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Abstract

Local mechanical tissue properties are a critical regulator of cell function in the central ner-
vous system (CNS) during development and disorder. However, we still don’t fully understand
how the mechanical properties of individual tissue constituents, such as cell nuclei or myelin,
determine tissue mechanics. Here we developed a model predicting local tissue mechanics, which
induces non-affine deformations of the tissue components. Using the mouse hippocampus and
cerebellum as model systems, we show that considering individual tissue components alone, as
identified by immunohistochemistry, is not sufficient to reproduce the local mechanical proper-
ties of CNS tissue. Our results suggest that brain tissue shows a universal response to applied
forces that depends not only on the amount and stiffness of the individual tissue constituents
but also on the way how they assemble. Our model may unify current incongruences between
the mechanics of soft biological tissues and the underlying constituents and facilitate the design
of better biomedical materials and engineered tissues. To this end, we provide a freely-available
platform to predict local tissue elasticity upon providing immunohistochemistry images and
stiffness values for the constituents of the tissue.

Keywords: Brain Mechanics, Mechanobiology, Inmunochemistry, Soft tissue mechanics, Tissue
engineering
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Many biological processes in the brain involve mechanical interactions of cells with their sur-
rounding tissue [1]. Cells exert forces on their environment and probe and respond to its local
mechanical properties. Accordingly, CNS tissue mechanics is an important regulator of cell func-
tion during development [2, 3] and disease [4]. During normal ageing and pathological processes,
CNS tissue constituents change, including the extracellular matrix (ECM), myelin sheets around
neuronal axons, and the number of cells [7, 6, 8]. These structural alterations are accompanied by
changes in tissue mechanics [5, 6].

During the last decades, extensive experimental tests have been performed to determine me-
chanical properties of the brain (see, among many others, [9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]).
Nowadays, there is a clear consensus that the brain exhibits time-dependent behavior [14, 19], both
at small and large strains, and that elastic behavior dominates viscoelasticity at the cell and tissue
level[20]. The elastic modulus of CNS tissue, a measure of its elastic stiffness, ranges from, ap-
proximately, 0.1 to 2 kPa [11, 19, 13]. This range of stiffness has been observed across species and
different regions of the CNS [16, 17, 18]. However, while our knowledge of how brain tissue behaves
mechanically at the tissue scale has progressed substantially, how individual brain components
contribute to macroscopic brain tissue mechanics is still poorly understood.

Most current mechanical models of brain tissue (see [21, 19]) homogenize the behavior of the
tissue constituents into a single constitutive law without further consideration of what components
are present or how each of them is organized within specific brain regions [9, 10, 11, 19, 13]. Al-
though there has been a large amount of research devoted to understanding the brain’s composition
and architecture, this information has so far only sparsely found its way into advanced mechanical
models of the brain [22, 23, 24]. However, like in other biological tissues composed of networks of
cells and ECM, the arrangement and stiffness of the underlying brain constituents should determine
the mechanics of the organ as a whole.

The definition of a Strain Energy Density Function (SEDF) has been the standard approach
in the characterization of soft biological tissues [25]. Within this thermodynamic framework, the
contribution of each individual tissue constituent is gathered by an additive decomposition of a
SEDF per constituent. Naturally, the additive decomposition of the SEDF imposes affine deforma-
tions in the tissue constituents. In other words, it implies that the tissue constituents are arranged
in parallel to each other. However, such approach may not accurately reproduce how the tissue
components actually assemble.

CNS tissue is mainly built of two cell types, neurons and glial cells. Fig. 1(a) presents an
overview about the main components of the brain and their distribution in the tissue. Pyramidal
and granular neurons represent 90% of all neurons in the hippocampus, and the remaining 10%
mainly consist of GABAergic interneurons [26]. Some neuronal axons are wrapped by oligoden-
drocytes, a type of glial cells. The resulting myelin sheath surrounds axons to improve electrical
conductivity, and it is characterized by a comparatively high stiffness [27, 28, 29]. In addition to
oligodendrocytes, other types of glial cells are found in CNS tissue, with astrocytes being the most
abundant glial cells in mammals.

The ECM [30] provides adhesion sites for cells to organize into distinct regions. However, unlike
in other biological tissues, the ECM of the CNS lacks an abundant collagen network, which is a
main determinant of tissue stiffness, and is instead mostly composed of hyaluronic acid (HA) and
proteoglycans [31]. Morphologically, the CNS ECM is divided into three main structures that create
a scaffold with mechanical and functional roles: perineuronal net (PNNs), the neural interstitial
matrix (NIM), and the basal lamina (BL) [32]. The relative ratios of PNNs and NIM components
across different brain regions are still not known. In addition to the ECM, blood vessels pass
through the tissue.

Recent studies have started to investigate the relationship between the stiffness of specific
brain regions and their constituting structures using phenomenological linear regression models
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Figure 1: (a) Description of the main brain components. We consider cell bodies, ρn, perineural
nets (PNN, black translucent), ρPNN , myelinated axons (orange), ρm, and neural interstitial matrix
(NIM), ρNIM . PNNs surround neuronal cell bodies and dendrites and the NIM surrounds glial
and neuronal cells. Neurons, ρn are drawn in yellow. Glial cells, ρa are drawn in pink. (b-c)
Distribution of tissue constituents and modeling of a simplified 1D model based on a classical
parallel arrangement (b) and on the distribution presented in this work (c). ψi is the SEDF of each
tissue constituent. λ and λi is the total stretch in the affine scheme (b) and the stretch of each
constituent in the non-affine scheme (c), respectively.

[17, 18, 24, 23]. However, although we already know the mechanical properties of individual neurons
and glial cells [20, 33, 34, 35], and that the presence of myelinated axons has a clear impact on the
mechanics of brain tissue [36, 15, 8], we still do not fully understand how the multiple constituents
of CNS tissue ensemble to establish its mechanical behavior at the tissue scale.

Here, we propose a novel mechanical model that explains brain tissue mechanics at different
scales. We focus on the hippocampus and cerebellum of the mouse brain,heterogeneous brain
regions in terms of stiffness and composition.

1 Materials and Methods
1.1 Sample preparation, ROI identification, indentation protocol and image

acquisition
All experimental protocols and data have been previously described and published (see details in
[23, 18] and SI Appendix). For DMA experiments, tips of 60-100um were used to indent the sample
up to 10-17um to avoid effects of surface roughness and of sensing individual brain components so
that tissue heterogeneities within each ROI were homogenized. The indentation depth was chosen
to stay in the small strain regime (ϵT < 5%). For data analysis, the DMA model was used to
fit the cosine function over oscillatory data to extract storage and loss moduli as a function of
indentation-depth. The Hertz model was used to fit the initial loading data to obtain the precise
the contact point location which is needed for the estimation of contact radius (see SI Appendix).

1.2 Image analysis
We analyzed image data using custom-written MATLAB codes which allowed automatic processing
of multiple images by providing their corresponding ROIs coordinates. To minimize intensity
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disparity due to acquisition conditions, we preprocessed all images to adjust their histograms to
match the histogram of an arbitrarily chosen reference image. After that, every color channel
was individually normalized by its maximum intensity value. Subsequently, for every pixel of each
image, the percentage of each color channel intensity (pr, pg, pb) was computed. Then, for each ROI
and each channel (c) we calculated the weighted mean (p̂ROI

w,c ) of the color intensity percentage,
using the total intensity of each pixel (the sum of the three channel intensities) as weight:

p̂ROI
w,c = (

NROI
pix∑
n=1

pnc · intot)/(
NROI

pix∑
n=1

intot) (1)

Multiplying the weighted mean intensity of each channel by the total average intensity of the
ROI (iRavOI) is equivalent to calculating the average channel intensity (iRc,avOI), which is later used
to weight the storage and loss modulus of each of the brain components (see Supp. Material).

p̂ROI
w,c · iROI

av = iROI
c,av (2)

1.3 Fitting of material parameters
We used a custom-written MATLAB code to fit the material parameters of the model, i.e E’ and E”
for each constituent. We made use of the fmincon function to find the minimum of a constrained
nonlinear multivariable goal function

Error =
√
Σn
i=1 (Ei − Ee

i )
2
i /n− q/µpi (3)

Here n is the number of ROIs, i represents each ROI and µpi denote the mean of the experimentally
measured E’ and E”. In addition q is the number of parameters of the model, such that n−q denotes
the number of degrees of freedom.

Results
Local hippocampus composition correlates with tissue stiffness
First, we analyzed the local composition of the juvenile mouse hippocampus, using immunohisto-
chemistry. We focused on myelin (using myelin binding protein, MBP, as marker), as an indicator
of myelinated axons [8], nuclei of neurons (NeuN), nuclei of all cells (Hoechst), and astrocytes (glial
fibrillary acidic protein, GFAP) in different regions of interest (ROIs) of the tissue (Fig. 2a-e and
SI Appendix, Fig. S14)), as reported elsewhere [23]. Large variations in densities of the individual
markers over the different ROIs where observed [23] (Fig. 2f and Table S1).

The granular cell layer (GCL), which mainly consists of neuronal cell bodies, reached the highest
concentration of nuclei with ∼ 46%, while the amount of myelin was just a residual 0.5%, the lowest
of all ROIs (see Materials and Methods). The Alveus (Alv), on the other hand, which is a region
containing mainly myelinated fibers that cover the ventricular parts of the hippocampus, had the
highest concentration of myelin, ∼ 50%, while the amount of cell nuclei reached 15%. All other
regions presented a more uniform distribution of tissue components, in agreement with previous
image analysis results [23] (for details see Fig. 2f-k and Table S1).

In order to quantify the fraction of neuronal and glial cell nuclei, the distributions of NeuN
and the astrocyte marker GFAP were measured [18, 23]. ROIs with higher amounts of cell nuclei
(GCL, Sub and SP3, Fig. 2f) had the largest ratio of neuronal nuclei to total number of nuclei (see
Fig. 2k) and showed a low concentration of GFAP (Fig. 2 and Table S1). Other regions, including
the ML, SR1, SR3, SLM, Hilus and Alveus, were characterized by a low ratio of neuronal/total
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Figure 2: Imaging and quantification of brain tissue composition and stiffness values of juvenile mice.
Imaging of (a) myelin (MBP), (b) cell nuclei (Hoechst), (c) nuclei of neurons(NeuN) and (d) intermediate
filaments of astrocytes (GFAP) in specific regions of the hippocampus. (e) Abbreviations used for regions
are: Alv - alveus, Sub - subiculum, SLM - stratum lacunosum moleculare, SR - stratum radiatum, SP -
stratum pyramidale, SO - stratum oriens, ML - molecular layer, GCL - granule cell layer. White regions
indicate excluded due to similarity with adjacent regions. Scale bars (a-e) are 200µm. Mean and standard
deviation of the quantificatied tissue components (f-k). Mean and standard deviation of the myelin and nuclei
(f) and representation of the mean value in each specific ROI (g-h). Mean and standard deviation of the
neuron nuclei and intermediate filament of filaments of astrocytes (i) and representation of the mean value
of intermedia filaments and the ratio between neuron vs. total nuclei in each specific ROI (j-k). (l) Mean
and standard deviation of E’ and E” for the different regions of the hippocampus. Diamond marks shows
the prediction of the proposed mechanical model and bars show the measured values. (m-n) Representation
of E’ and E” in all the ROIs. (o-p) Error of the proposed mechanical model for E’ and E” represented in
each ROI.

cell numbers and a high concentration of GFAP, confirming previous descriptions of the spatial
heterogeneity of brain tissue components in the hippocampus [7].

To account for the remaining, non-cellular components of the tissue, we made the following
assumption for the fraction of ECM and, in particular, of PNNs and NIM: ρECM = 1− (ρN + ρm),
that is, the space not occupied by either nuclei (ρN ) or myelin (ρm) is assumed to be ECM.
Then, we assume that NIM is more prevalent in regions where more astrocytes (ρa) are present
and PNNs where more neuronal nuclei (ρn) are localized. The mechanical contribution of the
vasculature is included within the NIM. Therefore, we defined ρNIM = ρECM ∗ ρa/(ρn + ρa) and
ρPNN = ρECM ∗ ρn/(ρn + ρa) (SI Appendix, Fig. S1-3).

Then, we compared recently published data of the stiffness of each ROI (see Materials and
Methods and [23] for further details) with the distribution of each ROI’s components. Tissue
stiffness had been measured using a nanoindentation approach, where forces were applied that were
similar in magnitude and time scale as the forces exerted by CNS cells [2, 37].. Means and standard
deviations of the storage moduli E’, which are a measure of the tissue’s elastic component, for each
ROI at every indentation level, δ, are provided in Fig. S1. We focused on an applied δ = 13µm
(Fig. 2(l-m)), but all the features described next were consistent along the different δ(SI Appendix,
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Fig. S10, Tables S12-13).
In summary, the lowest value of E’ ∼ 0.3kPa was obtained for the GCL. As shown in Fig. 2,

the GCL is a region mostly occupied by neuronal cells, specifically granular cells and astrocytes,
with a comparatively small amount of myelinated axons (5%). The SP3, which mostly consists
of pyramidal neurons and a moderate amount of myelinated axons (20%), was the second softest
region (∼0.4kPa). These two regions were characterized by the highest fraction of neuronal nuclei
in the hippocampus. Surprisingly, the third softest region was the Alveus (∼0.7kPa), a region
containing almost 60% of myelinated axons, few neuronal cell bodies, and a substantial amount of
astrocytes. Most other ROIs fell in the 0.8-1.2 kPa range. The stiffest ROIs was the SO1, with
E’ ∼ 1.3kPa, which has a moderate fraction of astrocytes (30%) and low amounts of other stained
components.

To analyze how the tissue composition regulates tissue rigidity, we first investigated the cor-
relation between the tissue fractions (Fig. 2) and the stiffness of all ROIs (SI Appendix, Fig. S4
and Table S2). We observed negative correlations between structure and stiffness for all tissue
constituents except for the fraction of astrocytes, which showed a positive correlation. Only the
correlations between tissue stiffness and the densities of all nuclei and those of neurons alone had a
significant Pearson’s correlation coefficient (r=-0.69 and r=-0.66, respectively), in agreement with
previous data [23]. These results indicated that the characteristic mechanical signature of each
ROI may be related to the local tissue composition, and that tissue mechanics likely results from
a combination of all the constituents rather than being dominated by one single component.

Brain mechanics cannot be explained through affine deformation of its compo-
nents
To test this hypothesis, we set out to define a constitutive law describing the stiffness of each ROI
by incorporating information about the local tissue composition. Previous work correlating stiffness
and tissue composition in the nervous system developed phenomenological models assuming linear
and non-linear relationships to reproduce composition-stiffness relations [22, 23] or assuming that
only the tissue component with the highest correlation with the tissue stiffness contributes to
its rigidity [24]. Here, we derived a homogenized model, based on a mean-field (MF) approach,
to predict brain tissue mechanics as a function of the distribution and stiffness of each tissue
constituent (see Materials and Methods, point 1.1 for details on the representative volume element
[39]). We first defined a MF model based on the total SEDF ΨT of the system, the density energy
required to deform the tissue under an external load (we provide a complete derivation in the SI
Appendix). This is a standard approach in modeling soft biological tissues (e.g. arteries [25, 40],
cartilage [41] and brain tissue [21]). Within the small strain limit, and assuming that the tissue is
isotropic, almost-incompressible, and that bonds between constituents are strong so that slippage
does not occur at small strains [38], we can define the stress-strain relations as a function of the
storage Young’s modulus E (a measure of tissue stiffness). The total equivalent ET of the tissue,
that is the total stiffness of the tissue due to the presence of several constituents with Young’s
modulus Ei and fraction ρi, is ET =

∑n
i ρiEi, which recovers the classical Voigt estimation [42].

Following the additive decomposition of the SEDF, i.e. the Voigt estimation, we took the
values of tissue composition quantification (Fig. 2) and performed a fitting procedure against the
experimental values of E’ at different indentation levels (see Materials and Methods). We fixed the
storage modulus of cell nuclei to E’N = 0.6kPa and took the modulus of myelinated axons, E’m=
2.0kPa, and of the PNN and NIM, E’PNN=1kPa and E’NIM=1kPa, respectively, as initial seeds
of the fitting procedure, in agreement with previously published values [20, 35, 43, 33, 6]. The
fitting procedure yielded mean errors in all regions and indentation levels of ∼21% based on the
fraction of their components (SI Appendix Fig. S10 and Tables S12-13). E’m increased linearly
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from ∼0.3kPa at δ = 6.5µm up to ∼1.3kPa at δ = 17µm, and E’PNN and E’NIM also increased
linearly from ∼0.5kPa and 0.2kPa up to 1.7kPa and 0.7kPa, respectively.

As mentioned above, the additive decomposition of the SEDF imposes a parallel arrangement of
the brain constituents and, therefore, an affine deformation of the tissue constituents. In such affine
deformations, the stiffest component dominates the mechanical response of the tissue. The stiffest
component of the brain, according to literature, are myelinated axons, with elastic moduli between
∼2kPa-1MPa [44, 20]. However, the fitted E’ values for myelin (∼0.2-0.6kPa, SI Appendix, Fig.
S12) were lower than these published values. Even if we consider the lowest range of the myelinated
axons, stiffness values of 2-20kPa, and impose it into the additive decomposition of the SEDF, it
would lead to an equivalent stiffness of the tissue of ∼3-12kPa (the component stiffness multiplied
by its tissue fraction). This resulting stiffness of the tissue represents errors of ∼300 - 1500%, 1 -
2 orders of magnitude higher than the errors found when the model parameters were freely fitted
by the minimization algorithm, suggesting that affine deformations cannot explain the observed
behaviour. Moreover, it can be argued that tissue components are not all connected in parallel.
Neurons have clearly differentiated regions (e.g. cell bodies and the myelinated axons) with specific
mechanical properties [20], which must deform in a non-affine manner under an imposed force.

These findings and arguments suggest that the mechanical response of the brain could not follow
an additive decomposition of the SEDF or, equivalently, be explained through affine deformations
of its constituents.

Non-affine deformations of brain components explain tissue mechanics

Figure 3: Quantification and analysis of tissue composition and stiffness of ROIs for the hippocampus of
juvenile mouse. Mean and standard deviation of the mylein and nuclei (a) and representation of the mean
value in each specific ROI (b-c). Mean and standard deviation of the neuron nuclei and intermediate filament
of filaments of astrocytes (d) and representation of the mean value of intermedia filaments and the neuron
vs. total nuclei in each specific ROI (e-f).Mean and standard deviation of E’ and E” for the different region
of the hippocampus and prediction (diamond marks) of the proposed mechanical model (g). Error of the
proposed mechanical model for E’ and E” represented in each ROI (h-i).

To evaluate possible explanations of the inconsistencies described above, and to derive a phys-
ical model capable of solving them and predicting local tissue stiffness based on the mechanical
properties and arrangements of its constituents, we took a closer look at the brain tissue structure
(Fig. 1). Some of the tissue constituents do not assemble in the tissue in a parallel arrangement
but rather in series, as for example myelinated axons and their somata. Thus, the modeling limi-
tations described for the additive decomposition of the SEDF could arise from the inherent affine
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deformation imposed on the tissue constituents. If tissue constituents arrange in series, forces are
transmitted continuously in all the elements and the constituents will be subjected to non-affine
deformations. We can generalize this idea within a consistent thermodynamic formulation, taking
advantage of the complementary energy density function (cSEDF), Ψ̂ [45, 46]. In terms of the re-
duced storage modulus, the equivalent ET of n components arranged in series, i.e. defined through
its cSEDF, is E′

T =
∏n

i E
′
i/
∑n

i E
′
i, which recovers the Reuss estimate [47] (see SI Appendix for a

complete derivation). We particularized this approach to our problem and modeled the structural
organization as follows: PNNs are linked in parallel with the neuronal somata, which are linked to
the myelinated axons in series. These two elements in series, on the other hand, are linked with
the NIM in parallel (see Fig. 2). Therefore,

E′
T =

(ρnE
′
n + ρPNNE

′
PNN ) ∗ ρaE′

a

ρnE′
n + ρPNNE′

PNN + ρaE′
a

+ ρNIME
′
NIM . (4)

We then used this structural description of the tissue to analyze whether we could reproduce the
mechanical properties of the tissue applying Eq. 4. We took again E’N = 0.4kPa and E’m= 2.0kPa
as an initial seed for the fitting procedure [20, 35, 43, 33], assumed that the PNNs have the same
stiffness as the NIM, and fitted all values of Ei for each constituent. The fraction, ρi, was again
obtained from the tissue quantification (Fig. 2). We focused on an indentation of δ = 13µm (other
indentation levels are shown in SI Appendix, Fig. S6-8 and Tables S5-8).

Our theoretical model predicted the experimentally measured mechanical response of all loca-
tions in all ROIs with a mean error below 19% (see Fig. 2(l,o) and SI Appendix, Tables S5-6),
showing a slight improvement with respect to the affine model (21%). Most regions showed re-
markably low errors below 15% except for the GCL (64%), SP3 (26%), SR3 (26%) and SR1 (23%)
regions. Note that we obtained these low errors with a clear and physical meaning of the main tissue
constituents analyzed in this study. In Table S9, we present the results of E’ for each indentation
depth analyzed. The NIM and PNN showed a slightly non-linear strain-stiffening behavior. Con-
sidering only one type of ECM resulted in higher errors, which suggests that PNN and NIM could
have different stiffness values. The PNN stiffness increased linearly from ∼3kPa, at δ = 6.5µm,
up to ∼8.5kPa at δ = 17µm and the NIM stiffness increased linearly from ∼0.5kPa up to 1.5kPa.
Myelin showed a linear increase in the stiffness with increasing δ as well (see Fig. S8), from 2kPa
up to 7.5kPa. E’ values reported in Table S9 are consistent with directly measured stiffness values
of neurons, myelin and ECM [20, 35, 43, 33, 6], which was not achieved in the affine model. Values
of the NIM are also consistent with the stiffness of substrates on which neurons and glial cells
differentiate [48, 49].

Viscoelasticity depends on tissue architecture
To investigate whether the additive decomposition of the cSEDF could be used for analyzing not
only tissue elasticity but also the viscoelastic behavior of the brain [14, 12], we applied our model to
a frequency-dependent characterization of the tissue. We took the loss moduli E”, which represent
the viscous component of the mechanical response, of each ROI (see Materials and Methods) and
plotted the mean values and standard deviation in Fig. 2(l,n). Then, we applied the relation as in
Eq. 4 but for the loss modulus E” to describe the viscoelastic response of each ROI based on its
local composition, and performed the same fitting procedure as above (see Table S9). As shown in
Fig. 2(l,p), we found a good agreement between experimental data and the theoretical model, with
a mean error lower than 16%, and most of the ROIs with errors lower than 15% except, again, the
GCL, SP3, and SR3 regions, which slightly overpassed this threshold. The reported loss moduli for
all components were again comparable to data from literature [20, 35, 43, 33] and showed similar
increases with increasing indentation depths (SI Appendix, Table S9).
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Composition and stiffness of brain components reproduce CNS mechanics
To further investigate the general applicability of our model, we extended our study to the hip-
pocampus of adult mice by using previously reported data [18]. The tissue composition in the
adult hippocampus is shown in Fig. 3 and SI Appendix, Table S1. We focused again on δ = 13µm
(other indentation depths are shown in SI Appendix, Fig. S5 and Tables S3-4,S9). We observed
a stiffening of both the ECM (PNN and NIM) and cell bodies compared to the juvenile samples,
which is in line with previously published data on rodent brain tissue stiffening during development
and ageing [3, 6]. We found a same tendency for the loss modulus E” (see Fig. 3 and SI Appendix,
Table S9).

Using our model (Eq. 4), we were able to reproduce the mechanical properties of the adult
hippocampus with an average error of measurements of 25% and 27% for E’ and E”, respectively.
Again, these values represent a decrease with respect to the errors obtained with the affine model,
31% and 35% for E’ and E”, respectively. The hilus and SP3 were the only regions with error higher
than 40%. It is important to note, however, that the model accurately captured the tendency of
the age-related change in tissue rigidity for all ROIs. Moreover, the stiffness values found by the
fitting procedure were again within the values reported in literature [20, 35, 43, 33], which was
not possible for the affine model. The myelin and NIM stiffness showed a linear increase with
increasing indentation depths. However, the myelin stiffness showed a slight decrease with respect
to the juvenile samples while the stiffness of the NIM doubled its values with respect to the juvenile
animals. The PNN was again the stiffest component of the brain.

Finally, we applied our model to a different region of the brain, the cerebellum of juvenile mice,
by using previously reported data [23] (Fig. 4). We predicted E’ and E” of different ROIs (see Fig.
4) considering the distribution of the cerebellum’s components (Fig. 4(d-i)) and the fitted values
of E’ obtained for the components of the juvenile hippocampus (Fig. 3 and Table S9). The model
was able to reproduce the cerebellum’s heterogenous mechanics [23] (Fig. 4k-j) without any further
fitting of parameters and they were again within the values reported in literature [50].

Figure 4: Quantification and analysis of tissue composition and stiffness of ROIs for the cerebellum of
juvenile mice (a-c). Nuclei and myelin are shown in blue and red, respectively (a), nuclei (b) and myelin (c).
Scale bars (a-e) are 100µm. Abbreviations used for regions are: GCL= granular cell layer, ML = molecular
layer, Av=Arbor vitae. Mean and standard deviation of tissue brain composition (d-i): Mean and standard
deviation of the myelin and nuclei (d) and representation of the mean value in each ROI (e-f). Mean and
standard deviation of the neuron nuclei and intermediate filaments of astrocytes (g) and representation of
the mean value of filaments and the neuron vs. total nuclei ratio in each specific ROI (h-i). Error of the
proposed mechanical model for E’ and E” represented in each ROI (k-l). Mean and standard deviation of E’
and E” for the different region of the cerebellum (j). Diamond marks shows the prediction of the proposed
mechanical model.

We found mean errors of 21% and 15% for E’ and E”, respectively, which were lower than the
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23% and 41% for E’ and E”, respectively, yielded by the affine model (see also SI Appendix, Fig.
S11 and Tables S14-15). In summary, our results indicated that the non-affine model predicts local
nervous tissue mechanics well, irrespective of age and regions, solely based on the distribution and
mechanical properties of its constituents, and it outperforms the affine model.

Discussion
In this study, we developed a mathematical model that uses the morphological structure of brain
tissue to determine its local mechanical properties of healthy CNS tissue. We found that a classical
additive decomposition of the Strain Energy Density Function (SEDF), and equivalently stresses, of
each tissue constituent cannot reproduce the complex mechanical behavior of brain tissue. However,
when we took the actual structural organization of the tissue into account, we were able to predict
brain mechanics. By considering the abundancy and mechanical properties of individual cellular
and extracellular tissue components as well as the arrangement of these components within the
brain tissue, some being connected in parallel and others in series, we were able to reproduce
the local mechanical behavior of the tissue. Finally, we also present an online platform for the
scientific community (uploaded in the MATLAB Central File Exchange) that, upon providing
immunohistochemistry images and stiffness values for the constituents of the sample, yields the the
viscoelastic properties at the tissue scale.

Previously developed models (see [21, 19] for a review) often considered a homogenized re-
sponse of the tissue constituents to applied forces. Other models have considered different tissue
components but not their actual properties, proposing constitutive laws that included parameters
with unclear physical interpretation [22, 23] or have focused on one tissue component with stronger
correlation with tissue stiffness [24]. Our results suggest that the classical additive decomposition
of the SEDF is not appropriate to reproduce tissue stiffness from the structure and stiffness of
its components. We argue that this is due to an inherent affine deformation of such models. By
incorporating a precise multi-scale description of the tissue, our model now enables us to predict me-
chanical properties of specific brain tissue regions, which are characterized by distinct compositions
and arrangements of cells and ECM.

We followed a bottom-up approach: based on what we knew about the brain tissue constituents,
we reproduced local brain tissue mechanics with minimal fitting parameters. Specifically, we only
fitted the storage and loss moduli of myelinated axons, perineuronal nets and interstitial matrix.
Ideally, this information could be obtained from separate experiments. Here, we fitted their values
and made sure they are within the range of data reported in the literature. Furthermore, we used
the fitted values of the storage and loss moduli from the juvenile hippocampus (Table S9) and
reproduced, without any further fitting procedure, the stiffness of the juvenile cerebellum (Fig. 4).

We found that, in juvenile samples, the stiffness of the ECM increases non-linearly with in-
creasing strain, that the stiffness of cell bodies does not change with strain, and that the stiffness
of myelin increases with strain. In adult tissue, however, the stiffness to tissue constituents changes
variably with changing strain levels. Regions with a high concentration of neurons, such as the
GCL or the SP3, were reproduced worse than others. We hypothesize that these regions are more
fragile than other regions in the hippocampus and start swelling or even dying earlier, which may
explain the observed deviations between data and model.

Our results suggest that there are simple mechanical relationships between tissue constituents
that regulate the mechanical properties of brain tissue. Incorporating tissue architecture into
models describing tissue mechanics could potentially be used for the constitutive modeling of other
soft biological tissues, for example, cardiovascular tissue [25, 40]. There are still important questions
to be answered to improve our current understanding of brain tissue mechanics: for example, do
neuronal cells and ECM change their mechanical properties during development? How do cell-ECM
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interactions and adhesive interfaces change during development and ageing? How do the different
ECM structures contribute to tissue mechanics? What role does the vasculature and the anisotropy
play in regulating brain tissue mechanics?.

Here, we used a viscoelastic model to focus on the arrangement of the tissue constituents. More
advanced viscoelastic models could reproduce the behavior of the tissue even more accurately (see,
e.g., [51]). Separating the role of viscoelasticity from poroelasticity should also be the focus of
research for a complete understanding of brain mechanics. Our model relies on a simple mean-
field homogenization method. More advanced homogenization methods (see, e.g., [52, 53]) will
require a morphological reconstruction of the representative volumes of interest at high resolution,
which is currently the limiting step. Once these data are available, computationally more expensive
multiscale finite element methods or advanced mean-field approaches can be applied to investigate
brain mechanics with even higher accuracy.

A precise description of how tissue constituents arrange in soft biological tissue will allow
us not only to better understand its mechanical properties but also to design better biomedical
materials [54] and engineered tissues [55]. The cooperation of mathematical models, computational
bioengineering, image analysis and neuroscience will eventually allow us to answer these and many
more questions.
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