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Abstract 
 
Chromatin interaction analysis by paired-end tag sequencing (ChIA-PET) can capture genome-wide chromatin 
interactions mediated by a specific DNA-associated protein. The ChIA-PET experiments have been applied to 
explore the key roles of different protein factors in chromatin folding and transcription regulation. However, compared 
with widely available Hi-C and ChIP-seq data, there are not many ChIA-PET datasets available in the literature. A 
computational method for accurately predicting ChIA-PET interactions from Hi-C and ChIP-seq data is needed that 
can save the efforts of performing wet-lab experiments. Here we present DeepChIA-PET, a supervised deep learning 
approach that can accurately predict ChIA-PET interactions by learning the latent relationships between ChIA-PET 
and two widely used data types: Hi-C and ChIP-seq. We trained our deep models with CTCF-mediated ChIA-PET of 
GM12878 as ground truth, and the deep network contains 40 dilated residual convolutional blocks. We first showed 
that DeepChIA-PET with only Hi-C as input significantly outperforms Peakachu, another computational method for 
predicting ChIA-PET from Hi-C but using random forests. We next proved that adding ChIP-seq as one extra input 
does improve the classification performance of DeepChIA-PET, but Hi-C plays a more prominent role in DeepChIA-
PET than ChIP-seq. Our evaluation results indicate that our learned models can accurately predict not only CTCF-
mediated ChIA-ET in GM12878 and HeLa but also non-CTCF ChIA-PET interactions, including RNA polymerase II 
(RNAPII) ChIA-PET of GM12878, RAD21 ChIA-PET of GM12878, and RAD21 ChIA-PET of K562. In total, 
DeepChIA-PET is an accurate tool for predicting the ChIA-PET interactions mediated by various chromatin-
associated proteins from different cell types. DeepChIA-PET is publicly available at 
http://dna.cs.miami.edu/DeepChIA-PET/. 
 
 
1 Introduction 
 
Chromatin interaction analysis by paired-end tag sequencing (ChIA-PET) (Fullwood, et al., 2009) is a technique that 
processes chromatin immunoprecipitation (ChIP)-enriched chromatin complexes by linker ligation, proximity ligation, 
and high-throughput sequencing to identify significant long-range chromatin interactions at the whole genome. 
Compared with Hi-C (Lieberman-Aiden, et al., 2009), the main advantage of ChIA-PET is that the interactions it 
captured are located at the binding sites of one specific DNA-associated protein of interest, such as the insulator 
binding protein CTCF (Tang, et al., 2015), the RAD21 subunit of the cohesin complex (Grubert, et al., 2020; Heidari, 
et al., 2014), and RNA polymerase II (RNAPII) (Li, et al., 2012).  
 
The CTCF-mediated and RAD21-mediated ChIA-PET experiments can be applied to investigate their key roles in 
chromatin folding and the establishment of topologically associating domains (Dixon, et al., 2012). The RNAPII-
mediated ChIA-PET interactions are an excellent source of studying transcription regulation. The genome-wide 
chromatin interactions captured by the Hi-C technique and its variants (Rao, et al., 2014) can be thought of as a pool 
of ChIA-PET interactions including all chromatin-associated proteins, from which we can hardly identify interactions 
that are only related to one specific protein factor. Therefore, ChIA-PET is more applicable than Hi-C if exploring the 
potential functions of different DNA-associated proteins in the three-dimensional (3D) genome is of interest.  
 
The chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq) is a widely used method for 
analyzing interactions between DNA and chromatin-associated proteins, which can provide the binding sites of 
protein factors. Technically, we can think of ChIA-PET as a hybrid of Hi-C and ChIP-seq. However, there are not 
enough experimental ChIA-PET datasets publicly available in the literature; only 10 ChIA-PET experimental sets are 
available on the 4D Nucleome website (Dekker, et al., 2017) compared with 335 Hi-C and 141 ChIP-seq sets (as of 
10/07/2022). Therefore, computationally predicting ChIA-PET interactions from Hi-C and ChIP-seq is a promising way 
to enrich ChIA-PET datasets.  
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There are some computational methods in the literature designed for processing ChIA-PET data and directly 
detecting peaks, such as Mango (Phanstiel, et al., 2015), cLoops (Cao, et al., 2020), and ChIAMM (Arega, et al., 
2020). There are also some computational methods for predicting CTCF-mediated chromatin loops from DNA 
sequence-based features, such as CLNN-loop (Zhang, et al., 2022) and CTCF-MP (Zhang, et al., 2018), from various 
genomic and epigenomic features, such as Lollipop (Kai, et al., 2018), and from CTCF and Hi-C data, such as 
LOOPbit (Galan, et al., 2022). However, none of these computational methods are targeted for learning and 
predicting ChIA-PET interactions.  
 
Loop-Extrusion-Model (Xi and Beer, 2021) used a simple mathematical model of CTCF-mediated loop formation for 
predicting CTCF ChIA-PET loops. The limitations of this method are that the authors did not blindly test on non-CTCF 
ChIA-PET and widely available Hi-C data are not used as reference input. Peakachu (Salameh, et al., 2020) 
overcame the second limitation by directly using Hi-C to predict ChIA-PET interactions. However, Peakachu has the 
following disadvantages: (1) only Hi-C data as input may result in that the learned models are ChIP-specific. This is 
because bulk Hi-C data is not protein specific. Therefore, the machine learning model is trained to map non-protein-
specific Hi-C data to protein-specific ChIA-PET interactions. Next time when the same machine learning model is 
used to predict the ChIA-PET interactions formed by a different type of protein, the input will be the same, which may 
cause the problem that the machine learning model may only be adapted to or work well for the type of ChIA-PET 
data used for training. However, adding the ChIP-seq data in input as we have done in this research solves this 
problem to some extent. (2) the receptive field of machine learning was restricted to a 11 × 11 window for 
representing the Hi-C features of the center pixel; (3) the number of negative samples for training was set equal to 
the number of positive pixels, resulting in that millions of unselected negative pixels in two-dimensional (2D) Hi-C 
contact matrices are never seen by the machine learning method (i.e., random forest); and (4) the strategy of one 
positive pixel as an independent training sample sacrifices the valuable information that one anchor may involve in 
multiple long-range ChIA-PET interactions. 
 
In this paper, we present DeepChIA-PET, a deep-learning method for accurately predicting ChIA-PET interactions 
based on Hi-C and ChIP-seq data. DeepChIA-PET applied a deep dilated, residual convolutional network to learn the 
mapping from Hi-C and ChIP-seq to ChIA-PET at 10-kb resolution, which makes receptive fields larger enough for 
capturing long-range interactions and lets the deep learning method see all positive and negative pixels. Our 
evaluation results indicate that DeepChIA-PET significantly outperforms Peakachu, and our models trained with 
CTCF ChIA-PET can be accurately applied to predict non-CTCF ChIA-PET.  
 
 
2 Materials and methods 
 
Data processing for Hi-C, ChIP-seq, and ChIA-PET 
 
We downloaded KR-normalized Hi-C data for three different cell types (GM12878, HeLa, and K562) at 10-kb 
resolution using Juicer (Durand, et al., 2016) (Table S1), which are also available on Gene Expression Omnibus 
(GEO) under accession number GSE63525 (Rao, et al., 2014). Hi-C peaks in human GM12878 were detected with 
HiCCUPS (Rao, et al., 2014) at 10-kb resolution. TAD annotations of GM12878 at 10-kb resolution were downloaded 
from TADKB (Liu, et al., 2019), which used the directionality index (DI) (Dixon, et al., 2012) to call TADs.  
 
The ChIP-seq data for three different DNA-associated proteins (CTCF, RNAPII, and RAD21) were downloaded from 
UCSC website (Table S2). The average value for each 10-kb bin was calculated by pyBigWig 
(https://github.com/deeptools/pyBigWig). 
 
We used various ChIA-PET datasets in this study (Table S3). The CTCF-mediated and RNAPII-mediated ChIA-PET 
interactions in GM12878 and HeLa were downloaded from GEO under accession number GSE72816. The RAD21-
mediated ChIA-PET interactions for GM12878 and K562 were obtained from Table S1 in (Heidari, et al., 2014). Since 
the anchor regions of ChIA-PET interactions are not binned at a given resolution, we assign one (positive) to pixels in 
a 2D ChIA-PET contact matrix at 10-kb resolution if the pixels overlap with two anchor regions of any known ChIA-
PET interactions, and zero otherwise. Since the lengths of almost all anchors are less than 10,000 bp (Fig. S1A), the 
number of positive pixels is usually somewhat fewer than the number of raw ChIA-PET interactions.  
 
The resolution is fixed to 10 kb for all three data types (i.e., Hi-C, ChIP-seq, and ChIA-PET) in this study. The Hi-C 
samples for training, validation, and blind test were extracted along the diagonal of a 2D contact matrix with a sliding 
window of 250 × 250 and a step of 50 bins. The ChIP-seq samples were obtained along each chromosome with a 
sliding window of 250 bins and a step of 50 bins. Since the genomic distances of almost all ChIA-PET interactions are 
less than 2 Mb (Fig. S2B), the genomic distance we covered by 250 bins (≤ 2.5 Mb) is long enough.  
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For each Hi-C contact matrix, we first rescaled the contacts by log transformation of log!(𝑥 + 1) and then further 
rescaled all contacts to the range [0, 1] by min-max normalization. We calculated the mean and standard deviation 
(SD) of all Hi-C samples to perform final z-score normalization for each rescaled Hi-C matrix. For normalizing ChIP-
seq vectors, we first did min-max normalization and then did z-score normalization as in normalizing Hi-C. The means 
and SDs for normalizing Hi-C and ChIP-seq were obtained from Hi-C and CTCF ChIP-seq of GM12878 and used on 
all the other testing datasets. 
 
 
Training, validation, and blind test 
 
Our deep models were trained with CTCF-mediated ChIA-PET of GM12878 as ground truth. For blindly testing on 
each chromosome from 1 up to X, we trained 23 separate models. Specifically, excluding the current testing 
chromosome, the validation data were extracted from the largest chromosome and the rest chromosomes were used 
for generating the training data. The 23 learned models were also used for predicting non-CTCF ChIA-PET of a 
different cell line.  
 
 
DeepChIA-PET architecture 
 
We illustrated the pipeline of DeepChIA-PET in Fig. 1. The original inputs are 2D Hi-C contact matrices and one-
dimensional (1D) ChIP-seq vectors. To feed 1D ChIP-seq into our 2D convolutional network, we first converted the 
1D ChIP-seq data into 2D by copying the ChIP-seq vector column- and row-wise, resulting in two 2D ChIP-seq 
matrices. We then concatenated the Hi-C and ChIP-seq matrices and obtained a 3D tensor (250 × 250 × 3) as input.  
 
The final deep network we used is inspired by two deep networks for the prediction of protein contact maps 
(Kandathil, et al., 2019; Wang, et al., 2017) and contains three main parts. The first part consists of a 2D 
convolutional layer (Conv1 with 1 × 1 kernel size) for enhancing the hidden dimension from three to 128, a batch 
normalization layer, and a ReLU (Nair and Hinton, 2010). The second part consists of 40 typical residual blocks (He, 
et al., 2016) for learning the latent relationship between ChIA-PET and our inputs. Each block contains two dilated 2D 
convolutional layers (Conv2 with 3 × 3 kernel size) (Yu and Koltun, 2015). We set different dilation values for the two 
Conv2 layers in each block for capturing multi-scale, long-range ChIA-PET interactions. The last part consists of a 2D 
convolutional layer (Conv3 with 1 × 1 kernel size) and a batch normalization layer for reducing the output channel 
from 128 to one.  
 
Since we may predict one pixel more than one time, the predicted score for the pixel is the average value of all its 
predicted scores. Moreover, since ChIA-PET interaction matrices should be symmetric, we further averaged the 
predicted values in the upper and lower triangular in matrices to get the final predicted scores. After obtaining the final 
predicted score for each pixel, we sort all predicted pixels by their predicted probabilities in descending order.  
 

 
Fig. 1. Framework of DeepChIA-PET. The 1D sequential ChIP-seq data are converted into two 2D pairwise matrices, 
which are further concatenated with Hi-C. The dashed box contains a typical residual block.  
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Implementation details 
 
We implemented our network in PyTorch (Paszke, et al., 2019). The optimizer we used was Adam (Kingma and Ba, 
2014) with a weight decay of 1e-04.  We tested five different batch sizes (4, 8, 16, 32, and 64) and used two 
strategies for setting the learning rate. The first one is to use a fixed value (0.01, 0.001, and 0.0001), and the second 
one is to dynamically adjust the learning rate by initially setting it to 0.001 and then reducing it with a factor of 0.1 
when the validation loss stops improving for ten epochs. We tested two kernel sizes (3 and 5), two normalization 
methods (batch and instance), and two hidden dimensions (64 and 128). The number of residual blocks and the 
corresponding dilations for each block that we tested can be found in Table S4. The loss function for all models is 
binary cross entropy. We also used different positive weights (1, 3, 6, 9, and 12) when calculating loss. The best 
model for the blind test is the model that achieved the lowest validation loss. All models were trained in parallel on 
four NVIDIA A100 GPUs; each is equipped with 40 GB of memory. 
 
Evaluation metrics 
 
Because the genomic distances of ground-truth ChIA-PET interactions are within a certain range, we only evaluated 
the pixels that are within the genomic range from 20 kb to 2 Mb. Since the ratios between the numbers of negative 
and positive pixels are usually larger than 500 (Fig. S2), we defined five different negative pixel sets (neg=pos, 
neg=5pos, neg=20pos, and neg=100pos, and neg=All) for evaluation. The number of negative pixels in the first four 
sets for each chromosome was set to the given number times the number of positive pixels on this chromosome, and 
the negative pixels for evaluation were randomly selected from all negative pixels. In the last negative set (neg=All), 
we used all negative pixels. For evaluating the performance of pixel-specific binary classification, we used various 
metrics including average precision (AP), mean area under the receiver operating characteristic (ROC) curve (AUC), 
and precision-recall curve (Pedregosa, et al., 2011). We also borrowed the metric of top accuracy from the 
community of protein contact map prediction (Kandathil, et al., 2019; Wang, et al., 2017). Specifically, we selected a 
set of pixels with the top N predicted scores and calculated the percentage (accuracy) of ground-truth pixels that are 
found in the set. If N is not given a specific number in downstream analysis, topN means that we select the top 
number of pixels that is equal to the ground-truth number of positive pixels for each chromosome. 
 
 
3 Results 
 
 
3.1 Hyperparameter selection 
 
The testing results of hyperparameter tuning on chromosome 1 are shown in Table S4. The training data were 
generated from chromosomes 3 to X, while the validation data were extracted from chromosome 2. From the learned 
models with the positive weight 3, we observed that different batch sizes do affect validation loss and batch size 16 is 
a better selection for either one of the two normalization methods (instance or batch). After we fixed the batch size to 
16, we found that compared with 0.01 and 0.0001 using the initial learning rate 0.001 achieved a smaller validation 
loss. Since batch sizes matter and instance normalizations are not related to batch size, we applied batch 
normalization for all convolutional layers in our network. We extended the number of residual blocks to 40; each block 
has its dilation value for dilated convolutions (Table S4). After increasing the hidden dimension to 128, we obtained 
the final optimal combination of hyperparameters that achieved the lowest validation loss: the batch size 16, the 
learning rate 0.001 with automatically reducing, the kernel size 3, and the positive weight 1. The training and 
validation loss curves that we obtained with the optimal hyperparameters are shown in Fig. S3. We did not observe 
overfitting; instead, we obtained an almost perfect loss curve for validation. To train the other 22 models for blindly 
testing on chromosomes from 2 to X, we used the same hyperparameters as we obtained from the testing on 
chromosome 1.  
 
 
3.2 DeepChIA-PET(Hi-C) significantly outperforms Peakachu 
 
To make a fair comparison with Peakachu, we trained DeepChIA-PET with only Hi-C data as input. The 
hyperparameters for training DeepChIA-PET(Hi-C) were the same as the ones we obtained in the hyperparameter-
tuning process. The main difference is that the input channel is changed from three to one. We also made sure to 
train DeepChIA-PET(Hi-C) and Peakachu using the same input and ground-truth data. We used 
“score_chromosome” in Peakachu (Salameh, et al., 2020) to predict interaction probability per pixel for a 
chromosome. The comparison between Peakachu and DeepChIA-PET(Hi-C) is to directly evaluate their abilities in 
identifying pixel-specific ChIA-PET interactions.  
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We tested two chromosomes 1 and 2, and the comparison results are shown in Figures 2 and S4, respectively. With 
the increase of the number of negative pixels, the AP values keep reducing for both DeepChIA-PET(Hi-C) and 
Peakachu, whereas the AUCs have not been affected (Fig. 2A). Notably, DeepChIA-PET(Hi-C) achieved higher APs 
than Peakachu and almost perfect AUC (0.995) compared with 0.753 for Peakachu. In addition, the PR curves shown 
in Fig. 2B for neg=20pos also indicate that DeepChIA-PET(Hi-C) significantly outperforms Peakachu. Moreover, we 
compared top accuracy scores for the two methods (Fig. 2C), revealing that DeepChIA-PET(Hi-C) can successfully 
recover or pinpoint many more ground-truth pixels than Peakachu. We can draw the same conclusions from Fig. S4 
for blindly testing on chromosome 2.  
 

 
Fig. 2. DeepChIA-PET(Hi-C) outperforms Peakachu for blindly testing CTCF ChIA-PET on chromosome 1 in 
GM12878. (A) The AP and ROC-AUC scores in terms of different numbers of negative pixels when evaluating. (B) 
Precision-recall curve for the number of negative pixels equaling 20 times the number of positive pixels. (C) The topN 
accuracy where N equals four different values.  
 
 
3.3 ChIP-seq data improve the performance of DeepChIA-PET 
 
We next investigated the contribution of ChIP-seq data in DeepChIA-PET. We trained four more DeepChIA-PET 
models with only Hi-C as input, with only ChIP-seq as input, and with both ChIP-seq and Hi-C as input for blindly 
testing on chromosomes 1 and 2 and the evaluation results are shown in Figures S5 and 3, respectively. As in the 
comparisons between DeepChIA-PET(Hi-C) and Peakachu, we calculated AP and AUC with different numbers of 
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negative pixels, drew the PR curves for neg=20pos, and obtained the topN accuracy scores. From Fig. 3, we can 
conclude that (1) DeepChIA-PET with both Hi-C and ChIP-seq as input consistently outperforms the other two cases 
in all the metrics; (2) the performance of DeepChIA-PET with Hi-C as input, or DeepChIA-PET(Hi-C), is much more 
close to DeepChIA-PET(Hi-C and ChIA-PET) than DeepChIA-PET with only ChIP-seq as input, or DeepChIA-
PET(ChIP-seq); and (3) adding ChIP-seq along with Hi-C does significantly improve the performance of our classifier. 
The same conclusions can be drawn when blindly testing on chromosome 1 (Fig. S5).   
 

 
Fig. 3. Ablation studies of the contribution of ChIP-seq. The evaluations for DeepChIA-PET with only Hi-C, only ChIP-
seq, and both as input were conducted on chromosome 2 for CTCF ChIA-PET in GM12878. (A) The AP and ROC-
AUC scores for different numbers of negative pixels. (B) Precision-recall curve for neg=20pos. (C) The topN accuracy 
where N equals four different values. 
 
 
3.4 Overall performance on CTCF ChIA-PET in GM12878 
 
DeepChIA-PET achieved state-of-the-art performance on all testing chromosomes from chromosome 1 to the X-
chromosome in GM12878 (Fig. 4A). Specifically, we achieve almost perfect AUC (mean ≥ 0.997) for all five different 
numbers of negative pixels, and the higher AP values also indicate that DeepChIA-PET can successfully identify 
positive pixels among an imbalanced pool that is heavily occupied by negatives.  
 
Next, we focused on our predicted topN pixels to find out if these pixels have similar transcriptional properties with 
ground-truth pixels. We first found that the genomic regions surrounding anchors from both topN and ground truth are 
enriched with CTCF (Fig. 4B), which is what we expected for CTCF ChIA-PET interactions. We then found CTCF 
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motif orientation using MotifFinder in Juicer (Durand, et al., 2016) and observed that the pairs of CTCF motifs that 
anchor most of topN and ground-truth pixels (> 60%) are in the convergent orientation (Fig. 4C) and our topN pixels 
have very similar CTCF motif orientation (convergent and tandem) with ground truth.  
 
Moreover, we assigned regulatory elements (promoters, enhancers, or none for not finding any promoter or 
enhancer) to each anchor at topN and ground-truth loci and counted the numbers of pixels that belong to each of the 
six different regulatory element combinations. The promoter and enhancer loci of GM12878 were extracted from 
ChromHMM segmentations in ENCODE with 10 states. We found that most of the pixels in both topN and ground 
truth are related to at least one of the well-known regulatory elements (Fig. 4D). Particularly, our topN set contains 
more significant interactions than ground truth for the three regulatory element combinations (enhancer-enhancer, 
promoter-promoter, and enhancer-promoter). 

 
Fig. 4. Overall performance of DeepChIA-PET for predicting CTCF ChIA-PET interactions on all testing 
chromosomes in GM12878. (A) The boxplots of APs and ROC-AUCs for all testing chromosomes (mean values are 
added above each boxplot). (B) The average CTCF coverages surrounding anchors from ground truth and our 
predicted topN pixels. (C) CTCF motif orientation analysis at anchors from ground truth and our predicted topN pixels. 
(D) ChIA-PET interactions between promoters and enhancers. 
 
We showed two specific examples of our predicted CTCF ChIA-PET interactions on chromosomes 1 (Fig. 5) and 10 
(Fig. S6) in GM12878. We observed several TADs in the heat map of KR-normalized Hi-C. We also found that the 
insulator-binding protein CTCF coverages are enriched not only in surrounding TAD boundary regions but also at 
some non-boundary loci. Moreover, we found that the anchors of ground-truth ChIA-PET interactions are usually 
located between the genomic regions that are enriched for the binding of CTCF, and the heat map of our predicted 
CTCF ChIA-PET is so accurate that it looks like a mirror image of the ground-truth heat map. 
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Fig. 5. A specific example of our predictions for CTCF ChIA-PET interactions on chromosome 1 in GM12878. From 
top to bottom: the KR-normalized Hi-C, the CTCF coverage at 10-kb resolution, the heat map for ground-truth ChIA-
PET interactions, and the heat map for our predicted ChIA-PET interactions.  
 
 
3.5 Overall performance on CTCF ChIA-PET in HeLa 
 
We next evaluated DeepChIA-PET on CTCF ChIA-PET in a different cell type HeLa. We first checked the similarities 
of ground-truth CTCF ChIA-PET between GM12878 and HeLa. We found that the number of HeLa loops is less than 
half of the number of GM12878 loops and ~65.5% HeLa ChIA-PET loops were found in GM12878 (Fig. 6A), 
indicating that HeLa ChIA-PET interactions are sparser than GM12878.  
 
The overall performance of DeepChIA-PET for predicting CTCF ChIA-PET in HeLa is shown in Fig. 6B. Compared 
with the performance in GM12878, the AUC values have a slight decrease from 0.997 to 0.981, and the AP values 
have a noticeable drop when using all negative pixels (neg=All), which may result from the massively increasing of 
the number of negative pixels. The anchors from ground truth and the topN set in HeLa are enriched for CTCF (Fig. 
6C), and the two sets (topN and ground truth) have very similar loop distributions for the six different regulatory 
element combinations (Fig. 6D). As in GM12878, the promoter and enhancer loci of HeLa were extracted from 
ChromHMM segmentations in ENCODE.  
 
A specific example of our predictions on chromosome 6 in HeLa is shown in Fig. 7, we can make the same 
conclusions as we made from Figures 5 and S6. In summary, DeepChIA-PET that was trained with CTCF ChIA-PET 
in GM12878 can accurately predict CTCF ChIA-PET in HeLa.   
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Fig. 6. Overall performance of DeepChIA-PET for CTCF ChIA-PET predictions in a different cell type HeLa. (A) 
Overlap in ground-truth ChIA-PET interactions between GM12878 and HeLa. (B) The boxplots of APs and ROC-
AUCs for all testing chromosomes (mean values are added above each boxplot). (C) The average CTCF coverages 
surrounding anchors from ground truth and our predicted topN pixels. (D) ChIA-PET interactions between promoters 
and enhancers. 

 
Fig. 7. A specific example of our predictions for CTCF ChIA-PET on chromosome 6 in HeLa. From top to bottom: KR-
normalized Hi-C, CTCF coverage at 10-kb resolution, ground-truth ChIA-PET, and our predicted ChIA-PET. 
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3.6 Overall performance on RNAPII ChIA-PET in GM12878 and HeLa 
 
Since ChIA-PET experiments can be conducted on different DNA-binding proteins, we used DeepChIA-PET to 
predict RNAPII ChIA-PET in GM12878 and HeLa. We first compared the similarities between CTCF ChIA-PET of 
GM12878 and RNAPII ChIA-PET in GM12878 and HeLa (Fig. 8A and B) and found that RNAPII ChIA-PET does not 
share most of its loops with CTCF ChIA-PET even through the cell types are the same.  
 
The genome-wide AP and AUC values of DeepChIA-PET are shown in Fig. 8C. For predicting RNAPII ChIA-PET of 
GM12878, our tool achieved a higher AUC of 0.973, and the AP performs well except when we used all negative 
pixels (neg=All) for evaluation. However, for predicting RNAPII ChIA-PET of HeLa, we achieved an AUC of 0.771, 
and the AP values keep reducing with the increase of negative pixels used for evaluation. The reason that DeepChIA-
PET did not perform well in predicting RNAPII ChIA-PET of HeLa may be that RNAPII ChIA-PET loops of HeLa have 
shorter anchor lengths and longer genomic distances (Fig. 8D), which is significantly different from what we found 
from CTCF ChIA-PET of GM12878. Together, DeepChIA-PET can accurately predict RNAPII ChIA-PET of GM12878, 
but not perform that well in RNAPII ChIA-PET of HeLa.  

 
Fig. 8. Overall performance of DeepChIA-PET on predicting RNAPII ChIA-PET in GM12878 and HeLa. The overlaps 
in ground-truth pixel-wise ChIA-PET interactions between CTCF GM12878 and RNAPII GM12878 are shown in (A), 
and between CTCF GM12878 and RNAPII HeLa are shown in (B). (C) The boxplots of APs and ROC-AUCs for all 
testing chromosomes in both GM1278 and HeLa. (D) RNAPII ChIA-PET interactions for HeLa are significantly 
different from either the RNAPII ChIA-PET in GM12878 or the CTCF ChIA-PET in both GM12878 and HeLa by 
having shorter anchor lengths and longer genomic distances between interactions. Mean comparisons were 
conducted with student’s t-Test (****: p <= 0.0001).  
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3.7 Overall performance on RAD21 ChIA-PET in GM12878 and K562 from different experiments 
 
The CTCF and RNAPII ChIA-PET data that we used for evaluation are from the same study of (Tang, et al., 2015). In 
this section, we evaluated DeepChIA-PET in predicting RAD21 ChIA-PET interactions, which were obtained from 
different experiments (Heidari, et al., 2014).  
 
As before, we first compared the similarities of ChIA-PET loops between CTCF of GM12878 and RAD21 of 
GM12878, and between CTCF of GM12878 and RAD21 of K562. We found ~87.1% RAD21 loops of GM12878 are 
shared with CTCF loops of GM12878 (Fig. 9A) and ~48.6% RAD21 loops of K562 are also detected in CTCF loops of 
GM12878 (Fig. 9B). Therefore, the two RAD21 ChIA-PET datasets are more similar to CTCF ChIA-PET of GM12878 
than between the two RANPII ChIA-PET loop sets.  
 
We reported AP and ROC-AUC scores of DeepChIA-PET for predicting RAD21 ChIA-PET of GM12878 and RAD21 
ChIA-PET of K562 (Fig. 9C). DeepChIA-PET achieved almost perfect ROC-AUCs (0.998  for GM12878 and 0.975 for 
K562) and also obtained high AP values (0.972 for GM12878 and 0.891 for K562) when neg=20pos. We also 
reported different topN accuracy scores obtained on all testing chromosomes from chromosome 1 to the X-
chromosome (Fig. S7) and found that the more top predicted pixels that we considered for evaluations, the higher 
topN accuracy we obtained, which can be used as a guide when deciding on the number of top predicted interactions 
to be used in applications.  

 
Fig. 9. Overall performance on predicting RAD21 ChIA-PET in both GM12878 and K562. The overlaps in ground-
truth pixel-wise ChIA-PET interactions between CTCF GM12878 and RAD21 GM12878 are shown in (A), and 
between CTCF GM12878 and RAD21 K562 are shown in (B). (C) The boxplots of APs and ROC-AUCs for all testing 
chromosomes in both GM1278 and K562. Note: since the Hi-C matrix for chromosome 9 in K562 is empty, the 
evaluation results shown in (C) for K562 do not include the testing scores for chromosome 9. 
 
 
3.8 Comparison between CTCF ChIA-PET and Hi-C peaks 
 
The anchors of Hi-C peaks/loops called on Hi-C by HiCCUPS have been typically found at TAD boundaries and 
CTCF binding sites (Rao, et al., 2014). We detected 8609 Hi-C peaks on Hi-C contact matrices of GM12878 at 10-kb 
resolution. We reported the overlaps between Hi-C peaks and ground-truth CTCF ChIA-PET interactions of GM12878 
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(Fig. 10A), and between Hi-C peaks and our topN predicted set (Fig. 10B). It is observed that most of the Hi-C peaks 
can also be found in the two CTCF ChIA-PET loop sets: 83.6% Hi-C peaks are shared with ground-truth ChIA-PET, 
whereas 87.7% Hi-C peaks are also found in topN, indicating that DeepChIA-PET has the ability to select Hi-C peaks 
as potential ChIA-PET loops.  
 
In addition, we explored the relationships between CTCF ChIA-PET interactions and TADs. We found that compared 
with 28% of randomly selected pixels, more than 78% of ground-truth and 80% of predicted topN CTCF ChIA-PET 
interactions are found within TADs (Fig. 10C). 
 

 
Fig. 10. Genome-wide overlaps between Hi-C peaks called by HiCCUPS and ground-truth CTCF ChIA-PET 
interactions (A), and between Hi-C peaks called by HiCCUPS and our predicted topN CTCF ChIA-PET interactions 
(B) in GM12878. When counting the accordant pixels, we allow ± 1 bin mismatch. (C) Compared with randomly 
selected pixels, most of the ground-truth and our predicted topN CTCF ChIA-PET interactions are found within TADs.   
 
 
 
Conclusions 
 
In this study, we present DeepChIA-PET, a supervised deep-learning method for predicting ChIA-PET from Hi-C and 
ChIP-seq data. Our evaluation results indicate that DeepChIA-PET with only Hi-C as input significantly outperforms 
Peakachu. The ablation studies prove that ChIP-seq data as input contribute to the classification task of DeepChIA-
PET. For predicting CTCF ChIA-PET in GM12878 and HeLa, DeepChIA-PET can achieve ROC-AUCs of 0.997 and 
0.973, and our predicted topN loops have very similar patterns of CTCF motif orientation with ground-truth ChIA-PET 
interactions in GM12878. The regulatory elements are widely found at most of the anchors from our topN loops, and 
the distributions of different regulatory element interactions are very similar to those from the ground truth. We also 
reported that DeepChIA-PET can be used to accurately predict non-CTCF ChIA-PET interactions, including RNAPII 
ChIA-PET of GM12878, RAD21 ChIA-PET of GM12878, and RAD21 ChIA-PET of K562, even though these ChIA-
PET interactions are usually different from CTCF ChIA-PET of GM12878 in terms of the number of total and 
overlapping interactions. At last, we compared CTCF ChIA-PET interactions with Hi-C peaks and TADs and found 
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that our topN loops have more common pixels with Hi-C peaks than ground truth and the number of our topN loops 
that are located within TADs is more than ground truth.   
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