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ABSTRACT 18 

 

Tests of phenotypic convergence can provide evidence of adaptive evolution, and the 20 

popularity of such studies has grown in recent years due to the development of novel, 

quantitative methods for identifying and/or measuring convergence. Two commonly 22 

used methods include (i) ‘distance-based’ methods that measure morphological 

distances between lineages in phylomorphospace and (ii) fitting evolutionary models to 24 

morphological datasets to test whether lineages have evolved toward adaptive peaks. 

Here, we demonstrate that both types of convergence measures are influenced by the 26 

position of putatively convergent taxa in morphospace such that morphological outliers 

are statistically more likely to exhibit convergence by chance. A more substantial issue 28 

is that some methods will often misidentify divergent lineages as being convergent. 

These issues likely influence the results of many studies, especially those that focus on 30 

morphological outliers. To help address these problems, we developed a new distance-

based method for measuring convergence that incorporates distances between 32 

lineages through time and minimizes the possibility of divergent taxa being misidentified 

as convergent. We advocate the use of this method when the phylogenetic tips of 34 
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putatively convergent lineages are of the same or similar geologic ages (e.g., extant 

taxa), meaning that convergence among the lineages is expected to be synchronous. 36 

We conclude by emphasizing that all available convergence measures are imperfect, 

and researchers should recognize the limitations of these methods and use multiple 38 

lines of evidence when inferring and measuring convergence.  

 40 

KEYWORDS: convergent evolution, evolutionary models, Ornstein-Uhlenbeck models, 

phylomorphospace, adaptive evolution 42 

 

 44 

INTRODUCTION 
  46 

Phenotypic convergence among distantly related taxa is commonly associated with 

adaptive evolution (e.g., Darwin 1859, Losos 2011), but it can also occur stochastically 48 

(Stayton 2008) or as a byproduct of shared developmental constraints (Losos 2011, 

Speed and Arbuckle 2016). Evidence that convergence is due to adaptation requires 50 

showing that the magnitude of convergence is greater than expected by chance, and 

also that the convergent phenotypes are tied to similar ecological or functional roles. 52 

Thus, quantitative examinations of phenotypic convergence are important; they assist 

researchers in identifying adaptive morphological changes that are driven by shared 54 

selective pressures and/or developmental constraints. Novel methods for identifying and 

measuring convergence have recently been developed (Mahler et al. 2013, Arbuckle et 56 

al. 2014, Ingram and Mahler 2013, Stayton 2015A, Speed and Arbuckle 2017, 

Castiglione et al. 2019), and these methods are often accompanied by statistical tests 58 

for comparing the measured convergence to that which is expected from a null model-

fitting hypothesis or random data permutations. This has increased the accessibility of 60 

quantitative tests for phenotypic convergence, leading to a flood of recent studies on 

that topic (e.g., Friedman et al. 2016, Zelditch et al. 2017, Da Silva et al. 2018, Arbour 62 

and Zanno 2020, Grossnickle et al. 2020, Martinez et al. 2020, Serio et al. 2020, Spear 

and Williams 2020, Baumgart et al. 2021, Huie et al. 2021, Rovinsky et al. 2021, 64 

Tamagnini et al. 2021, Alfieri et al. 2021, Law 2022, Canale et al. 2022).  
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         Phenotypic convergence is often defined as lineages evolving to be more similar 66 

to one another than were their ancestors (Losos 2011, Stayton 2015A, Mahler et al. 

2017), and we follow that definition here. Thus, a signature of convergence is 68 

phylogenetic tips that are phenotypically more similar to one another than expected 

based on assumptions of random change over time; the degree of this similarity of tips 70 

is often quantified by convergence measures (Speed and Arbuckle 2017). However, a 

confounding issue is that multiple types of evolutionary trajectories can result in 72 

lineages that are more similar to one another than expected by chance but are not 

convergent (as defined above). This includes lineages that retain a shared ancestral 74 

morphology (see discussion on ‘conservatism’ below) and lineages that have parallel 

evolutionary trajectories from a similar ancestral trait condition. 76 

The C1–C4 measures (hereafter, ‘C-measures’) developed by Stayton (2015A) 

have emerged as an especially popular means of quantifying phenotypic convergence 78 

(e.g., Friedman et al. 2016, Zelditch et al. 2017, Da Silva et al. 2018, Arbour and Zanno 

2020, Grossnickle et al. 2020, Martinez et al. 2020, Spear and Williams 2020, Baumgart 80 

et al. 2021, Huie et al. 2021, Rovinsky et al. 2021, Tamagnini et al. 2021, Law 2022, 

Canale et al. 2022). C-measures are calculated using geometric distances in 82 

phylomorphospace between focal lineages, relying on ancestral reconstructions for 

morphologies at ancestral nodes. The underlying feature of the C-measures is the 84 

comparison of two measurements: the maximum phenotypic distance between lineages 

at any points in their evolutionary histories (Dmax) and the phenotypic distance between 86 

phylogenetic tips (Dtip). More specifically, Dmax is the greatest distance between any two 

points along the lineages in phylomorphospace, with candidate distances including any 88 

points between the lineages’ most recent common ancestor and the tips (Fig. 1A). C1 is 

the primary C-measure and calculated as 1 – (Dtip/Dmax), with the resulting value 90 

representing “the proportion of the maximum distance between two lineages that has 

been ‘closed’ by subsequent evolution” (Stayton 2015A). In our conceptual illustration 92 

(Fig. 1A), two lineages have convergently evolved such that their tips are 70% closer to 

each other than their Dmax, resulting in a C1 score of 0.7.  94 

 

 96 
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Figure 1. Conceptual illustrations of two methods for assessing phenotypic convergence of 98 
focal lineages (maroon): A, C1 of Stayton (2015A) and, B, Ornstein-Uhlenbeck (OU) model-
fitting. The C1 score of 0.7 indicates that lineages have evolved toward each other to cover 100 
70% of the maximum distance (Dmax) between their lineages. Dmax can be measured at any 
point along the evolutionary histories, including the dashed branches in A, and Dtip is the 102 
morphological distance between phylogenetic tips. Although time is a variable in the 
univariate illustration in A, the C-measures do not incorporate time. B, OU models include 104 
fitting a trait optimum parameter that is often interpreted as the location of an adaptive peak 
and an ‘attraction’ parameter that is commonly interpreted as the strength of selection. 106 
Abbreviation: MRCA, most recent common ancestor. 

  108 

  

  110 

One reason for the popularity of C-measures is that they can distinguish between 

convergence and conservatism, which both result in distantly-related phylogenetic tips 112 

with similar phenotypes. The key difference between convergence and conservatism 

centers on the ancestral morphologies of the lineages. Whereas convergence involves 114 

ancestors that were less morphologically similar to each other than their descendant 

tips are to one another (Losos 2011, Stayton 2015A, Mahler et al. 2017), conservatism 116 

is the lack of substantial phenotypic divergence from ancestral morphologies relative to 
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what is expected from random processes (Losos 2008, Moen et al. 2013, McLean et al. 118 

2018). The ‘blue’ lineages in Figure 1B could be considered an example of 

conservatism; they have not evolved far from the ancestral morphology. C-measures 120 

account for ancestral patterns via the Dmax measurement (Fig. 1A). Alternative distance-

based methods for testing for convergence (e.g., Wheatsheaf index, Arbuckle et al. 122 

2014, Arbuckle and Minter 2015; θ, Castiglione et al. 2019) cannot adequately 

differentiate between convergence and conservatism (or parallelism) because 124 

phenotypic distances between ancestral morphologies are not considered or, in the 

case of θ, only partially integrated (Castiglione et al. 2019).  126 

In addition to distance-based measures, researchers often use evolutionary 

model-fitting analyses to test for convergence, using strong fits of Ornstein-Uhlenbeck 128 

(OU) models (Hansen 1997, Butler and King 2004) to morphological data as evidence 

of convergence (e.g., Mahler et al. 2013, Ingram and Mahler 2013, Friedman et al. 130 

2016, Mahler et al. 2017, Grossnickle et al. 2020, Martinez et al. 2020). An OU process 

involves ‘attraction’ toward an ‘attractor’ or trait optimum (commonly interpreted as the 132 

location of an adaptive peak), and this attraction and any resulting convergence is often 

assumed to be due to selective pressures toward adaptive peaks (Fig. 1B). 134 

Convergence is identified when the best-supported model indicates that two or more 

lineages have independently begun evolving toward the same trait optimum. OU model-136 

fitting analyses may fail to differentiate between convergence and conservatism 

because conservatism (or long-term stasis) is also an expected outcome of an OU 138 

process (Hansen 1997), although in the case of conservatism no switch from an 

ancestral to derived optimum may be inferred. However, a benefit of OU model-fitting 140 

analyses is that the magnitude of the attraction parameter allows an estimate of 

selective strength toward adaptive peaks, thus providing information about the process 142 

that may be driving convergence. 

Here, we highlight a critical concern with C-measures and OU model-fitting 144 

analyses: in some circumstances either approach may misclassify divergent lineages as 

convergent, especially when those lineages are outliers in morphospace. 146 

Misclassification occurs for different reasons with each method, but in both cases it is 

more likely to occur with greater distances between the lineages of interest and their 148 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 21, 2022. ; https://doi.org/10.1101/2022.10.18.512739doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.18.512739
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

6 

ancestral morphology (i.e., the lineages are greater morphological outliers). We 

demonstrate the problem by applying both methods to simulated data in which a subset 150 

of lineages are modeled as truly convergent or truly divergent. We also assess other 

distance-based metrics for measuring convergence and find that θ (i.e., the angle 152 

between phenotypic vectors) is also biased toward misclassifying morphological outliers 

as convergent, whereas the Wheatsheaf index is biased but in the opposite direction, 154 

indicating greater convergence among lineages that retain their shared ancestral 

morphology. Finally, we present an improved method for calculating C-measures that 156 

minimizes the possibility of erroneously measuring divergent lineages as convergent, 

which is most applicable to data where the phylogenetic tips are of the same or similar 158 

age (e.g., for evaluation of convergence among extant taxa). 

  160 

METHODS 
  162 

Evolutionary simulations 
We generated a series of simulated trait datasets to ascertain how frequently 164 

convergence measures correctly identify convergent lineages and misclassify divergent 

lineages as convergent. Simulated datasets are intended to reflect typical empirical 166 

datasets, and thus we simulated traits on a phylogenetic tree of extant mammals that is 

currently being used for empirical research. The sample of extant mammalian species 168 

(n = 201) builds on the samples in Grossnickle et al. (2020), Weaver and Grossnickle 

(2020), and Pevsner et al. (2022). We obtained 1000 randomly chosen phylogenetic 170 

trees from the posterior distribution of Upham et al.’s (2019) ‘completed trees’ analysis. 

We then used TreeAnnotator (Drummond et al. 2012) to generate a maximum clade 172 

credibility tree, which was pruned to the species in our sample. The sample includes 13 

gliding-mammal species representing five independent evolutionary origins of gliding 174 

behavior. We treated the gliders as the focal lineages (sensu Grossnickle et al. 2020); 

they were the subject of manipulation in our simulations (as such, we refer to those 176 

simulated glider data as 'gliders'). The five ‘glider’ clades are spread across the 

mammalian phylogeny and have varying evolutionary origin ages, making them ideal for 178 

representing typical empirical datasets. 
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For each simulated trait set, six traits were evolved by Brownian motion (BM) on 180 

all ‘non-glider’ branches to produce a "base tree" using the 

SimulateContinuousTraitsOnTree function in the Phylogenetics for Mathematica 182 

package (Polly 2019). (Note that the phylogeny is the same for each base tree; only the 

simulated traits vary with each base tree.) The ancestral value for each trait was 184 

arbitrarily set to 0.0 and the step rate, 𝜎2, was set at 1.0 per million years. Phylogenetic 

branches of ‘gliders’ were those tipped by one of the 13 ‘glider’ species, plus the 186 

subtending branches below clades whose tips were all ‘gliders.’ From the ancestral 

value generated by BM, the traits on the ‘glider’ branches were systematically selected 188 

toward varying trait optima (see below) using an OU model. Selection toward optima 

was simulated using the LineageEvolution function in Phylogenetics for Mathematica.  190 

For convergence simulations, the traits simulated to be convergent (of the six 

traits) were all selected toward the same trait optimum. The selected branches were 192 

simulated for their full duration, which allowed all but the shortest branches to arrive at 

the adaptive peak. Using the same base tree, each simulation was repeated with a 194 

different number of convergent traits: three, four, five, and six. Traits not selected to be 

convergent were evolved by BM. Each of these was then iterated for a series of 11 trait 196 

optima at successively greater distances from the ancestral point in morphospace, 

starting at 0 (convergence toward the ancestral trait values) and increasing by 10s to a 198 

distance of 100 trait units from the ancestral value. For instance, in a simulation with 

four convergent traits and an optimum of 30, the first four traits all evolved toward an 200 

optimum trait value of 30 and the two remaining traits evolved by BM. The range of tip 

values in the base tree has a radius of about 20 trait units, so the first three optima in 202 

this iteration (0, 10, 20) lie within the morphospace occupied by 'non-glider' taxa and the 

last seven lie increasingly outside the range of morphology of 'non-gliders.' Each 204 

simulation with all of its iterations was repeated with 15 unique base trees, and we 

report results for the means and standard errors of these 15 replicates. 206 

We simulated divergence among 'glider' lineages in two ways. First, we 

simulated divergence as occurring via drift, using a BM process. Six traits were 208 

simulated using the fastBM function of the phytools package (Revell 2012) for R (R 

Core Team 2020). Ancestral trait values were set at zero, and, to mimic natural 210 
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variation, the rate parameter (σ2) was sampled from a log-normal distribution with log-

mean and standard deviation 0 and 0.75, respectively. This was repeated to produce 15 212 

replicate datasets. Second, we simulated divergence as selection of the individual 

'glider' lineages each toward a different trait optimum using a procedure that is as 214 

parallel as possible to that used in the convergence simulations. Between three and six 

traits were selected toward the clade-specific trait optimum with a series of target 216 

distances ranging from 30 trait units from the ancestral morphology (which extends the 

lineages past the periphery of the base BM tree and thus ensures that the targets are 218 

divergent) to 100 units in steps of 10. This choice, however, means that the divergence 

simulations are limited to cases in which the lineages are morphological outliers (i.e., 220 

they evolve beyond 20 trait units), whereas the drift-based divergence simulations 

include non-outlying lineages. A different target was randomly selected for each 'glider' 222 

clade by choosing a random positive trait value for each of the traits under selection 

with the condition that their sum of squares equal the squared target distance (i.e., that 224 

the target lies at a distance of 30, 40, etc. units from the ancestral trait values). 

Choosing only positive trait values ensures that the lineages are allowed to diverge in 226 

fully multivariate directions yet lie within the same multidimensional 'quadrant.' The 

selected lineages are allowed to fully reach their trait optima.  228 

In total, we generated and analyzed 1,155 simulated datasets: 660 that simulated 

trait convergence and 495 that simulated trait divergence.  230 

  
C-measures 232 

We applied the C-measures (Stayton 2015A) to focal lineages (‘gliders’) in the 

simulated datasets. The primary measure, C1, is the distance between phylogenetic tips 234 

of focal taxa (Dtip) divided by the maximum distance between any tips or ancestral 

nodes of those lineages (Dmax). The resulting proportion is subtracted from one; the C1 236 

value is one for complete convergence zero for divergence (i.e., Dmax is Dtip). C2 is Dmax 

subtracted by Dtip, and it captures the absolute magnitude of convergent change. C3 238 

and C4 are standardized versions of C2 that are calculated by dividing C2 by the 

phenotypic change along branches leading to the focal taxa (C3) or the total amount of 240 

phenotypic change in the entire clade (C4). See Stayton (2015A) for full descriptions of 
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C1–C4. To calculate C-measure scores, we used functions in the R script from Zelditch 242 

et al. (2017), which are computationally faster than the functions in the convevol R 

package (Stayton 2015A, Stayton 2018). Due to computational limits of analyzing a 244 

large number of simulated datasets, we only calculated simulation-based p-values for a 

smaller subset of datasets used for subsequent analyses (see the following subsection).  246 

C-measures quantify phenotypic convergence between individual phylogenetic 

tips, not between clades with multiple tips (Stayton 2015A). Thus, we calculated 248 

average phenotypes for taxa of focal clades. For example, one glider clade includes six 

flying squirrel species, so for each of the six simulated traits we calculated mean values 250 

for the six species. The averages were then used as the representative flying squirrel 

lineage. Thus, C-measures were measured for five ‘glider’ lineages, each representing 252 

an independent evolution of gliding. The species’ traits were not averaged prior to the 

other types of convergence analyses described below. 254 

  

Additional measures of convergence 256 

Subset of simulated datasets. We applied additional measures of convergence (OU 

model-fitting, θ, and Wheatsheaf index) to a smaller subset of 30 simulated datasets. 258 

This subset only includes datasets in which four of six traits were simulated to converge 

on a specific trait optimum or diverge toward multiple optima, with the remaining two 260 

traits evolved by BM (see Evolutionary simulations subsection for more details). We did 

not use datasets in which all six traits are convergent because this leads to nearly 262 

complete convergence on a trait optimum, and complete convergence appears to be 

very rare among empirical analyses (Grossnickle et al. 2020). Nonetheless, four of six 264 

traits being convergent on an optimum often results in strong convergence (i.e., 

statistically significant distance-based measures of convergence and strong fits of 266 

multiple-peak OU models) among lineages, especially when trait optima are outliers in 

morphospace (see Results & Discussion). For convergence simulations, we randomly 268 

chose five simulated datasets each from the sets of simulations where trait optima were 

set at 0, 20, 50, and 100. These represent simulations in which focal lineages evolve 270 

toward the ancestral morphology (optimum = 0), evolve to the outer edge of the 

morphospace region of BM-evolved lineages (optimum = 20), and evolve far into 272 
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outlying morphospace (optima = 50 and 100). For divergence simulations, we randomly 

chose five simulated datasets each with optima of 50 and 100. (Using trait optima of 0 274 

or 20 could mistakenly simulate convergence toward ancestral morphologies.) Thus, the 

subset of datasets includes 20 convergence simulations (five datasets each for four trait 276 

optima) and 10 divergence simulations (five datasets each for two optima). The 

following methods were only applied to this subset of 30 datasets.  278 

Evolutionary model-fitting analyses. We fit three multivariate models to all six 

simulated traits using functions within the mvMORPH R package (Clavel et al. 2015). 280 

The first two models were a single-rate multivariate BM model (mvBM1) that assumes 

trait variance accumulates stochastically but proportionally to evolutionary time, and a 282 

single-optimum Ornstein-Uhlenbeck model (mvOU1) that modifies the BM model to 

constrain each trait to evolve toward a single optimum. Support for mvBM1 or mvOU1 284 

would indicate a lack of strong convergence among the taxa simulated as convergent or 

divergent, due to the lack of evidence for a distinct adaptive peak associated with 286 

‘gliders.’ We then fit a multivariate OU model with two selective regimes (mvOU2) that 

allowed ‘gliders’ and ‘non-gliders’ to exhibit different trait optima (θ). Support for mvOU2 288 

would provide evidence of convergence by indicating that selective forces are driving 

‘glider’ lineages to a shared adaptive peak (Fig 1B). Note that the simulations evolved 290 

‘non-gliders’ via BM, and thus any support for the mvOU2 model is likely to be driven by 

the 13 ‘glider’ lineages. Although we generated the datasets and thus could use the 292 

known ancestral character states of each dataset, our goal is to treat the data like an 

empirical dataset with unknown ancestral states. Thus, we stochastically mapped 294 

ancestral character states on each tree as ‘simmaps’ (Bollback 2006), and to account 

for ancestral state uncertainty we used 10 ‘simmaps’ for each of the 30 datasets (six 296 

sets of five datasets). Relative support for each of the three models was assessed 

through computation of small-sample corrected Akaike weights (AICcW; Akaike 1974; 298 

Hurvich and Tsai 1989). For each set of five datasets, we calculated AICcW for each of 

the 50 total trees (five datasets with 10 ‘simmaps’ each), and we report the mean values 300 

for these trees.  

As a supplemental analysis, we fit models to univariate data (PC1 scores) using 302 

functions in the OUwie R package (Beaulieu et al. 2012). This includes multiple-regime 
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OU models that permit evolutionary rates (σ) and/or attractions to optima (α) to vary 304 

between regimes, which is not a feature of the multivariate mvMORPH models. See the 

Supplemental Methods for additional information.  306 

Additional distance-based convergence measures. We applied two other 

measures of convergence to the subset of 30 simulated datasets (using all six traits): 308 

Wheatsheaf index, which was implemented via the R package windex (Arbuckle et al. 

2014, Arbuckle and Minter 2015), and θreal, which was implemented using the RRphylo 310 

package (Castiglione et al. 2018, Castiglione et al. 2019). The Wheatsheaf index 

measures pairwise morphological distances between putatively convergent taxa, with 312 

distances corrected for the degree of phylogenetic relatedness of lineages. These 

distances are compared to pairwise distances between other lineages in the sample to 314 

determine whether putatively convergent lineages are more similar to each other than 

expected. The θ measurement is the angle between the phenotypic vectors of putatively 316 

convergent lineages (note that this θ is different from the θ parameter of OU models), 

and it is based upon phylogenetic ridge regression. We report the angle obtained by all 318 

pairwise comparisons between putatively convergent clades (θreal), standardized by the 

phylogenetic distance separating them (i.e., expected divergence under a BM model). 320 

Significance tests compare standardized θreal values of putatively convergent taxa to 

values computed for randomly selected tip pairs. 322 

 

RESULTS & DISCUSSION 324 

  
C-measure issues 326 

Our analysis of the C-measure calculations reveals that the measures do not always 

perform as intended (Stayton 2015A), especially when putatively convergent lineages 328 

are outliers in morphospace. This critical problem can manifest in at least three ways, 

which we illustrate in Figure 2. First, the more outlying the morphologies are in 330 

phylomorphospace (and all else being equal), the greater the C scores, indicating 

stronger convergence. We demonstrate this with a conceptual illustration in Figure 2A 332 

(note that Dtip remains constant in both scenarios). This does not align with the working 

definition of convergence used in this study and in Stayton (2015A); the distances 334 
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between ancestral nodes and the distances between descendants are unchanged 

between the scenarios, and thus we could expect C scores to be the same for both 336 

scenarios. The pattern of greater convergence in outliers is also demonstrated by 

results of applying C-measures to evolutionary simulations (Figs. 3 and S1); taxa 338 

evolving to trait optima farther from the ancestral morphology have greater C1–C4 

scores. The only exception is the C1 set of results when all six simulated traits are 340 

convergent. In this case, C1 scores remain consistently around 0.8 regardless of the 

position of trait optima (Fig. 3C). 342 

 

  344 

 
Figure 2. Conceptual illustrations of C-measure issues. C1 scores are greater than zero for 346 
the divergent (B) and parallel (C) lineages (Ecomorphotype 2), incorrectly indicating that the 
lineages are convergent. See the main text and Figure 1 for more information on C1, Dmax, 348 
and Dtip. The C-measure issues highlighted here also apply to evolutionary model-fitting 
analyses. The distribution curves in univariate illustrations could represent adaptive peaks, 350 
and OU model-fitting analyses are more likely to identify unique adaptive peaks when a 
peak is farther from the ancestral morphology (Table 1).  352 
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 354 

 

 356 
Figure 3. PCA phylomorphospaces for example datasets that simulate convergence (A) and 
divergence (B) of all six traits of five focal taxa (‘gliders’). Traits were selected toward optima 358 
via an OU process, with all traits of convergent taxa selected toward a value of 100 and 
traits of divergent taxa selected toward varying values that result in evolutionary change 360 
equal to that of convergent taxa (see Methods). (C) C1 scores for simulated convergent 
lineages (solid lines) and divergent lineages (dashed lines), using datasets in which focal 362 
taxa have varying numbers of convergent/divergent traits (of six total) and trait optima 
positions. Any traits and lineages not selected to be convergent/divergent were evolved by 364 
Brownian motion (BM). Focal taxa evolved toward trait optima after they originated. 
Divergent trait optima are randomized, but they are limited to being positive numbers 366 
(whereas BM-evolved traits can be positive or negative), resulting in divergent lineages 
evolving in the same direction along PC1 (e.g., B) but otherwise being divergent (unless 368 
convergence occurs by chance). C1 values above zero indicate convergence, and a value 
of one would reflect complete convergence (i.e., phenotypically identical tips). We did not 370 
simulate divergence to trait optima of 0, 10, and 20 because the simulations might 
mistakenly generate convergent lineages near the middle of morphospace. As a second 372 
means of simulating divergence, we allowed the focal lineages to evolve via BM, and these 
results are displayed as a box-and-whisker plot in C. C1 results are means and standard 374 
errors of 15 simulated datasets.  

 376 
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 378 

The second and third issues with the C-measures are more problematic: 

divergent and parallel lineages can have C1 scores that are greater than zero, 380 

incorrectly indicating that the lineages are convergent (Fig. 2B, C). In Figure 2B we 

illustrate lineages that are diverging morphologically (in univariate and multivariate 382 

morphospace), but they have a C1 score of 0.3, incorrectly suggesting that the lineages 

have experienced substantial convergence (i.e., closing about 30% of the maximum 384 

distance between lineages). To further test this issue, we measured C1 in lineages 

simulated to have divergent traits (Fig. 3B), and C1 values are consistently greater than 386 

zero (Fig. 3C), incorrectly indicating convergence instead of divergence. This has major 

implications for empirical studies (see discussion of examples below); divergent 388 

lineages may often be incorrectly interpreted to be convergent. 

Similarly, outlying lineages evolving along parallel phylomorphospace trajectories 390 

from a similar ancestral condition have extremely strong C1 scores (Fig. 2C). This is 

unexpected because the ancestral nodes of both lineages are the same morphological 392 

distance from one another as the distance between tips; this is not convergence 

according to the definition of convergence adopted here or in Stayton 2015A (see 394 

Introduction; Losos 2011, Mahler et al. 2017).  

The possibility of diverging and parallel lineages having C1 scores that 396 

incorrectly indicate convergence (i.e., are greater than zero) stems from the Dmax 

measurement (as defined by Stayton 2015A and calculated in versions 1.0 through 1.3 398 

of the convevol R package), which can be erroneously inflated, especially when 

lineages are morphological outliers. Dmax can be measured between ancestral nodes 400 

(e.g., see the illustration in Figure 1A), between tips, or between a node and a tip (which 

is the case in all examples in Figure 2). For converging lineages, Dmax is expected to be 402 

longer than Dtip (Stayton 2015A). For diverging lineages, in contrast, Dmax is expected to 

be the morphological distance between the tips, meaning that Dmax equals Dtip (and C1 404 

= 0). However, this is not always the case; divergent lineages can have a Dmax length 

that is not between tips, as illustrated in Figure 2B. Thus, Dmax can be greater than Dtip 406 

(indicating convergence) even when lineages are divergent. Although we illustrate this 

issue using diverging phylogenetic tips (Fig. 2B), the problem could also arise if there 408 
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are internal nodes that are similarly divergent and outlying in morphospace (and 

branching lineages from those nodes do not converge on other focal lineages); thus, 410 

this issue is not solely due to allowing Dmax to be measured to tips.  

 412 

Other measures of convergence show biased results 
Distance-based convergence measures. To test whether other convergence measures 414 

also experience similar issues as those of the C-measures, we applied two other 

‘distance-based’ metrics (Wheatsheaf index [Arbuckle et al. 2014, Arbuckle and Minter 416 

2015] and θ [Castiglione et al. 2019]) and OU model-fitting analyses to a subset of 

simulated datasets (Table 1).  418 

 

 420 

 
Table 1. Tests of convergence among focal lineages of the simulated datasets using 422 
distance-based measures. Results are means of five randomly chosen simulated datasets 
for each optimum. For θ results, we report θreal standardized to phylogenetic distance 424 
between clades. Note that relatively smaller θreal values (i.e., smaller angles between 
phenotypic vectors) suggest greater convergence, whereas relatively larger Wheatsheaf 426 
index, C1, and Ct1 values indicate greater convergence. Statistical significance (*, p < 0.05; 
**, p < 0.01; ***, p < 0.001) for C1 and Ct1 is based on comparisons to results of 100 428 
simulations via a BM model, and for the Wheatsheaf index it is based on bootstrapping with 
1000 replicates. Significance of standardized θreal values is based on bootstrapping with 430 
1000 replicates for each pairwise comparison between the five ‘glider’ clades (except the 
monospecific clade). In all cases, the reported significance is based on means of all 432 
analyses for a given trait optimum.  

 434 
 

 436 
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 Consistent with the C-measures, the θreal results (standardized to phylogenetic 

distance between clades) indicate greater convergence in morphological outliers (Table 438 

1). That is, the angle between phenotypic vectors, θreal, decreases when lineages 

evolve toward optima that are farther from the ancestral morphology. This is 440 

unsurprising because a relatively farther trait optimum results in greater trait values in 

the lineages simulated to be convergent, and, all other variables being equal, greater 442 

trait values should result in smaller angles between phenotypic vectors. However, unlike 

the C-measures, θreal does not identify simulated divergent lineages as convergent 444 

(Table 1).  

In contrast to the C-measures and standardized θreal, the Wheatsheaf index 446 

measures less convergence in outliers relative to non-outliers; values decrease when 

convergent taxa are farther from the ancestral morphology in morphospace. The 448 

Wheatsheaf index compares the distances between putatively convergent taxa to 

distances between other tips. Our simulations did not allow all convergent lineages to 450 

completely reach trait optima (Fig. 3A), and for the subset of datasets used for 

Wheatsheaf index analyses, two of the six simulated traits evolved via BM. Together, 452 

these two factors mean that simulated convergent lineages did not completely converge 

on a morphology, and the pairwise distances between many tips of simulated 454 

convergent lineages are farther apart from each other than are the pairwise distances 

between other, BM-evolved lineages (see the phylomorphospace in Figure 3A, but note 456 

that the plot is for data in which all six traits were convergent). If we allowed simulated 

lineages to completely reach trait optima, then this trend of less convergence in outliers 458 

(as measured by the Wheatsheaf index) might disappear. However, complete 

convergence on morphologies seems especially rare in empirical datasets (Grossnickle 460 

et al. 2020); thus, we believe that the Wheatsheaf index is likely to show reduced 

measures of convergence in morphological outliers of most empirical samples, in line 462 

with our simulation results.  

Evolutionary model-fitting analyses. Model support for multiple-regime OU 464 

models is often interpreted as evidence for convergence (Fig. 1B), and our model-fitting 

results (Table 2) highlight two pitfalls of that assumption. First, for simulated 466 

convergence datasets, the null model representing a lack of convergence, mvBM1 (a 
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uniform BM model), is the best-fitting model when the trait optimum is zero (i.e., ‘gliders’ 468 

converge on the ancestral morphology). And mvBM1 performs well (mean AICcW of 

0.40) when the trait optimum is 20, which simulates convergent lineages evolving to the 470 

edge of the central-morphospace ‘cloud’ of BM-evolved lineages. Model support for 

mvOU2 strengthens when lineages evolve farther from the ancestral morphology, with 472 

an average AICcW of 1.0 for mvOU2 when trait optima are 50 and 100 (Table 2). Thus, 

OU model-fitting analyses may struggle to identify convergence when lineages 474 

converge on a morphology that is similar to the ancestral morphology, and, like C-

measures and standardized θreal, they may be biased toward measuring stronger 476 

convergence when lineages evolve farther from the ancestral morphology.  
 478 
 
 480 
 
Table 2. Tests of convergence among lineages of the simulated datasets using evolutionary 482 
model-fitting analyses. Model-fitting results for each trait optimum are the mean AICcWs of 
50 phylogenetic trees (five datasets with 10 ‘simmaps’ each). Model support for the two-484 
regime model (mvOU2) represents support for convergence because this model reflects 
evolution of focal lineages toward a shared adaptive peak. Abbreviations: AICcW, small-486 
sample corrected Akaike weights; mvBM, multivariate Brownian motion model; mvOU, 
multivariate Ornstein-Uhlenbeck model.  488 

 
 490 

 

Second, for divergence simulations, the two-regime model (mvOU2) is the best-492 

fitting model (Table 2); this model treats divergent taxa (‘gliders’) and BM-evolved 

lineages (‘non-gliders’) as the two selective regimes. In light of the assumption that 494 

support for multiple-regime OU models is evidence of convergence, this result is 

surprising because the divergent lineages show considerable divergence in 496 
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phylomorphospace (Fig. 3C) rather than attraction toward one part of the morphospace 

(a presumptive adaptive peak, which is an assumption of the OU process). Further, taxa 498 

representing the second regime were evolved by BM, not an OU process. Thus, taxa of 

neither selective regime are expected to be well-fit by by an OU model, and yet the two-500 

regime OU model is a substantially better fit to the data than the null, BM1 model ( 

AICcW for mvOU2 is 1.0 for optima of 50 and 100; Table 2). This indicates evidence of 502 

two adaptive peaks, one for ‘gliders’ and one for ‘non-gliders,’ even though neither of 

those groups was simulated as evolving toward an adaptive peak.  504 

A probable explanation for the relatively strong fits of two-regime OU models to 

divergence datasets is that none of the fitted models are a good fit. The two-regime OU 506 

models may simply be the best-fitting of bad-fitting models. Further, multiple-regime OU 

models are often incorrectly favored over simpler models (Cooper et al. 2016), 508 

especially when sample sizes are small, and this may be the case with our divergence 

datasets. Cooper et al. (2016) suggest examining the phylogenetic half-lives (ln(2)/α) of 510 

traits as a measure of the strength of an OU process. To examine this for our datasets, 

we performed supplemental analyses in which we fit univariate, two-regime OU models 512 

that permit the α value parameter to vary between regimes (see Supplemental 

Methods), which then allows us to calculate the phylogenetic half-life specifically for the 514 

‘glider’ regime. For simulations with divergent trait optima of 100, the fitted α value 

(mean of 50 trees) of the best-fitting univariate model (OU2VA; Table S1) to PC1 scores 516 

indicates a phylogenetic half-life for the simulated gliders of 35 million years. Three of 

the five glider clades originated less than 35 million years ago. Thus, the relatively long 518 

half-life suggests an especially poor fit of the OU2VA model to the data, despite this 

model being a better fit than the BM1 and OU1 models according to the AICcW 520 

comparisons. Considering that empirical datasets often include complex evolutionary 

patterns and small sample sizes for some regimes, researchers should be cautious both 522 

when choosing models to fit to data and when interpreting results (Cooper et al. 2016). 

Although not explored in this study, multiple-regime BM (BMM) models may offer 524 

alternative options that complement multiple-regime OU models. BMM models allow 

varying phylogenetic means among regimes and can be fit using functions within some 526 

R packages, including mvMORPH (Clavel et al. 2015). Because BMM models do not 
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model selection toward an optima, support for BMM models over OUM models may 528 

suggest that there is limited or no convergence among lineages of interest (e.g., 

Grossnickle et al. 2020), and in some cases a BMM model might serve as a more 530 

appropriate null model than BM1. 

A second factor that may help to explain the relatively strong fits of two-regime 532 

OU models to the simulated divergence datasets is that the divergent lineages all 

remain in the same side of the morphospace (e.g., all divergent lineages are in negative 534 

PC1 space in Figure 3B) because we limited optima to be positive values rather than 

positive or negative (see Methods). Therefore, the lineages may be modeled as 536 

evolving toward an especially broad adaptive peak that occupies a large region of 

morphospace. Figure 2B provides a conceptual illustration of this scenario; the 538 

Ecomorphotype 2 lineages are diverging but still appear to be evolving toward a broad 

adaptive peak, which is broader than the adaptive peak of the ancestral lineages 540 

(Ecomorphotype 1). This could be a similar scenario to the divergent outlier lineages in 

our simulated dataset (Fig. 3C).  542 

Although results of both C-measures and OU model-fitting analyses can 

incorrectly suggest that divergent lineages are convergent, the reasons for this issue 544 

are different for the two methods; they are fundamentally different in how they test for 

convergence. Stayton (2015A, 2015B) highlighted that distance-based measures rely 546 

on a pattern-based definition of convergence that does not assume a specific 

mechanism is driving convergence (although see Mahler et al. 2017 for an opposing 548 

view), whereas OU model-fitting analyses assume that a specific mechanism, selective 

pressure (modeled as the α parameter), is driving convergence, and thus rely on a 550 

process-based definition of convergence. A further distinction between these types of 

convergence measures is that distance-based measures assess morphological 552 

convergence of lineages (i.e., the focus is on whether lineages are evolving toward 

each other), whereas OU model-fitting analyses test for convergence on a morphology 554 

(i.e., the focus is on whether lineages are evolving toward a trait optimum or adaptive 

peak, not toward each other). This distinction between these two types of convergence 556 

measures is important: OU model-fitting analyses are not testing for similarities of 

lineages but rather similarities of lineages to a morphology; thus, they are less directly 558 
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testing for convergence compared to distance-based measures, at least when using the 

convergence definition followed in this paper.  560 

In sum, all convergence measures show some bias, especially when examining 

morphological outliers, albeit for different underlying reasons for each method. C-562 

measures, θ, and OU model-fitting analyses all result in stronger measures of 

convergence when simulated convergent taxa evolve toward relatively farther trait 564 

optima, and C-measures often misidentify divergent lineages as being convergent (Fig. 

3C, Table 1). Further, model support for multiple-regime OU models, which is often 566 

interpreted as support for convergence, can be misleading because in some scenarios 

these models may be the best fits to divergent lineages (Table 2). In contrast, the 568 

Wheatsheaf index shows weaker convergence in outliers, although the magnitude of 

this bias may be influenced by our simulation methods (Table 1).  570 

 

Measuring convergence through time via Ct-measures  572 

Despite any shortcomings, C-measures have benefits over other convergence 

measures, including the ability to distinguish between convergence and conservatism 574 

(Stayton 2015A). Thus, our objective is not to discourage the use of distance-based 

metrics like C-measures but rather to identify issues and encourage the development of 576 

improved measures.  

We help to address the C-measure issues by presenting novel distance-based 578 

convergence measures that are derived from the C-measures. The new measures are 

calculated using the same equations as those for C1–C4 (except with a change to C4; 580 

see below and Supplemental Methods), but we limit the candidate Dmax measurements 

to distances between lineages at synchronous ‘time slices’ coinciding with internal 582 

phylogenetic nodes. For this reason, the new measures require the input tree to be time 

calibrated. We refer to the new measures as Ct-measures (or Ct1–Ct4) and Dmax as 584 

Dmax.t because time (t) is incorporated when measuring morphological distances 

between lineages, unlike the C-measures. Ct1 scores can be interpreted in the same 586 

way as C1 scores were intended to be interpreted (Stayton 2015A): positive Ct1 scores 

represent a proportion of the maximum morphological distance between lineages that 588 

has been covered by convergent evolution, with a result of one representing complete 
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convergence. Like C-measures, statistical significance for Ct-measures is based on 590 

comparison with expectations for evolution proceeding entirely on a BM model, with 

simulations used to generate the expectations. 592 

By limiting the candidate Dmax.t measurements to time slices, the Ct-measures 

minimize the possibility of Dmax.t being erroneously inflated by divergent tips. This is 594 

conceptually illustrated in Figures 4A and 4B, which are the same scenarios as in 

Figure 2A and 2B. Whereas the C1 score in Figure 2B incorrectly indicates 596 

convergence (i.e., C1 is greater than zero), the Ct1 score in Figure 4B correctly 

indicates divergence (i.e., the value is negative; unlike the C-measures, the Ct-598 

measures allow divergence results to be negative).  

 600 

  

 602 

 
Figure 4. Conceptual illustration of our new Ct1 convergence measure, which is calculated 604 
like C1 of Stayton (2015A) but candidate Dmax.t measurements are limited to ‘time slices’ at 
internal phylogenetic nodes. The plots on the right show the three candidate Dmax.t 606 
measurements and the distance between lineages at the tips (Dtip). The scenarios in A and 
B are the same as those in Figures 2A and 2B, respectively. In contrast to C1, Ct1 correctly 608 
identifies divergence (negative score) in the scenario in B. Although the Ct1 score is greater 
when lineages are outliers (A), note that the Ct1 scores (0.4 for non-outliers and 0.5 for 610 
outliers) are more similar to each than are the C1 scores in the same scenarios (0.5 and 0.8; 
Fig. 2A), indicating that Ct-measures are less influenced by positions of taxa in 612 
morphospace compared to C-measures. 
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 614 

 

 616 

Unlike the Dmax measurement, the Dtip measurement has not been altered from 

its original implementation in C-measures (Stayton 2015A) and is not limited to a 618 

synchronous time slice, thus allowing for distances between tips to be compared even if 

the tips vary in geologic age (e.g., comparison of an extinct taxon and an extant taxon). 620 

However, unlike the C-measures, the Ct-measures do not allow Dmax.t to be measured 

between tips (i.e., Dmax.t cannot equal Dtip). This means that divergent taxa will have 622 

negative Ct scores, whereas C-measures (as they were initially intended) will measure 

divergent taxa as having scores of zero (i.e., Dmax equals Dtip). See the Supplemental 624 

Methods for more information on the Ct-measures. 

In addition to developing the Ct-measures, we added several new features to the 626 

convevol R package (Stayton 2018). This includes allowing Ct-measures to compare 

clades that contain multiple lineages, whereas the C-measures are limited to 628 

comparisons of individual lineages (see Methods). Clade comparisons are enabled by 

1) excluding pairwise comparisons between within-clade lineages (e.g., two flying 630 

squirrel species) and 2) weighting of Ct scores and p-values based on the number of 

pairwise comparisons between focal clades (see Supplemental Methods). Further, Ct-632 

measures can be measured using single traits (C-measures only permitted measures of 

multivariate distances, although they were adapted for univariate analyses in some 634 

studies; Spear and Williams 2020, Law 2022), and we updated the C4 (now Ct4) 

calculation to better match the original description of that measure. See the 636 

Supplemental Methods for additional information on these updates. We used the R 

script from Zelditch et al. (2017) as a foundation for the updated functions. The run 638 

times for the revised R functions (convrat.t and convratsig.t) are approximately ten times 

faster than the original functions of Stayton (2015A) when using our simulated dataset. 640 

We did not revise C5, which is a frequency-based convergence measure that tallies the 

number of times lineages enter a region of morphospace (Stayton 2015A), because it is 642 

not influenced by the issues highlighted here.  
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We have also developed a new R function, plot.C, that produces a plot of the 644 

distances between lineages through time. This type of plot is conceptually illustrated in 

Figure 4, and Figure 5B includes a phylogeny and plot produced by the plot.C function 646 

for an example dataset from our convergence simulations, showing pairwise distances 

between three ‘glider’ lineages. An additional example output of plot.C is provided in 648 

Figure S5 for the ‘twig’ ecomorphotype lineages of anoles, although we separated 

convergent and non-convergent pairwise comparisons for ease of interpretation. These 650 

plots allow researchers to visualize when the measured Dmax.t occurred during the 

evolutionary history of the lineages, and they may be useful for applications beyond 652 

studies of convergence. The candidate Dmax.t measurements at time slices are provided 

as an output of the convrat.t function. 654 

 
 656 

 
Figure 5. (A) Ct1 scores for simulated convergent lineages (top results in plot) and divergent 658 
lineages (bottom) under varying evolutionary scenarios. See the Methods and Figure 3 
caption for more information. Although in some cases the divergence Ct1 results are greater 660 
than zero (indicating convergence), these results were not statistically significant when we 
calculated simulation-based p-values for a subset of datasets (Table 1). C1 results are 662 
means and standard errors of 15 simulated datasets. (B) An example output from the plot.C 
R function that shows the pairwise distances between lineages with time. Note that although 664 
only three ‘glider’ lineages are highlighted in the plot, five lineages were used for Ct1 
measurements.  666 
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 668 

 
 We tested the performance of Ct-measures by applying them to the simulated 670 

datasets using the same methodology as that for C-measures. Unlike the C-measures 

(Fig. 3C), the Ct-measures do not consistently misidentify divergent lineages as being 672 

convergent (Figs. 5A and S2); most of the simulated divergence datasets (via both 

drift/BM and selection/OU) exhibit Ct1 scores that are negative, correctly indicating 674 

divergence. Like C-measures, the Ct-measures do measure more convergence in 

morphological outliers (Figs. 4A and 5A), but this pattern appears to be less pronounced 676 

than with C-measures (Figs. 2A and 3C). Although in some cases the Ct1 score is 

greater than zero (indicating convergence; Fig. 5A), the Ct1 scores are not statistically 678 

significant when applied to divergence datasets (Table 1), which is in contrast to the 

strongly significant C1 scores for divergence simulations. Further, the greater-than-zero 680 

Ct1 results could be due in part to convergence occasionally occurring by chance in our 

simulated-divergence datasets (e.g., BM-evolved ‘glider’ lineages evolving toward each 682 

other by chance). This indicates the importance of researchers considering the p-values 

associated with Ct-measures when evaluating convergence in their samples.  684 

Different origination ages of convergent clades might also inflate Ct scores in 

morphological outliers, especially if the oldest lineage evolves rapidly into outlying 686 

morphospace and away from other putatively convergent lineages. This is illustrated in 

Figure S3 and discussed in the Supplemental Results. To help address this issue, we 688 

added an optional feature to the convrat.t function that limits candidate Dmax.t 

measurements to the time prior to the evolution of the focal lineages (e.g., prior to the 690 

evolution of the earliest glider clade). We recommend that researchers use this option 

as a supplement to regular Ct-measures when their clades of interest have very 692 

different origination ages (see Supplemental Results).  

 694 

Empirical examples – C1 vs Ct1 
The C-measure issues highlighted here are relevant to the many studies that have 696 

employed (or will employ) the C-measures. In many cases, erroneous C-measure 
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results may have led researchers to either infer convergence in lineages that are 698 

divergent or infer inflated degrees of convergence. For instance, Grossnickle et al. 

(2020) tested for convergence among gliding mammal lineages using limb 700 

measurements, and they observed conflicting results. Statistically significant C-measure 

scores indicated strong convergence, but other analyses (evolutionary model-fitting, 702 

morphological disparity, phylomorphospace trajectories) suggested parallel evolutionary 

patterns. The authors concluded that the conflicting lines of evidence indicated weak, 704 

incomplete convergence. But considering the issues highlighted here, the strong C-

measure results in Grossnickle et al. (2020) are probably misleading. For instance, the 706 

C-measure scores were likely inflated due to the outlying morphologies of some gliders 

(e.g., dermopterans), meaning that the gliders are probably less convergent than the 708 

authors concluded. We re-analyzed the data from Grossnickle et al. (2020) using the Ct-

measures, and in contrast to strong C-measure scores, we found that all glider 710 

comparisons have negative Ct1 scores, indicating divergence instead of convergence. 

In some instances, the Ct1 scores are only slightly negative and have significant p-712 

values (e.g., Ct1 = -0.01 and p < 0.01 for the comparison of scaly-tailed squirrels and 

flying squirrels), which is congruent with the other lines of evidence examined in 714 

Grossnickle et al. (2020) that suggested parallel evolutionary changes rather than 

convergence for most glider groups. 716 

 Huie et al. (2021) and Stayton (2015A; using data from Mahler et al. 2013) 

independently analyzed Anolis lizard morphologies using distinct datasets, and both 718 

found that the ecomorphotypes with the greatest C1 scores are those in the outermost 

regions of morphospace (‘crown-giant,’ ‘grass-bush,’ and ‘twig’; see Figure 3 of Huie et 720 

al. 2021). The C1 values for these ecomorphotypes ranged from 0.31 to 0.43 in these 

studies, whereas other, non-outlying ecomorphotypes had C1 values ranging from 0.09 722 

to 0.25 (Stayton 2015A, Huie et al. 2021). The relatively large C1 scores of outlying 

ecomorphotypes, in addition to the positive C1 scores for all pairwise comparisons, may 724 

be due in part to the biases in the C-measure. We evaluated this possibility by applying 

Ct-measures to one of the outlying ecomorphotypes ('twig') from the anole dataset of 726 

Mahler et al. (2013; ten standardized skeletal measurements). We found that, although 

the overall Ct1 score was statistically significant, it was near zero (Table S2), in contrast 728 
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to the C1 score being 0.36 (Stayton 2015A). Interestingly, there was considerable 

disparity in the pairwise Ct results for the five twig lineages, with Ct1 scores ranging 730 

from 0.346 (A. paternus vs. A. valencienni) to -0.763 (A. occultus vs. A. paternus) and 

six of ten pairwise comparisons not significant. (See Figure S5 and Table S2 for full 732 

results and plotted pairwise distances through time.) Thus, these results highlight not 

only the issues with the C-measures, namely the inflation of C scores among outliers, 734 

but also the importance of considering pairwise comparisons when evaluating 

convergence among multiple focal lineages.  736 

 

Ct-measures – recommendations and limitations 738 

In contrast to C-measures, the Ct-measures are influenced by the timing of evolutionary 

change because they limit candidate Dmax.t measurements to specific time slices. This 740 

feature should be considered by researchers who apply the Ct-measures because it 

may alter expectations about the degree of measured convergence. For instance, if 742 

different lineages of interest evolve toward a specific morphology (or adaptive peak) at 

different points in time, then the Dmax.t measurement may not measure the 744 

morphologically farthest distances between the lineages, possibly resulting in lower-

than-expected Ct scores. Conversely, and as noted above, if the putatively convergent 746 

taxa evolve toward outlying regions of morphospace, then the asynchronous origins of 

the clades could inflate the Ct-measures (Supplemental Results; Fig. S3). To help 748 

mitigate this issue, we recommend that researchers generate and assess 

phylomorphospace and distances-between-lineages-through-time plots, and compare 750 

default Ct results to those generated when using the alternative option of the convrat.t 

function that limits candidate Dmax.t measurements to the period in which lineages of 752 

interest overlap in time (see Supplemental Methods). 

The Ct-measures may perform poorly when the tips of focal taxa are very 754 

different in geologic age (e.g., ichthyosaurs and dolphins) because candidate Dmax.t 

measurements are restricted to the period in which the lineages overlap in time. In the 756 

case of ichthyosaurs and dolphins, their evolutionary histories overlap from their most 

recent common ancestor (MRCA; early amniotes) to the ichthyosaur tips, so the 758 

candidate Dmax.t measurements would be limited to between the MRCA and the 
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ichthyosaur tips. Thus, much of the evolutionary history of dolphins (and placental 760 

mammals more broadly) would be excluded by Ct-measures. This is likely to lead to 

smaller-than-expected Dmax.t values because the morphological divergence of mammals 762 

from ichthyosaurs is not captured. Note, however, that Dtip ignores time and would 

measure the morphological distance between ichthyosaur and dolphin tips.  764 

The restriction of candidate Dmax.t measurements to coincide with internal nodes 

exacerbates an issue inherent to many phylogenetic comparative methods: the reliance 766 

on inferred ancestral states. Dmax.t is the critical value that enables the Ct-measures to 

diagnose convergence, and it is drawn entirely from ancestral state data, which are 768 

estimated from tip values assuming a BM model of evolution. The consequence is that 

ancestral reconstructions are likely to reflect average morphologies of the sampled taxa, 770 

decreasing the chance of measuring convergence via the Ct-measures because Dmax.t 

estimates may be artificially shorter than the ‘real’ Dmax.t values. This is likely to be 772 

exacerbated under conditions where there are relatively few intervening nodes between 

putatively convergent lineages (i.e., there is a small sample of candidate Dmax.t 774 

measurements), when those putatively convergent lineages are subtended by long 

branches (i.e., distances from which to draw Dmax.t are biased toward deeper nodes), 776 

and when only contemporary tips are included (i.e., there is a lack of fossil data 

informing reconstructions at internal nodes). Therefore, the Ct-measures may be most 778 

appropriate for well-sampled study systems that include a substantial number of internal 

nodes and relatively few long branches, and researchers should include fossil taxa 780 

whenever possible to improve ancestral reconstructions at internal nodes.  

The number of phenotypic traits used to assess convergence is likely of 782 

increased importance when using Ct-measures. In multivariate datasets, some traits 

may be convergent and others non-convergent (i.e., divergent, parallel, or 784 

conservative). While including a greater number of non-convergent traits in analyses is 

expected to decrease the overall convergence signal of any convergence measure, it 786 

may also exacerbate the Ct-related issues raised in this section. In general, adding 

traits increases the measured distances between tips and internal nodes. However, 788 

ancestral inference via BM tends to average variation at internal nodes; thus, Dtip 

typically increases at a higher rate than Dmax.t for each non-convergent trait that is 790 
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added to a dataset. This pattern is illustrated in Figure S4, highlighting that increasing 

the number of BM-evolved traits (which are expected to be mostly non-convergent) in 792 

simulations results in relatively greater increases of Dtip scores compared to Dmax.t 

scores. Therefore, an increased number of traits in analyses (with all else equal) could 794 

result in a relative decrease in Ct scores compared to datasets with fewer traits, unless 

the additional traits are strongly convergent. We recommend that researchers carefully 796 

choose traits (or landmarks if using geometric morphometrics) based on the specific 

hypothesis being tested, and analyze individual traits or subsets of traits whenever 798 

feasible to tease apart unique patterns among traits.  

Many of the aforementioned factors that could influence Ct-measures, especially 800 

the assumption of a BM mode of evolution in ancestral lineages, could contribute to the 

Ct-measures being conservative in their measures of convergence. The conservative 802 

nature of the Ct-measures is supported by our simulation results; despite simulating 

extremely strong convergence on a trait optimum for all six traits, the greatest Ct1 804 

scores are around 0.7, indicating that about 70% of Dmax.t has been closed by 

convergent evolution. Based on the simulation methods, we expected these values to 806 

be closer to 1.0. Thus, the convergence signal of Ct-measures might often be diluted 

due to the issues noted here. This should be considered by researchers who use the 808 

Ct-measures. 

 As highlighted throughout this study, convergence measures can be biased 810 

based on the location of taxa in morphospace, with outliers tending to show greater 

convergence when using the C-measures, Ct-measures (although to a lesser degree 812 

than C-measures), θ, and OU-model-fitting analyses, and less convergence when using 

the Wheatsheaf index (Figs. 2A and 4A, Tables 1 and 2). We consider the greater 814 

observed convergence in morphological outliers via most methods to be an issue (Fig. 

2A) because it is inconsistent with our working definition of convergence, which has the 816 

precision that allows for quantitative comparisons. However, under looser definitions of 

convergence this pattern could be interpreted as a reflection of the amount of 818 

evolutionary change of the convergent lineages. Outliers have undergone greater 

morphological change, evolving farther from the ancestral morphology, and thus their 820 

tendency to appear ‘convergent’ could be an emergent property of the evolution of 
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outlying morphologies (e.g., see Collar et al. [2014] for a discussion of ‘imperfect 822 

convergence’ in divergent, outlying lineages). This, however, is not what the measures 

of convergence have been defined to test, and we emphasize that researchers should 824 

ensure that their chosen convergence metrics and interpretations of results align with 

their a priori definition of convergence. In any case, researchers should expect to 826 

observe relatively stronger evidence of convergence in outliers when using most 

convergence measures.  828 

 

Summary 830 

The C-measures are a popular means of identifying and quantifying convergence, in 

part because they can differentiate between convergence and conservatism. However, 832 

we highlight a critical issue: C-measures can misidentify outlying, divergent lineages as 

convergent (Figs. 2 and 3, Table 1). OU-model-fitting analyses suffer from a similar 834 

issue because support for multiple-regime OU models over other models, which is often 

interpreted as evidence for convergence, can occur even when lineages are divergent, 836 

not convergent (Table 2). To help address this issue, we developed improved 

convergence measures (Ct-measures) that quantify distances between lineages at time 838 

slices at internal phylogenetic nodes, minimizing the possibility of divergent taxa being 

mistakenly measured as convergent. We have also developed new features (available 840 

in the convevol R package), such as a function to produce distances-between-lineages-

through-time plots and the ability to compare clades that include multiple taxa. Although 842 

Ct-measures improve on C-measures, researchers should recognize their limitations. 

For instance, Ct-measures may be unreliable if convergent evolutionary change is 844 

asynchronous between lineages of interest (e.g., fossils of very different geologic ages), 

especially when lineages are morphological outliers. More broadly, we find that multiple 846 

methods (including Ct-measures) are biased by the location of taxa in morphospace, 

with most methods measuring greater convergence in morphological outliers. Because 848 

all available methods for identifying and measuring convergence are imperfect, we 

recommend that researchers use multiple convergence methods, incorporate fossils 850 

whenever possible to improve the accuracy of ancestral state reconstructions, and 

recognize the benefits and drawbacks of the chosen methods when interpreting results.  852 
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SUPPORTING INFORMATION 986 

 
A cautionary note on using quantitative measures of phenotypic 988 

convergence 
  990 

David M. Grossnickle, William H. Brightly, Lucas N. Weaver, Kathryn E. Stanchak, 
Rachel A. Roston, Spencer K. Pevsner, C. Tristan Stayton, P. David Polly, Chris J. Law 992 
 
 994 

SUPPLEMENTAL METHODS 
 996 

Univariate model-fitting analyses 
One limitation of the mvMORPH multivariate models, which are used for our primary 998 

model-fitting analyses, is that they do not permit the evolutionary rate (σ) or strength of 

attraction to optima (α) to vary between the two selective regimes (‘gliders’ and ‘non-1000 

gliders’). This likely results in poor model performance because the datasets were 

simulated such that ‘gliders’ and ‘non-gliders’ should have different rates and attraction 1002 

strengths. For example, the ‘non-gliders’ are evolved by BM, and thus they are not 

expected to exhibit attraction to a trait optimum, whereas the convergent ‘glider’ 1004 

lineages are expected to exhibit strong attraction due to being simulated by an OU 

process. Further, the phylogenetic half-life (ln(2)/α) of the ‘glider’ regime cannot be 1006 

calculated independent of the ‘non-glider’ regime if the α parameter is uniform across 

both regimes, which is the case with the multivariate models.  1008 

 Thus, we also fit seven univariate evolutionary models to the subset of simulated 

datasets, including several multiple-regime OU models that permit σ and α to vary 1010 

between regimes. Using functions in the OUwie R package (Beaulieu et al. 2012), we fit 

these models to the first principal component (PC1) scores of a principal components 1012 

analysis of the six simulated traits. The univariate models include uniform (or single-

regime) BM and OU models, as well as a suite of multiple-regime OU models (i.e., 1014 

‘OUM’ models of Beaulieu et al. 2012). The OU2 model keeps α and σ constant for both 
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regimes, the OU2A model allows α (but not σ) to vary between regimes, the OU2V 1016 

model allows σ2 (but not α) to vary between regimes, and the OU2VA model allows both 

σ and α to vary between regimes. As with the multivariate analyses, all models were 1018 

fitted across 10 ‘simmaps’ for each of the 30 datasets and relative support for models 

was measured using AICcW.  1020 

We recognize that fitting models to PC scores can lead to biased results (Uyeda 

et al. 2015), and thus our univariate results should be considered with caution. 1022 

However, we feel that using PC1 scores here is justified for two reasons. First, the 

alternative option is to fit models to each of the six simulated traits individually, but four 1024 

of the traits are evolved via a strong OU process and two traits are evolved via BM (in 

our subset of datasets used in model-fitting analyses; see Methods), and thus the 1026 

model-fitting results are expected to vary considerably between those two types of 

traits. PC1 provides a single value for which results can be more easily interpreted 1028 

compared to results for the six traits. Second, our conclusions concerning the use of 

model-fitting analyses for testing for convergence are based entirely on the multivariate 1030 

model-fitting analyses (see Results & Discussion), and thus the results of the univariate 

model-fitting analyses (which are congruent with the multivariate results; Tables 2 and 1032 

S1) do not influence the broad conclusions of this study. The univariate model-fitting 

analyses are simply a supplemental analysis that provide a fitted α value and 1034 

phylogenetic half-life for the ‘glider’ regime.  

 1036 

Ct-measures 

We used the R script from Zelditch et al. (2017) as a foundation for the updated 1038 

functions for calculating Ct1–Ct4 and simulation-based p-values because they are 

computationally faster than the original R functions in the convevol R package (Stayton 1040 

2015, Stayton 2018). Note that the relevant R functions are titled calcConv (C 

calculations) and convSig (significance testing) in the R code of Zelditch et al. (2017), 1042 

convrat and convratsig in the original convevol R package, and convrat.t and 

convratsig.t for our updated measures. 1044 

Dmax.t measurement. The primary change made by the Ct-measures in 

comparison to Stayton's (2015) original C-measures is the way in which Dmax is defined. 1046 
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Ct-measures were designed to ensure Dmax (now referred to as Dmax.t) was obtained 

from comparisons of synchronous time points along the evolutionary paths leading to 1048 

the putatively convergent taxa of interest. In this way it prevents the inflation of Dmax.t 

that resulted from comparison of asynchronous nodes (e.g., tips and internal nodes) 1050 

which often occurred when using the original metrics on lineages with outlying 

morphologies (Figs. 3C and 4). Several modifications to the source R code were made 1052 

to facilitate this change. Candidate Dmax.t measurements for putatively convergent 

lineages are now measured at each internal node along the branch paths from the most 1054 

recent common ancestor (MRCA) of the lineages (e.g., see Figures 4 and 5B). At each 

of these points we extracted the phenotypic distance between lineages as the euclidean 1056 

distance between the ancestral reconstruction at the focal node and the coincident 

reconstruction along the branch path of the other lineage. Where this corresponds to a 1058 

point along a branch (which is most cases) the ancestral state is estimated using 

formula [2] from Felsenstein (1985), which allows ancestral states to be interpolated at 1060 

any point along a given branch from reconstructions at the branch's ancestral and 

descendant nodes. The code for this was largely repurposed from the contMap function 1062 

of the phytools R package (Revell 2012). If no contemporaneous point exists on the 

opposite path for a given internal node (e.g., when comparing extinct and extant taxa), 1064 

then a measurement is not taken at that node. All distances measured between paths 

are stored for each pair of user defined tips. Dmax.t is the maximum of these distance 1066 

values, but it is restricted to predate either focal tip (i.e., Dmax.t cannot equal Dtip).  

Restriction of Dmax.t to predate the focal tips means the minimum Ct1 value is no 1068 

longer set to zero as in the original C1-measure. This allows for some degree of 

divergence to be captured (i.e., relatively more negative Ct1 values may represent 1070 

greater divergence). However, users are cautioned from using this to test the magnitude 

of divergence between clades. This is because in divergent clades Dmax.t will almost 1072 

always be the last time point before the oldest focal tip. The method will thus reflect only 

a small portion of the period when lineages were undergoing divergent evolution. 1074 

Degree of divergence will then be a function of both phenotypic rates of evolution and of 

subtending branch length. The latter will in many practical situations be a function of 1076 

sampling, with long subtending branches due to poor sampling likely to inflate 
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divergence measures substantially since they will provide the best scenario for a large 1078 

time difference between Dmax and Dtip (and thus capture the greatest proportion of 

divergent evolution). 1080 

The changes to Dmax were the most consequential of those made to modify the 

original C-measures. However, a number of other new options were also included. 1082 

These are briefly described below. Full documentation of these options will be available 

as part of the next update to the convevol R package (Stayton, 2018).  1084 

User-defined groups. The first new option is for users to provide grouping 

assignments to the tips being tested, thus allowing comparisons of clades with multiple 1086 

lineages, whereas the original C-measures are limited to comparisons of individual 

lineages. This option removes pairwise comparison between tips within the same group 1088 

(e.g., two flying squirrels would not be compared if all flying squirrels are defined as one 

group) and returns results for each unique comparison between groups in addition to 1090 

overall results. This option is useful if it is hypothesized that two (or more) clades 

converged, and relieves the user from needing to average tip values of a clade or 1092 

manually define all of the desired comparisons. When using this option, the overall (for 

all pairwise comparisons) and comparison-specific Ct and p values are returned. Overall 1094 

results are provided as both raw values (means of all pairwise comparisons, excluding 

within-group comparisons) and weighted values. The latter allows each inter-group 1096 

comparison to impact the overall average equally, so that larger within group sample 

sizes don't skew overall results. For instance, if there are three putatively convergent 1098 

groups (Group A, Group B, and Group C), and Groups A and B both include a single 

lineage and Group C includes 10 lineages, then there would be 21 total pairwise 1100 

comparisons among groups (one for A-B, 10 for A-C, and 10 for B-C). Although 

constituting one third of the unique inter-group comparisons, Ct measurements taken 1102 

from comparison of Groups A and B constitute less than 5% of those used to compute 

overall (average) Ct values. Thus, Groups A and B have a relatively smaller impact than 1104 

Group C on the overall Ct scores and p-values. The weighted output scales the Ct 

results (and associated p-values) so that each unique inter-group comparison 1106 

contributes equally to the overall results, whereas the raw overall result simply reports 

the mean value for all 21 pairwise comparisons. Both weighted and unweighted values 1108 
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are reported in the default output printed by the updated convSig function, but we 

recommend the weighted result be used by default when comparing groups. 1110 

Nevertheless, the raw result may be preferable in cases in which researchers believe 

that the more heavily sampled group(s) should have a larger impact on overall results. 1112 

Note that it is possible to define groups even when those consist of a single tip. 

While doing so will not change which pairwise comparisons the model considers, it will 1114 

provide the user with unique Ct scores and p-values for each comparison. This can be 

especially useful when the degree of convergence varies across the lineages of interest 1116 

(e.g., see the pairwise results for anole species in Figure S5 and Table S2). 

Conservative Dmax.t option. When providing user-defined groups, a conservative 1118 

Dmax.t option is available that limits candidate Dmax.t measurements to a time point 

predating the origination of both focal groups (i.e., the nodes of the MRCAs of each 1120 

group). This is to prevent Dmax.t being skewed by an early transition of one lineage 

toward a shared adaptive optimum that is outlying in morphospace, which can result in 1122 

inflated Ct scores, especially when the origins of the clades are very different in age. 

This issue is discussed in the Supplemental Results and illustrated in Figure S3. Note 1124 

that this option is only meaningful when user defined groups are provided. When one of 

those groups consist of a single lineage the node immediately ancestral to the tip is 1126 

used. Using this method, long branches can substantially alter inferred Dmax.t values. We 

have provided the option to print relevant information about the restrictions put on Dmax.t 1128 

when using this method (by setting VERBOSE = TRUE in convrat.t). We strongly 

suggest that users investigate the impact of using the conservative Dmax.t option before 1130 

committing to significance tests. 

Updated Ct4 computation. In addition to changes to Dmax.t, we also altered the 1132 

way in which the C4-measure is computed. The new version (called Ct4) redefines 

Ltot.clade, which is the value used to standardize the C2 value (Dmax subtracted by Dtip) to 1134 

obtain C4. Ltot.clade is described by Stayton (2015) as reflecting the total amount of 

morphological evolution which occurs in the clade originating with the MRCA of two 1136 

putatively convergent tips. In the original C-measures, Ltot.clade values were obtained as 

a sum of the phenotypic distances from all pairwise comparisons between nodes in the 1138 

clade, but this does not fully account for phylogenetic structure and is heavily influenced 
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by sampling intensity. We have updated this to now be the sum of the phenotypic 1140 

distances accumulated along each branch in the clade of interest. This change brings 

C4 closer to the original description of the metric. 1142 

Measuring convergence of single traits. By default, the original C-measures do 

not support investigation of convergence in a single trait (although see Spear and 1144 

Williams, 2020; Law, 2022). To circumvent this limitation we have added code to the 

convrat.t function which appends an invariant trait (with value zero) to datasets 1146 

consisting of a single trait. This approach was taken due to ease of integration with 

existing code, and although crude will provide the same phenotypic distances as would 1148 

be obtained from the single trait.  

Model output. Additional changes were made to increase the amount of 1150 

information returned to the user and facilitate plotting of results. This includes the 

addition of the novel plot.C function, which is described in the ‘Measuring convergence 1152 

through time via Ct-measures’ section of the main text (with example output in Figure 

5B). 1154 

 

SUPPLEMENTAL RESULTS 1156 

 
Univariate model-fitting analyses 1158 

For univariate models fit to PC1 scores the OU2VA model, which allows varying rates 

and attraction strengths between regimes, is the best fitting model at all trait optimum 1160 

values for both convergence and divergences datasets (Table S1). However for 

convergence datasets, the null model (BM1) is the second best-fitting model when the 1162 

trait optimum is zero and 20, and the total AICcW values for all OU2 models increases 

with greater optima values, indicating increased evidence of convergence in 1164 

morphological outliers. These results are consistent with the results of the multivariate 

evolutionary models (Table 2).  1166 

 

 1168 

 
 1170 
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 1172 
 
 1174 
 
Table S1. Tests of convergence among lineages of the simulated datasets using 1176 
evolutionary models fit to univariate data (PC1 scores). Model-fitting results for each trait 
optimum are the mean AICcWs of 50 phylogenetic trees (five datasets with 10 ‘simmaps’ 1178 
each). Model support for the two-regime models (any variation of the OU2 model) could be 
interpreted as support for convergence because this model reflects evolution of the 1180 
putatively convergent lineages toward a shared adaptive peak (but see the Results & 
Discussion). Abbreviations: AICcW, small-sample corrected Akaike weights; BM, Brownian 1182 
motion; OU, Ornstein-Uhlenbeck.  

 1184 
 
 1186 
 

 In the main text, we discuss a few factors that likely explain why the two-regime 1188 

OU models are unexpectedly the best-fitting models to divergent data. Namely, the two-

regime OU may be the best-fitting of bad-fitting models, with the BM1 and OU1 models 1190 

even worse fits to the data. An additional factor that may contribute to the relatively 

strong fits of two-regime OU models to divergence datasets is that we treated the 1192 

datasets as we would with empirical datasets and used ‘simmaps’ for ancestral state 

reconstructions of regime states (gliding or non-gliding), rather than use the known node 1194 

information (via the simulation data). For instance, the two marsupial glider groups in 

our dataset are closely related (but believed to have evolved gliding independently), and 1196 
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thus the ‘simmaps’ might commonly (and mistakenly) reconstruct the MRCA of those 

lineages as having gliding behavior.  1198 
 

C1–C4 and Ct1–Ct4 applied to simulated data 1200 

In the main text we only present results for C1 (Fig. 3C, Table 1) and Ct1 (Fig. 5A, 

Table 1), which were applied to both the simulated convergence datasets and the 1202 

simulated divergence datasets. However, Stayton (2015) developed four distance-

based convergence measures (C1–C4) and one frequency-based measure (C5), with 1204 

C1 being the primary measure, and we altered C1-C4 to produce the Ct1–Ct4 

measures. Here, we provide full results for C1–C4 (Fig. S1) and Ct1–Ct4 (Fig. S2), 1206 

which are also applied to both the convergence and divergence datasets. See the 

Methods and Stayton (2015) for descriptions of the four convergence measures, and 1208 

see the Methods for information on the simulated datasets. Note that the Ct4 measure 

is calculated differently than the C4 measure (see Supplemental Methods). For C1–C4, 1210 

all results for divergence simulations are greater than zero (Fig. S1), incorrectly 

indicating convergence, whereas the Ct1–Ct4 scores for divergence datasets are 1212 

generally at or below zero (Fig. S2).  

 1214 

 
 1216 
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Figure S1. Plots of means and standard errors of C1–C4 scores for simulated convergent 1218 
lineages (solid lines) and divergent lineages (dashed lines). Datasets varied in the number 
of convergent/divergent traits (represented by the different colored lines) and in the distance 1220 
of trait optima from the ancestral morphology (approximated as the center of morphospace). 
Means and standard errors are computed from 15 simulated datasets. Greater C1–C4 1222 
values indicate greater convergence. We did not simulate divergence for trait optima of 0, 
10, and 20 because at these optima our simulation methods may have inadvertently 1224 
generated convergence patterns (see Methods and Figure 3). As a second means of 
simulating divergence, we allowed the lineages of interest (‘gliders’) to evolve via BM. These 1226 
are provided as box-and-whisker plots, summarizing 15 simulated datasets of six traits (see 
Methods). Note that the divergence results are all greater than zero, incorrectly indicating 1228 
convergence.  
 1230 

 

 1232 
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 1234 
Figure S2. Plots of means and standard errors of Ct1–Ct4 scores for simulated convergent 
lineages (solid lines) and divergent lineages (dashed lines). Datasets varied in the number 1236 
of convergent/divergent traits (represented by the different colored lines) and in the distance 
of trait optima from the ancestral morphology (approximated as the center of morphospace). 1238 
Means and standard errors are each computed from 15 simulated datasets. Greater Ct1–
Ct4 values indicate greater convergence. We did not simulate divergence for trait optima of 1240 
0, 10, and 20 because at these optima our simulation methods may have inadvertently 
generated convergence patterns (see Methods and Figure 3). As a second means of 1242 
simulating divergence, we allowed the lineages of interest (‘gliders’) to evolve via BM. These 
are provided as box-and-whisker plots, summarizing 15 simulated datasets of six traits (see 1244 
Methods). Note the differences in the scaling of the vertical axes of the Ct2 and Ct3 plots 
relative to the C2 and C3 plots (Fig. S1), respectively. (The scaling for C4 and Ct4 is 1246 
different because these measures are calculated differently.) Also, note the different position 
of zero relative to results in the Ct1–Ct4 plots versus the position in C1–C4 plots (Fig. S1), 1248 
as well as the overlap in the Ct1–Ct4 plots of divergence data simulated by both BM and OU 
processes. 1250 

 

 1252 

 
 1254 
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Ct-measures – the influence of origination times on results 
As discussed in the main text, the Ct-measures limit candidate Dmax.t measurements to 1256 

specific time slices at internal nodes, and thus the timing of evolutionary change among 

putatively convergent lineages can influence the results of Ct-measures. For instance, if 1258 

different lineages of interest evolve toward (or away from) a specific morphology at 

different points in time, then the Dmax.t measurement may not measure the 1260 

morphologically farthest distances between the lineages. This issue may be magnified 

when convergence is expected to be linked to adaptive changes (e.g., adaptations for 1262 

gliding behavior) that evolved at specific times. For instance, if colugos (i.e., 

Dermoptera or ‘flying lemurs’) evolved traits associated with gliding behavior 1264 

approximately 60 Ma, and flying squirrels (Pteromyini) evolved traits associated with 

gliding approximately 25 Ma (e.g., Grossnickle et al. 2020), then most of the candidate 1266 

Dmax.t measurements will be comparisons of dermopterans with gliding traits to stem 

flying squirrels without gliding traits (from 60 to 25 Ma). If the older lineage (colugos) 1268 

has already undergone considerable evolutionary change by the time that the younger 

lineage (flying squirrels) originated, then much of the convergent evolutionary change of 1270 

the older lineage is not captured by the morphological distances measured at ‘time 

slices,’ which are limited to the time period in which the lineages overlap. Ideally, most 1272 

candidate Dmax.t measurements would be comparisons of non-gliding stem colugos and 

non-gliding stem flying squirrels that lack the adaptive traits associated with gliding. This 1274 

issue might lead to candidate Dmax.t measurements being smaller than expected, or at 

least smaller than those calculated by measures that ignore time (e.g., C-measures).  1276 

Conversely, if the putatively convergent taxa evolve toward outlying regions of 

morphospace, then the asynchronous origins of the clades could inflate the Ct-1278 

measures. We illustrate this in Figure S3. In the conceptual illustrations, the Ct1 score is 

consistently 0.3 when convergent lineages originate at the same time and/or when 1280 

lineages evolve toward the ancestral morphology. However, when lineages originate at 

different times and evolve toward an outlying region of morphospace, then the Ct1 1282 

score is 0.7. Thus, researchers should be cautious when applying Ct measures to 

datasets with outlying taxa of various origination ages, and we offer some suggestions 1284 

in the main text for mitigating this issue. It is also worth noting that this latter scenario 
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assumes that the convergent lineages can reach adaptive zones; if the later-evolving 1286 

convergent lineage is still evolving toward outlying morphospace (i.e., it has yet to reach 

an adaptive peak or zone) then the aforementioned issue may have less of an influence 1288 

on Ct results.  

 1290 

 

 1292 

 

 1294 
Figure S3. Conceptual illustrations demonstrating how Ct1 results can be influenced by a 
combination of outlying morphologies and varying origination times among convergent 1296 
lineages. The Ct1 score is 0.3 in three of the scenarios but inflates to 0.7 when lineages 
both originate at different times and are outliers in morphospace (bottom right). To help 1298 
mitigate this issue, we have included an option as part of the convrat.t function that allows 
users to limit candidate Dmax.t measurement to the time period prior to the origination of the 1300 
focal lineages (see Supplemental Methods). See the main text for descriptions of Ct1, Dmax.t, 
and Dtip.  1302 

 
 1304 
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 1306 

Influence of the number of traits on Ct results 
As discussed in the main text (see Results & Discussion), the number of traits used in 1308 

analyses (with all else equal) can bias the Ct scores. Inference of ancestral states via 

BM tends to average variation at internal nodes; thus, Dtip typically increases at a higher 1310 

rate than Dmax.t for each non-convergent trait that is added to a dataset. (Here, we use 

“non-convergent traits” to refer to BM-evolved traits that are not selected to evolve 1312 

toward a trait optimum via an OU process. These are often divergent, although it should 

be noted that BM-evolved traits could still be convergent by chance.) This is illustrated 1314 

in Figure S4. The effect of this pattern is that an increased number of traits in analyses 

(with all else equal) could result in a relative decrease in Ct scores, unless those added 1316 

traits are strongly convergent.  

 1318 
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Figure S4. Illustration of how the number of traits used in analyses can influence Ct-1320 
measures, demonstrating the increased rate at which Dtip values increase relative to Dmax.t 
as additional non-convergent traits are included in analyses. (Here, ‘non-convergent traits’ 1322 
refers to BM-evolved traits, which are expected to be divergent in most cases.) The left 
panel shows Dtip and Dmax.t measured between two ‘glider’ lineages with two simulated 1324 
convergent traits (optimum = 100) and varying number of additional traits simulated via BM. 
The right panel shows the ratio between the Dtip and Dmax.t values. 1326 

 

  1328 

 

 1330 
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Empirical example - Anolis ‘twig’ ecomorphotype 1332 

To test the novel Ct-measures and compare Ct results to those of C-measures (see the 

Empirical examples subsection of the Results & Discussion), we re-analyzed a classic 1334 

example of convergence among Anolis lizards (Mahler et al. 2013), focusing specifically 

on five ‘twig’ ecomorphotype lineages. We chose this ecomorphotype because the taxa 1336 

are morphological outliers that occupy a unique region of Anolis morphospace (Huie et 

al. 2021), and they have especially strong C-measure scores (Stayton 2015, Huie et al. 1338 

2021), although we believe that this is due in part to the lineages being morphological 

outliers (see Results & Discussion). Following the methods of Mahler et al. (2013), we 1340 

size-corrected the traits via PGLS regression of each trait against the snout-to-vent 

length via PGLS. The Ct-measure results for this analysis are provided in Figure S5 and 1342 

Table S2. Whereas the C1 score is 0.36 (Stayton 2015), but we find the overall Ct1 

score to be near zero for both the raw and weighted results (Table S2). This helps to 1344 

highlight the inflated C-measure results due to the issues highlighted in the Results & 

Discussion. However, note that there is considerable diversity in the results among the 1346 

ten pairwise comparisons; four are strongly statistically significant, whereas some (e.g., 

Anolis occultus and the A. paternus clade) show considerable divergence (Ct1 = -0.763; 1348 

Table S2). To highlight the differences between convergent and non-convergent (or not 

significant convergence) pairwise comparisons, we separate those comparisons in 1350 

Figure S5. Thus, we recommend that researchers examine and report results for 

pairwise comparisons whenever examining more than two putatively convergent 1352 

lineages.  
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Figure S5. Summary of empirical tests of convergence in Anolis species belonging to the 1362 
‘twig ecomorph’ (Mahler et al. 2013). We size-corrected (via PGLS regression) and then 
analyzed the ten skeletal traits of the dataset of Mahler et al. (2013), with taxa assigned to 1364 
groups based upon unique origins of the ‘twig’ ecomorphotype (see the Ct-measures section 
of the Supplemental Methods). The plots are the output of the plot.C function of the 1366 
convevol R package, although the distance-through-time plot has been split to show 
statistically significant (left) and not significant (right) pairwise comparisons separately (see 1368 
also Table S2). Significant pairwise comparisons are also indicated in bold in the key. Note 
that two of the ‘non-convergent’ comparisons in the right panel do have a positive Ct1 value, 1370 
but they are statistically not significant (Table S2). There are 50 null simulations (light gray 
lines).  1372 
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Table S2. Ct-measure values obtained for analyses run using the anole dataset of Mahler et 1382 
al. (2013; ten standardized skeletal traits). Values are reported for overall comparison of 
ten’twig ecomorph’ species in five groups (corresponding to each independent origin of the 1384 
ecomorph; Fig. S5). Pairwise comparisons of groups are also illustrated in (Fig. S5). See the 
Supplemental Methods for an explanation of the difference between ‘overall raw’ and 1386 
‘overall weighted’ results. Note that ‘pat’ refers to a five-species clade that includes Anolis 
paternus and four closely related species, whereas all other ‘twig’ taxa include a single 1388 
lineage (Fig. S5); see the Methods for updates to the convevol R package that allow for 
comparisons among taxa with more than one lineage. Asterisks denote values returned as 1390 
significantly different from null simulations (. - p < 0.1, * - p < 0.05, ** - p < 0.01). 
Abbreviations: dar, Anolis darlingtoni; ins, Anolis insolitus; occ, Anolis occultus; pat, Anolis 1392 
paternus; val, Anolis valencienni. 
 1394 

 
 1396 

 
 1398 
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