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Fig. 3: Density factors of decycling set-based ordersL for large k. The
expected density factor (A,C,E) and the particular density factor on CHM13X
(B,D,F) of different minimizer orders is compared for fixed k£ = 20 (A,B), fixed
k = 50 (C,D), and fixed k¥ = 100 (E,F) for varying L. Note that in C-F the

lines for the modified and unmodified orders are almost identical.

results for £ = 20,50 and 100. Average density factors over the repeated runs
are shown. The same plots with error bars displayed are in Figure S2.

As k grows, the advantage of the decycling set-based order becomes even
more pronounced and the double decycling set-based order improves more signif-
icantly over the decycling set-based order. This is true in particular for shorter
L, with the differences between the decycling and double decycling set-based
orders disappearing as L grows. At the same time, for larger k, the modified
variants of the decycling set and double decycling set orders perform essentially
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the same as the original, but with improved k-mer query runtime. In all cases,
the particular density factor is very close to that of the expected density factor.

5 Discussion

In this work, we solved one of the major limitations of UHS-based minimizer
orders. By relieving the strict requirement of generating a set of k-mers that hits
every L-long sequence, we were able to generate minimizer orders that are close
to universal and can be calculated efficiently on the fly. Based on Mykkveltveit’s
algorithm, we developed a method to determine if a k-mer belongs to a minimum
decycling set, which can be applied to any k. We demonstrated that minimizer
orders based on minimum decycling sets are comparable or better in their density
to minimizer orders based on UHSs, thus achieving good performance while
avoiding escalating runtime and memory usage with the increase of k.

We also defined the modified and double decycling set orders. For longer k
and relatively shorter L, the double decycling set-based order yields much lower
density than even the decycling set-based order. Although we did not perform
extensive runtime comparisons of the methods, the double decycling set-based
order is generally slower to compute than the decycling set-based order, and the
modified orders perform fewer computations and thus can be slightly faster. As
the density of the different methods converges as L increases, this suggests using
modified double decycling set-based order for smaller L to achieve lower density,
while modified decycling set-based order can be used for larger L and achieve
similar density with faster running times. Based on the results we have presented,
a general rule-of-thumb appears to be that the advantage of the double decycling
set persists until around L = 2.5k.

We see several promising future directions to take. First, it may be possible to
more rigorously define which of the different decycling set-based orders is better
to use for each given combination of k and L. Second, frequency-based orders
are known to be highly efficient in terms of density while easily computable as
sequence-specific minimizer orders. It will be interesting to extend our work by
ranking each of the sets in a partition by their frequency in a specific sequence
dataset to achieve lower density values (as was recently shown by incorporating
UHS-based orders with frequency ranking [I7]). Third, it may be possible to
use decycling sets and their variants as sketches without defining compatible
minimizer orders by simply including all decycling set k-mers in the sketch. By
choosing an appropriate value of k£ and decycling set variant it may be possible
to achieve a given desired density. Such schemes would be better conserved than
minimizers as they are not dependent on a longer sequence window.

Our new approach can enable more efficient analyses of high-throughput
DNA sequencing data. By implementing our new decycling set-based minimizer
orders in data structures and algorithms of high-throughput DNA sequencing
analysis, we expect to see reductions in runtime and memory usage, beyond what
was previously demonstrated using UHS-based minimizer orders.
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