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Abstract16

Patient-derived organoids (PDOs) can model personalized therapy responses, however17

current screening technologies cannot reveal drug response mechanisms or study how tu-18

mor microenvironment cells alter therapeutic performance. To address this, we developed19

a highly-multiplexed mass cytometry platform to measure post translational modification20

(PTM) signaling in >2,500 colorectal cancer (CRC) PDOs and cancer-associated fibrob-21

lasts (CAFs) in response to clinical therapies at single-cell resolution. To compare patient-22

and microenvironment-specific drug responses in thousands of single-cell datasets, we23

developed Trellis — a highly-scalable, hierarchical tree-based treatment effect analysis24

method. Trellis single-cell screening revealed that on-target cell-cycle blockage and DNA-25

damage drug effects are common, even in chemorefractory PDOs. However, drug-induced26

apoptosis is patient-specific. We found drug-induced apoptosis does not correlate with27

genotype or clinical staging but does align with cell-intrinsic PTM signaling in PDOs.28

CAFs protect chemosensitive PDOs by shifting cancer cells into a slow-cycling cell-state29

and CAF chemoprotection can be reversed by inhibiting YAP.30

Highlights31

• >2,500 single-cell PTM signaling, DNA-damage, cell-cycle, and apoptosis responses from drug-32

treated PDOs and CAFs.33

• Trellis: hierarchical tree-based treatment effect method for single-cell screening analysis.34

• PDOs have patient-specific drug responses that align with cell-intrinsic PTM signaling states.35

• CAFs chemoprotect PDOs by altering PDO cell-state via YAP signaling.36
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1 Introduction37

Tumors are heterogeneous cellular systems comprising cancer cells, stromal fibroblasts, and various38

immune cells. Tumor phenotypes are regulated by cell-intrinsic mutations within cancer cells and cell-39

extrinsic cues from the tumor microenvironment (TME) [1]. Colorectal cancer (CRC) kills >0.9 million40

people per year worldwide [2] and is characterized by a high inter-patient genetic heterogeneity and patient-41

specific responses to therapy [3]. Cancer associated fibroblasts (CAFs) are one of the most abundant cell-42

types in the CRC TME [4]. CAF abundance correlates with poor overall survival [5], and influences response43

to both targeted therapies [6] and radiotherapy [7]. However, there is a lack of understanding regarding how44

CAFs regulate cancer cell response to therapy and to what extent stromal regulation is patient-specific.45

Patient-derived organoids (PDOs) are personalized cancer models [8] that can mimic their parent tumors’46

response to chemotherapies [9] — with several studies proposing PDOs as personalized avatars of drug47

response [10]. However, epithelial PDO monocultures cannot model the influence of stromal cells on therapy48

response. PDOs can be co-cultured with stromal and immune cells to recapitulate elements of the TME49

[11], but how this alters PDO phenotypes and personalized drug response is unknown. Moreover, PDO drug50

sensitivity is typically measured using bulk live/dead viability assays [12] that cannot resolve cell-type-51

specific data from co-cultures and provide no mechanistic insight into drug responses [13].52

To overcome these limitations, we developed a highly-multiplexed Thiol-reactive Organoid Barcoding53

in situ (TOBis) mass cytometry [14, 15] platform to study how anti-cancer therapies regulate the cell-state,54

DNA-damage response, and post-translational modification (PTM) signaling of CRC PDOs in the presence55

or absence of CAFs at single-cell resolution across >2,500 PDO-CAF cultures. To compare single-cell56

drug responses from thousands of cell-type-specific datasets, we developed Trellis, a hierarchical tree-based57

treatment effect analysis method that derives generalized optimal transport distances between samples after58

normalizing by their own controls. TOBis mass cytometry and Trellis revealed drug-induced PTM signaling59

responses are PDO-specific and demonstrated CAFs protect CRC cells from chemotherapy by shifting ep-60

ithelial cells into a slow-cycling cell-state. CAF chemoprotection could be rationally reversed by inhibiting61

YAP-signaling using insights from single-cell PTM data, demonstrating the utility of PTM-focused drug62

screening for overcoming therapy resistance. These results illustrate the functional intertumoral heterogene-63

ity of patient-specific drug response mechanisms and suggest TME cells should be included in future PDO64

models.65

2 Results66

Patient- and Microenvironment-Specific Single-Cell PTM PDO-CAF Drug Analysis67

To study how CAFs regulate patient-specific drug response signaling, we established a high-throughput68

3D organoid co-culture system comprising 10 CRC PDOs [12] (Table S1) cultured either alone or with CRC69

CAFs [16, 17]. Organoid cultures were treated in triplicate with either vehicle control, or titrated combi-70

nations of clinical therapies fluoropyrimidine 5-fluorouracil (5-FU), SN-38 (active metabolite of Irinote-71

can), Oxaliplatin, and Cetuximab (EGFR inhibitor). The pre-clinical therapy LGK974 (PORCN inhibitor)72

[12] was also studied to investigate PDO-CAF WNT signaling and Berzosertib (VX-970) was included as73

ATR inhibition has been hypothesized to synergize with DNA-damaging agents in CRC [18] (Figure 1a)74

(Table S2). Following treatment, each culture was fixed, stained with thiol-reactive monoisotopic TOBis75

barcodes [15], pooled, dissociated into single-cells, stained with a panel of 44 rare-earth metal antibodies76

(spanning cell-type, cell-state, DNA-damage, and PTM signaling markers (Table S3)), and analyzed by mass77

cytometry (Figure 1b). Following multiplexed debarcoding [19] and cell-type-specific gating, we obtained78
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>10 million PDO cells and >15 million CAFs from 2,520 3D cultures (3,360 cell-type-specific single-cell79

PTM signaling datasets).80

Figure 1: TOBis MC Single-Cell PTM PDO-CAF Drug Responses. a) Multidimensional array of 10 CRC PDO (7 microsatellite
stable (MSS), 3 microsatellite instable (MSI)) treated with 11 titrated drug combinations either alone or in co-culture with CRC
CAFs in triplicate (2,520 3D cultures). b) PDO-CAFs were barcoded in situ using TOBis, stained with 44 rare-earth metal antibod-
ies spanning cell-type identification, cell-state, DNA-damage response, and PTM signaling, and analyzed by MC (3,360 single-cell
PTM datasets).

Trellis: Hierarchical Tree-Based Single-Cell Treatment Effect Analysis81

Highly-multiplexed single-cell cytometry screening data presents several analytical challenges. First,82

existing work on large single-cell data uses the manifold structure of transcriptomic technologies, where cell83

distances are locally Euclidean [20–24]. However, in cytometry data antibody panels are designed based on84

prior biological knowledge, and analyzed using gating strategies that follow a hierarchical structure, which85

are better described by tree distances rather than a single smooth manifold. Second, our PDO-CAF PTM86

screening data contains >2,500 conditions with >25 million cells. Existing state of the art to analyze such87

large datasets is to compare cluster proportions between single-cell samples [25–27]. Emerging methods can88

compare distributions using earth mover’s distance (EMD), but only at course granularity [22], or by using89

graph diffusion which does not account for the hierarchical tree structure of cytometry data [23]. As highly-90

multiplexed single-cell screening datasets are becoming increasingly common, there is a need for tools91

that can efficiently compare thousands of single-cell conditions. Finally, large screening datasets compare92

independent systems (e.g. patients, microenvironments, and/or technical batches) perturbed by constant93

treatments. For this, internal controls need to be leveraged, such that multiple controls and treatments can94

be directly compared in a common computational space. To solve these problems, we developed Trellis.95

Comparisons between single-cell datasets typically treat all markers equally — irrespective of prior96

biological knowledge. While equal weighting may be appropriate for unbiased single-cell methods such as97

scRNA-Seq, Trellis leverages the experimental design of cytometry data using a ‘branch’ tree hierarchy of98

well-defined biological processes (e.g. cell-type hierarchies or cell-states) that supervenes upon randomized99
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‘leaves’ of latent biological significance (via four levels of four k-means clusters) (Figure 2a). This enables100

an automated assessment of cell populations that mimics human intuition in the design of the experiment,101

and subsequently its interpretation (Figure S1). Trellis can leverage any gating strategy that returns a single102

hierarchy or multiple hierarchies (Algorithm 1 line 3).103

Algorithm 1: High-level Trellis algorithm for comparing single-cell treatment effects
1: Input: Dataset containing controls and variables
2: Output: Distances between treatment effects to their relative controls
3: Build tree or trees incorporating prior knowledge on markers followed by random construction with

edge weights w for each node.
4: Embed each distribution to a vector with each element as fraction of dataset in that node forming

abundance matrix A.
5: Multiply element-wise w ⊗A to calculate Trellis embeddings E.
6: (optionally) Subtract relevant control vectors for paired Trellis embeddings Ẽ.
7: return Relevant L1 distances between embeddings.

Once one or multiple hierarchies are defined, Trellis then embeds each single-cell distribution into a104

vector such that for two distributions, the L1 distance between embeddings is equivalent to the EMD between105

the two distributions along the defined tree or forest (Algorithm 1 lines 4-5). By reducing a complicated and106

inefficient distance calculation to a vector distance, Trellis can scale to larger datasets by leveraging existing107

work in high-dimensional distance computation (Figure S2). For instance, if we only need to find the nearest108

neighbor treatments for non-linear embedding [21, 28], we leverage fast nearest neighbor algorithms such109

as KD-trees as used in PHATE [21], Annoy [29] used in UMAP [30] and Scanpy [31], or locally sensitive110

hashing [32, 33].111

As single-cell screens increase in size and complexity, the use of internal controls enables the compar-112

ison of independent variables in parallel. Existing distribution comparison methods cannot easily incorpo-113

rate pairing of controls to variables, indeed EMD is not even defined for the difference of distributions. To114

solve this, Trellis can easily be extended to ‘paired’ Trellis (Algorithm 1 line 6), where paired controls are115

subtracted from treatment samples to directly compare treatment effects. We prove this is equivalent to a116

Kantorovich-Rubenstein (KR) norm with tree ground distance (Prop. 2). This KR norm cannot be com-117

puted with standard Wasserstein distance methods (even for small problems [34, 35]) but can be calculated118

by Trellis. Paired Trellis therefore enables thousands of variables to be compared to their internal controls119

in a common computational space — enabling clear distinction of individual treatment effects in paralleled120

high-dimensional single-cell screening data (Figure S1a).121

In summary, Trellis uses a prior-driven tree domain to compute the generalized Wasserstein distance122

between thousands of single-cell samples. Pairing treatments to controls enables paralleled visualization of123

treatment effects (Figure S1a) and reduces batch effects in serially acquired screening data (Figure S1b).124

Prior-driven branches further resolve biologically important treatment effects (Figure S1c). Trellis out-125

performs existing single-cell treatment effect methods (Figure S2a) and the tree domain structure enables126

thousands of single-cell datasets to be analyzed rapidly (Figure S2b). Prior-driven branches are customiz-127

able to different biological questions and Trellis recapitulates features of published datasets (Figure S3).128

Further detail on Trellis’ scalability, theoretical soundness, and robustness can be found in Methods.129
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Figure 2: Trellis Single-Cell Treatment Effect Analysis. a) Single cells from control and variable conditions are distributed
through a tree comprising designed ‘branches’ that supervene upon randomized k-means clustering nodes, ending in ‘leaves’.
Branches weigh hierarchical gating strategies while nodes and leaves leverage latent parameters. In each node of the tree, variables
are subtracted from paired controls to create a multi-scaled differential matrix (representing a Kantorovich-Rubinstein norm) that
scales to thousands of conditions. b) Single-cell density PHATEs of PDO 21 treated with DMSO or SN-38 (irinotecan). SN-38
results in cell-cycle exit (IdU−, pHH3−, and pRB−) and induction of apoptosis (cPARP+). c) Trellis hierarchy for single-cell
PDO on-target drug responses leveraging cell-state branches and randomized PTM and DNA-damage parameters. Trellis scores
are calculated per PDO by comparing untreated controls to drugs for both mono-cultures and co-cultures. CB1, Cyclin B1. d)
Sankey diagram showing data from b) distributing through the Trellis layout in c) (terminal leaves not shown).

Trellis Single-Cell Analysis of PDO Cell-State and PTM Signaling130

Anti-cancer drugs typically induce major shifts in cell-cycle and apoptosis that can be detected by mass131

cytometry. For example, SN-38 inhibits topoisomerase 1 [36], resulting in S-phase blockage, cell-cycle132

exit, and induction of apoptosis (Figure 2b). Similarly, 5-FU blocks nucleotide biosynthesis by inhibiting133

thymidylate synthase [37] which subsequently stalls S-phase entry, whereas oxaliplatin induces ribosome134

biogenesis stress to block mitotic progression [38]. Capturing shifts in cell-state is therefore crucial for135

understanding on-target drug responses in single-cell data.136

In mass cytometry, cell-state is identified by hierarchical gating of pRB, IdU, pHH3, Cyclin B1, and137

cPARP/cCaspase3 [39, 40] and is therefore well suited for Trellis branches. For cell-type-specific analysis138

of PDO-CAF co-cultures we designed a Trellis hierarchy using cell-state-driven branches that supervene139

upon randomized DNA-damage and PTM signaling leaves (Figure 2c) (Figure S4a). This tree topology140

sensitizes Trellis to canonical on-target drug-induced shifts in cell-cycle and apoptosis while also leveraging141

latent changes in DNA-damage and PTM signaling (Figure 2d) (Figure S4b-e).142
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Trellis Analysis of Cell-Type-Specific PDO-CAF Drug Responses143

We used Trellis to analyze 3,360 (1,680 PDO, 1,680 CAF) single-cell PTM profiles (>25 million single-144

cells) (Figure 3a) in order to explore drug-, patient-, and microenvironment-specific therapy responses for145

both PDOs (Figure 3b-d) and CAFs (Figure S5). Since Trellis performs pairwise normalization to internal146

controls, all controls group on the left side of the graph (Figure 3b) (Figure S1a) and each treatment embeds147

relative to their controls, depending on their distribution through the Trellis tree. This enables therapeutic148

effects to be visualized across PHATE 1 and mechanistic response in PHATE 2 (Figure S6). If the same drug149

were to have have an equal effect on all PDOs, Trellis would group each condition by drug type. However,150

Trellis revealed PDO treatment effects are characterized not by drug type, but by patient-specific signaling151

responses.152

We observed four patient-grouped responses to 5-FU, SN-38, and oxaliplatin chemotherapies: 1) broadly153

chemosensitive with high apoptosis (PDOs 21 and 75), 2) broadly chemosensitive with apoptosis and a154

strong DNA-damage response (PDOs 23 and 27), 3) anecdotally chemosensitive (i.e. only apoptotic with a155

specific drug) (PDOs 99 and 109), and 4) chemorefractory with minimal apoptosis and low DNA-damage156

response (PDOs 05, 11, 141, and 216). Cetuximab, Berzosertib, and LGK974 generally had modest effects157

on PDO cell-state and PTMs relative to chemotherapies (Figure 3b) (Figure S6). While PDOs demonstrate158

clear patient- and microenvironment-specific drug responses, CAF signaling does not cluster by patient or159

drug (Figure S5), suggesting chemotherapies mainly alter the cell-state, DNA-damage, and PTM profiles of160

PDOs, not CAFs. Trellis further revealed CAFs protect some PDOs from chemotherapies (Figure 3d).161

PDO Drug Signaling Responses Are Patient-Specific162

PDOs have been proposed as personalized avatars of drug response [10], but how clinical treatments163

mechanistically alter patient-specific PDO biology is not well understood. To explore patient-specific drug164

response signaling, we updated the designed branches of the Trellis tree by combining cell-state parameters165

with a pHH2AX [S139] detection layer to enrich on-target DNA double-strand breaks and analyzed each166

patient drug response in parallel (Figure S7a-d). Patients continue to display either broad (PDOs 21, 23,167

27, and 75) or anecdotal (PDOs 99 and 109) chemotherapeutic sensitivity, and multiple examples of drug168

insensitivity (Figure 4a).169

Unlike univariate live/dead metrics used in traditional drug screens, TOBis mass cytometry can detect170

on-target treatment effects that do not result in cell death. For example, SN-38 induces on-target S-phase171

blockage and double-strand breaks in both PDO 21 and PDO 05, yet only PDO 21 translates genotoxic stress172

into apoptosis (Figure 4b). Similarly, in PDOs 23 and 99, 5-FU and SN-38 result in a large DNA-damage173

response and stalled mitosis respectively, but no apoptosis (Figure S7e). 5-FU and SN-38 can clearly induce174

double-strand breaks and cell-cycle arrest in these PDOs, but they do not translate genotoxic replication175

stress into cell death. In fact, across nearly all PDOs tested, SN-38 (Figure S7f), oxaliplatin (Figure S7g),176

and 5-FU (Figure S7h) display on-target mitotic arrest (83%), but only a subset of patient and treatment177

combinations trigger apoptosis (40%). This suggests on-target drug responses are common in CRC PDOs,178

but often insufficient to induce cell death.179

The patient-specific drug sensitivity demonstrated by several PDOs reinforces the notion that PDOs180

could be used to identify drugs uniquely potent to an individual’s cancer. For example, in PDO 99, 5-FU181

blocks mitosis and SN-38 causes a large DNA-damage response – yet neither chemotherapy induces sub-182

stantial apoptosis. However, when treated with oxaliplatin, PDO 99 exits the cell-cycle and enters apoptosis183

(Figure S7e). Unlike 5-FU and SN-38, oxaliplatin does not kill cells directly through blocking S-phase,184

but via inducing ribosome biogenesis stress [38]. PDO 99 appears refractory to cytostatic stress but hy-185
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Figure 3: Trellis Analysis of Single-Cell PDO-CAF Drug Responses. a) Trellis-PHATE of 1,680 PDO single-cell PTM profiles
(1 dot = 1 organoid culture comprising >5,000 single-cells) colored by apoptosis with representative single-cell density embeddings
of PDO 21 + DMSO or + SN-38. b) PDO drug treatment-specific responses. Controls group on the left, with treatment effects
spreading across PHATE 1 and response mechanisms resolving across PHATE 2. c) Patient-specific drug responses illustrate
different chemosensitive mechanisms and chemorefractory patients. d) CAFs provide patient-specific chemoprotection from 5-FU,
SN-38, and oxaliplatin.

persensitive to ribosome biogenesis stress. Similarly, ATR inhibitors block single-stranded DNA-damage186

response and typically synergize with DNA-damage inducing drugs [18]. However, we find Berzosertib187

only increases SN-38-induced apoptosis in MSI PDOs (Figure S8), suggesting ATR inhibitors might only188

be effective in MSI patients.189

Chemosensitive PDOs Have Distinct Cell-Intrinsic PTM Signaling Profiles190

We next sought to understand features common to chemosensitive and chemorefractory PDOs. Ther-191

apeutic response does not correlate with MSI/MSS status, clinical staging, anatomical location, KRAS, or192

APC genotypes (Figure S9a) (Table S1). However, baseline PDO cell-state and PTM signaling profiles193

are patient-specific and align with chemosensitivity (Figure 4c) (Figure S9b-d). Chemosensitive PDOs 21,194

23, 27, and 75 are highly proliferative at baseline and experience canonical S-phase blockage, increased195

DNA-damage, and apoptosis when treated with both 5-FU and SN-38. In contrast, chemorefractory PDOs196

generally have lower cell-intrinsic mitotic activity than chemosensitive PDOs (Figure 4c). When treated197

with 5-FU, SN-38, and oxaliplatin, chemorefractory PDOs experience a reduction in S-phase and blocked198
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Figure 4: PDO Drug Response Mechanisms Are Patient-Specific and Align With Cell-Intrinsic Cell-State and PTM Signal-
ing. a) Trellis-PHATE patient-specific PDO drug responses (840 single-cell PTM datasets). b) Patient-specific distribution of cells
within Trellis branches reveals on-target cell-state shifts upon drug treatments. Treatment cell-state quantifies the fold change of
the proportion of cells/cell state over the controls for each treatment (Z-score). DNA damage is quantified by the fold change of the
proportion pHH2AX+ cells over the controls. c) Trellis-PHATE resolves high IdU/pRB (red outline) and low IdU/pRB (blue out-
line) cell-intrinsic cell-state PDO groups (colored by proportion of cells in S-phase). d) SN-38-induced apoptosis in low IdU/pRB
and high IdU/pRB PDOs. Unpaired t-test, *** <0.001. e) TreEMD-PHATE of cell-intrinsic PTM signaling nodes demonstrates
PTMs up-regulated in chemorefractory PDOs.

M-phase consistent with on-target drug responses, but generally elicit a lower double-strand break response199

compared to chemosensitive patients and do not activate PARP or Caspase3 (Figure 4d) (Figure S7e). This200

suggests that even chemorefractory PDOs experience on-target drug responses, but their slow mitotic sig-201
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naling flux at point of treatment means drug-induced cytostatic stress is insufficient to trigger widespread202

DNA-damage and apoptosis. Chemorefractory PDOs typically have high levels of cell-intrinsic pSMAD2/3,203

pSMAD1/5/9, pMKK4, pBAD, pBTK, and pNF-κB signaling (Figure 4e) – suggesting these pathways re-204

late to a chemorefactory cell-state. In summary, TOBis mass cytometry and Trellis reveal on-target drug205

performance is common in CRC PDOs (even in chemorefractory PDOs) but cytotoxicity is patient-specific206

and correlates with cell-intrinsic PDO cell-states and PTM signaling.207

CAFs Chemoprotect PDOs by Altering PDO Cell-State208

CAFs have both pro- and anti-cancer roles across a variety of solid tumors, but to what extent these209

effects are patient-specific is poorly understood [4]. Trellis analysis of all CRC PDOs revealed CAFs can210

chemoprotect chemosensitive PDOs in a patient-specific manner (Figure 3d). To functionally explore the211

role of CAFs in patient-specific CRC PDO drug responses, we performed paralleled analysis of PDO mono-212

cultures and PDO-CAF co-cultures following drug treatments (Figure 5a). Trellis revealed CAFs provide213

varying degrees of chemoprotection in a patient- and drug-specific manner. For example, CAFs completely214

protect chemosensitive PDOs 21 and 75 from SN-38, 5-FU, and oxaliplatin-induced apoptosis, whereas215

PDOs 23, 27, and 99 only experience partial chemoprotection (Figure S10c). Chemorefractory PDOs 05,216

11, and 141 are largely unaffected by CAFs. This dichotomy suggests CAFs deregulate cancer cells in a217

patient-specific manner.218

We next sought to understand why CAFs have such different patient-specific regulation of PDO drug219

response. Chemosensitive PDOs 21 and 75 are highly proliferative in monoculture but reduce cell-cycle220

activity when co-cultured with CAFs (Figure 5b) (Figure S10a). CAFs that protect PDOs also have a distinct221

PTM signaling profile in co-culture (Figure 5c), suggesting patient-specific reciprocal signaling between222

PDOs and CAFs occurs during chemoprotection. Crucially, CAFs do not cause protected PDOs to exit the223

cell-cycle, but instead reduce MAPK and PI3K signaling, increase TGF-β, JNK, and NF-κB signaling, and224

slow PDO S-phase entry — rendering PDOs less vulnerable to chemotherapies (Figure 5d). Notably, these225

pathways are also cell-intrinsically active in chemorefractory PDOs (Figure 4e). CAFs also dramatically226

alter the macro structure of PDOs, with chemoprotected PDOs switching from an enveloped to cyst-like227

morphology. PDOs that do not benefit from CAF chemoprotection do not experience morphological shifts.228

Collectively, we find that CAFs can rapidly regulate PTM signaling networks in PDOs to shift previously229

chemosensitive cancer cells towards a chemorefractory cell-state.230

Inhibiting YAP Re-sensitizes CAF-Protected PDOs231

Mechanistic understanding of drug responses by single-cell signaling analysis could identify opportuni-232

ties to rationally re-sensitize refractory PDOs [41]. For example, Trellis revealed CAFs protect chemosen-233

sitive PDOs from SN-38 — not by reducing on-target S-phase blockage or DNA-damage — but by shifting234

cancer cells towards a slow-cycling cell-state (Figure 6a-d) (Figure S10a-c). This was most clearly observed235

in PDO 21, where CAFs activate PDO TGF-β, JNK, and NF-κB signaling and suppress mitotic MAPK236

and PI3K pathways (Figure 6e). CCD-18Co colon fibroblasts also chemoprotect PDO 21, suggesting PDOs237

have a common cell-state response to mesenchymal cues (Figure S10e-g).238

It has recently been shown that CRC cells can escape chemotherapy by differentiating towards a slow-239

cycling ‘diapause’ [42] or revival stem cell (revSC) fate [43]. In the healthly intestine, revSCs can be240

induced by fibroblast-derived TGF-β during tissue damage and demonstrate low cell-cycle activity and high241

levels of SMAD and YAP signaling [44]. While TOBis mass cytometry revealed CAF-protected PDOs242

have low cell-cycle activity, high TGF-β signaling, and low MAPK and PI3K flux, cytometry technologies243
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Figure 5: CAFs Chemoprotect PDOs by Altering PDO Cell-State. a) Trellis-PHATE of patient-specific PDO PTM drug re-
sponses with or without CAFs illustrates CAFs can protect PDOs from therapy (1,680 PDO-CAF cultures). Dots colored by
treatment, outlines colored by microenvironment. Solid arrows refer to full protection, dashed arrows refer to low protection by
CAFs. b) Alterations of PDO cell-state and PTM signaling by CAFs correlates with chemoprotection. Dots correspond to 6 repli-
cates colored by PDO. c) Baseline CAF cell-state and PTM signaling when co-cultured with PDOs correlates with chemosensitivity
protection. Dots correspond to 6 replicates colored by PDO. d) CAF regulation of PTM signaling networks in PDO 21 and PDO
27. CAFs downregulate MAPK and PI3K pathways and upregulate SMAD, NF-κB, and BAD signaling nodes in protected PDOs.
Scale bar = 200 µm.

cannot measure nuclear protein translocation and therefore cannot detect YAP activation. However, YAP244

immunofluorescence revealed CAFs also induce nuclear YAP translocation in chemoprotected PDOs (Figure245

6f) — collectively suggesting CAFs shift PDOs towards a revSC-like cell-state.246

Using PTM signaling and cell-state insights provided by single-cell drug screening, we hypothesized247

that CAF chemoprotection could be YAP-dependent. To test this, we treated PDO 21 + CAF cultures +/-248

Verteporfin (YAP-TEAD complex inhibitor), +/- SN-38 and measured PTM and cell-state responses using249
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TOBis mass cytometry (Figure 6g). YAP inhibition alone did not induce apoptosis in PDO 21 either in250

monoculture or in co-culture with CAFs. However, we found Verteporfin completely re-sensitizes CAF-251

protected PDOs to SN-38-induced apoptosis. Crucially, YAP inhibition did not increase on-target SN-38-252

induced DNA-damage in PDO 21 and did not regulate CAF cell-cycle or apoptosis. YAP inhibition restored253

PDOs to an enveloped morphology when in co-culture with CAFs (Figure S11) — indicating YAP inhibition254

targets the unique CAF-induced PDO cell-state. These results demonstrate that CAFs can chemoprotect255

PDOs via a YAP-driven revSC cell-state switch and underscore the value of mechanism-focused single-cell256

drug screening in overcoming therapy resistance.257

Figure 6: CAF Chemoprotection is Reversed By Inhibiting YAP. a-b) Single-cell density PHATEs of PDO 21 and CAFs during
SN-38 treatment illustrates cell-state shifts by drug and co-culture (5,000 cells). c) CAFs protect PDOs from SN-38-induced
apoptosis. d) CAFs slow PDO S-phase entry and PDOs experience on-target S-phase blockage by SN-38 irrespective of CAFs. e)
EMD heatmap of PTMs in PDO 21 +/- CAFs demonstrate CAFs regulate PDO PTM signaling. f) CAFs induce nuclear translocation
of YAP (red) to PDO nucleus (white). Scale bar = 25 µm g) Verteporfin (YAPi) completely re-sensitizes CAF-protected PDOs to
SN-38-induced apoptosis. Unpaired t-test, *** <0.0001, ** <0.001, * <0.01.

3 Discussion258

PDOs have been widely proposed as personalized avatars of patient-specific drug responses [45]. How-259

ever, bulk screening technologies have limited previous studies to PDO monocultures alone and provide260

no mechanistic insight into PDO drug response [13]. Using highly-multiplexed single-cell PTM profil-261

ing by TOBis mass cytometry and hierarchical treatment effect analysis by Trellis, we demonstrate PDO262
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drug response signaling is patient-specific and reveal CAFs regulate PDO chemosensitivity by altering PDO263

signaling and cell-state. PDO-CAF interactions are also patient-specific, with CAFs both stimulating and264

repressing PTM signaling and cell-cycle activity in a patient-specific manner. Crucially, we demonstrate265

mechanistic profiling of patient-specific drug responses can be used to re-sensitize CAF-protected PDOs.266

Unlike static diagnostic metrics (e.g. pharmacogenomics) that have failed to substantially advance preci-267

sion oncology [45], PDOs are functional biopsies that can be experimentally tested to reveal patient-specific268

drug responses alongside clinical care in real-time [46–48]. However, recent studies have suggested PDOs269

alone are not sufficient to biomimetically predict drug response. For example, only 20% of monoculture270

drug combination ‘hits’ could be validated in ex vivo organotypic CRC tumours containing a TME [46], and271

growth factor regulation of PDO cell-state can change pancreatic ductal adenocarcinoma (PDAC) organoid272

drug responses [49]. Our results reveal PDO-CAF interactions are a source of functional inter-tumor hetero-273

geneity and the role of CAFs should not be generalized. Given that cell-extrinsic signals can have dramatic274

effects on drug performance, we propose TME cells should be considered in future studies evaluating PDOs275

as personalized functional biopsies.276

Phenotypic plasticity is an emerging hallmark of cancer [50] and therapeutic targeting of cancer-specific277

cell-states is a growing area of cancer research [51, 52]. As stem cell-driven model systems, PDOs are278

capable of high differentiation plasticity [8] and are therefore well-suited to studying drug- or TME-induced279

cancer cell plasticity. We observed that PTM cell-state (not MSI/MSS status, tumor stage, anatomical loca-280

tion, or genotype) aligned with patient-specific drug response (Figure 4c-d) (Figure S9) and found CAFs can281

transition PDOs into a refractory cell-state to protect PDOs from specific therapies. A recent survey of CRC282

concluded phenotypic plasticity is largely driven by transcriptional changes, not genotype [53] and work283

in PDAC has demonstrated PDO transcriptional profiles, not genotype, correlate with drug response [54].284

Moreover, recent studies of oncogenic [55] and kinase [56] activity suggest cancer cell signaling flux pre-285

dicts patient survival better than genotype. Taken with our observations, mounting evidence suggests metrics286

that more closely describe cancer cell-state such as transcription and PTM signaling may more accurately287

predict patient-specific drug responses than genomic profiles or clinical staging. Combining the plasticity288

of PDO models with mechanism-focused single-cell analysis technologies will enable characterization of289

cell-state plasticity and therapy-induced canalization in cancer.290

In contrast to traditional live/dead drug screens, TOBis mass cytometry reveals molecular insights into291

PDO drug responses. We observed PDOs frequently experience on-target drug responses (83%), but only a292

subset of PDOs enter drug-induced apoptosis (40%). This suggests chemorefractory PDOs do not translate293

cytostatic and genotoxic stress into apoptosis. Single-cell PTM profiling further revealed CAFs chemo-294

protect PDOs by shifting cancer cells into a slow-cycling revSC-like cell-state. We used this mechanistic295

insight to re-sensitize PDOs by blocking revSC activation via YAP. Given that drug synergy is rare when296

using unbiased screens [57], our study suggests mechanism-focused screening could be used to rapidly297

identify rational drug synergies to re-sensitize refractory cancers.298

The advent of high-dimensional single-cell technologies such as mass cytometry and scRNA-Seq pro-299

vides new opportunities to study heterogeneous drug response mechanisms beyond simple viability scores300

[13]. However, high-dimensional drug screening data is challenging to interpret — with existing tools301

designed to analyze dozens, not thousands of samples. Trellis overcomes this scalability bottleneck by302

distributing single-cell data across a tree domain structure, enabling the KR norm between thousands of303

single-cell samples to be computed rapidly. While we use cell-state branches to sensitize Trellis results304

towards canonical on-target anti-cancer drug responses, alternative branching structures could in theory be305

designed to enrich for PTM signaling hierarchies (e.g. for kinase inhibitor screens) or cell-type hierarchies306

(e.g. in immune profiling) (Figure S3). Trellis’ scalability is independent of supervening branches and is307
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therefore a flexible platform for future single-cell screening applications.308

Although this study has focused on PDOs and CAFs, single-cell technologies also enable mechanistic309

analysis of organoid-leukocyte co-culture models [13]. In addition to studying the role of leukocytes in310

regulating chemical drug responses, single-cell PTM analysis could be a powerful approach to study pre-311

clinical co-culture organoid models of anti-solid tumor cellular biotherapeutics (e.g. CAR-T cells) where312

understanding the biology of the drug (engineered T-cell) is as important as the PDO target-cell killing. This313

study demonstrates high-throughput single-cell screening of heterocellular drug interactions is feasible and314

we expect the technology will be rapidly adapted to study biological therapies.315

In summary, we demonstrate highly-multiplexed single-cell PTM profiling by TOBis mass cytometry316

and hierarchical treatment effect analysis by Trellis can reveal patient-specific drug responses in thousands317

of PDO-CAF cultures. CAFs regulate PDO drug response by altering PDO cell-state in a patient-specific318

manner and PTM signaling insights can be used to overcome CAF protection. We propose single-cell PTM319

analysis as a powerful alternative to traditional bulk viability analysis of PDOs and suggest TME cells should320

be considered in future precision medicine models.321
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4 Methods322

4.1 CRC PDO and CRC CAF Culture323

CRC PDOs were obtained from the Human Cancer Models Initiative (Sanger Institute, Cambridge, UK)324

[12] and expanded in 12-well plates (Helena Biosciences 92412T) in x3 25 µL droplets of Growth Factor325

Reduced Matrigel (Corning 354230) per well with 1 mL of Advanced DMEM F/12 (Thermo 12634010)326

containing 2 mM L-glutamine (Thermo 25030081), 1 mM N-acetyl-L-cysteine (Sigma A9165), 10 mM327

HEPES (Sigma H3375), 500 nM A83-01 (Generon 04-0014), 10 µM SB202190 (Avantor CAYM10010399-328

10), and 1X B-27 Supplement (Thermo 17504044), 1X N-2 Supplement (Thermo 17502048), 50 ng ml−1
329

EGF (Thermo PMG8041), 10 nM Gastrin I (Sigma SCP0152), 10 mM Nicotinamide (Sigma N0636), and330

1X HyClone Penicillin-Streptomycin Solution (Fisher SV30010), and conditioned media produced as de-331

scribed in [58] at 5 % CO2, 37 °C. PDOs were dissociated into single cells with 1X TripLE Express Enzyme332

(Gibco 12604013) (incubated at 37 °C for 20 minutes) and passaged every 10 days. L-cells for conditioned333

media production were obtained from Shintaro Sato (Research Institute of Microbial Diseases, Osaka Uni-334

versity, Osaka, Japan). To aid cell-type-specific visualization and gating, CRC PDO were transfected with335

H2B-RFP (Addgene 26001). CRC CAFs (+GFP) were a kind gift from Prof. Olivier De Wever (University336

of Gent) [16, 17]. CAFs and CCD-18Co fibroblasts (ATCC CRL-1459) were cultured in DMEM (Thermo337

11965092) enriched with 10 % FBS (Gibco 10082147), and 1X HyClone Penicillin-Streptomycin Solution338

(Fisher SV30010) at 5% CO2, 37 °C.339

4.2 PDO-CAF Drug Treatments340

PDOs were dissociated into single cells on day 0, and expanded in 12-well plates in Growth Factor341

Reduced Matrigel (Corning 354230) with Advanced DMEM F/12 (Thermo 12634010) containing 2 mM L-342

glutamine (Thermo 25030081), 1 mM N-acetyl-L-cysteine (Sigma A9165), 10 mM HEPES (Sigma H3375),343

1X B-27 Supplement (Thermo 17504044), 1X N-2 Supplement (Thermo 17502048), 50 ng ml−1 EGF344

(Thermo PMG8041), 10 nM Gastrin I (Sigma SCP0152), 10 mM Nicotinamide (Sigma N0636), 500 nM345

A83-01 (Generon 04-0014), 10 µM SB202190 (Avantor CAYM10010399-10) and 1X HyClone Penicillin-346

Streptomycin Solution (Fisher SV30010) at 5% CO2, 37 °C for 4 days. On day 5, PDOs were starved in347

Reduced media (containing only 2 mM L-glutamine, 1 mM N-acetyl-L-cysteine, 10 mM HEPES, 1X B-27348

Supplement, 1X N-2 Supplement, 10 mM Nicotinamide, and 1X HyClone-Penicillin Streptomycin Solution)349

at 5 % CO2, 37 °C. In parallel, CAFs were starved in 2 % FBS DMEM with 1X Hyclone-Penincillin Strep-350

tomycin Solution. PDOs and CAFs were seeded on day 6 in 96-well plates (Helena Biosciences 92696T)351

in 50 µL Matrigel stacks with 300 µL of reduced media. PDO monocultures are seeded at a density of ∼352

1.5 x103 organoids/well, and CAFs at 2.5 x 105 cells/well, co-cultures were mixed in Matrigel on ice at the353

densities described, and seeded together on the plates for polymerization. On day 7, media was replaced354

with titrated concentrations of SN-38 (Sigma H0165), 5-FU (Merck F6627), Oxaliplatin (Merck O9512),355

Cetuximab (MedChem Express HY-P9905), VX-970 (Stratech), and LGK-974 (Peprotech 1241454) (Ta-356

ble S2) diluted in Reduced media. On day 8, media was replaced with the corresponding treatments (same357

as on day 7). After 72 hours of co-culture, and 48-hours of treatment (day 9), cultures were processed for358

TOBis mass cytometry (see below). Verteporfin (Cambridge Bioscience CAY17334) was used at 100 nM as359

above.360
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4.3 PDO-CAF TOBis Mass Cytometry361

PDO-CAF co-cultures were analyzed using the TOBis mass cytometry protocol outlined in detail by362

Sufi and Qin et al., Nature Protocols, 2021 [15]. Briefly, following drug treatment, PDO-CAF cultures363

were incubated with 25 µM (5-Iodo-2’-deoxyuridine) (127IdU) (Fluidigm 201127) at 37 °C for 30 min-364

utes, and 5 minutes before the end of this incubation, 1X Protease Inhibitor Cocktail (Sigma, P8340) and365

1 XPhosSTOP (Sigma 4906845001) are added into the media. After the incubation with 127IdU, protease366

inhibitors and PhosSTOP, each well is fixed in 4 % PFA/PBS (Thermo J19943K2) for 1 hour at 37 °C. PDO-367

CAFs were washed with PBS, dead cells were stained using 0.25 µM 194Cisplatin (Fluidigm 201194), and368

PDO-CAFs were barcoded in situ with 126-plex (9-choose-4) TOBis overnight at 4 °C. Unbound barcodes369

were quenched in 2 mM GSH and all PDO-CAFs were pooled. PDO-CAFs were dissociated into single-370

cells using 1 mg ml−1 Dispase II (Thermo 17105041), 0.2 mg ml−1 Collagenase IV (Thermo 17104019),371

and 0.2 mg ml−1 DNase I (Sigma DN25) in C-Tubes (Miltenyi 130-096-334) via gentleMACS™ Octo372

Dissociator with Heaters (Miltenyi 130-096-427). Single PDO and CAF cells were washed in cell stain-373

ing buffer (CSB) (Fluidigm 201068) and stained with extracellular rare-earth metal conjugated antibodies374

(Table S3) for 30 minutes at room temperature. PDO-CAFs were then permeabilized in 0.1 % (vol/vol)375

Triton X-100/PBS (Sigma T8787), 50 % methanol/PBS (Fisher 10675112), and stained with intracellular376

rare-earth metal conjugated antibodies for 30 minutes at room temperature. PDO-CAFs were then washed377

in CSB and antibodies were cross-linked to cells using 1.6 % (vol/vol) FA/PBS for 10 minutes. PDO-CAFs378

were incubated in 125 nM 191Ir/193Ir DNA intercalator (Fluidigm 201192A) overnight at 4 °C. PDO-CAFs379

were washed, resuspended in 2 mM EDTA (Sigma 03690) in water (Fluidigm 201069), and analyzed us-380

ing a Helios Mass Cytometer (Fluidigm) fitted with a ’Super Sampler’ (Victorian Airships) or CyTOF XT381

(Fluidigm) at 200-400 events s−1.382

4.4 TOBis Mass Cytometry Data Preprocessing383

Multiplexed FCS files were debarcoded into separate experimental conditions by using the Zunder Lab384

Single Cell Debarcoder (https://github.com/zunderlab/single-cell-debarcoder)385

[19]. Debarcoded FCS files were uploaded to Cytobank (Beckman Coulter), gated for Gaussian parame-386

ters, and DNA (191Ir/193Ir). Epithelial cells were gated on PCK+ and EpCAM+, and CAFs were gated387

on Vimentin+ and GFP+. Arcsinh transformed values were mean centered across batches before Trellis388

analysis.389

4.5 Trellis Computational Background390

Single-cell data are being collected in experiments with ever more numerous conditions in order to391

characterize libraries of treatments [59] including small-molecules [60] and gene-perturbations [61]. One392

method that directly generalizes bulk measurements to single-cell samples is through the theory of optimal393

transport and more specifically, the Wasserstein distance [22–24].394

Optimal transport is well suited to the formulation of distances between collections of points, as it gen-395

eralizes the notion of distances between points to distances between distributions. Intuitively, the distance396

between distributions should be the minimum total work to move a pile of dirt located at a source distribu-397

tion to a target distribution. This framework yields a natural definition of similarity between experimental398

conditions, namely two conditions are similar when their collections of cells are not far from each other.399

These distances aim at answering a deeper question: Which treatments have similar and different effects400

on the system? To answer this question we need a metric between changes to densities. We assume that for401
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each treated condition X we have access to an associated control condition Xc. When all treated conditions402

are measured relative to a single Xc we show approaches based on the Wasserstein distance are a valid403

metric between changes in densities. However, in larger experiments it is impossible to measure all treated404

conditions within a single batch, and thus treated conditions may have different controls. In this case, we405

show that Wasserstein-based approaches fail, and show that a generalization to an approach based on the406

Kantorovich and Rubinstein norm gives a valid metric between changes in densities in this more general407

multi-control case.408

4.5.1 Integral Probability Metrics409

Integral probability metrics (IPMs) are metrics over probability measures µ, ν some common space X410

that can be expressed as411

IPMF (µ, ν) = sup
f∈F

∣∣∣∣∫
X
fdµ−

∫
X
fdν

∣∣∣∣ (1)

where F is a family of real-valued bounded measurable functions on X . For specific choices of F the412

Dudley metric, Total variation distance, Kologorov distance, maximum mean discrepancy, and Wasserstein413

distance can all be expressed as IPMs.414

IPMs are often useful when we only have samples µ̂ = 1
n

∑n
i=1 δxi , ν̂ = 1

m

∑m
j=1 δyj drawn from415

probability measures µ, ν [62]. In this case it is possible to directly estimate IPMs, unlike for the class of416

ϕ-divergences which either do not converge or are +∞. The Wasserstein metric is of particular interest as417

it has an interpretable primal formulation as the transport of mass between distributions.418

4.5.2 The Wasserstein Metric as a Norm419

Let µ, ν be two probability distributions on a measurable space X with metric d, let Π(µ, ν) be the set420

of joint probability distributions π on the space X 2 where for any subset ω ⊂ X , π(ω × X ) = µ(ω) and421

π(X × ω) = ν(ω). The α-Wasserstein distance is defined as:422

Wα
d (µ, ν) =

(
inf

π∈Π(µ,ν)

∫
X 2

d(x, y)απ(dx, dy)

)1/α

. (2)

The Kantorovich–Rubinstein dual for the Wasserstein distance on arbitrary measures is423

sup
(f,g)∈C(X )2

∫
X
f(x)dµ(x) +

∫
X
g(y)dν(y) (3)

subject to f(x)+g(y) ≤ d(x, y)α for all (x, y) ∈ X 2. Most work applying the Wasserstein distance focuses424

on α = 2 [63] or more general convex costs with α > 1 [64], due to the provable regularity of the transport425

map. We instead focus on the case where 0 < α ≤ 1. Here the transportation map loses regularity but426

admits a simplification of the dual as when 0 < α ≤ 1, it can be shown that Eq. 3 achieves optimality when427

g = −f [65, Prop. 6.1] and so simplifies to:428

Wα
d = sup

f

{∫
X
f(x)(dµ(x)− dν(x)) : Hα

d (f) ≤ 1

}
(4)

where429

Hα
d (f) := sup

(x,y)∈X 2

{
|f(x)− f(y)|

d(x, y)α
: x ̸= y

}
. (5)
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When 0 < α ≤ 1, Eq. 4 shows that Wα
d is the dual of the α-Hölder functions {f : Hα(f) ≤ 1} and is a430

norm, namely431

Wα
d (µ, ν) = ∥µ− ν∥Wα

d
, (6)

and is valid for any measures µ, ν such that
∫
X µ =

∫
X ν. Of particular interest is that Wα

d is still a norm432

even for non-positive measures. This generalization to non-positive measures will form the basis for our433

Trellis metric between datasets and is known as the Kantorovich–Rubinstein norm [66] when applied to434

differences of non-positive measures.435

Definition 1 ([66]). The Kantorovich-Rubinstein (KR) distance between measures µ, ν such that
∫
X µ =436 ∫

X ν with respect to ground distance d as437

KRα
d (µ, ν) := sup

f

{∫
X
f(x)(dµ(x)− dν(x)) : Hα

d (f) ≤ 1

}
= ∥µ− ν∥KRα

d
. (7)

For simplicity we will drop the α term and assume α = 1, but all statements apply to 0 < α ≤ 1 unless438

otherwise specified. Trellis can be thought of as an efficient implementation of the KR norm over a tree439

ground distance.440

4.5.3 The Wasserstein Distance with Tree Ground Distance441

Consider discrete distributions µ =
∑n

i=1 µiδi and ν =
∑n

i=1 νiδi where δ is the dirac function in Rd
442

and
∑n

i=1 µi − νi = 0. Then for general costs, the Wasserstein distances between µ and ν can be computed443

exactly in Õ(n3) using the Hungarian algorithm [34], and approximated using a slightly modified entropy444

regularized problem in Õ(n2) with the Sinkhorn algorithm [35].445

However, for some classes of the ground distance, there exist more efficient algorithms (See Table 1). For446

example, if d is the Euclidean distance in R, then the Wasserstein distance can be computed in O(n log n)447

time and is equivalent to sorting [65, 67]. This special case is exploited in sliced-Wasserstein metrics [68, 69]448

to compute approximate Wasserstein distances in higher dimensions.449

Another more general class of ground distances where there exist efficient algorithms is the class of tree450

metrics. Let T be a rooted tree with non-negative edge lengths, and let dT be a tree metric on T . Then451

for two measures µ, ν over T , the Wasserstein distance with respect to dT , WdT (µ, ν), can be computed in452

O(n) time by exploiting the fact that there is a single path between any pair of masses [32, 70, 71]. In this453

case the 1-Wasserstein distance, also known as the Earth Mover’s Distance (EMD) can be expressed as454

WdT =
∑
x∈T

wx|µ(Γ(x))− ν(Γ(x))| (8)

where wx is the weight / distance to the parent node of x and Γ(x) represents the set of nodes in the subtree455

of x. Let P (x, y) be the unique path between x and y, then Γ(x) = {y ∈ T | x ∈ P (r, y)}. This alternative456

formulation can be embedded in l1:457

WdT = ∥v(µ)− v(ν)∥1 (9)

where v : µ(T )→ Rn is a function such that v(µ)x = wxµ(Γ(x)).458

Approximating the Euclidean distance with a tree distance can be done probabilistically with O(d log∆)459

distortion in expectation where ∆ is a resolution parameter [72]. Following the result of Charikar [73], this460

implies that the 1-Wasserstein distance with tree ground distance has the same order distortion. One simple461

tree construction that achieves this distortion is known as “Quadtree”, where each node has four children in462

R2 and 2d children in Rd [32]. We introduce a new tree construction based on k-means clustering, which463

we show is a generalization of the Quadtree construction but can be applied to higher dimensions.464
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Algorithm 2: Trellis(X,µ, k, l, Tm, c)

Input: n× f data matrix X , n×m distributions µ, # of clusters k, and # of levels l, manual tree Tm,
and (optional) control mapping c specifying control distribution set for each distribution.
Output: m× |T | distribution embeddings v
T ← BuildTree(X, k, l, Tm)
for Node Ti with parent edge weight wi in T do
v[:, i]← wiµ(Γ(Ti))

end for
if c is null then

return v
end if
for control distribution set µc for each distribution µ in c do

v[µ]← v[µ]−meanµc(v[µc])
end for
return v

4.6 Unpaired and Paired Trellis465

We start with a more detailed overview of the Trellis algorithm for comparing the effects of drugs on466

different experimental conditions. The Trellis algorithm is summarized in Algorithm 2. At a high level467

Trellis consists of four steps:468

1. Construct a hierarchical tree partitioning of the data T .469

2. Embed each distribution µi over T to a vector v(µi) such that Trellis(µi, µj) = ∥v(µi)− v(µj)∥1 to470

form a Trellis embedding matrix E.471

3. (optionally) Subtract a control distribution embedding v(µi
c) from each v(µi) for paired Trellis em-472

beddings Ẽ.473

4. Compute nearest Trellis neighbor distributions exploiting L1 geometry using fast-nearest-neighbor474

graph construction algorithms.475

We discuss potential methods of constructing T in section 4.6.1, how to embed an empirical distribution476

to a vector and its equivalence to the Wasserstein distance in section 4.6.2, the effect of subtracting a control477

distribution embedding in section 4.6.3, and finally how to construct a Trellis-metric nearest neighbor graph478

for subsequent visualization with a non-linear embedding algorithm such as PHATE [21], UMAP [? ], or479

t-SNE [28] in section 4.6.4.480

4.6.1 Constructing Trees on Single-Cell Mass Cytometry Data481

Trellis gives a distance between measures or differences in measures over a tree metric space. Often482

the data is not associated with an explicit tree metric, but is naturally hierarchical such as in the case of483

single-cell cytometry data. Previous methods have used manual gating, automatic gating, or a combination484

of the two to hierarchically cluster single-cell mass cytometry data [74]. These methods build trees, but485

are missing the ‘metric’ component, which can be encoded as the edge weights between parent and child486
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Algorithm 3: BuildTree(X, k, l, Tm)

Input: n× f data matrix X , # of clusters k, # of levels l and (optional) manual base tree Tm.
Output: Weighted hierarchical clustering tree T .
if l = 0 then

return null
end if
if Tm is not null then

for leaf node ni in Tm do
Ti ← BuildTree(X[n], k, l, null)

end for
// Where TreeJoin replaces each of the leaves with the respective subtree
return T ← TreeJoin(Tm, [Ti])

end if
labels← Kmeans(X)
for i = 1 to k do
Ti ← BuildTree(X[labels = i], k, l − 1)

end for
return T ← [Ti]ki=1

clusters. We use a simple tree metric where each edge weight for node x is the Euclidean distance between487

the cluster center mean(x) and the center of its parent mean(Pa(x)).488

wx = ∥mean(x)−mean(Pa(x))∥2. (10)

The tree metric between two nodes u, v ∈ T is the sum of the path lengths along the unique path geodesic489

between u and v in T denoted by PT (u, v) then490

dT (x, x) =
∑

v∈PT (x,y)

wv. (11)

Trellis applies to any clustering method; we demonstrate the Trellis framework using a simple combina-491

tion of manual gating for non-Euclidean features and automatic gating to approximate Euclidean distances492

among sub populations. This strategy allows us to leverage manual gating when appropriate due to prior493

biological knowledge, or automatic gating using repeated k-means clustering with no prior on the biologi-494

cal splits. This clustering method is of particular interest because in specific settings we can show that the495

Trellis metric is topologically equivalent to an Wasserstein distance with Euclidean ground distance in Rd.496

Given a number of clusters at each level k and a depth h construct a divisive hierarchical clustering497

of the data as described in Algorithm 3. Where Kmeans is the k-means algorithm with some fixed set of498

parameters. Interestingly, with a specific setting of k-means we show Trellis is topologically equivalent to499

the α-Wasserstein distance with Euclidean ground distance. This is formalized in the following proposition.500

Proposition 1. Let k = 2d, max iter = 0, data X be normalized such that X ∈ [−1, 1]d with precision ∆501

and initialize the kth cluster at level l with parent center p as p+ 21−l(Binary(k)− 1/2). Then there exists502

constants c, C such that503

c ·W∥·∥2(µ, ν) ≤ E[Trellis(µ, ν)] ≤ C log∆ ·W∥·∥2(µ, ν). (12)
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This can be seen by first noting that this initialization is equivalent to a QuadTree construction in the504

topological sense. If two points are clustered together in our construction at some level then they are also505

clustered together in QuadTree at the equivalent level. In addition, the edge weights are equivalent up to506

a constant with the edge weights decaying by 1/2 at every level in both constructions. Once these two507

properties are verified, then we can leverage existing results on QuadTree constructions from [32] and [73]508

to show that the inequalities hold. We also note that there exist results on the approximate nearest neighbors509

of this construction in [71].510

While these parameters for kmeans-clustering work well in low dimensions, the number of clusters511

scales exponentially with dimension. In practice we use four levels of four clusters. This expectation holds512

over a randomly selected initialization of the zero’th level cluster. In practice, we take the expectation over513

k-means initializations, building ten parallel trees with different initializations.514

Trellis can be applied to any tree metric or ensemble of tree metrics. We have presented a method that515

allows for combining manual and automatic gating, as well as an automatic gating method that in expectation516

is similar to a Euclidean distance. Many other choices for partitioning CyTof data have been explored in the517

automatic gating literature [74–77]. These automatic gating methods are generally used for partitioning the518

data not building a tree metric. However, it is simple to convert them into tree metrics by assigning edge519

weights based on cluster means. This strategy can be applied to a precomputed hierarchical clustering of the520

data with no knowledge of how those clusters were chosen. This allows for adaptation of Trellis to different521

systems where either manual or automatic gating is preferred or already computed.522

4.6.2 Trellis Given a Metric Tree523

Given a general metric tree T of size |T |, we first define the embedding function v : µ(T ) → R|T |
524

which takes distributions defined over the tree and embeds them in a vector space where the L1 between525

vectors is equivalent to the Wasserstein distance with tree ground distance. Given edge weights wx and526

denoting the subtree at node x as Γ(x) = {y ∈ T |x ∈ P (r, y)}, then v is defined element-wise as527

v(µ) = [wxµ(Γ(x))]x∈T . (13)

Intuitively, this can be thought of computing the sum of the mass below each node times the edge weight at528

each node. The difference between v(µ)x − v(ν)x for a given node x ∈ T can be thought of as the amount529

of work needed to move µ to ν. If this difference is positive, then this means that mass of µ is greater in the530

subtree Γ(x) than the mass of ν. This means that the transport map must move exactly µ(Γ(x))− ν(Γ(x))531

mass upwards from x at cost wx. Adding up these aggregate movements over all nodes gives the total work532

needed and is equivalent to the work required by the Wasserstein distance.533

For our tree construction in Section 4.6.1 with the additional manual tree step, we define the unpaired534

Trellis distance (uTrellis) as535

uTrellis(µ, ν) = ∥v(µ)− v(ν)∥1. (14)

We also define a TreEMD distance without the manual tree construction, considering only the k-means536

construction. TreEMD is similar to previous Tree-based Wasserstein distance constructions for high dimen-537

sions [70, 71].538

These two unpaired distances are comparable to existing methods for computing the Wasserstein dis-539

tance between distributions. We discuss related methods for computing or approximating the Wasserstein540

distance in Section 4.6.5. However, these distances do not take into account control, treatment, batch, and541

replicate information. Given information on which samples were taken under similar conditions, we are able542

to improve the distances with Paired Trellis.543
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4.6.3 Paired Trellis544

To examine the effects of a drug across many conditions it is useful to measure the differences of the545

treated condition relative to a matched control.546

For each sample µ and ν, let the associated control distributions be µc and νc respectively, and v be
defined as above. Then we define the Paired Trellis metric between changes in distributions as:

pTrellis(µ, ν) := ∥v(µ)− v(µc)− v(ν)− v(νc)∥1.

Intuitively, the Paired Trellis distance measures the difference in the change in density between treated547

conditions from their respective controls. This allows us to control for unmeasured confounders that are548

implicit in the treated cell population µ and ν respectively.549

Proposition 2. For two distributions µ, ν with their respective controls µc, νc, the Paired Trellis is equivalent550

to a Kantorovich-Rubenstein distance with tree ground distance as in Eq. 8551

pTrellis(µ, ν) = KRdT (µ− µc, ν − νc). (15)

Proof. The equivalence of paired Trellis to a Kantorovich-Rubenstein distance can be verified through al-552

gebraic manipulation following [78]. We start with the definition of the Kantorovich-Rubenstein distance553

and show that this is equivalent to pTrellis for an arbitrary tree domain T with ground distance dT . Denote554

the family of Hölder functions under dT as F = {f : Hα
dT

(f) ≤ 1 & f(r) = 0} and let λ be the (unique)555

length measure on T such that dT (x, y) = λ(P (x, y)). Then there exists a unique function g : T → [−1, 1]556

such that f(x) =
∫
P (r,x) g(z)λ(dz) =

∫
T 1z∈P (r,x)g(z)λ(dz).557 ∫

T
f(x)dµ(x) =

∫
T

∫
T
1z∈P (r,x)g(z)λ(dz)dµ(x) =

∫
T
g(z)µ(Γ(z))λ(dz). (16)

For the optimal witness function f∗, we have558

g(z) =

{
1 if µ(Γ(z)) > ν(Γ(z))

−1 else
. (17)

Plugging this equivalence into Eq. 7 we have559

KRdT (µ, ν) = sup
f

{∫
T
f(x)(dµ(x)− dν(x)) : Hα

dT
(f) ≤ 1

}
=

∫
T
|µ(Γ(z))− ν(Γ(z))|λ(dz). (18)

Therefore, for two measures a, b over T such that
∫
T a(x)dx =

∫
T b(x)dx = c we have that a(Γ(r)) =560

b(Γ(r)) = c and for v : T → R+ as defined in Eq. 13 we have561

KRdT (a, b) =
∑
x∈T

wx|a(Γ(x))− b(Γ(x))| = ∥v(a)− v(b)∥1. (19)

substituting a = µ− µc and b = ν − νc yields the proposition since
∫
T a =

∫
T b = 0 for any distributions562

µ, µc, ν, and νc.563

We ablate both the pairing and manual tree construction steps in Figure S1. A paired Trellis embedding564

better separates the effects of increased drug concentration as compared to TreEMD (Figure S1c) and an565

unpaired Trellis embedding according to a k-NN classifier trained with 10-fold cross validation, while also566

being less sensitive to batch effects by the same metric (Figure S1b).567
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4.6.4 Nearest Trellis Neighbors568

Fast nearest neighbor calculation is useful in graph-based methods which use the k-nearest neighbor569

graph for down stream tasks such as clustering [79], classification [71], or visualization [20? , 21]. For570

nearest neighbors in normed spaces such as the L2 norm, the geometry of the space can be utilized for fast571

exact or approximate nearest neighbor calculation in time scaling logarithmically with the number of points.572

For more general distances between objects, these algorithms may not apply.573

For instance, to compute the k-nearest neighbor distributions in terms of the Wasserstein distance for m574

distributions, there is no faster algorithm than computing the Wasserstein distance to all other distributions575

then computing the k closest ones in O(m) time. However, the Unpaired and Paired Trellis versions of576

the Wasserstein distance for finite data can be expressed as norms in a finite dimensional space, this allows577

us to apply fast nearest neighbor algorithms which exploit the induced geometry between distributions. In578

this case, to find nearest neighbor distributions we can apply tree-based algorithms such as KD-Trees, or579

Ball-Trees as used in PHATE [21] and scikit-learn [80], locality sensitive hashing in O(T logm) time for m580

distributions on trees of size T .

Table 1: Comparison of Earth Mover’s Distance computation methods separated into super-linear (top), and log-linear methods
(bottom) based on time-complexity of computing k-Wasserstein-nearest-neighbors. Assumes a dataset of m distributions over n
points with (optionally) a tree of size |T | = O(n).

Method Exact KR-control Ground cost knn-Time

Exact EMD [34] Yes No Any O(m2n3)
Sinkhorn EMD [35] No No Any O(m2n2)
PhEMD [22] No No dM O(m2T 3 + n3)

Mean No Yes Any Õ(kmn)

Diffusion EMD [23] No Yes dM Õ(kmn)

Trellis / TreEMD (ours) Yes Yes dT Õ(kmT + n)

581

4.6.5 Related Work and Time Complexity582

There are many methods for computing or approximating the Wasserstein distance. In Table 1 we583

present methods for computing the nearest neighbor distributions according to the Wasserstein distance584

split into two groups. Here we consider the time it takes for the method to compute the k-Wasserstein-585

nearest-neighbors on a dataset with m distributions over n points with access to a precomputed tree over586

the data of size |T | = O(n). The first three methods are widely used, but do not scale well to large587

datasets with a large number of distributions or a large number of points. For the first three methods, the588

Hungarian algorithm [34], the Sinkhorn algorithm [35], and PhEMD [22], to find the k-nearest-neighbors589

for a distribution it is necessary to compute the distance to all m other distributions. This implies that they590

scale poorly with the number of distributions as illustrated in Figure S2b. PhEMD saves significant time by591

only computing the distances between a small set of clusters, however, eventually this is dominated by an592

increasing number of distributions.593

Trellis and TreEMD scale log linearly in the number of points, distributions, and the size of the precom-594

puted tree T . Constructing the tree partitioning for Trellis takes Õ(n) time. Embedding the distributions595

takes O(mT ) time. Subtracting the control distribution embedding for paired Trellis takes O(T ) time. fi-596
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nally, computing the k-nearest neighbors of the Trellis distance takes Õ(kmT ) time. In total both unpaired597

and paired Trellis take Õ(kmT + n) time to compute the k nearest neighbor distributions.598

When T ≪ n as in our case, we can see substantial increases in speed in line with simply taking the599

Euclidean distance between means of clusters. As T achieves its upper bound of 2n − 1, Trellis has the600

same complexity as computing the nearest distribution means and of DiffusionEMD [23].601

5 Data Availability602

All mass cytometry files are available on Cytobank at: https://community.cytobank.org/cytobank/projec603

ts/1461 Compiled TOBis mass cytometry PDO-CAF dataframe is available at: https://data.mendeley.com/604

datasets/hc8gxwks3p (with a key in Table S2).605

6 Code Availability606

Trellis code is available at: https://github.com/KrishnaswamyLab/Trellis. Code to reproduce all PHATE607

embeddings in this paper is available at: https://github.com/TAPE-Lab/Ramos-et-al-Trellis.608
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Klages, William W. Agace, Nima Aghaeepour, Mübeccel Akdis, Matthieu Allez, Larissa Nogueira898

Almeida, Giorgia Alvisi, Graham Anderson, Immanuel Andrä, Francesco Annunziato, Achille899
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Jonjic, Toralf Kaiser, Tomas Kalina, Thomas Kamradt, Stefan H. E. Kaufmann, Baerbel Keller, Steven929

L. C. Ketelaars, Ahad Khalilnezhad, Srijit Khan, Jan Kisielow, Paul Klenerman, Jasmin Knopf, Hui-930

Fern Koay, Katja Kobow, Jay K. Kolls, Wan Ting Kong, Manfred Kopf, Thomas Korn, Katharina931

Kriegsmann, Hendy Kristyanto, Thomas Kroneis, Andreas Krueger, Jenny Kühne, Christian Kukat,932

Désirée Kunkel, Heike Kunze-Schumacher, Tomohiro Kurosaki, Christian Kurts, Pia Kvistborg, Im-933

manuel Kwok, Jonathan Landry, Olivier Lantz, Paola Lanuti, Francesca LaRosa, Agnès Lehuen, Sa-934
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Table S1: PDO mutations and clinical metadata.

Patient Mutations Mutated Genes MSI Stage Location Cell Model Passport

PDO 05 30 APC, KRAS, PIK3CA, B2M,
TCF7L2, PDGFRA

No III Rectum HCM-SANG-0266-C20

PDO 11 41 APC, KRAS No I Transverse
colon

HCM-SANG-0267-D12

PDO 21 49 KRAS, SMAD4, ARID1A, PIK3RI,
CTNNB1, NOTCH2

No II Rectum HCM-SANG-0270-C20

PDO 23 40 APC, TP53, SUFU No I Sigmoid
colon

HCM-SANG-0271-D12

PDO 75 27 APC, TP53, PTEN, PIK3R1, ALK,
ZNF292

No I Rectum HCM-SANG-0278-C20

PDO 109 38 APC, KRAS, SOX9, TP53 No III Sigmoid
colon

HCM-SANG-0529-C18

PDO 141 20 APC, KRAS, PIK3CA, TP53 No III Sigmoid
colon

HCM-SANG-0284-C18

PDO 27 397 APC, TP53, B2M, RNF43,
ACVR2A, KMT2C, EP300, CEBBP,
CCND1, FANCE, FAS, GRIN2A,
HDLBP, HNF1A, MSH3, PI3KCB,
POLE, SYNE1, TP53BP1, USP9X,
ZNF292

Yes III Ascending
colon

HCM-SANG-0273-C18

PDO 99 393 PIK3CA, SOX9, BRAF, BMPR2,
RNF43, MLH1, ACVR2A, AXIN1,
CASP8, FAT1, KMT2C, TAG2,
TBX3, GPS2, SPEN, AXIN2,
BCL9L, FANCA, MSH3, TRAF7,
UBR5, ZNF292

Yes II Ascending
colon

HCM-SANG-0282-C18

PDO 216 352 TP53, PIK3CA, FBXW7, BRAF,
ARID1A, ACVR2A, B2M, BMPR2,
CD58, RNF43, ZNRF3, KMT2B,
KMT2D, PBRM1, BRCA2,
NCOR1, KDM6A, GATA3, ASXL1,
PTCH1, RASA1, CASP8, TGFBR2,
RBM10, BRD7, RPL22, CDKN1B,
PPM1D, CUX1, CLI1, DROSHA,
FAS, FAT3, FLT4, HNF1A, HN-
RNPA2B1, HSPG2, LRIG3, MSH6,
NAB2, PIM1, QKI, SH2B3, SUFU,
XPA

Yes III Transverse
colon

HCM-SANG-0520-C18
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Table S2: Drug treatment key for PDO-CAF TOBis mass cytometry master dataframe (Ramos, Maria (2022), “Ramos Za-
patero et. al (Cancer-Associated Fibroblasts Regulate Patient-Derived Organoid Drug Responses)”, Mendeley Data, V1, doi:
10.17632/hc8gxwks3p.1).

Treatment Label Conc. Label Conc. (1) Conc. (2) Conc. (3)

SN-38 S 1 1 nM — —
S 2 10 nM — —
S 3 50 nM — —
S 4 100 nM — —

5-FU F 1 200 nM — —
F 2 2 µM — —
F 3 20 µM — —
F 4 200 µM — —

Oxaliplatin O 1 2 nM — —
O 2 20 nM — —
O 3 200 nM — —

LGK-974 L 1 1 nM — —
L 2 10 nM — —
L 3 50 nM — —
L 4 5000 nM — —

SN-38 (1) + VX-970 (2) V 1 — 250 nM —
VS 2 1 nM 250 nM —
VS 3 10 nM 250 nM —
VS 4 100 nM 250 nM —

SN-38 (1) + 5-FU (2) + Cetux. (3) C 1 — — 5 nM
CS 2 10 nM — 5 nM
CF 3 — 2 µM 5 nM
SF 4 10 nM 2 µM —
CSF 5 10 nM 2 µM 5 nM

DMSO DMSO 0 — — —
NH4OH AH 0 — — —
H2O H2O 0 — — —
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Table S3: Mass cytometry antibody panel used in all TOBis PDO-CAF experiments.

Extracellular Antigen Metal Clone Supplier

CD326 (EpCAM) 113In 9C4 BioLegend
CHGA 170Er C-12 Insight Biotechnology
CD90 (THY1) 173Yb 5E10 CST

Intracellular Antigen Metal Clone Supplier

pHistone H3 [S28] 89Y HTA28 BioLegend
RFP 106Cd 8E5.G7 eBiosciences
mCherry 110Cd 16D7 Thermofisher
Vimentin 111Cd RV202 BD Biosciences
CK18 114Cd C-04 Abcam
Pan-CK 115In AE1/AE3 Biolegend UK
GFP 116Cd 5F12.4 eBiosciences
pPDK1 [S241] 141Pr J66-653.44.22 BD Biosciences
cCaspase 3 [D175] 142Nd D3E9 CST
Geminin 143Nd Polyclonal Santa Cruz
pMEK 1/2 [S221] 144Nd 166F8 CST
pNDRG1 [T346] 145Nd D98G11 CST
pMKK4 SEK1 [S257] 146Nd C36C11 CST
pBTK [Y511] 147Sm 24a/BTK BD Biosciences
pSRC [Y418] 148Nd SC1T2M3 BD Biosciences
p4E-BP1 [T37/46] 149Sm 236B4 CST
pRB [S807/811] 150Nd J1112-906 BD Biosciences
pPKCα [T497] 151Eu K14-984 BD Biosciences
pAKT [T308] 152Sm J1-223.371 BD Biosciences
pCREB [S133] 153Eu 87G3 CST
pSMAD1/5/9 [S463/465] / [S463/465] / [S465/467] 154Sm D5B10 CST
pAKT [S473] 155Gd D9E CST
pNK-κB p65 [S529] 156Gd K10-895.12.50 BD Biosciences
pMKK3/pMKK6 [S189/207] 157Gd D8E9 CST
pP38 [T180/Y182] 158Gd D3F9 CST
pMAPKAPK2 [T334] 159Tb 27B7 Abcam
pAMPKα [T172] 160Gd 40H9 CST
pBAD [S112] 161Dy 40A9 CST
pHistone H2A.X [S139] 162Dy D7T2V CST
pP90RSK [T359] 163Dy D1E9 CST
p120 Catenin [T310] 164Dy 22/p120 (pT310) BD Biosciences
β-Catenin [Active] 165Ho D13A1 CST
pGSK-3β [S9] 166Er D85E12 CST
pERK1/2 [T202/Y204] 167Er 20A BD Biosciences
pSMAD2/3 [S465/467] / [S423/425] 168Er D27F4 CST
PLK1 169Tm 35-206 Thermofisher
pDNAPK [S2056] 171Yb EPR5670 Abcam
pS6 [S235/236] 172Yb D57.2.2E CST
cPARP [D214] 174Yb D64E10 CST
pCHK1 [S345] 175Lu 133D3 CST
Cyclin B1 176Yb GNS-11 BD Biosciences
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Figure S1: Trellis Ablation Test. a) Comparison of Trellis’ ablated algorithm into: L1 distance over k-NN clusters, Wassertein
distance over automatic gating (Unpaired TreEMD), Kantorovich-Rubenstein (KR) norm over automatic gating (Paired TreEMD),
Wassertein distance over hierarchical tree partitions of the data by cell-state (Unpaired Trellis), and KR norm hierarchical tree
partitions of the data by cell-state (Paired Trellis). b) k-NN accuracy score on acquisition batches. A higher k-NN accuracy infers
a higher batch separation effect by the method. c) k-NN accuracy score on drug concentrations vs controls. Paired Trellis improves
drug treatment effect detection. d) Schematic representation of the comparison across methods. One-way ANOVA, **** = <0.0001
(n=10).
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Figure S2: Comparison of Trellis to Alternative Methods. a) Trellis performance compared to existing methods such as L1

distance of average intensity of the markers, L1 distance of differential abundance of cells in clusters, PhEMD, EMDs between
samples on marker intensities, and Diffusion EMD. Alternative methods fail to capture therapeutic effects and cannot identify CAF
protection. b) Trellis speed and scalability relative to alternative EMD methods.
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Figure S3: Trellis Analysis of Murine Immune Cell Atlas. Unpaired TreEMD, Paired TreEMD (paired to bone marrow control),
Unpaired Trellis (using immune cell-type branches), and Paired Trellis (using immune cell-type branches, paired to bone marrow
control) analysis of murine immune atlas mass cytometry data (from Spitzer et al., Science, 2015 [81]) (202 single-cell datasets).
All tree-based methods resolve tissue-specific immune profiles, but Paired Trellis also captures broad haematopoietic development
trajectories and reveals mouse strain specific differences (specifically regarding strain-specific lymph node profiles).

39

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 14, 2023. ; https://doi.org/10.1101/2022.10.19.512668doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.19.512668


Figure S4: Trellis Detection of PDO Cell-State Drug Responses. a) Trellis cell-state branch thresholds for PDO 21 (batch-mean
centered and arcsinh transformed intensities). b) Single-cell density PHATEs of PDO 75 treated with NH4OH vehicle control or
5-FU. c) Sankey diagram showing data from b) distributing through the cell-state Trellis layout in Fig. 2 (terminal leaves not
shown). d) PDO 99 treated with H2O vehicle control or Oxaliplatin. e) Sankey diagram showing data from d) distributing through
the cell-state Trellis layout in Fig. 2 (terminal leaves not shown).
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Figure S5: Single-Cell PTM CAF Drug Responses. a) Trellis-PHATE of PTM profiles from PDO-CAF cultures fails to identify
drug-specific CAF responses, b) patient-specific CAF drug responses, or c) microenvironment-specific CAF drug responses. d)
Fold-change to vehicle of pRB [S807/S811], cPARP [D214], and pHH2AX [S139] fail to resolve drug- or patient-specific shifts in
cell-state. e) CAF responses to individual drug treatments.
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Figure S6: PDO Trellis-PHATE Cell-State Distributions. a) Treatment cell-state (z-score) across 1,680 single-cell PDO cultures
reveal mechanistic drug treatment effects. b) Control, SN-38, 5-FU, Oxaliplatin, and LGK974 distributions. c) Individual patient
distributions.
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Figure S7: Patient-Specific Regulation of Cell-State and DNA-Damage. a) Trellis hierarchy containing cell-state branches
with a pHH2AX [S139] DNA double-strand break detection layer. b) Sankey diagram showing NH4OH vehicle control and 5-FU
treatment of PDO 23 distributing through the cell-state Trellis branches in a) (leaves not shown). c) Trellis-PHATE of PDO 23
treatments analyzed using cell-state branches alone or d) cell-state branches and pHH2AX [S139] detection layer. The DNA-
damage detection layer improves resolution of 5-FU on-target treatment effect. Solid arrows refer to strong treatment effect, dashed
arrows refer to partial treatment effect. e) Patient-specific distribution of cells within Trellis branches reveals mechanistic cell-state
shifts and DNA-damage upon drug treatments. Treatment cell-state quantifies the fold change of the proportion of cells/cell state
over the controls for each treatment (Z-score). DNA damage is quantified by the fold change of the proportion pHH2AX+ cells over
the controls. f) PDO cells in S-phase following 100 nM SN-38. g) PDO cells in S-phase following 200 nM Oxaliplatin. h) PDO
cells in M-phase following 200 nM 5-FU. PDOs with a significant >1.5 fold increase in apoptosis are indicated in red. Unpaired
t-test, *** <0.0001, ** <0.001, * <0.01.
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Figure S8: ATR Inhibitor Sensitivity. PDO apoptosis following treatment with SN-38 and/or Berzosertib. Only MSI PDOs are
sensitive to ATR inhibitors either alone (PDO 27) or in combination with SN-38 (PDOs 99 and 216). Unpaired t-test, *** <0.0001,
** <0.001, * <0.01.
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Figure S9: PDO Metadata. a) Trellis-PHATE plots of patient metadata. Patient-specific treatment effects do not align with
MSS/MSI, tumor stage, tumor location, MAPK pathway mutations, or APC mutations. High baseline cell-cycle activity corre-
lates with broad chemosensitivity. b) Trellis-PHATE of baseline PDOs annotated by chemosensitivity. c) Quantification of 5-FU
chemocytotoxicity in low and high cycling PDOs. d) Quantification of the correlation between PDO metadata information and
PDO cell-state. Unpaired t-test, *** <0.0001.
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Figure S10: CAF-Induced PDO Cell-State Shifts. a) Fold-difference to monoculture of PDO cells in S-phase when co-cultured
with CAFs. CAFs both decrease and increase PDO S-phase in a patient-specific manner. b) Fold-difference to vehicle controls
of PDO cells in S-phase when treated with SN-38 either as PDOs alone or in co-culture with CAFs. CAFs do not alter SN-
38 on-target S-phase blockage. c) PDO SN-38 induced apoptosis +/- CAFs. Partial CAF-protection is defined as a reduction
drug-induced apoptosis in co-culture relative to monoculture, yet still apoptosis is still >1.5-fold over control and statistically
significant. d) SN-38 induces on-target DNA-double strand breaks (DSB) (pHH2AX+) in PDO 21 irrespective of CAFs. e-g)
PDO 21 chemoprotection via CCD-18Co normal colon fibroblasts. Unpaired t-test, *** <0.0001, ** <0.001, * <0.01. ns, not
significant.
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Figure S11: YAP Inhibition of CAF-induce Chemoprotection. a) CAF-induced nuclear translocation of YAP (red) to PDO
nucleus (white) is reversed by Verteporfin (YAPi). Scale bar = 25 µm. b) PDO 21 morphology +/- CAFs, +/- YAPi, +/- SN-38.
YAPi reverses CAF-induced cyst-like morphology. Scale bar = 200 µm. c) YAPi does not alter SN-38 induces on-target DNA-
double strand breaks (pHH2AX+) in PDOs. d) YAPi does not alter S-phase or e) apoptosis in CAFs. Unpaired t-test, *** <0.0001,
** <0.001, * <0.01. ns, not significant.
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