding of place cells (being stable across time irrespective of the current object) and confirms 
that conjunctive cells (as well as object cells) do not exhibit such general spatial coding, as expected. Conj., conjunctive. AMY, 
amygdala; EC, entorhinal cortex; HC, hippocampus; PHC, parahippocampal cortex; TP, temporal pole. *P < 0.05; **P < 0.01; 
***P < 0.001.  1730 
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Fig. S8. Illustration of the coactivity z-score. Coactivity z-scores between two cells (cell A and cell B) in a hypothetical situation 
with ten ripples. The different subplots display the coactivity z-scores as a function of the number of ripples in which cell A is 
active (y-axis), the number of ripples in which cell B is active (x-axis), and the number of ripples in which both cells are active 
(title). High coactivity z-scores are achieved when the number of ripples in which both cells are active matches the number of 1735 
ripples in which cell A (irrespective of cell B) or cell B (irrespective of cell A) is active. The coactivity z-value is not defined 
(white areas) for situations (i) in which cell A and/or cell B are not active during any ripple; (ii) in which cell A and/or cell B are 
active during all ripples; and (iii) in which the activity combination is logically impossible. #, number. 
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 1740 
Fig. S9. Illustration of the cluster-based permutation tests. (A) Cluster-based permutation test of the coactivity maps against 
chance (i.e., 0). To identify empirical clusters, a one-sample t-test against 0 was performed for each time–by–time bin. 
Contiguous clusters of significant bins were identified, and the corresponding t-values were summed, resulting in empirical 
cluster statistics. To create surrogate data, a randomly selected subset of the coactivity maps was multiplied by -1. Performing 
the same steps as for the empirical data, surrogate cluster statistics were then created based on the surrogate data. (B) Variant of 1745 
the cluster-based permutation test against chance, where a surrogate coactivity map was subtracted from each corresponding 
empirical coactivity map. The surrogate coactivity of a given cell pair was estimated by circularly shifting the ripple-locked 
activity levels of the object cell relative to the ripple-locked activity levels of the place cell by a random latency before calculating 
the two-dimensional coactivity map. The statistics across associative cell pairs were performed as in A. (C) Cluster-based 
permutation test of the coactivity maps against coactivity maps from a baseline window. The pre-baseline and post-baseline 1750 
windows spanned -0.75 to -0.25 s before and 0.25 to 0.75 s after the ripple peaks, respectively. Baseline coactivity maps were 
then estimated by averaging the pre-baseline and the post-baseline coactivity maps. To identify empirical cluster statistics, a two-
sample t-test between the coactivity maps and the baseline coactivity maps was performed for each time-by-time bin. Contiguous 
clusters of significant bins were identified, and the corresponding t-values were summed up, resulting in empirical cluster 
statistics. To create surrogate data, a random subset of corresponding coactivity maps and baseline coactivity maps was swapped. 1755 
Performing the same steps as for the empirical data, surrogate cluster statistics were then created based on the surrogate data. 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted October 21, 2022. ; https://doi.org/10.1101/2022.10.17.512635doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.17.512635


 

64 
 

(D) Cluster-based permutation test of the coactivity maps of associative cell pairs versus non-associative cell pairs (for which 
the location of the preferred object of the object cell was not located inside the place field of the place cell). To identify empirical 
clusters, a two-sample t-test between the coactivity maps of associative cell pairs and those of non-associative cell pairs was 
performed for each time-by-time bin. Contiguous clusters of significant time bins were identified, and the corresponding t-values 1760 
were summed up, resulting in empirical cluster statistics. To create surrogate data, the coactivity maps of associative and non-
associative cell pairs were randomly reassigned to the two cell groups. Performing the same steps as for the empirical data, 
surrogate cluster statistics were then created based on the surrogate data. In all different tests, empirical clusters were considered 
significant if their cluster statistics exceeded the 95th percentile of all surrogate cluster statistics. Red arrows indicate how 
surrogate data were created.  1765 
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Fig. S10. Coactivity of object cells and place cells during hippocampal ripples: comparison against surrogate coactivity 
maps. (A–F) Same as the left panels in Fig. 4, C–H, with the difference that the coactivity maps are contrasted against surrogate 
coactivity maps instead of against 0. For each cell pair, one surrogate coactivity map was estimated by circularly shifting the 
spiking activity of the object cell relative to the spiking activity of the place cell by a random latency across ripples. White lines 1770 
delineate significant clusters based on cluster-based permutation tests, whose P-values are stated in the upper left corners of the 
coactivity maps. >, larger than; pref., preferred.  
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Fig. S11. Coactivity of object cells and place cells during hippocampal ripples: additional information. Columns from left 
to right: (1) coactivity maps reproduced from Fig. 4, C–H, left column. (2) Number of object cell–place cell–ripple channel 1775 
combinations underlying the coactivity maps in the first column. (3) Number of ripples underlying the coactivity maps in the 
first column, pooled across object cell–place cell–ripple channel combinations. (4) Histograms of individual coactivity z-values 
underlying the global maxima in the coactivity maps in the first column. Red line, mean; numbers above the histograms indicate 
the temporal coordinates of the global maxima in the coactivity maps (p, temporal coordinate for the place-cell time axis; o, 
temporal coordinate for the object-cell time axis). (5) Brain regions of the object cells and place cells contributing the coactivity 1780 
z-values of the global peaks of the coactivity maps in the first column; color bars, number of object cell–place cell combinations. 
(A) Data for retrieval. (B) Data for re-encoding. A, amygdala; E, entorhinal cortex; F, fusiform gyrus; H, hippocampus; I, insula; 
P, parahippocampal cortex; T, temporal pole; V, visual cortex. 
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Fig. S12. Coactivity of object cells and place cells during hippocampal ripples: individual examples. (A) Both rows show 1785 
an individual example of the coactivity for an object cell–place cell–ripple channel combination, from ripples during the retrieval 
periods of the associative object–location memory task. Left column, coactivity map between a given object cell and a given 
place cell during the ripples of a given ripple channel. Middle column, information about the object cell including a density plot 
of the spike waveforms (upper left subpanel; number above subpanel indicates spike count), locations of the objects including 
the location of the preferred object (orange dot in the lower left subpanel), and average firing rates in response to the different 1790 
objects during the cue periods (right subpanel). Right column, information about the place cell including a density plot of the 
spike waveforms (upper left subpanel), the subject’s navigation path through the virtual environment (lower left subpanel), the 
cell’s firing-rate map (middle subpanel), and the comparison between the cell’s empirical test statistic and its surrogate test 
statistics (upper right subpanel). Color bar, firing rate. (B) Same as in A, but for ripples occurring during the second half of all 
retrieval-related ripples. (C) Same as in A, but for ripples occurring during the re-encoding periods. (D) Same as in A, but for 1795 
ripples occurring during the second half of all re-encoding-related ripples. AMY, amygdala; EC, entorhinal cortex; FG, fusiform 
gyrus; PHC, parahippocampal cortex; TP, temporal pole. 
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Fig. S13. Coactivity of object cells and place cells during hippocampal ripples: Pearson correlations. (A–F) Same as Fig. 1800 
4, C–H, with the difference that coactivity was estimated with Pearson correlations. White lines delineate significant clusters 
based on cluster-based permutation tests, with P-values stated at the upper left. >, larger than; pref., preferred. 
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Fig. S14. Coactivity of object cells and place cells during hippocampal ripples: temporal shift between retrieval and re-1805 
encoding. (A) Direct comparison of the coactivity maps from retrieval versus the coactivity maps from re-encoding. This 
demonstrates that the coactivations are higher for retrieval than for re-encoding at time points during and slightly after the ripple 
peaks (with regard to object cells and place cells, respectively). The retrieval-related coactivity maps are estimated using the 2nd 
half of all ripples during retrieval, considering only trials in which the subject is asked to remember the location of the preferred 
object of the object cell and in which the subject’s response location is inside the place field of the place cell (Fig. 4E, left panel). 1810 
The re-encoding-related coactivity maps are estimated using the 2nd half of all ripples during re-encoding, considering only trials 
in which the subject is asked to re-encode the correct location of the preferred object of the object cell and in which the object’s 
correct location is inside the place field of the place cell (Fig. 4H, left panel). For this analysis, the coactivity z-scores of each 
cell pair were normalized (zrel) so that a particular coactivity z-score was: zrel-i = (zi - min(z)) / max(z), where i is the index of a 
particular coactivity z-score in a given coactivity map. For each cell pair, the normalized coactivity z-scores thus ranged between 1815 
0 and 1. This was done in order to enable the direct comparisons between retrieval- and re-encoding-related coactivity maps, as 
re-encoding-related coactivations were generally higher than retrieval-related coactivations (Fig. 4). (B) Direct comparison of 
the coactivity maps from re-encoding versus the coactivity maps from retrieval. This demonstrates that the coactivations were 
higher for re-encoding than for retrieval at time points slightly earlier than the ripple peaks. Same conditions and statistical 
procedure as in A. White lines delineate significant clusters based on cluster-based permutation tests, whose P-values are stated 1820 
in the upper left corners of the coactivity maps.  
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Fig. S15. Coactivity of object cells and place cells during hippocampal ripples: exploratory analysis of the effect of the 
initial formation of the associative memories. (A–D) Same as Fig. 4, D, E, G, and H, but differentiating between ripples 
occurring “before initial formation” and ripples occurring “after initial formation” of the associative memories (instead of 1825 
differentiating between early and late ripples). “Before initial formation” and “after initial formation” are defined by trial i such 
that the two-sample t-test between the memory performance values from trials i+1 to n and those from trials 1 to i leads to the 
highest t-statistic (where n is the maximum number of trials). Note though that learning still continued in “after initial formation” 
trials (Fig. 1D). (A) Coactivity maps estimated using ripples from the retrieval periods occurring “before initial formation,” 
considering only trials in which the subject was asked to remember the location of the preferred object of the object cell and in 1830 
which the subject’s response location was inside the place field of the place cell. Left panel, comparison of the coactivity z-score 
maps against chance (i.e., 0). Middle panel, comparison of the coactivity z-score maps against baseline coactivity z-score maps. 
Right panel, comparison of the coactivity z-score maps against coactivity z-score maps estimated using ripples from trials in 
which the subject was asked to remember the location of the preferred object of the object cell and in which the subject’s response 
location was outside the place field of the place cell. (B) Same as in A, but only considering retrieval-related hippocampal ripples 1835 
occurring “after initial formation.” (C) Coactivity maps estimated using ripples from the re-encoding periods occurring “before 
initial formation,” considering only trials in which the subject was asked to re-encode the correct location of the preferred object 
of the object cell and in which the object’s correct location was inside the place field of the place cell. Left panel, comparison of 
the coactivity z-score maps against chance (i.e., 0). Middle panel, comparison of the coactivity z-score maps against baseline 
coactivity z-score maps. Right panel, comparison of the coactivity z-score maps against coactivity z-score maps estimated using 1840 
ripples from trials in which the subject was asked to re-encode the location of the preferred object of the object cell and in which 
the object’s correct location was outside the place field of the place cell. (D) Same as in C, but only considering re-encoding-
related hippocampal ripples occurring “after initial formation.” White lines delineate significant clusters based on cluster-based 
permutation tests, whose P-values are stated in the upper left corners of the coactivity maps. >, larger than; pref., preferred.  
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 1845 
Fig. S16. Coactivity of object cells and place cells during hippocampal ripples: exploratory analysis of the effect of 
(non)movement. (A–D) Same as Fig. 4, E and H, but only considering ripples during movement or non-movement periods. This 
shows that the coactivity effects were mainly driven by ripples occurring during non-movement periods. (A) Coactivity of object 
cells and place cells during hippocampal ripples from the second half of the retrieval periods, only considering time periods when 
the subject was moving. (B) Coactivity of object cells and place cells during hippocampal ripples from the second half of the 1850 
retrieval periods, only considering time periods when the subject was not moving. (C) Coactivity of object cells and place cells 
during hippocampal ripples from the second half of the re-encoding periods, only considering time periods when the subject was 
moving. (D) Coactivity of object cells and place cells during hippocampal ripples from the second half of the re-encoding periods, 
only considering time periods when the subject was not moving. White lines delineate significant clusters based on cluster-based 
permutation tests, whose P-values are stated in the upper left corners of the coactivity maps. >, larger than; pref., preferred. 1855 
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