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Summary  11 

Species traits can evolve rapidly in response to competition, influencing the diversity and productivity 12 
of communities. Metabolic and life history theories both predict how competition should affect 13 
metabolism, size, and demography. However, these predictions are based on indirect evidence from 14 
macroevolutionary patterns or among-species comparisons. Direct experimental tests are rare and 15 
mostly focused on single or pairs of species, so how species evolve in communities is unclear, 16 
particularly in eukaryotes. We use experimental evolution of eukaryotic marine phytoplankton to 17 
examine how metabolism, size, and demography coevolve under competition. Specifically, we 18 
compare the traits of a focal species that evolved either alone, with intraspecific competitors or with a 19 
community at two points in time. We find that the focal species evolved both size and metabolism 20 
under competition, which led to an increase in carrying capacity as in max. population density. These 21 
demographic changes were predicted by classic metabolic theory based on the species-specific 22 
scaling of metabolism with size. However, we also find important departures from theory. Evolution 23 
led to Pareto improvements in both population growth rate and carrying capacity, so the existence of 24 
classic r-K trade-offs seems less inevitable than what suggested by among-species comparisons. The 25 
finding that both intra- and inter-specific competition maximize carrying capacity through changes in 26 
size and metabolism could have important consequences for our ability to predict evolution in 27 
communities. 28 
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Introduction  36 

When ecological and evolutionary processes occur on similar timescales, eco-evolutionary dynamics 37 

can shape the diversity and functioning of communities (1–3). Studies in bacteria imply that 38 

competition from whole communities influences evolution in ways that are fundamentally different 39 

from simpler pairwise interactions (4–6). Whether these results extend to eukaryotic communities, 40 

where species have lower population densities and longer life cycles, remains unclear (7). 41 

Macroevolutionary patterns suggest that competition for resources should drive species to evolve 42 

different traits (e.g. Darwin’s finches)  (8–10). Divergence in resource-exploiting traits should reduce 43 

the intensity of competition because it minimizes overlap between species. However, when species 44 

compete for non-substitutable resources, trait divergence might not be a viable option to escape 45 

competition – which has been shown both theoretically (11,12) and empirically (3,13,14). Resolving 46 

the eco-evolutionary mechanisms that maintain the diversity of such communities remains a 47 

formidable challenge (15).  48 

Metabolic theory has long proposed that metabolism should alter competition by setting per capita 49 

resource demands (16,17). For example, because of their lower absolute metabolic rates, smaller 50 

organisms have higher maximum population densities than larger organisms (18). Similarly, because 51 

small organisms usually have higher metabolism per unit mass, their populations should grow faster 52 

than those of larger organisms but sustain lower total biomass (17). Therefore, changes in size and 53 

metabolism should both affect a population’s demography (19,20) but these predictions are derived 54 

from among-species comparisons that might not reflect how size, metabolism and demography 55 

covary within species (21,22). Furthermore, metabolic theory centres on the special case that 56 

resource acquisition is independent of metabolic rate, which is likely violated in many populations 57 

(23,24). If resource acquisition positively covaries with metabolism, competition could favour the 58 

evolution of larger sizes, as predicted by classic r-K models (25), but these ideas have never been 59 

tested in communities.  60 

We combined experimental evolution and metabolic theory to determine how size, energy fluxes, and 61 

demography coevolve in response to competition. We base our assessment on a focal species, the 62 

marine eukaryotic microalga Dunaliella tertiolecta, which we evolved for 10 weeks in one of three 63 

competitive environments. To manipulate competition we used dialysis bags that physically isolated 64 

the focal species from its competitors while maintaining competition for light and nutrients (6,26–28). 65 
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The environments were: 1) the species surrounded by no competitors, 2) intraspecific competitors (a 66 

population of the same species) or 3) interspecific competitors (a community of three other 67 

phytoplankton species) (Fig. 1). We take the population not surrounded by competitors as a reference 68 

control. Each week we batch-transferred both the focal species and the competitors, standardizing 69 

biovolumes between treatments. At two points in time (after 5 and 10 weeks) we used common 70 

garden experiments to determine how the life history traits of the focal species evolved: metabolism 71 

(photosynthesis, respiration, and net daily energy production), morphology (cell size and shape) and 72 

demography (growth rate, max. population density, and max. total biomass).  73 

 74 

 75 

Figure 1. Experimental design. The focal species Dunaliella tertiolecta was grown in a dialysis tubing 76 
placed in one of 3 environments for 10 weeks: with no competitiors (“none”), with intraspecific 77 
competitors (“intra”) or with a community of three interspecific competitors (“inter”). Each week we 78 
performed a batch transfer of both the focal species and competitors. Mid-way (after 5 weeks) and at 79 
the end of this experiment (10 weeks) we quantified changes in metabolism (photosynthesis, 80 
respiration), morphology (size, shape), demography (rmax, Kcells, Kbio) of the focal species in common 81 
garden experiments.  82 

 83 
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Results  84 

Metabolism evolves under competition but the effects depend on growth phase 85 

Energy fluxes only showed some signs of evolution after 5 weeks of competition. We could find no 86 

differences in energy fluxes when populations were growing (photosynthesis: F2,178 = 1.11, p = 0.33; 87 

respiration: F2,176 = 2.75, p = 0.067; Fig. S1), but when they were at stationary phase and resource 88 

limited, we found differences. Lineages exposed to interspecific competitors had generally lower rates 89 

of photosynthesis and respiration than lineages exposed to intraspecific or no competitors 90 

(photosynthesis: competition × biovolume interaction, F2,270 = 3.85, p = 0.02; respiration: main 91 

competition effect, F2,272 = 6.56, p = 0.002; Fig. S1, Table S1).  92 

We observed stronger, more consistent signatures of metabolic evolution after 10 weeks in the 93 

different competition regimes. During the growth phase, competition increased photosynthesis but this 94 

positive effect weakened as biovolume increased (competition × biovolume: F2,210 = 3.59, p = 0.03); 95 

while the intra- and inter-specific treatments were almost overlapping, only intra- and no competition 96 

had a significant difference in slope (Fig. 2a, Table S1). Competition also affected respiration and the 97 

evolved response was consistent across biovolumes (competition effect: F2,46 = 10.86, p < 0.001): 98 

lineages exposed to interspecific competitors evolved to have higher metabolism (Fig. 2c, Table S1).  99 

During the stationary phase, the patterns in evolved metabolic responses were quite different. 100 

Lineages exposed to interspecific competitors had lower photosynthesis rates than either the intra- or 101 

no competition lineages (competition effect: F2,47 = 6.75, P = 0.003; Fig. 2b, Table S1). We found the 102 

same for respiration – lineages exposed to interspecific competition had evolved much lower 103 

respiration rates (F2,47 = 15.83, p < 0.0001, Fig. 2d, Table S1).  104 

We found very similar patterns when we estimated net energy production from photosynthesis and 105 

respiration rates on a daily cycle. When populations were growing, lineages exposed to competition 106 

produced more net energy but this declined as biovolume increased (Fig. 2e). When populations 107 

approached carrying capacity, the lineages exposed to interspecific competitors had much lower rates 108 

of net energy production (Fig. 2f). 109 

At this point in time (10 weeks), we calculated the scaling of metabolism with cell size for our species 110 

for the three competition treatments together. We found that both photosynthesis and respiration rates 111 

scaled hyper-allometrically with cell size (P: 1.31 [CI: 1.05; 1.58]; R: 1.28 [1.02; 1.55]) but the scaling 112 
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became progressively shallower as populations grew denser over time (–0.06 and –0.05 per day, 113 

respectively). Results did not qualitatively change when we analysed each competition treatment 114 

separately, as each of them scaled > 1 and declined over time (Table S2). 115 

 116 

Figure 2. Oxygen evolution rates during the exponential growth phase (left) and stationary phase 117 
(right) after ten weeks with competitors. Populations exposed to competitors evolved greater 118 
photosynthesis (a) and respiration rates (c) during the growth phase. When approaching carrying 119 
capacity, populations that experienced competition from interspecifics evolved much lower metabolic 120 
rates (b for photosynthesis, d for respiration). Estimates of daily net energy production follow similar 121 
patterns (e and f). 122 
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Competition alters the morphology of cells 123 

Competition induced evolutionary changes in the size and shape of cells, which were visible despite 124 

variations in both size and shape as populations grew during common gardens (time × competition, 125 

Table S3, Fig. S2). Cells exposed to competition evolved smaller sizes than no-competition cells (Fig. 126 

3a for day 3 after 10 weeks). There was no difference in cell size between intra- and inter-specific 127 

competition after 5 weeks (Table S4), but after 10 weeks cells experiencing interspecific competition 128 

were the smallest (no competition > intra > inter; Fig. 3a; Table S4 for post hoc comparisons for each 129 

day). Shape evolved with size as the smaller cells exposed to competitors were also rounder (Fig. 3b 130 

for day 3; Fig. S2 for all days; Table S4 for post-hoc comparisons). 131 

 132 

 133 

Figure 3. Both cell size and shape evolve in response to competition. After 10 weeks, lineages 134 
exposed to competitors evolved smaller cell sizes and this decline is stronger in response to 135 
interspecific competitors (a, here shown for day 3). Changes in cell size are accompanied by changes 136 
in shape: the smaller cells exposed to competitors are rounder than cells that experienced no 137 
competition; we find no effect of the type of competitors on shape (intra = inter). See Fig. S2 for the 138 
complete temporal series. 139 
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Demography evolves to maximise maximum population density  140 

Our focal species evolved its demography in response to competition. After 5 weeks, lineages that 141 

experienced competition had lower maximum growth rates but greater carrying capacity than lineages 142 

grown without competitors, displaying the classic trade-off between r and K in terms of cell numbers 143 

(effect of competition on rmax: F2,42 = 10.46, p < 0.0005, Fig. 4a; effect on Kcells: F2,42 = 19.18, p < 144 

0.001, Fig. 4b). The evolved demographic responses were similar regardless of whether competition 145 

was intra- or inter-specific (Fig. S3, Table S5). After 10 weeks, we found the same evolved difference 146 

in carrying capacity (Kcells; F2,46 = 13.91, p < 0.001, Fig. 4d) but the competition-exposed lineages had 147 

evolved max. growth rates that were equivalent to the competition-free lineages (F2,46 = 1.97, p = 148 

0.15, Fig. 4c; Table S5).  149 

 150 

Figure 4. Populations that previously experienced competition had lower maximum population growth 151 
rates but greater carrying capacity in terms of cell numbers after 5 weeks (top row). Differences in 152 
carrying capacity persisted after 10 weeks but with no difference in growth rates (bottom row). At 153 
either time, the type of competition experienced (intra- or inter-specific) did not affect population 154 
growth parameters.  155 
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Does the scaling of metabolism with size explain demographic changes? 156 

We used the scaling of respiration with cell size for any given day for our species (estimated above, 157 

see “Metabolism”) to determine the expected scaling of max. growth rate (rmax), max. population 158 

density (Kcells) and total biomass at carrying capacity (Kbio) according to classic metabolic theory. Both 159 

metabolic scaling and demographic parameters are those measured after 10 weeks of evolution. 160 

The theory assumes that the cost of production is directly proportional to cell size (scales with size at 161 

1) (17,21). Therefore, demographic parameters should scale at:   162 

(1) rmax = MB/M1 = MB-1 163 

(2) Kcells = M0/MB = M-B 164 

(3) Kbio = M × Kcells = M × M-B = M1-B 165 

We used early (days 1-5) respiratory scaling values for expectations about rmax because it is mostly 166 

determined by growth rates early on. We used late (days 12-16) respiratory scaling values for 167 

expectations about Kcells and Kbio because cultures reached carrying capacity in the later part of the 168 

common garden and because cell size (which affects estimates of Kbio) stabilised around day 12 (Fig. 169 

S2). Based on these predictions, we expect that rmax scales positively with cell size (B –1 = 0.13) and 170 

Kcells scales negatively (–B = –0.59), so that larger cells should have greater population growth and 171 

lower carrying capacities in terms of max. cell densities. We also expect that Kbio scales positive with 172 

size (1 –B = 0.40) so that large cells sustain greater max. total biomass.  173 

We then determined the empirical scaling of each demographic parameter with cell size for our 174 

populations, using the average cell size calculated over the same intervals above (i.e., over the first 175 

five days for rmax, between day 12 and 16 for Kcells and Kbio). We find that our data overall align with 176 

predictions from theory. We find a weaker relationship than predicted between rmax and size (0.06 177 

instead of 0.13); this relationship is non-significant as the confidence intervals overlap zero (F1,48 = 178 

0.02, p = 0.88; CI: –0.71; 0.83; Fig. 5a). In quantitative agreement with theory, we find that Kcells 179 

declines (–0.56 instead of –0.59; F1,48 = 22.4, p < 0.001; CI: –0.79; –0.32; Fig. 5b), while Kbio 180 

increases with size (0.44 instead of 0.40; F1,48 = 14.1, p < 0.001; Fig. 5c). 181 

 182 
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 183 

Figure 5. Scaling of max. growth rate (rmax), max. cell density (Kcells) and max. biovolume (Kbio) with 184 
cell size observed from our data after 10 weeks with competitors (solid line) and predicted from 185 
classic metabolic theory (i.e. assuming that the cost of production scales with size at 1; broken line). 186 
Slopes are: rmax = observed 0.06 (CI: –0.71; 0.83); expected 0.13; Kcells = observed –0.56 (CI: –0.79; –187 
0.32); expected –0.59; Kbio = observed 0.44 (CI: 0.21; 0.68); expected 0.40. Scaling exponents are 188 
calculated for the 3 competition treatments together (blue = inter; green = intra; red = no competition). 189 
We calculated the expected scaling of rmax as the average scaling observed over the first 5 days 190 
because growth is determined early on; we calculated the expected scaling of Kcells and Kbio as the 191 
average scaling over the last 3 sampling days (12 to 16) because the cultures approached K towards 192 
the end of the common garden and cell size stabilised from day 12 onwards (Fig. S2). We used the 193 
same range of days to calculate the average cell size for each replicate shown above. 194 

 195 

Discussion  196 

A eukaryote evolved its size and metabolism to alter its demography and better tolerate interspecific 197 

competition. Our focal lineages first evolved higher carrying capacities in terms of population densities 198 

at the expense of faster population growth rates. But, through metabolic and size evolution, they later 199 

achieved a Pareto improvement maximising both growth rates and carrying capacity via more efficient 200 

resource use. We show that these changes in demography are predicted by classic metabolic theory, 201 

based on the scaling of metabolism with size for our species, and assuming that the cost of producing 202 

a new organism is directly proportional to its size (16,19). Accordingly, competition from a community 203 

led to the evolution of smaller cells that sustained greater maximum population densities but lower 204 

total biomass, similarly to the patterns observed among species (29).  205 

Our results extend the main prediction of life history theory to interspecific competition from a 206 

community – competition in a stable environment tends to maximize max. population size, essentially 207 

the efficiency with which resources are converted into offspring (Table 1) (30–32). However, 208 
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increased efficiency does not necessarily come at the expense of growth rate, contrary to 209 

expectations based on classic metabolic (17,33) or life history theories (25,34–36). Empirical 210 

evidence for the existence of trade-offs within species is scarce and mostly indirect. Trade-ups seem 211 

actually more common than trade-offs; for instance, phytoplankton can improve competitive ability for 212 

different resources at no detectable cost (14,15) and bacteria can evolve larger cells that also grow 213 

faster than smaller cells despite their hypo-allometric metabolic scaling (21). We show that 214 

competition-induced evolution can break a fundamental assumption of life history theory based on r-K 215 

selection models (31,32,37). So trade-offs between r and K are not as inevitable as it has been 216 

supposed, potentially because the concomitant evolution of size and metabolism reduces constraints 217 

on production (21,38). 218 

Metabolism fuels biological production (growth) and therefore should be under selection with intense 219 

competition (39). Among-species comparisons suggest that selection for efficiency should be 220 

associated with larger body sizes and lower metabolic rates (16,25,40). We find that this prediction 221 

does not hold for our species because it is based on general assumptions of how metabolism scales 222 

with size across species, i.e. hypo-allometrically. Our species showed hyper-allometric scaling of both 223 

photosynthesis (1.31) and respiration (1.28) with cell size. So, while larger cells produced more 224 

energy, they were also more expensive to maintain. Accordingly, populations exposed to competitors 225 

evolved smaller sizes which are more energetically advantageous under intense resource 226 

competition. These smaller cells had similar growth rates but greater max. cell density than larger 227 

cells, in qualitative and quantitative agreement with predictions from metabolic theory (i.e., assuming 228 

that the cost of production scales at 1). So it seems that metabolic theory can predict how changes in 229 

size and metabolism affect key demographic parameters within species, when using context-specific 230 

scaling rather than across species relationships.  231 

That the scaling of metabolism with body size varies among species and environmental conditions is 232 

now well accepted (41). However, there is less recognition for the role of plasticity in metabolic scaling 233 

within the same population, even though it is important to maintain fitness and energy homeostasis 234 

(42,43). Competition should drive the evolution of fitness-enhancing metabolic traits, but both fast and 235 

slow metabolic phenotypes have been proposed to be a product of competition. A slow metabolism 236 

can be advantageous when resources are limited (24) but can come at the expense of competitive 237 

ability (44) and access to resources (23). Our results show that fluctuations in population densities 238 
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can maintain both metabolic phenotypes even under strong competition. All our experimental 239 

populations reduced their metabolism during the stationary phase, which seems to be common 240 

among many phytoplankton species to cope with nutrient limitation (45). But this metabolic flexibility 241 

was heightened by competition, so that populations with a history of competition had a faster 242 

metabolism when resources were abundant but much lower metabolic rates when population were 243 

dense.  244 

In our species, competition selected for efficiency by favouring small cells with a lower metabolic rate 245 

per unit volume when resources were scarce (because of their hyper-allometric metabolic scaling). 246 

The advantage of small cells under nutrient limitation is well established among phytoplankton 247 

species (46); here we show that these across-species patterns might also hold within species. 248 

Smaller cells have several advantages that enables them to produce more cells per unit nutrient 249 

(38,47). They have lower sinking rates, hence more access to light, suffer less from self-shading, and 250 

are more efficient in the acquisition of nutrients due to a higher surface to volume ratio (48,49). While 251 

changes in shape can reduce the constraints of larger cell sizes on nutrient acquisition (48,50), we 252 

find that competition favours the evolution of smaller cells, rather than cells of similar size but different 253 

shape. However, overall, size and shape covaried as predicted because small, evolved cells were 254 

rounder than the larger cells not exposed to competitors.  255 

Predicting how species evolve in communities remains a formidable challenge (51–53). Interactions 256 

among multiple species can diffuse competition (54), weakening selection between any pair of 257 

competitors (55,56). Our results show that both intra- and inter-specific competition from a community 258 

select for efficiency (carrying capacity of individuals), which is achieved through the concomitant 259 

evolution of size and metabolism. Overall, competition from a community exerted stronger effects on 260 

the evolution of these traits than intraspecific competition, possibly because diverse competitors 261 

consume available resources more rapidly and effectively (57,58). But it seems that the classic 262 

prediction of life history theory (selection for K under density-dependence (31)) can be extended to 263 

competition in communities, at least for species that use essential resources. Finding whether 264 

interspecific competition leads to the same evolutionary outcomes in other systems seems key to 265 

predict the evolutionary trajectory of species in communities. Interestingly, the traits that evolved more 266 

strongly under interspecific competition (i.e. size and metabolism) are also those that affect niche and 267 

fitness differences between species (59,60). Hence, a next important step would be to test how life 268 
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history optimization influences the coexistence of coadapted species through changes in their 269 

metabolic scaling. Understanding how metabolism, size, and demography covary between competing 270 

species is essential to explain patterns of biological production and extrapolate the effect of 271 

biodiversity over time (1,22).  272 

 273 

Table 1. Predicted and observed changes in life history traits based on the history of competition. We 274 
base the main predictions on the effects of intra-specific competition and elaborate on the predicted 275 
effects of interspecific competition on the last row. 276 

 277 
* Opposite pattern if the environment is highly stochastic and/or with low density-dependence (rmax 278 
increases and Kcells decreases). We do not expect this scenario because our environent is not highly 279 
stochastic and our populations density-regulated. 280 

 281 

 

 

Trait  Predicted effect of intrasp. competition Key references  Observed effect 
rmax  Decrease in a stable or low stochastic 

environment with high population density 
MacArthur 1962, 
MacArthur & Wilson 1967 
Mueller et al 1991 
Lande et al. 2009 
Engen & Sæther 2017 

Kentie et al. 2020 

Yes / No (tradeoff 
with K weakens 
over time) 

Kcells * Increase 
 

Yes 

Size  Increase under K-selection  Pianka 1970 
Bierbaum et al. 1989  

No 

 Decrease based on effects of nutrient 
limitation on phytoplankton  

Litchman & Klausmier 
2008 

Yes 

Shape  More elongated to reduce surface area to 
volume ratio and improve nutrient uptake if 
cells become larger 

Grant et al. 2021 
Ryabov et al. 2021 

No (larger cells 
were more 
elongated but 
were not those 
exposed to 
competitors) 

 Rounder if cells become smaller Yes 

Metabolism Lower metabolism, increased efficiency 
under K-selection 

Pianka 1970, 1972 
Mueller & Diamond 2001 
Lenski 2003 
Auer et al. 2018 

Yes closer to 
carrying capacity 

 Increased metabolic rate (faster pace of 
life) but only if resources are abundant 

Auer et al. 2020 
Pettersen et al. 2020 

Yes during 
growth phase 

Effect of 
interspecific 
competitition 

If resource overlap among species is 
significant, interspecific competition should 
strengthen density-dependence and thus 
the K-selection observed under 
intraspecific competition alone. 

MacArthur & Wilson 1967 
Bassar et al. 2013 
Lawrence et al. 2012 
Jousset et al. 2016 
Scheuerl et al. 2020 

Yes for size and 
metabolism.  
No for rmax, K cells, 
and cell shape  
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Materials and Methods 282 

Overview of experimental set up 283 

We tested the effects of competition on the energy fluxes, morphology, and demography of the 284 

eukaryotic unicellular alga Dunaliella tertiolecta, which we obtained as a clonal strain from the CSIRO 285 

Australian National Algae Culture Collection (ANACC, strain CS-14). To manipulate the competitive 286 

environment, we enclosed the focal species in a dialysis bag which was then place in one of three 287 

environments for 10 weeks (1st June to 10th August 2021): 1) surrounded by media with no 288 

competitors (no competition), 2) by a population of conspecifics from the same strain (intraspecific 289 

competition) or 3) by a community of three other phytoplankton species (interspecific competition). 290 

For this latter treatment, the species were chosen to represent different sizes and phytoplankton 291 

groups: Amphidinium carterae (CS-740), Phaeodactylum tricornutum (CS-29) and Nannochloropsis 292 

oculata (CS-179) (Fig. 1, phase 1). All species were sourced as clonal strains from CSIRO Algal 293 

collection. Every week we batch-transferred both the focal species and the competitors. After 5 and 294 

10 weeks, we quantified changes in the traits of the focal species in common garden experiments 295 

(phase 2).  296 

We grew all species individually in 2 L glass bottles with standard f/2 enriched seawater medium 297 

enriched with silica for a month prior to the experiment. The same medium was used throughout the 298 

experiment and common gardens. The medium was prepared with 0.45 μm filtered seawater and 299 

autoclaved following the recipe of Guillard & Ryther, 1962 (61). All experiments were performed in a 300 

temperature controlled room (20 ± 1°C) on a 14:10 hours light:dark cycle and the cultures were grown 301 

under a light intensity of 115 ± 5 μmol photons m−2 s−1. 302 

Phase 1: evolution with competitors  303 

The dialysis bags in which we enclosed the focal species enabled competition for light and nutrients 304 

but prevented cell mixing among phytoplankton species and exchange of bacteria (pore diameter = 24 305 

Angstrom). Each bag contained a volume of 35 ml and was placed at the centre of a 500 ml glass jar 306 

assigned to one of the three competition treatments above. We established 20 replicates for each 307 

competition treatment. We quantified the biovolume of each species as the product of cell density and 308 

cell size. For each species, we loaded two 10 μl samples onto a Neubauer counting chamber 309 

(ProSciTech, Australia), fixed with 1% lugol’s solution, and, for each sample, we took 20 photos 310 
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equally spaced around the cell counting grid under an Olympus light microscope at 400× 311 

magnification. We analysed the images with ImageJ and Fiji software (version 2.0) (62) to quantify the 312 

number of cells (cells µl-1) and their size (µm, length and width; diameter for Nannochloropsis). We 313 

calculated cell volume by assigning to each species an approximate geometric shape (63) (prolate 314 

spheroid V = (pi/6) × width2 × length for all species except Nannochloropsis which we treated as a 315 

sphere V = (pi/6) × diameter3). Cell circularity is calculated as 4 × pi × (area/perimeter2) and ranges 316 

from 0 to 1 (perfect circle). 317 

We started the experiment with an initial biovolume of 9.6 × 108 μm3 of the focal species which 318 

corresponded to 5 ml. The dialysis bag was then filled to 35 ml with media. The glass jars containing 319 

the competitors were filled to 350 ml to completely submerge the dialysis bag. To maintain the same 320 

biovolume to media ratio, the initial biovolume of the competitors was 10 times that of the focal 321 

species (i.e. 9.6 × 109 μm3). We added the three competitor species of the interspecific treatment in 322 

equal biovolumes. The jars of the control treatment (no competition) were filled with medium only.  323 

Each week we transferred the same initial biovolume of the focal species and the same initial 324 

biovolume of the competitors to a new, sterilized set of dialysis bag and jar. We did not manipulate the 325 

relative abundance of species in the interspecific treatment. In weeks 3, 5 and 6 the cell densities of 326 

the focal species were low in the interspecific treatment. So, had we reinoculated the same initial 327 

biovolume we would not have been able to add any fresh medium. To avoid this nutrient limitation, we 328 

reinoculated only half of the initial biovolumes across all treatments. Cell densities, size and 329 

biovolume were determined as described above. By week 6, we discarded 13 lineages of the focal 330 

species in the interspecific treatment because they were contaminated by the diatom. To continue the 331 

experiment, we established an additional lineage from each of the remaining seven replicates. By the 332 

end of the experiment, we lost 4 other replicates in the interspecific treatment because of 333 

contamination. 334 

The batch-transfer approach meant that all populations in our experiment experienced fluctuating 335 

densities, but those surrounded by competitors always faced greater densities and thus competition. 336 

Shifts in densities are common in nature and mediate the balance between density-independent and 337 

density-dependent selection (r- and K-selection) (37). If stochasticity is low, theory predicts that 338 

selection for K should prevail even under fluctuating conditions (Table 1) (25,31,64).  339 
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Phase 2: common garden experiments 340 

To test the effects of competition on the metabolism, morphology, and demography of the focal 341 

species we did two common garden tests, one after five weeks of evolution with competitors (samples 342 

were taken at the start of week six, 6th July 2021) and one after ten weeks (10th August, end of 343 

experiment). Before each common garden, we grew the focal species in a neutral environment for two 344 

nights to remove any environmental conditioning. Both for the neutral selection and common garden, 345 

we inoculated an equal biovolume of each lineage in cell culture flasks (n = 20 for the no competition 346 

and intraspecific treatments, n = 6 and n = 10 for the interspecific treatment in the first and second 347 

common garden, respectively). Biovolume was determined as before from the average cell size and 348 

cell density of each lineage; we decided a priori to add 15 ml of the lineage with the limiting biovolume 349 

(~14 × 108 μm3), back calculated the volumes of the other lineages and added 100 ml of f/2 media 350 

plus silica to all flasks. Common gardens started on 8th July and 12th August 2021 and lasted 16 days 351 

which was the approximate time needed for the cultures to reach carrying capacity. Each day, we 352 

removed 10 ml from each culture flask for sampling and replaced it with fresh media. In the first 353 

common garden we sampled every day except on day 6, 10, 13 and 15; in the second we sampled 354 

every day except on day 7, 13 and 15. 355 

Traits measurements 356 

Each sampling day, we fixed 1 ml sample with 1% Lugol’s solution to quantify the cell size (volume), 357 

shape (circularity) and abundance of each lineage with ImageJ software as described above. We 358 

include cell shape in addition to size in our assessment because the shape of a cell can mediate 359 

access to resources and is thus an important component of fitness in unicellular organisms (48–360 

50,65).  361 

We measured oxygen evolution rates on 5 ml samples using 24-channel optical fluorescence oxygen 362 

readers (PreSens Sensor Dish Reader, SDR; AS-1 Scientific Wellington, New Zealand) following 363 

established protocols (66,67). Sensors were calibrated with 0% and 100% air saturation before the 364 

experiment. Net photosynthesis (oxygen production) was measured at the same light intensity at 365 

which the cultures were grown for 20 minutes, followed by 1 hr in the dark to measure respiration 366 

rates. Thirteen blanks were filled with the media obtained from centrifuged samples (spun at 2,500 367 

rpm for 10 min to separate the algae from the supernatant) to correct for background microbial activity 368 
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since cultures were not axenic. Prior to measurements, samples were spiked with 50 μl of sodium 369 

bicarbonate stock for a final concentration of 2 mM sodium bicarbonate to avoid carbon limitation.  370 

The change in percentage oxygen saturation was calculated with linear regressions using the LoLinR 371 

package (68). The rate of photosynthesis or respiration of the whole sample (VO2; units μmol O2/min) 372 

was then measured as VO2 = 1 × (( ma – mb)/100 × VβO2) following (69), where ma is the rate of 373 

change of O2 saturation in each sample (min−1), mb is the mean O2 saturation across all blanks 374 

(min−1), V is the sample volume (0.005 L) and VβO2 is the oxygen capacity of air-saturated seawater 375 

at 20°C and 35 ppt salinity (225 μmol O2/L). The first 3 minutes of measurements in the light were 376 

discarded for all samples. Respiration rates were calculated after 15 minutes of dark when oxygen 377 

levels showed a linear decline. Photosynthesis and respiration (µmol O2/min) were converted to 378 

calorific energy (J/min) using the conversion factor of 0.512 J/µmol O2 to estimate energy production 379 

and energy consumption respectively (70).  380 

Statistical analyses 381 

All analyses and plots were done in RStudio (version 4.1.3), separately for the two common gardens. 382 

Morphology. We assessed differences in cell morphology (cell size or shape) with linear mixed 383 

models including competition treatment (3 levels) and time (day) as categorical predictors, and 384 

lineage identity as random intercept to account for repeated measures; time was considered 385 

categorical because the relationship with cell morphology was non-linear. We take day 3, during the 386 

exponential growth phase, as a reference to report post hoc results on differences in cell size and 387 

shape, and we report post hoc results for each day in supplements. 388 

Demography. To test differences in the maximum rates of increase (rmax) and maximum values (Kcells) 389 

of cell density we followed a three-step approach (described in detail in Ghedini et al. 2021 (67), 390 

adapted from Malerba et al., 2018 (71)). First, we fitted four growth models to each individual replicate 391 

lineage and chose the best-fitting model among the four candidates to best describe changes in the 392 

cell density (cells/μl) of each culture over time. We used AIC to determine which growth model best 393 

described the dynamics of a culture and successful convergence was ensured for all best-fitting 394 

models. The four models were: a logistic-type sinusoidal growth model with lower asymptote forced to 395 

0 (i.e. three-parameter logistic curve), a logistic-type sinusoidal growth model with non-zero lower 396 

asymptote (i.e. four-parameter logistic curve), a Gompertz-type sinusoidal growth model (i.e. three-397 
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parameter Gompertz curve) and a modified Gompertz-type sinusoidal growth model including 398 

population decline after reaching a maximum (i.e. four-parameter Gompertz-like curve including 399 

mortality). Second, we used the best-fitting model to estimate growth parameters (i.e. rmax and K) for 400 

each culture. From each nonlinear curve, we extracted the maximum predicted value (K) of population 401 

density (cells μl−1). From the first derivative of the curve, we extracted the maximum rate of population 402 

increase (rmax, unit: day−1). Third, we used an analysis of covariance to evaluate the influence of 403 

competition on each parameter, using a linear model including the initial cell density estimated from 404 

the previous step as a covariate and competition environment as a factor (three levels). The estimates 405 

of K of the first common garden had heterogeneous variances among treatments, so we used 406 

generalized least squares models (instead of linear models) including treatment-specific variance for 407 

each level of competition treatment (varIdent function in R). We then estimated and plotted least 408 

square means and 95% confidence intervals using Tukey p-value adjustment for comparing three 409 

estimates. Finally, we fitted the same nonlinear growth models described above across all lineages 410 

within each competition treatment to visualize qualitative differences in population growth, using AIC 411 

to select the best-fitting model.  412 

Metabolism. While oxygen rates increased linearly with biovolume over the first few days, this 413 

relationship broke down in the second part of the common garden as biovolume increased (> ~3 414 

µm3/µl) (Fig. S4). Log-transformation did not result in linearity across the entire range of biovolume. 415 

Therefore, we analysed oxygen rates separately for the first part of the common garden during the 416 

exponential growth phase (from the day after inoculation to day 6 included), and for the second part 417 

during the stationary phase (day 7 to 16). We used linear mixed models including biovolume 418 

(covariate) and competition treatment as predictors and lineage identity as random intercept for the 419 

data of the second common garden. Because variances were heterogenous for the photosynthesis 420 

data during the growth phase we used a generalised linear mixed model including competition-421 

specific variances. As a last step, we estimated and plotted the net energy production of the whole 422 

sample over a 24-hr period (J/day) as 14 hr of energy produced through net photosynthesis minus 10 423 

hr of respiration using the predictions from the models.  424 

We could not use mixed models on the oxygen evolution data from the first common garden because 425 

of a singular fit error likely due to the lower replication of the interspecific competition treatment (n = 426 

6). Therefore, we used linear models with biovolume (covariate) and competition treatment as 427 
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predictors (i.e. without including lineage identity). While this is not ideal, we repeated the analyses for 428 

the August data with simple linear models and obtained the same results of mixed models (results not 429 

reported here), suggesting that oxygen rates are not strongly affected by lineage identity. 430 

Nonetheless, we report the results on oxygen rates for the first common garden as a supplementary 431 

figure. For all analyses of oxygen rates, data were not transformed but biovolume was rescaled to 10-5 432 

µm3 µl-1. Interactions between biovolume and competition were removed when p > 0.25 or if the 433 

interaction was not significant and the model with interaction did not perform better than the simpler 434 

model compared by AIC and anova.  435 

Scaling of demographic parameters with cell size. First, we determined the scaling of metabolism with 436 

cell size for our evolved populations after ten weeks of evolution. For this assessment we combined 437 

the data of the three competition treatments which allowed us to assess a wider range of sizes. We 438 

calculated the scaling of respiration and photosynthesis, separately, from linear models including cell 439 

size and experiment day as numerical predictors. Oxygen rates and cell size were log10-transformed. 440 

We also calculated the scaling of metabolic rates with size for each competition treatment individually 441 

and obtained the same qualitative results (Table S2 in supplements). Based on these results (effects 442 

of size and experiment day), we then calculated the expected scaling of respiration with size for any 443 

given day. According to classic metabolic theory, the cost of production is directly proportional to cell 444 

size (scales with size at 1) (17,21), so demographic parameters should scale with size at:   445 

(1) rmax = MB/M1 = MB-1 446 

(2) Kcells = M0/MB = M-B 447 

(3) Kbio = M × Kcells = M × M-B = M1-B 448 

We used early (days 1-5) respiratory scaling values for expectations about rmax because it is mostly 449 

determined by growth rates early on. We used late (days 12-16) respiratory scaling values for 450 

expectations about Kcells and Kbio because cultures reached carrying capacity in the later part of the 451 

common garden and because cell size (which affects estimates of Kbio) stabilised around day 12. We 452 

estimated maximum total biomass (Kbio) as the product of Kcells obtained from the population growth 453 

models and the average cell size for each replicate over the last three sampling days (day 12 to 16), 454 

that is when cell size stabilised. Finally, we determined the empirical scaling of each demographic 455 

parameter with cell size across our populations, using the average cell size calculated over the same 456 

intervals above (i.e., over the first 5 days for rmax, between day 12 and 16 for Kcells and Kbio). 457 
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