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Abstract  

Fibrobacter succinogenes is a cellulolytic predominant bacterium that plays an essential role in the 
degradation of plant fibers in the rumen ecosystem. It converts cellulose polymers into intracellular 
glycogen and the fermentation metabolites succinate, acetate, and formate. We developed dynamic 
models of F. succinogenes S85 metabolism on glucose, cellobiose, and cellulose on the basis of a network 
reconstruction done with the Automatic Reconstruction of metabolic models (AuReMe) workspace. The 
reconstruction was based on genome annotation, 5 templates-based orthology methods, gap-filling and 
manual curation. The metabolic network of F. succinogenes S85 comprises 1565 reactions with 77% linked 
to 1317 genes, 1586 unique metabolites and 931 pathways. The network was reduced using the NetRed 
algorithm and analyzed for computation of Elementary Flux Modes (EFMs). A yield analysis was further 
performed to select a minimal set of macroscopic reactions for each substrate. The accuracy of the models 
was acceptable in simulating F. succinogenes carbohydrate metabolism with an average coefficient of 
variation of the Root mean squared error of 19%. Resulting models are useful resources for investigating 
the metabolic capabilities of F. succinogenes S85, including the dynamics of metabolite production. Such 
an approach is a key step towards the integration of omics microbial information into predictive models 
of the rumen metabolism.  
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1. Introduction 

The rumen microbiota plays an essential role in ruminant nutrition by breaking down and 
fermenting plant-based feed, transforming it into a source of energy and protein for the host. 
The rumen microbiota is composed of a very diverse community of prokaryotes (bacteria and 
archaea) and eukaryotes (protozoa and fungi) which concur to the degradation and 
fermentation of the feed components, and particularly complex fibrous substrates that cannot 
be digested by the host. Rumen bacteria, fungi and protozoa participate to the degradation of 
the  plant cell wall lignocellulose (1), producing a large array of enzymes and various enzymatic 
systems to deconstruct the intricate chemical structure of plant biomass (2). Among them, 
cellulose degraders have been particularly studied for decades, because cellulose is the most 
degradation-resistant polysaccharide in plants, and it represents an abundant renewable 
resource on earth (3). Within cellulolytic bacteria, Fibrobacter succinogenes has been 
particularly studied (2). F. succinogenes is found in large numbers in ruminants fed high fiber 
diets (4),  and is present in the rumen of farm but also wild ruminant species from many 
geographical regions worldwide (5). It has been quantified in higher levels in bovines 
compared to deer, sheep, or camelids, suggesting that it may play an essential role in plant 
fiber degradation in cattle. F. succinogenes belongs to the Fibrobacteres phylum which also 
comprises the species F. intestinalis, mainly isolated from the feces of ruminant and non-
ruminant animals (6). 
The strain F. succinogenes S85 has been isolated from a bovine rumen a long time ago (7, 8), 
and is the most studied strain of the species. For efficient plant cell wall degradation, F. 
succinogenes adheres closely to the substrate and produces specific cellulose-binding proteins 
and possibly also pili to mediate its adhesion (9–11). F. succinogenes is considered as 
particularly efficient in the hydrolysis of crystalline cellulose, and it degrades at the same rate 
amorphous and crystalline regions of wheat straw cellulose (12). Cellulose is degraded into 
cellodextrins, cellobiose and glucose, and F. succinogenes was shown to be a very effective 
competitor for cellodextrin utilization (13). The bacterium is also able to synthesize and efflux 
oligosaccharides that may be used by other rumen bacteria through cross-feeding (12, 14). 
Given all these properties, it may be interesting to promote F. succinogenes populations in the 
rumen of cattle to improve degradation of recalcitrant substrates and their utilization by the 
rumen microbiota. 
The analysis of the F. succinogenes S85 genome showed that it consists of approximately 3.84 
Mbp with a GC content of 48%,  and that it contains a high number of genes (134) encoding 
carbohydrate-active enzymes  (CAZymes) (10). The genome analysis also confirmed that 
despite its ability to degrade xylans (15), F. succinogenes cannot use xylose because it lacks 
the sugar transporter and phosphorylation system (16). This species is thus a cellulose 
specialist using cellulose and its degradation products as its sole energy source. Glucose and 
cellobiose are fermented mainly through the EMP pathways into succinate as major final 
product, followed by acetate, formate and CO2. F. succinogenes is able to store intracellular 
glycogen which can represent up to 70% of the dry weight of the bacterium (17). This storage 
could allow bacteria to remain in the rumen in the absence of metabolizable substrates (18), 
but the intracellular glycogen is simultaneously stored and degraded, suggesting a futile 
cycling (19). F. succinogenes uses ammonia as the sole source of nitrogen, and several steps 
in the ammonia assimilation pathway have been identified (20). In addition to its interest for 
ruminant nutrition, F. succinogenes has also received much attention from the biotechnology 
sector (21). Firstly, because this species produces an original cellulolytic system, whose 
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organization is still not well understood, and includes membrane vesicles as vehicles of 
CAZymes (22). Deciphering this system could help in the design of novel Consolidated 
Bioprocessing (CBP) for the production of cost-effective and sustainable lignocellulosic 
biofuels (9). Secondly, the capacity of F. succinogenes to transform lignocellulosic material 
into succinate may also be of interest because succinic acid could be used as a platform 
molecule (23, 24). However, increasing bacterial product yield or maximizing the production 
of powerful lignocellulose degradation enzymes is dependent on detailed knowledge of 
metabolic pathways for microbial engineering processes (25). An efficient way of deciphering 
a bacterium metabolic network and identifying possible bottlenecks in the production of 
metabolites is via genome-scale metabolic models (GEM). A GEM is a mathematical 
representation of a metabolic network that allows the study of genotype-phenotype 
relationships (26) and facilitates the prediction of multiscale phenotypes (27). For a genome-
sequenced microorganism, a GEM is defined by a stoichiometry matrix that links metabolites 
to the collection of reactions that occur in the organisms according to evidences about genes 
catalyzing the reactions. The resulting metabolic network can be further analyzed using 
methods such as flux balance analysis (FBA) (28–30). However, the FBA approach does not 
allow to predict the dynamics of metabolites concentrations. In parallel, kinetic modeling 
approaches allow to represent the dynamics of metabolites of interest by deriving mass 
balance equations (31). Kinetic models are built following a macroscopic representation of the 
metabolism with a reduced set of macroscopic reactions which are often selected from 
documented literature. Kinetic models rarely integrated microbial genomic information. The 
objective of this work was to develop dynamic metabolic models (DMM) to represent the 
metabolism of glucose, cellobiose and cellulose by of F. succinogenes. These DMM integrate 
microbial genomic knowledge from the reconstruction of a GEM of F. succinogenes. 
 
2. Materials and Methods 

 
2.1. Culture conditions and sample preparation  

F. succinogenes strain S85 (ATCC 19169) was grown in triplicates in a chemically defined 
medium (19) with 3 g.L−1 glucose, cellobiose, or filter paper cellulose. The cultures were grown 
at 39°C using Hungate tubes and the Hungate anaerobic cultivation technique (32). The 
bacterial growth on cellobiose or glucose was monitored by measuring the absorbance at 600 
nm. The quantification of succinate was used to monitor growth on cellulose cultures (12, 33). 
After growth, cells were collected by centrifugation (10 000 rpm for 5 min at 4°C), and the 
supernatants were stored at -20°C for further analysis. The bacteria were washed with 2 mL 
of phosphate buffer (50 mM KH2PO4/K2HPO4 pH 7.0) and stored at -20°C. 
 

2.2. Quantification of substrate consumption and metabolite production 
Concentrations of succinate, acetate, formate, ammonia, and glucose were measured at six 
time points in culture supernatants, using Megazyme kits (K-SUCC 06/18, K-ACET 04/18, K-
FORM 10/17, K-AMIAR 04/18, and K-GLUHK-220A, respectively) according to the 
manufacturer’s recommendations. Cellobiose consumption was estimated by quantification 
of the remaining reducing sugars in the culture medium using Miller's method (34).  
 

2.3. Metabolic network reconstruction  
The metabolic reconstruction of F. succinogenes S85 was performed using the freely available 
workspace AuReMe (Automatic Reconstruction of Metabolic models) (35). AuReMe embeds 
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existing tools as well as ad-hoc packages to reconstruct and handle GEMs. It uses (i) the 
outputs of the Pathway Tools software (36, 37) to perform annotation-based reconstruction, 
(ii) the OrthoFinder method (38, 39) to perform orthology-based reconstructions and (iii) the 
Meneco tool (40) to perform a gap-filling procedure. AuReMe relies on the PADMet library 
(Python library for hAndling metaData of METabolism, (35) to ensure the reproducibility of 
the workflow used to create a GEM, guaranty the interoperability between the different 
methods used, curate GEMs and export the GEM under several formats (SBML, matrix, wiki, 
rdf-like format). AuReMe also uses CobraPy (41), a Python package to analyze Flux Balance 
Analysis, and Flux Variability analysis (analysis of essential and blocked reactions). In Fig. 1, we 
summarize the steps of reconstruction of F. succinogenes S85 metabolic network.  
 

 
Figure 1 F. succinogenes S85 GEM reconstruction pipeline 

 
 

2.3.1. Step 1 (collecting genomes and reference reaction data set)  
The two complete annotated genomes of F. succinogenes S85 were downloaded respectively 
from https://www.ncbi.nlm.nih.gov/nuccore/CP001792.1 and 
https://www.ncbi.nlm.nih.gov/nuccore/NC_017448.1. Each F. succinogenes S85 genome 
contains 3.84 Mbp with respectively 3160 and 3174 genes identified. 
The biomass reaction of Escherichia coli K-12 MG1655 (42) was adapted and used to build the 
metabolic network (Table S1 in Supplementary Material A). 
The list of seeds (essential constituents of the culture medium to guarantee growth) was 
prepared based on the minimal medium composition needed for F. succinogenes growth 
(Table S2). The final products (targets) list was prepared according to our knowledge on the 
metabolism of this bacterium metabolism and network reconstruction needs (Table S2).  
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2.3.2. Step 2 (generating draft models)  
A first GEM was reconstructed according to the genome annotations via Pathway Tools using 
both complete genomes: NC_013410.1. and NC_017448. In parallel, orthology-based 
reconstruction GEMs we obtained using the GEMs of the following gut microbes: Bacteroïdes 
thetaiotaomicron (43), Escherichia coli K-12 MG1655 (42), Faecalibacterium prausnitzii A165 
(29), Bifidobacterium adolescentis L2-32 (28) and Lactobacillus plantarum WCFS1 (44),   
and mapped to MetaCyc (45), thanks to the MetaNetX database (46). Finally, all GEMs 
obtained from the annotation and the orthology reconstruction steps were combined into a 
draft GEM with the PADMet library. 
 

2.3.3. Step 3 (gap filling) 
To analyze and curate the GEM of F. succinogenes S85, we applied a gap-filling procedure. 
Here, a GEM is considered as a graph in which metabolites are nodes and reactions are the 
links between the nodes. In these analyses, stoichiometry is not considered. This procedure 
allows adding reactions to guarantee the production of specific metabolites according to a 
graph-expansion criterion. We used Meneco (MEtabolic NEtwork COmpletion, (40)) and the 
MeneTools package (MEtabolic NEtwork TOpological toOLS, (35, 47)) for this  gap-filling step. 
 

2.3.4. Step 4 (manual curation and gene-reaction association) 
The draft network was manually curated to find potential errors and filling gaps based on the 
phenotype and experimental data reported in the literature. Flux Balance Analysis (FBA) was 
used to reconstruct and validate models for maximizing the biomass reaction flux. 
Some manually and gap-filled added reactions had no gene associated.  All the gene 
sequences from other bacteria associated with these reactions were identified in NCBI using 
the reaction EC number. The corresponding protein sequences were aligned using BLAST 
(Basic Local Alignment Search Tool, (48)) to the F. succinogenes S85 translated genomes. The 
identified proteins with identity > 76% were associated with their corresponding reactions in 
the GEM. Reactions with no gene associated or with gene coding protein of lower similarity 
were retained in the model only when present in the E. coli K-12 MG1655 model (42). 
 

2.4. Construction of a dynamic metabolic model  
 

2.4.1. Exploiting EFMs to derive a macroscopic dynamic metabolic model  
The dynamics of metabolism can be described by the following generic differential equation 
(1) resulting from applying mass balance 

𝒅𝒙

𝒅𝒕
= 𝐒 𝒓(∙)                                        (1) 

where 𝒙 is the vector containing the concentrations of metabolites, which can be either 
intracellular (𝒙𝑖) or extracellular (𝒙𝑒). The vector 𝒓(∙) represents the reaction rates, which are 
function of the concentrations 𝒙 and a parameter vector. The stoichiometric matrix 𝐒 contains 
the stoichiometric matrices for intracellular (𝐒𝑖) and extracellular 𝐒𝑒 metabolites. Under the 
assumption that intracellular metabolism operates at steady state, it follows that  

𝒅𝒙𝒊

𝒅𝒕
= 𝑺𝒊 𝒓(∙) = 𝟎                                 (2) 

The vector of reaction rates that fulfil equation (2) are non-negative vectors contained in the 
null space of the stoichiometric matrix 𝐒𝑖. The space of admissible fluxes is a convex 
polyhedral cone. The generating vectors of the cone are called elementary flux modes (EFMs). 
Any steady-state flux distribution can be expressed as a non-negative linear combination of 
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the EFMs. Biochemically, EFMs are independent minimal pathways of the metabolic network 
that can operate at steady state. Each EFM can be converted into a macroscopic reaction that 
connects extracellular substrates and products(49, 50). The identification of macroscopic 
reactions is the core of kinetic modeling. Once we find a set of macroscopic reactions to 
represent the metabolism of our microorganism of interest, we can derive the structure of a 
dynamic metabolic model.  
For the j-th EFM  𝒆𝑗, the macroscopic reaction j is obtained by the product 𝐒𝑒𝒆𝑗. To calculate 

the EFMs of the network of F. succinogenes, we used the efmtool algorithm (51) of the 
MATLAB package CellNetAnalyzer (52) which is freely available at http://www2.mpi-
magdeburg.mpg.de/projects/cna/cna.html Then, we proceeded to select a reduced number 
of EFMs using the yield analysis method by (53). The selected EFMs were expressed as 
macroscopic reactions to define further the kinetics in the dynamic metabolic modelling.  
 

2.4.2. Reduction of the GEM  
The calculation of EFMs is restricted to medium-scale GEM (less than 350 reactions) (54). 
Hence, a complete EFM analysis of the network of F. succinogenes S85 is intractable. A 
reduction of the network is thus here proposed. Several methods for the reduction of GEM 
have been reported in the literature (55) which are mainly based on a fully functional core 
metabolic network that preserves a set of important moieties and capabilities from the full 
network. However, the selection of a subset of reactions might produce loses of information 
regarding parallel pathways that can be used to attain the same metabolic goal. In this work, 
we have selected another method called NetRed (56) which analyses flux vectors generated 
from the complete network (FBA) and computes a reduced network that holds the same flux 
distribution. NetRed is based on matrix algebra taking as inputs the stoichiometric matrix, a 
flux vector, the numerical flux values, and a list of protected metabolites, and it is 
implemented in the MATLAB COBRA toolbox (57). Some advantages of NetRed are the use of 
various flux vectors, the calculation of a single biomass reaction, and the simple conversion 
from the reduced network to the full network.  
The reduction of the GEM followed several steps: (i) calculation of fluxes by FBA, (ii) carbon 
balancing, (iii) compacted lumped biomass reaction, (iv) re-calculation of fluxes by FBA, and 
(v) network reduction.  
To keep the flexibility of the full network, the flux distribution of the GEM was calculated by 
FBA considering different objective functions and several input fluxes. The results were 
analyzed in terms of yields for which all the obtained fluxes were divided by the uptake flux 
of glucose, cellobiose or cellulose. Yield analysis allowed to verify the carbon balance of the 
network as well.  
Further reduction of the network was achieved by computing a compact lumped biomass 
reaction, which was based on the pathways identified as essential for biomass production. 
This approach is like the construction of a core metabolism. In our case, however, we have 
only used this core for biomass allowing for other pathways to contribute as well to the 
production of metabolites needed for biomass.  Finally, the obtained fluxes from the network 
with compacted biomass formulation and correct carbon balance have been introduced to 
NetRed to compute the final reduced network which was used to compute EFMs.  
 

2.4.3. Parameter identification 
The model parameters were estimated from the in vitro experimental data (acetate, 
succinate, formate, ammonia and OD and substrate concentration when available) using the 
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maximum likelihood approach implemented in the MATLAB toolbox IDEAS (58), which is freely 
available at http://genome.jouy.inra.fr/logiciels/IDEAS. The optimization uses the quasi-
newton algorithm implemented in the MATLAB function fminunc. The dynamic model 
representing the fermentation of each substrate is defined by the kinetic rate function of 
substrate utilisation through the macroscopic reactions given by the EFMs. For glucose and 
cellobiose, we modelled the macroscopic reactions as Monod functions (3) 

𝜇𝑖 =  𝜇max,𝑖 ∙
𝑠𝑖

𝐾+𝑠𝑖
∙ 𝐵           (3) 

 where 𝑠𝑖 and 𝐵 are the molar concentrations of the substrate and biomass, 𝜇𝑖 is the microbial 
growth rate for the reaction i, 𝜇max,𝑖 is the maximal growth rate constant (h-1) and K is the 
substrate affinity Monod constant (mol/L). We set K to 9*10-3 M as in the rumen model 
developed by Muñoz-Tamayo et al (59) to avoid the known problems of high correlation 
between the Monod parameters when data are limited (60). Since cellulose is a particulate 
substrate, we modelled the macroscopic reactions using the Contois function  (4) as proposed 
by Vavilin et al(61). 

𝜇𝑖 =  𝜇max,𝑖 ∙
𝑠𝑖

𝐾𝑐∙𝐵+𝑠𝑖
∙ 𝐵   (4) 

 where 𝐾𝑐 is the half-saturation Contois constant. For each substrate, we selected initially the 
EFMs that correspond to the vertices of the polygon enclosing the yield spaces. A further 
reduction was implemented within the calibration procedure by adding a penalization 
coefficient in the cost function of the optimization to penalize large number of EFMs. To 
account for the death of microbial cells, we included a first-order kinetic rate with a death rate 
constant kd set to 8.33x10-4 as in (59). We also included a conversion factor to transform OD 
into biomass concentration (mol/L). We evaluated the model accuracy using the coefficient of 
variation of the Root mean squared error (CVRMSE).  

3. Results   

Following Open Science practices to promote accessibility and reproducibility (62), the 
metabolic network and mathematical models developed in this work are freely available at 
https://doi.org/10.5281/zenodo.7219865.  

3.1 Description of the network  

▪ Large-scale Genome reconstruction process: 
The two published genomes of the Fibrobacter succinogenes S85 strain were used to identify 
potential reactions that could be present in the GEM of the bacterium. Genome annotation 
performed by Pathway Tools had detected 827 reactions (Fig. 2A) and 1112 metabolites. 817 
reactions are common between the two available F. succinogenes S85 annotated genomes. 
Four and six reactions were specific to NC_013410 and NC_017448 genomes, respectively 
(Table S3 in Supplementary Material A), illustrating that the two genome sequences are not 
complete.  

▪ Orthology and Gap-Filling  

First, we downloaded the annotated genome sequences of the five external models from NCBI 
and their GEM SBML format with the reference file of ID reactions present in KEGG, Bigg or 
MetaCyc. Reconstruction by orthology provided 174 reactions for the F. succinogenes S85 first 
model obtained from Pathway Tools (Fig. 2A). In addition, 203 reactions were brought by the 
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combination of reconstructions by annotation and orthology. Finally, 61% of orthology-based 
reactions were added to the network according to cross-sources (Fig. 2B).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The definition of seeds and targets is an essential step in the reconstruction protocol. We have 
determined a list of 51 sources (constituents of the culture medium) and 85 targets (molecules 
known to be produced by the bacterium) for F. succinogenes S85 (Table S2 in Supplementary 
Material A). The gaps in the model were firstly filled automatically by mapping and 
transforming KEGG/Bigg identifiers to MetaCyc IDs using the MetaNetX package. 99 reactions 
were added by Meneco (40), all of them came from the MetaCyc database (45). 24 reactions 
were removed according to expert validation (see below), finally 75 reactions were added by 
gap-filling. 

▪ FBA for unblocking biomass and manual curation 

In our reconstruction process, the aim was to obtain a functional high-quality network, which 
produces biomass yield. For this purpose, we firstly focused on reaching topologically all the 
targets according to the qualitative network-expansion criteria. Forty-one reactions were 
expertly added to the gap-filled model network. This reactions belong to four distinct 
databases: MetaCyc (45), KEGG(63), BIGG(64)  and RHEA (65). 
Afterward, we manually unlocked all the pathways referring to FBA analysis, which were in 
direct and indirect relation with each component of the biomass reaction. We therefore 
focused on curating the network and the pathways involved in carbon and nitrogen 
metabolism as well as some essential cofactor biosynthesis. In particular, we checked the 
different pathways of glycolysis, glycogen cycle (see below) and the short chain fatty acids 
biosynthesis. This required adding 490 manually curated reactions in the pathways of the 
biomass compounds.  

Figure 2 Venn diagram representing (A) distribution of reactions across different steps of final 

model reconstruction   (B) distribution of reactions across various external metabolic models used 

for orthology-based model reconstruction 

(A) (B) 
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▪ Manual completion  

F. succinogenes S85 model reactions are linked to 1317 genes, leading to 77% of reactions 
associated to a gene (Fig.3). 430 reactions were not linked to any gene before validation. Of 
them, 133 are exchanged, transport or spontaneous reactions.  For all the other reactions, we 
search for the presence of a gene possibly associated using BLAST (Data set S1 in 
Supplementary Material B). Finally, 68 of those were added by Gap-filling (Fig. 2A), 54 
reactions that seemed inappropriate to the metabolism of the bacterium were suppressed, 
and 22 reactions were linked manually to their corresponding gene.  

 
Figure 3 Gene – reactions association 

3.2. Qualitative analysis of the Fibrobacter succinogenes S85 metabolic network 

3.2.1.   FBA and essential reactions   

The obtained network has 1317 genes, 931 pathways and is composed of 1565 reactions, from 
which 1211 are associated to genes (Table 1). The final network contains 1586 unique 
metabolites and is available online as a wiki page on: https://gem-
aureme.genouest.org/fsucgem/index.php/Fsucgem. 

Table  1 F. succinogenes S85 metabolic model information 

 F. succinogenes S85 model 

Reactions 1565 

Unique metabolites 1586 

Genes 1317 

Active* / Total pathways 233/931 

 Number of reactions** 

 

Annotation 
Total: 827 

Orthology 
Total: 377 

Gap-filling 
Total: 75 

Manual curation 
Total: 490 

Exchange / Transporter 1 15 0 133 

Spontaneous 1 2 1 45 

Protein / Amino acids biosynthesis 101 74 16 25 

Glycolysis / Fatty acids biosynthesis 51 17 2 12 
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 * Ratio (Reaction found / Total) > 0,75 and ratio reaction with flux/reaction based on FBA 
analysis > 0,5 
**204 reactions are identified from cross method sources  

We investigate our final metabolic network using Flux Variability Analysis (FVA). All the 85 
target components are reached topologically. 38,5% of the reactions are active, of which 137 
are essential reactions for the biomass production. The simulated growth rate from F. 
succinogenes S85 metabolic model is 0.137 h-1. 318 out of 931 (34%) of the metabolic 
pathways are complete at more than 75% of the reactions present in the KEGG and MetaCyc 
databases. 76% of those active pathways have at least one reaction with flux according to the 
FBA analysis, and 150 pathways are 100% active in flow (Data set S2 in Supplementary 
Material B). All the essential reactions are present in the active pathways.  

3.2.2 Glycogen biosynthesis and degradation pathways 

As an example to illustrate the use of the reconstructed network, we analyzed the glycogen 
biosynthesis and degradation pathways, because glycogen has been shown to be 
simultaneously synthesized and degraded in F. succinogenes during all growth phases (19). 
Intracellular glycogen accumulation is carried out by the consecutive action of ADP-glucose 
pyrophosphorylase (glgC, FISUC_RS14455 FSU_RS00645) (EC.2.7.7.27), glycogen synthase 
(glgA FSU_RS16140 FISUC_RS15965) (EC.2.4.1.21), and glycogen branching enzyme (glgB 
FISUC_RS15575 FSU_RS01770) (EC.2.4.1.18) (Fig. 4). All these anabolism reactions and genes 
were identified by annotation, except the phosphoglucomutase (pgm FSU_0773) that was 
linked to the reaction EC 5.4.2.2 by manual curation (Data set S1 in Supplementary Material 
B). 

 
 

 

 

 

 

 

 

 

 

 

 
Figure 4 Futile glycogen pathways identified and completed in F. succinogenes S85 metabolic network 
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The known glycogen degradation I pathway on MetaCyc 23.0 was detected with the presence 
of the reactions EC 2.4.1.1 (Maltotetraose glucosidase malP:  FSU_RS06195) and EC 2.4.1.25 
(4-alpha-glucanotransferase (malQ FISUC_RS04305; FSU_RS06200) identified by annotation 
(Fig. 4). Then, we completed this pathway by adding manually the two reactions EC 3.2.1.196 
(limit dextrin α-1,6-glucohydrolase glgX) and EC 3.2.1.20 alpha-glucosidase (malZ 
FSU_RS06195). The maltotetraose formation reaction present in Escherichia coli model was 
added to our model, no gene was linked because of no significant blast similarity with the F. 
succinogenes genome (Data set S1 in Supplementary Material B). 

3.3. Network reduction  

 Reduced-scale genome reconstruction model process  

Network reduction was achieved by NetRed method which is based on flux vectors computed 
by FBA from the full network. The reactions in the full network were defined as irreversible 
reactions by decoupling the reversible reaction into their forward and backwards directions. 
The full network was then composed by 1780 irreversible reactions. The measured 
metabolites obtained from batch cultures growing on glucose, cellobiose and cellulose 
corresponded to: extracellular acetate, formate and succinate. From those results, it was 
observed that formate is produced in small amounts while succinate and acetate were the 
main products. Accordingly, two objective functions were defined to maximize concomitantly: 
(1) biomass and succinate; and (2) biomass and acetate. In order to enlarge the possible flux 
distribution, different input fluxes of glucose, cellobiose and cellulose ranging between 0 to 
1000 mmol/gbiomass h-1 with a step of 50 mmol/gbiomass h-1 were considered. For the sake of 
computation ease, we defined that cellobiose was composed of 2 glucoses while cellulose was 
considered as 4 glucoses, so the upper ranges were modified to 250 and 500 mmol/gbiomass h-

1 respectively. The resultant fluxes were analyzed in terms of yields for which all fluxes were 
divided by the flux of the carbon uptake reactions.  

Carbon balance was verified through yield analysis, where we have noticed that the glycogen 
synthesis and degradation pathways generated unbalanced carbon production. For the sake 
of carbon quantification, we assumed that glycogen and (1,4-α-D-glucan)n were composed of 
6 and 5 molecules of glucose, respectively. Additionally, a new hypothetical reaction was 
added to consider the production of (1,4-α-D-glucan)n as, 

5 glc-1-P[c] = 5 Pi[c] + 1 1-4-alpha-D-glucan_n0[c] 

This new reaction allowed to balance carbon and produce biomass with a mass of 25.394 
g/molC. FBA was performed again to compute the flux vector and performed the reduction via 
NetRed. The protected metabolites corresponded to: biomass, acetate, succinate, formate, 
glycogen, glucose, cellulose, cellobiose, protons, ammonium and fructose-6P. The reduced 
network contained 146 reaction and 78 metabolites whose size was still large for computation 
of EFM.  

A further reduction of the network was achieved by constructing a lumped biomass reaction 
which was based on the precursors of several metabolites such as amino acids. The precursors 
were identified by tracking back the pathways that produce the metabolite to be deleted from 
the 137 essential reactions identified for the full network. All the reactions involved in the 
pathways were added up to obtain a reaction to replace the metabolite to be deleted by its 
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precursors (e.g., pyruvate, fructose-6P). This approach is similar to the computing of lumped 
biomass employed by Lugar et al., (56). Details about the construction of the lumped biomass 
could be found in the Supplementary Material B (Data set S3 in Supplementary Material B). 
Once the lumped biomass reaction was obtained, the coefficients were corrected to obtain a 
biomass of 26.401 g/molC following the formula C3.69H6.76O2.66N0.25S0.010 previously reported 
for the biomass composition of F. succinogenes S85 (66). 

The new network comprising the lumped biomass reaction and the carbon balance was used 
to calculate flux vectors subject to several constraints. All the reactions used for the 
construction of the lumped biomass reaction that did not correspond to essential reaction 
were blocked to zero flux. Furthermore, we verified that cofactors such as FAD, Pi, PPi, and 
ADP were not needed as sources, so that their fluxes were also assumed to be zero.  A 
reduction of the extracellular cofactors was made accepting small changes in yield analysis 
from FBA.  Cofactors such as NADPH, NADP, NAD, NADH were not needed as sources, whereas 
ADP and NADH were not needed as sinks.  

Flux vectors for the three substrates and the protected metabolites mentioned before were 
used in NetRed to obtain a reduced network of 63 reactions with 36 intracellular metabolites 
and 16 extracellular metabolites. The biomass reaction of the reduced network accounts for 
a term called ‘salts’ gathering all the metabolites that do not participate in any other reactions, 
but that are, nevertheless, necessary to produce biomass. The extracellular metabolites were 
biomass, acetate, succinate, formate, ammonium, Co-A, CO2, proton (cytosolic and external), 
ATP, salts, glycogen, PPi and the three carbon sources glucose, cellobiose and cellulose. The 
reduced network (Data set S4 in Supplementary Material B) is appropriate for the 
computation of EFM. 

3.4. From EFMs to macroscopic reactions  

EFMs were computed for each carbon source obtaining 9 861 037, 11 863 589 and 11 540 721 
EFMs for glucose, cellobiose and cellulose, respectively. The calculation did not consider that 
the network could use the three carbon sources at the same time. For the sake of analysis, 
only the EFMs that consumed the carbon source, produced biomass, and did not consume 
glycogen were considered for analysis leading to a total of 798 872, 1 198 271 and 2 131 696 
EFMs for glucose, cellobiose and cellulose, respectively.  
The computed EFMs were multiplied by the stochiometric matrix of the extracellular 
metabolites to derive macroscopic reactions that can efficiently bring together metabolism 
and dynamics through the development of Dynamic Metabolic Models (DMM) (67, 68). 
However, the consideration of many EFMs adds considerably to the kinetic parameters 
associated with substrate uptake rates leading to an overparameterization. Yield analysis (67) 
was presented as an alternative to perform a substantial reduction of the number of EFM from 
an inspection of the convex hull in a 2-D representation on the yield vector space for 
extracellular products.  
Yield analysis for the EFMs is reported for the four principal products: biomass, acetate, 
formate, and succinate. Yields of the computed EFMs were obtained by dividing their fluxes 
by the flux of the carbon source. The minima and maxima yield values obtained from EFM for 
the main products are reported in Table 2. 
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Table  2 Yield boundaries of the reduced Network. 

 Yield Biomass Acetate Succinate Formate 

Glucose min 0.0002 0.0000 0.0000 0.0000 

max 0.1465 2.6231 1.5622 3.8813 

Cellobiose min 0.0001 0.0000 0.0000 0.0000 

max 0.2935 5.1987 3.1664 4.5788 

Cellulose min 0.0012 0.0000 0.0000 0.0000 

max 0.5801 6.6722 6.2504 4.9125 

Fig. 5 displays in the diagonal the distribution of the 798 872 EFM obtained for glucose where 
it is observed that biomass is mainly produced at values around 0.01 g per mmol of glucose. 
On the other hand, most of the EFMs producing acetate, succinate, formate report small 
extracellular production. The plots in the non-diagonal show the yields of the products with 
respect to all the products where each blue point is an EFM. It is worth noting that the surfaces 
in yields mainly correspond to triangles except for the yields for formate. Similar results were 
obtained when the only carbon source was cellobiose (Fig. 6) and cellulose (Fig. 7).  

 

 
Figure 5 Yield representation of EFM and distribution of EFM when growing on glucose. Units are mmol/mol except for 

the yield biomass/glucose (g/mmol). 
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Figure 6 Yield representation and distribution of EFM when growing on cellobiose. Units are mmol/mol except for the yield 
biomass/cellobiose (g/mmol). 

 

Figure 7 Yield representation and distribution of EFM when growing on cellulose. Units are mmol/mol except for the yield 
biomass/cellulose (g/mmol). 
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We performed a yield analysis with a 2D representation of the convex hull -surrounding total 
EFMs- to reduce the number of EFM used for macroscopic reactions of DMM. In this case, 
triangles were used to find a minimum number of EFM to be used in DMM. Those EFM are 
denoted as red points in Figures 8 A-C which display the EFM and their reduction by yield 
analysis for glucose, cellobiose and cellulose, respectively.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The 9 selected EFM obtained for each substrate were compared to avoid repeated EFM. For 
glucose, 9 EFM remained while only 7 and 8 remained for cellobiose and cellulose (Table 3).  

Figure 8 Yield analysis of the EFM for A (*) glucose B (*) cellobiose and C (*) cellulose. Representation computation of 

the convex hull (-●-) and reduction of the convex hull (-●-) with respect to experimental data (♦). 
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Table  3 EFMs from the polygon (triangle) enclosing the yield spaces  

Glucose Triangles Coefficient 
e1 e2 e3 e4 e5 e6 e7 e8 e9  

Glucose -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000  

salts 0.000 -0.006 -0.039 0.000 -0.004 -0.040 -0.043 0.000 -0.012 a 

ATP 0.000 -0.008 -0.057 0.000 -0.005 -0.060 -0.064 0.000 -0.018 b 

CO2 -0.361 0.048 0.333 -0.542 -0.751 0.255 0.372 -0.361 -2.166 c/n 

Co-A -7.26e-7 -8.27e-5 -5.70e-4 -2.26e-6 -5.20e-5 -5.96e-4 -6.37e-4 -6.91e-7 -1.81e-4 d 

ammonium -0.001 -0.139 -0.956 -0.004 -0.087 -0.999 -1.068 -0.001 -0.304 e 

biomass 0.000 0.019 0.129 0.001 0.012 0.134 0.144 0.000 0.041 f 

acetate 0.000 2.623 0.414 1.089 0.000 0.000 0.000 0.000 0.000 g 

succinate 0.723 0.000 0.000 0.000 1.562 0.187 0.000 0.723 0.663 h 

formate 0.000 0.000 0.000 1.087 0.000 0.000 0.000 0.000 3.881 i 

proton [c] 0.000 0.000 1.138 0.000 2.467 0.000 0.000 0.000 4.806 j 

proton [e] 1.327 2.754 0.000 2.090 0.000 0.000 1.003 1.326 0.000 k 

glycogens 0.096 0.000 0.002 0.090 0.002 0.000 0.008 0.096 0.003 l 

PPi 1.27e-5 1.45e-3 1.00e-2 3.96e-5 9.13e-4 1.05e-2 1.12e-2 1.21e-5 3.19e-3 m 

Cellobiose Triangles  

e1 e2 e3 e4 e5 e6 e7    

Cellobiose -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000    

salts -0.088 0.000 -0.008 0.000 -0.007 0.000 -0.026   a 

ATP -0.131 0.000 -0.012 0.000 -0.011 0.000 -0.039   b 

CO2 0.761 -0.684 0.000 0.000 -1.513 -0.110 -2.065   c/n 

Co-A -1.32e-1 -2.53e-1 -1.18e-1 -2.83e-6 -1.78e-1 -6.47e-7 -3.90e-1   d 

ammonium -2.181 -0.004 -0.198 -0.005 -0.181 -0.001 -0.654   e 

biomass 0.293 0.001 0.027 0.001 0.024 0.000 0.088   f 

acetate 0.000 0.000 5.199 2.906 0.000 2.390 2.576   g 

succinate 0.000 1.370 0.138 0.003 3.152 0.148 0.008   h 

formate 0.000 0.000 0.000 0.000 0.000 0.074 4.579   i 

proton [c] 2.055 0.000 0.000 0.000 6.474 0.000 0.000   j 

proton [e] 0.000 2.545 5.327 2.747 0.000 2.575 6.587   k 

glycogens 0.010 0.200 0.002 0.171 0.000 0.185 0.029   l 

PPi 2.28e-2 4.45e-5 2.07e-3 4.97e-5 1.89e-3 1.12e-5 6.84e-3   m 

Cellulose Triangles  

e1 e2 e3 e4 e5 e6 e7 e8   

Cellulose -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000   

salts -0.049 -0.175 -0.001 -0.022 -0.029 -0.029 -0.028 -0.018  a 

ATP -0.072 -0.259 -0.001 -0.033 -0.043 -0.043 -0.041 -0.027  b 

CO2 -0.204 1.503 -0.391 0.075 -2.602 -0.673 -2.215 -3.956  c/n 

Co-A -7.16e-4 -2.57e-3 -1.18e-5 -3.26e-4 -4.24e-4 -4.31e-4 -4.05e-4 -2.71e-4  d 

ammonium -1.200 -4.311 -0.020 -0.547 -0.711 -0.723 -0.679 -0.455  e 

biomass 0.162 0.580 0.003 0.074 0.096 0.097 0.091 0.061  f 

acetate 6.609 0.000 0.000 0.000 0.000 6.672 0.000 0.000  g 

succinate 1.244 0.000 0.796 0.000 5.699 1.851 4.904 4.325  h 

formate 0.000 0.000 0.000 0.231 0.000 0.000 0.000 3.904  i 

proton [c] 9.418 0.000 0.000 0.166 0.000 9.171 10.361 10.166  j 

proton [e] 0.000 0.000 0.000 0.000 12.064 0.000 0.000 0.000  k 

glycogens 0.001 0.028 0.586 0.582 0.007 0.009 0.089 0.125  l 

PPi 1.26e-2 4.51e-2 2.07e-4 5.72e-3 7.44e-3 7.56e-3 7.10e-3 4.76e-3  m 
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From Table 3, macroscopic reactions for each substrate can be derived as:  
carbon substrate + a salts + b ATP + c CO2 + d Co-A + e ammonium =  

f biomass + g acetate + h succinate + i formate + j proton[c] + k proton[e] + l glycogens + m 
PPi + n CO2 

where the coefficients a – n correspond to the absolute values of the EFM which represent 
the letters on the Table. Note that the coefficients c or n will depend on whether CO2 has a 
negative sign (c) or positive sign (n). These EFMs are used to select a minimal set of 
macroscopic reactions for the dynamic metabolic model (DMM) as discussed below.  
 

3.5. Dynamic metabolic model  
Table 4 shows the selected EFMs, and the model parameter estimates for each substrate. The 
metabolism of glucose and cellulose is represented by 4 macroscopic reactions. For cellobiose, 
the metabolism is represented by 5 macroscopic reactions. All the EFMs are from the polygon 
vertices of the yield spaces. The models were implemented in MATLAB and are available at 
https://doi.org/10.5281/zenodo.7219865. 
Figures 9A-C show the comparison of the experimental data against the variables predicted 
by the model. Table 5 shows the accuracy of the model. For the experiments with glucose, the 
coefficient of variation of the Root mean squared error CVRMSE was 17%. For the experiments 
with cellobiose, the average CVRMSE was 19%. For the experiments with cellulose, the 
average CVRMSE was 22%.  
 
 
 
Table  4 Selected EFMs of the dynamic model and parameters estimates. The stoichiometry of 

the EFMs is given in Table 3. 

Glucose 

 e2 e5 e6 e9 

𝝁𝐦𝐚𝐱,𝒊 (h
-1) 0.037 0.031 0.31 0.004 

𝑲(M) 9*10-3 

Cellobiose 

 e1 e4 e5 e6 e7 

𝝁𝐦𝐚𝐱,𝒊 (h
-1) 0.33 0.0002 0.033 0.0001 0.007 

𝑲(M) 9*10-3 

Cellulose 

 e1 e3 e6 e8 

𝝁𝐦𝐚𝐱,𝒊 (h
-1) 0.087*10-3 0.34*10-3 0.96*10-3 0.08*10-3 

𝑲𝒄 (molcellulose/molbiomass) 6.05 
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Table  5 Model accuracy  

 Glucose utilization 

 Acetate  Succinate Formate Ammonia Substrate OD 

100*CVRMSEa 34 19 11 10 14 14 

 Cellobiose utilization 

 Acetate  Succinate Formate Ammonia Substrate OD 

100*CVRMSEa 18 11 19 8 44 17 

 Cellulose utilization 

 Acetate Succinate Formate 

100*CVRMSEa 15 38 13 
a Coefficient of variation of the RMSE (CV(RMSE)). 
 
4. Discussion 

The mathematical modelling of the rumen ecosystem is a useful endeavor to provide 
tools for improving rumen function. Current  kinetic rumen models do not consider  genomic 
information (31, 59, 69, 70). GEMs are a promising  tool to fill this lacking gap and allowing a 
better understanding of the rumen systemic functionality (71) and the individual bacteria 
metabolism (72).  

Many independent methods have been developed to generate genome scale models, 
including some toolboxes and workspaces, such as Pathway Tools (36), RAVEN (73), merlin 
(74), KBase (75), The SEED (76), AuReMe (35), AutoKEGGRec (63), CarVeMe (77), and gapseq 
(78). They rely on one or several metabolic databases such as MetaCyc(45), KEGG(79), 
ModelSEED(80) or BiGG (64). However, the output of a main platform for a GEM requires 
adjustments assisted by a choice of specialized tools, especially when the network 

Figure 9 Experimental data (•) of the fermentation of (A) glucose (B) cellobiose (C) cellulose compared against the variables 

predicted by the dynamic models (solid line). 
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reconstruction requires to take advantages of information spread in different models, 
formats, and organisms, leading to issues in standardization of metadata and reproducibility 
of the reconstruction procedure. In this work, the GEM construction of Fibrobacter 
succinogenes S85 was performed using the AuReMe platform, selected for its full traceability 
reconstruction  (35) and capabilities to produce high-quality reconstructions (81).  

Genome-scale metabolic models are widely used for microbial defined growth 
medium identification (30, 82), metabolic functional characterization (29, 83) or design of 
novel treatment against pathogens (84). Regarding gut communities, they have been mainly 
applied to human gut bacteria in order to decipher the microbial interactions in the human 
intestinal microbiome (28, 30, 85–87).  

Until now there have been few GEMs available for rumen bacteria such as the 
networks for the lactate utilizing bacterium Megaspghera elsdenii (72), and the succinic acid 
producing strain Actinobacillus succinogenes (88). Recently, one simplified representative 
rumen community metabolic model was reported (71). A synthetic community composed of 
a cellulolytic bacterium, a proteolytic bacterium and a methanogen was developed to 
enlighten metabolite secretion profiles, community compositions and the interactions with 
bacteriophages (71). Our work contributes to expand the application of the GEM approach to 
study the rumen ecosystem.  

The obtained GEM of F. succinogenes is composed of thousands of metabolites and 
reactions associated to their genes and can set a useful network information for generating 
future ruminal bacterial draft models. The 1317 genes of the final F. succinogenes S85 model 
cover more than 41.5% of the genes identified in the two genomes of the strain (3170 and 
3161 ASM14650v1 and ASM2466v1, respectively). 
Our model contains 2.5 times more genes than the model of the rumen cellulolytic bacterium 
Ruminococcus flavefaciens previously reconstructed (71) by ModelSEED (80) and gaps-filled 
by GapFind-GapFill (71), as well as 1.5 more reactions and metabolites. Our final reconstructed 
network is functional for biomass and SCFA production with compacted core metabolism 
represented by 30% of active pathways (Data set S3 in Supplementary Material B) and has a 
simulated growth rates 72% times greater than that of R. flavefaciens, its cellulolytic model 
candidate (71). GEMs are very powerful to provide a qualitative analysis of microbial 
metabolism. However, they are limited for quantitative prediction of the dynamics of 
metabolites. This work develops an approach for developing a dynamic metabolic model 
(DMM) exploiting the microbial genomic information embedded in the GEM of F. 
succinogenes S85. The use of GEM for dynamic modeling and other analysis methods is 
cumbersome due to the large number of reactions and metabolites which hampers the 
interpretation/visualization of fluxes (e.g., FBA) and limits the calculation of computationally 
expensive analysis (e.g. Elementary Flux Modes (EFM)) (89). Hence, a reduction of the GEM 
into a network that still captures phenotypic and genotypic properties while displaying 
flexibility is needed (90). For our modelling exercise, the NetRed tool (56) was instrumental to 
perform the reduction of our network. All the full-scale GEM reactions participating in the 63 
reduced-scale genome based metabolic network reactions of F. succinogenes S85 are present 
in the list of active pathways of the large-scale network (Data set S2 in Supplementary Material 
B). 

Yield analysis was used in the flux vectors to verify the carbon balance of the network. The 
obtained yields showed that carbon balance was not respected, and the difference was 
coming from the glycogen pathways. Some of the glycogen pathway reactions were identified 
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from the databases as generic reactions. F. succinogenes is known to synthesize glycogen 
during all its growth phases (19). We focused on the validation of its production/degradation 
pathway including generic reactions not only for its specificity in this organism but also for its 
importance in the carbon cycle equilibrium that needs to be held for the network, the EFM 
computation step and the dynamic metabolic model. As solution, we have set for glycogen a 
number of monomers equal to 6 in order to be able to complete the carbon balance and 
therefore stoichiometrically balance the reactions of this metabolic pathway. The reduced 
network helped to calculate the EFM whose reduction was performed by yield analysis (67). 
A 2-D representation of yields was used to compute the convex hull that surround the EFMs. 
The EFMs belonging to the convex hull were further reduced by a method employing polygons 
(91). The EFMs on the convex hull are normally chosen to provide a wide range of steady states 
to the system.  

The resulting model structures are similar in degree of complexity with respect to the rumen 
fermentation model developed by Muñoz-Tamayo et al (92) where carbohydrate metabolism 
is represented by 5 macroscopic reactions. The main difference in the approach developed in 
the present work is that the macroscopic reactions are derived from the reconstructed 
metabolic network of F. succinogenes. It should be noted that the resulting macroscopic 
reactions included in the models correspond to the active sets of EFMs specific to the 
experimental here studied while the subsets of all EFMs at the vertices of the polygon 
enclosing the yield spaces shown in figures 8A-C constitute a minimal generating of EFMs 
covering almost all possible metabolic states. This approach provides a high flexibility to span 
the metabolic space at different experimental conditions. Such a flexibility in the model 
structure is a great asset to study in the future strategies to enhance substrate utilization and 
target desired fermentation profile.  
The model performances were acceptable to capture the dynamics of fermentation by F. 
succinogenes. However, Table 5 and Figures 9A-C display that there is room for improvement. 
The prediction of succinate by the model for cellulose utilization has indeed a high CVRMSE. 
One key element for model improvement is glycogen metabolism, which was not integrated 
in this work. Glycogen plays an important role in F. succinogenes and appears to be submitted 
to a futile cycle which results from a simultaneous utilisation and storage (19, 93). As observed 
in Table 3, glycogen is a net product for the EFMs of the polygon vertices. Thereby, the current 
model structure cannot account for the futile cycling. This limitation is intrinsic to the steady 
state assumption for the EFM derivation. To account for glycogen futile cycling, it will be then 
required to split the metabolic network into subnetworks. The procedure of network splitting 
can be done on knowledge basis as applied for example to study microalgae metabolism (94). 
However, the splitting method is a challenging issue. As perspective, in the mid-term, we will 
explore the use of splitting techniques such as those developed by (95, 96) to account for the 
glycogen futile cycle. In the long-term, we will apply the approach here developed to other 
key rumen microbes to address the modelling of rumen microbial mini consortia. As we have 
previously discussed (97), this approach will enable us to construct tractable models that 
integrate genomic information with capabilities to inform on strategies for driving the rumen 
microbiome. 
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