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Abstract

Diffusion MRI studies with resolutions of a few hundred micrometers have consistently shown that in the cortex

water diffusion occurs preferentially along radial and tangential orientations with respect to the cortical surface, in

agreement with histology. These dominant orientations do not change significantly even if the relative contributions

from microscopic water pools to the net voxel signal vary across studies that use different diffusion times, b-values,

TEs, and TRs. With this in mind, we propose a practical new framework for measuring non-parametric diffusion

tensor distribution (DTD) MRI by constraining the microscopic diffusion tensors of the DTD to be diagonalized

using the same orthonormal reference frame of the mesoscopic voxel. In each voxel, the constrained DTD (cDTD) is

completely determined by the correlation spectrum of the microscopic principal diffusivities associated with the axes

of the voxel reference frame. Consequently, all cDTDs are inherently limited to the domain of positive definite tensors

and can be reconstructed efficiently with numerical methods for solving Inverse Laplace Transform problems.

Moreover, cDTDs can be measured using only data acquired with conventional single diffusion encoding, which can

be obtained more efficiently than measurements with multiple diffusion encoding. In tissues with radial symmetry,

such as the cortex, we can further constrain the cDTD to contain only cylindrically symmetric diffusion tensors and

measure the 2D correlation spectra of radial and tangential diffusivities. To demonstrate this framework, we perform

numerical simulations and analyze high-resolution dMRI data. We image 2D cDTDs in the cortex and derive

marginal distributions of radial and tangential diffusivities, distributions of the microscopic fractional anisotropies

and mean diffusivities, as well as their 2D correlation spectra to quantify the shape-size characteristics of the

microscopic diffusion tensors. Signal components corresponding to specific bands in the measured correlation spectra

show high specificity to cortical laminar structures observed with histology. Our framework drastically simplifies the

measurement of non-parametric DTDs and may be applied retrospectively to analyze existing high-resolution dMRI

data. Moreover, the framework provides a non-parametric generalization of DTI and subsumes existing diffusion
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signal representations and tissue models, enabling their harmonization, cross-validation, and optimization in specific

clinical applications characterizing tissue changes.

Introduction1

By quantifying the microscopic motions of water molecules diffusion MRI (dMRI) provides a sensitive clinical tool to2

non-invasively probe the tissue structures at length scales (≈ 5µm) much smaller than the voxel size. In isotropic and3

anisotropic tissues, the dMRI signal at low diffusion sensitizations (b-values) can be described phenomenologically4

using diffusion tensor imaging (DTI) [Basser et al., 1994a,b]. In DTI, the diffusion signal attenuation in each voxel is5

modeled using a diffusion tensor, D, which has 6 degrees of freedom. The diffusion tensor can be decomposed or6

diagonalized in an orthogonal reference frame whose principal coordinate axes are characterized by the eigenvectors7

ϵ1, ϵ2, ϵ3. The normalized orthogonal unit vectors along the principal tensor axes represent 3 degrees of freedom of D8

that define its orientation with respect to the laboratory reference frame. The scalar principal diffusivities λ1, λ2, λ39

corresponding to these directions represent the other 3 degrees of freedom of D and determine the mean diffusivity10

and diffusion anisotropy. In general, D can be written as:11

D = λ1ϵ1ϵ
T
1 + λ2ϵ2ϵ

T
2 + λ3ϵ3ϵ

T
3 (1)

, where ϵ1ϵ1
T , ϵ2ϵ2

T , ϵ3ϵ3
T are the principal coordinate axes dyads (or rank-1 tensors) derived from the12

eigenvectors of the diffusion tensor while the positivity of the principal diffusivities (i.e., eigenvalues of D) guarantees13

that D is positive definite.14

However, at b-values larger than 1500s/mm2 the dMRI tissue signal is more sensitive to the intravoxel15

variation of water diffusion properties, and the DTI approximation may no longer hold. To quantify the intravoxel16

diffusion heterogeneity many approaches have been proposed, including using signal representations with higher-order17

terms, such as diffusion kurtosis imaging (DKI) [Jensen et al., 2005], generalized diffusion tensor imaging (GDTI)18

[Liu et al., 2004, Özarslan and Mareci, 2003], mean apparent propagator (MAP) MRI [Avram et al., 2016, Özarslan19

et al., 2013], as well as multi-exponential, multi-tensor, or multi-compartment tissue diffusion models [Assaf and20

Basser, 2005, Mulkern et al., 1999, Stanisz et al., 1997, Zhang et al., 2012].21

Jian et al., extended the multi-tensor signal representations to describe intravoxel diffusion heterogeneity using22

a Wishart distribution of microscopic diffusion tensors [Jian et al., 2007]. Even though this parametric distribution is23

limited in its ability to accurately quantify the range of diffusion heterogeneity in healthy and diseased tissues, it24

nonetheless inspired great interest in measuring the underlying distribution of microscopic diffusion tensors (DTDs).25

In general, however, to disentangle microscopic processes with arbitrary diffusivities, diffusion anisotropies, and26

orientations, it is necessary to sensitize the measurement to diffusion-diffusion correlations [Callaghan and Komlosh,27

2002, Cory et al., 1990, Mitra, 1995] by preparing the signal with multiple pulsed-field gradient (mPFG), or multiple28

diffusion encodings (MDE). Historically, biological and clinical applications of mPFG or MDE methods [Komlosh29

et al., 2007] have focused on estimating microstructural parameters such as the average axon diameters [Avram et al.,30

2013a,b, Koch and Finsterbusch, 2008, Komlosh et al., 2018] or pore size distributions [Benjamini et al., 2016]. More31

recently, MDE-prepared MRI measurements were described using tensor-valued diffusion encoding [Topgaard, 2017,32

Westin et al., 2016] in the context of probing diffusion heterogeneity in voxels composed of multiple non-exchanging33

Gaussian diffusion processes described with diffusion tensors whose corresponding ellipsoids have distinct sizes,34

shapes, and orientations, i.e., the DTD.35
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While, at least in principle, one can reconstruct DTDs from a very large number of measurements with36

encodings sampling the 6D space of b-tensors, in practice, the limited signal-to-noise ratio (SNR) and long scan37

duration make such clinical or biological experiments very challenging [Song et al., 2022, Topgaard, 2017]. To reduce38

the requirements for the high SNR level and a large number of measurement encodings some have made simplifying39

assumptions such as cylindrical symmetry of microscopic tensors [Topgaard, 2017] which reduce the dimensionality of40

non-parametric DTD reconstructions from six to four degrees of freedom. Alternatively, one can use parametric41

models (e.g., analytical functions) to estimate features of the DTDs [Jian et al., 2007, Magdoom et al., 2021,42

Szczepankiewicz et al., 2016, Westin et al., 2016] from data acquired using MDE and conventional single diffusion43

encoding (SDE) [Stejskal and Tanner, 1965].44

Meanwhile, numerous studies using dMRI and other modalities provide converging evidence that, at a45

sufficiently small (i.e., mesoscopic) length scale, neuronal tissues, including cortical gray matter (GM) are organized46

preferentially along local orthogonal frames of reference. Ever since the earliest observations of cortical cyto- and47

myeloarchitecture [Brodmann, 1909, Cajal, 1909, Vogt, 1910], histochemistry and immunohistochemistry studies have48

consistently shown that cellular and subcellular structures at the microscopic scale are oriented predominantly along49

orthogonal, i.e., radial and tangential, orientations with respect to the cortical surface. This orthogonal reference50

frame persists at larger, mesoscopic scales of tens and hundreds of micrometers, and can be clearly seen in the51

arrangements of cells with various sizes, shapes and densities forming tissue architectural patterns along the same52

radial and tangential orientations such as cortical columns and laminae, respectively [Amunts and Zilles, 2015,53

Rubenstein and Rakic, 2020]. Most recently, studies using state-of-the-art electron microscopy (EM) in cortical GM54

[Lichtman and Denk, 2011, Shapson-Coe et al., 2021] have mapped the 3D organization of neuronal cells in gray55

matter with nanometer resolution over fields-of-view (FOVs) of hundreds of micrometers. These studies revealed in56

unprecedented detail anisotropic tissue structures, such as the microvasculature [Zhang et al., 2015], branching57

dendrites, neurofilaments, and other cell processes in various neuronal and non-neuronal cells (pyramidal neurons,58

intrinsic neurons, glial cells, etc.) roughly aligned along a local orthogonal frame of reference.59

At mesoscopic length scales of a few hundred micrometers, diffusion processes in neural tissues align closely60

with the dominant orientations in the local tissue microstructure. Histological validation studies using ultra61

high-resolution dMRI have consistently found a good correspondence between the orientations of the underlying tissue62

microstructure and the orthogonal DTI reference frame [Budde and Annese, 2013, Seehaus et al., 2013, 2015] defined63

by ϵ1ϵ1
T , ϵ2ϵ2

T , ϵ3ϵ3
T , or the fiber orientation distribution functions (FOD) [Tournier et al., 2004] measured with64

high-angular resolution diffusion MRI (HARDI) [Tuch et al., 2002] in the brain [Leergaard et al., 2010]. Numerous65

dMRI studies of cortical microstructure in fixed tissues [Aggarwal et al., 2015, Dyrby et al., 2011, Kleinnijenhuis et al.,66

2013, Leuze et al., 2014, McNab et al., 2009, 2013, Miller et al., 2011] and in vivo [Gulban et al., 2018, Heidemann67

et al., 2010, Jaermann et al., 2008, Kleinnijenhuis et al., 2015, McNab et al., 2013, Wang et al., 2021], for review see68

[Assaf, 2019], suggest that at submillimeter spatial resolution diffusion in the cortex is anisotropic and varies with the69

cortical folding geometry [Cottaar et al., 2018], in good agreement in with the cortical cyto- and myeloarchitectonic70

features observed with histology and other modalities [Nieuwenhuys, 2013]. Moreover, HARDI-derived FODs show71

preferentially radial and tangential components [Aggarwal et al., 2015, Kleinnijenhuis et al., 2013, Leuze et al., 2014]72

which evoke cortical columns [Petersen, 2007, Yacoub et al., 2008] and layers [Bastiani et al., 2016, Nagy et al., 2013],73

respectively, that can be observed with post-mortem histological staining. In addition, studies of laminar specific74

intra-cortical connectivity measured with diffusion fiber microtractography [Leuze et al., 2014] of cortical FODs75

[Aggarwal et al., 2015, Gulban et al., 2018] suggest a similar orthogonal (radial and tangential) organization.76

Increasing the spatial resolution in dMRI reduces the intravoxel angular dispersion of subvoxel diffusion77
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processes and implicitly the orientational variance of the DTD. At submillimeter spatial resolution, dMRI is sensitive78

to cortical diffusion anisotropy and allows us to identify the radial and tangential orientations along which diffusion79

processes align. Recently, a careful survey of the high-resolution dMRI literature [Assaf, 2019] suggests that when80

different contrast preparations are used to vary the relative contributions of microscopic tissue water pools to net81

voxel dMRI signal in the cortex, the dominant diffusion orientations, as measured using the DTI eigenvectors or the82

directions of FOD peaks, remain unaffected even though the relative diffusivities or FOD amplitudes along these83

orientations may change. At mesoscopic spatial resolutions of a few hundred micrometers, the orientational84

characteristics of the dMRI signal remain remarkably consistent across experiments with fixed and live cortical85

tissues using different T1- and/or T2-weightings, i.e., different echo time (TE), repetition time (TR), or inversion86

time (TI), diffusion sensitizations (b-values) or diffusion/mixing times. These findings imply that at mesoscopic87

spatial resolutions, subvoxel cortical diffusion tensors from microscopic water pools are coincident along the same88

dominant (radial and tangential) orientations and may have potentially different diffusion anisotropies and89

diffusivities. Implicitly, the DTD is predominantly determined by the variations in the shapes (diffusion anisotropies)90

and sizes (diffusivities) of the microscopic diffusion tensors, rather than by their relative orientations.91

In this study, we describe a new framework that simplifies the measurement and analysis of diffusion92

heterogeneity in microscopic water pools within gray matter using a non-parametric DTD. Specifically, if the voxel93

size is small enough compared to the curvature of the cortex, we can constrain all the microscopic (subvoxel) diffusion94

tensors to share the same principal reference frame determined, for instance, by the dyadic of the principal diffusion95

eigenvectors, ϵ1, ϵ2, ϵ3, measured with DTI. With this constraint, the DTD is completely characterized by the voxel96

reference frame ϵ1ϵ1
T , ϵ2ϵ2

T , ϵ3ϵ3
T , and by the 3D joint distribution of corresponding subvoxel principal diffusivities,97

λ1, λ2, λ3, which are random variables. This joint probability distribution can be estimated with a 3D Inverse98

Laplace Transform analysis using only single diffusion encoded (SDE) MR measurements. This practical,99

non-parametric framework for mapping DTDs, called COnstrained Reference frame diffusion TEnsor Spectroscopic100

(CORTECS) MRI, could quantify a wide range of cortical diffusion heterogeneity in healthy or diseased brains.101

Methods102

Higher spatial resolution reduces the intravoxel orientational dispersion103

The net diffusion signal in an imaging voxel containing complex tissue microstructure can be described generally104

using an ensemble of subvoxel (i.e., microscopic) diffusion tensors with different sizes, shapes, and orientations,105

assumed to be in slow exchange, i.e., the diffusion tensor distribution (DTD). Ordinarily, we can quantify DTDs by106

analyzing diffusion-weighted images (DWIs) acquired with multidimensional diffusion encoding (MDE) [Magdoom107

et al., 2021, Topgaard, 2017, Westin et al., 2016]. The net dMRI voxel signal, S, is a function of the tensor-valued108

encoding variable called the b-tensor, b, computed by integrating the time-dependent diffusion gradient waveforms109

amplitudes, and is related to the underlying DTD, p(D):110

S (b) =

∫
M+

p (D) e−b·D dD (2)

, where the integral runs over the space or domain of all positive definite matrices, M+. Since the random111

variable D has 6 degrees of freedom, p(D) is essentially a 6-dimensional joint probability distribution (or correlation112

spectrum) of the diffusion tensor elements. The high dimensionality and the inherent challenge of defining the113

subspace of positive-definite random tensor-valued variables, D, make solving this problem infeasible in practice, as114
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no closed-form solution exists. Measuring p(D) requires a prohibitively large number of measurements with a very115

high signal-to-noise ratio (SNR) and MDE. Previously, approximations to p(D) have been proposed either by116

assuming parametric models and/or by using statistical reconstruction algorithms [Jian et al., 2007, Magdoom et al.,117

2021, Szczepankiewicz et al., 2016, Topgaard, 2017, Westin et al., 2016].118

In cortical GM the orthogonal coordinate axes along which diffusive fluxes align at the microscopic scale of119

cellular and subcellular structures (i.e., diffusion length scale) are propagated at larger mesoscopic scales guiding the120

assembly of these structures into orthogonal tissue architectural patterns of cortical laminae and columns121

[Nieuwenhuys, 2013, Rubenstein and Rakic, 2020]. If the voxel size of dMRI data is significantly smaller than the122

minimum radius of the curvature of the underlying anatomy (i.e., cortical folding) the orientational variance of123

subvoxel (microscopic) diffusion processes can be neglected (Fig. 1). Microscopic diffusion processes are coincident124

with the axes of the local microstructural reference frame determined by the cortical cyto- and myeloarchitecture. For125

a continuously varying cortical anatomy with a minimum radius of curvature, R, the range of orientational126

misalignment between the microscopic diffusion tensors and the voxel reference frame, ±θmax, in a cubic voxel of side127

length, x, is:128

θmax = tan−1

(
x
√

3

2R

)
(3)

Fig. 1B shows that θmax decreases rapidly at low spatial resolutions, R
x , but changes slowly at higher values of129

R
x (Fig. 1B). At a spatial resolution of a few hundred micrometers the voxel size is much smaller than the cortical130

radius of curvature (R=5mm) leading to very small values of θmax. Under these circumstances, it is reasonable and131

practical to constrain all diffusion tensor processes in microscopic water pools throughout the voxel (i.e., the DTD) to132

be described using the same local orthogonal reference frame.133

COnstrained Reference frame diffusion TEnsor Correlation Spectroscopic (CORTECS)134

MRI135

Fixing the local reference frame for all subvoxel tensors has several surprising advantages. First, it significantly136

reduces the dimensionality of p(D) and decouples the statistical random variables needed to describe p(D).137

Specifically, the 6D vector/tensor random variable, D, corresponding to the 6 components (or degrees of freedom)138

needed to describe the general DTD is reduced to a 3D random variable comprising the three principal diffusivities,139

λ1, λ2, λ3 along the axes of the fixed voxel frame of reference, ϵ1ϵ1
T , ϵ2ϵ2

T , ϵ3ϵ3
T , respectively, which are sufficient to140

describe the constrained DTDs (cDTDs) within the Coordinate Reference frame diffusion Tensor Correlation141

Spectroscopic (CORTECS) MRI framework (Fig. 2A,B). Using the eigenvalue decomposition of the diffusion tensor142

(Eq. 1) we can re-write Eq. 2 as a more tractable 3D Inverse Laplace transform (ILT) problem:143

S (b) =

∫ ∞

0

∫ ∞

0

∫ ∞

0

p(λ1, λ2, λ3)e−λ1ϵ1
Tbϵ1−λ2ϵ2

Tbϵ2−λ3ϵ3
Tbϵ3 dλ1dλ2dλ3 (4)

, where ϵi
Tbϵi is a non-negative scalar weighting (quadratic form) that represents the reciprocal Laplace144

variable corresponding to λi. Besides the drastic reduction in the computational complexity due to the dimensionality145

reduction, the CORTECS framework inherently enforces positive definiteness of diffusion tensors by requiring146

positivity of the λi.147

Another very important advantage of constraining the reference frames of the DTD tensor random variable is148
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that we can measure p(λ1, λ2, λ3) using only DWIs with single pulse-field gradient (sPFG) or single diffusion149

encoding (SDE), a.k.a. linear tensor encoding with rank-1 b-tensors. For a conventional SDE DWI with an arbitrary150

b-value, b, and diffusion gradient direction given by the unit vector g = [gx, gy, gz]
T

, the encoding b-tensor has151

rank-1, b = bggT . We can rewrite the signal equation above with respect to the components of g expressed in the152

voxel frame of reference, g′ = [g′1, g
′
2, g

′
3]

T
= [ϵ1ϵ2ϵ3]g:153

S (b) =

∫ ∞

0

∫ ∞

0

∫ ∞

0

p(λ1, λ2, λ3)e−λ1bg
′2
1e−λ2bg

′2
2e−λ3bg

′2
3 dλ1dλ2dλ3 (5)

The factors bg′
2
i are the non-negative weighting parameters of the principal diffusivities, λi, in the Laplace154

Transform representation of the signal. We can generate a wide range of joint weighting parameters bg′
2
i by varying155

the b-value and diffusion gradient orientations in conventional SDE preparations. Subsequently, from multiple SDE156

DWIs we can estimate, in each voxel, the correlation spectrum of principal diffusivities, p(λ1, λ2, λ3) which quantifies157

the properties of all microscopic diffusion tensor processes. Compared to MDE-DWIs, the conventional SDE-DWI158

can be acquired efficiently using product single pulsed-field gradient (sPFG) spin-echo (SE) diffusion MR sequences159

[Stejskal and Tanner, 1965] available on all microimaging and clinical MRI scanners. In general, SDE-DWIs can160

achieve higher b-values, shorter echo times (TEs), higher spatial resolution, and/or better SNR than MDE-DWIs161

using double or triple diffusion encoding. Moreover, the spectral reconstruction of p(λ1, λ2, λ3), henceforth referred to162

as 3D cDTD, does not require statistical methods to enforce positive definiteness but can still benefit from various163

techniques that may be used to solve ILT-like problems, such as L2- or L1-norm regularization, compressed sensing164

[Bai et al., 2015], or constrained optimization [Benjamini et al., 2016], etc.165

If the underlying microstructure is radially symmetric, i.e., varying along a single preferred orientation, we can166

make an additional simplification to the problem and assume locally oriented cylindrical symmetry for each ensemble167

of subvoxel diffusion tensors (Fig. 2F,G,H). In this case, the voxel reference frame is determined by a single168

orientation, ϵ1ϵ1
T , i.e., the radial direction, which implicitly defines the orthogonal, tangential component described169

by the rank-2 tensor ϵ2ϵ2
T + ϵ3ϵ3

T = I3 − ϵ1ϵ1
T , where I3 is the 3x3 identity matrix. We can relate the signal in a170

voxel with fixed principal axis ϵ1ϵ1
T to a two-dimensional correlation spectrum of radial and tangential diffusivities,171

p(λr, λt) that completely determines the corresponding cylindrically symmetric DTD:172

S (b) =

∫ ∞

0

∫ ∞

0

p(λr, λt)e
−λrb cos

2 ϕge−λtb sin
2 ϕg dλrdλt (6)

The parameter ϕg = arccos(ϵ1
Tg) represents the angle between the applied gradient direction, g, and the173

radial direction of the underlying reference frame, ϵ1ϵ1
T . In radially symmetric tissues such as the cortex with174

cytoarchitecture aligned along a dominant radial direction (columns) and the corresponding tangential plane175

(laminae), diffusion processes are likely oriented and cylindrically symmetric and can be more economically and176

effectively quantified using this lower-dimensional correlation spectrum, called 2D cDTD.177

Lastly, in a final simplifying step, if all subvoxel diffusion processes are isotropic, the correlation spectrum of178

diffusion tensor eigenvalues reduces to a distribution of a single scalar diffusivity random variable, λ0, which can be179

viewed as 1D cDTD:180

S (b) =

∫ ∞

0

p(λ0)e−λ0b dλ0 (7)

As an aside, we should point out an important connection between 1D cDTD MRI and our previously181

proposed methods for one- and multidimensional MD spectroscopic MRI using isotropic diffusion encoding (IDE)182
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[Avram et al., 2019, 2021]. Mapping non-parametric spectra of MD values in microscopic tissue water pools using183

multiple IDE measurements does not require that diffusion in these pools is isotropic. Meanwhile, the 1D cDTD MRI184

spectral reconstruction using Eq. 7 correctly quantifies the spectra of water mobilities only if all diffusion processes185

within the voxel are isotropic, in which case the two methods will provide congruent results.186

Mapping distributions and correlation spectra of microscopic fractional anisotropy and187

mean diffusivity188

From the measured cDTD within each voxel, we can compute non-parametric distributions and correlation spectra of189

DTI-derived parameters of microscopic diffusion tensors, such as fractional anisotropy (FA) or mean diffusivity (MD).190

Specifically, we can define a new random variable, α, that quantifies the FA of each microscopic diffusion tensor in191

the cDTD:192

α =

√
1

2

√
(λ1 − λ2)2 + (λ2 − λ3)2 + (λ3 − λ1)2√

λ21 + λ22 + λ23
(8)

From p(λ1, λ2, λ3) we can then derive the probability density function (one-dimensional spectrum) of the193

microscopic tensor FAs, pFA(α), which quantifies the cDTD shape heterogeneity non-parametrically. The statistical194

moments of the pFA(α) provide important microstructural parameters, such as the microscopic anisotropy, µFA,195

computed as the mean of pFA(α). Similarly, we can define a new cDTD-derived random variable that quantifies the196

mean diffusivity of each microscopic tensor, µ = (λ1 + λ2 + λ3)/3, and compute the probability density function197

pMD(µ) to describe the spectrum the microscopic water mobilities in tissue non-parametrically.198

Finally, from p(λ1, λ2, λ3) we can also compute non-parametric multidimensional correlation spectra of two or199

more microscopic DTI metrics. For example, we can quantify non-parametrically the correlations between the shapes200

and sizes of the diffusion ellipsoids corresponding to the underlying diffusion tensors by computing the joint201

probability density function of the two random variables α and µ, pFA−MD(α, µ). This practical and efficient202

decomposition of tissue heterogeneity based on diffusion anisotropy and mean diffusivity correlations in microscopic203

water pools may reveal specific microstructural motifs or patterns potentially relevant to many clinical applications.204

A generalization of various diffusion tensor signal models205

The CORTECS framework can describe a wide range of heterogeneous diffusion processes in healthy and diseased206

tissues and subsumes several diffusion tensor signal models. For example, if we constrain207

p(λ1, λ2, λ3) = δ(λ1 − λ′1, λ2 − λ′2, λ3 − λ′3), 3D cDTD simplifies to conventional DTI with the three mean208

eigenvalues λ′1, λ
′
2, λ

′
3. In this way, 3D cDTD can be viewed as a generalization of high-resolution DTI that209

quantifies intravoxel diffusion heterogeneity as a non-parametric correlation spectrum of the principal diffusivities in210

microscopic water pools. To describe multi-exponential or multi-tensor signal decays in heterogeneous tissues [Avram211

et al., 2020, Mulkern et al., 1999, Stanisz et al., 1997] we can assume that p(λ1, λ2, λ3) can be represented as a sum of212

delta functions (point masses) [Avram et al., 2020]. Moreover, the spectroscopic decomposition of the net voxel signal213

in cDTD makes it easy to disentangle partial volume contributions, such as those from cerebrospinal fluid (CSF), or214

free water in tissues caused by edema or other processes [Pasternak et al., 2009].215
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Monte Carlo Simulations216

We conducted Monte Carlo (MC) simulations to evaluate the numerical stability and accuracy of the voxel-wise217

estimation of 3D and 2D cDTDs from noisy data. Specifically, starting from ground truth DTDs constrained with218

fixed voxel reference frames (2D and 3D cDTDs), defined analytically using multidimensional lognormal distributions,219

respectively, we computed the dMRI signals expected from an experiment using conventional single-diffusion encoded220

(SDE) DWI measurements with the same gradient orientations and b-values as in our fixed-brain experiment221

described below. Next, from these ground truth signals, we generated 500 instances of noisy measurements by adding222

Rician noise to simulate real measurements with different SNR levels. From each set of noisy measurements, we223

computed the corresponding normalized 3D correlation spectra of principal diffusivities, or normalized 2D correlation224

spectra of radial and tangential diffusivities and compared the statistics of these spectra (mean and standard225

deviation) to the corresponding ground truth 3D and 2D DTDs, respectively.226

Ultra high-resolution dMRI of a fixed macaque monkey brain227

The brain of a healthy young adult rhesus macaque monkey (Macaca mulatta) weighing 13.55 kg was prepared using228

a well-controlled perfusion fixation process, as described in [Saleem et al., 2021]. In brief, the animal was deeply229

anesthetized with sodium pentobarbital and perfused transcardially with heparinized saline, followed by 4%230

paraformaldehyde in 0.1 M phosphate buffer (pH 7.4). After perfusion, the brain was removed from the cranium and231

post-fixed for 8h in the same buffered paraformaldehyde solution. Following the post-fixation, the brain was232

transferred into 0.1 M phosphate-buffered saline with sodium azide before the MRI data acquisition. All procedures233

were carried out under a protocol approved by the Institutional Animal Care and Use Committee of the National234

Institute of Mental Health (NIMH) and the National Institute of Health (NIH) and adhered to the Guide for the235

Care and Use of Laboratory Animals (National Research Council).236

Based on a preliminary structural MRI scan of the specimen, we fabricated a three-dimensional (3D) brain237

mold inside a cylindrical acrylic plastic container. The specimen was positioned inside the brain mold which was238

placed inside a custom 70mm cylindrical container. The container was filled with Fomblin and gently stirred under a239

vacuum for 4 hours to remove air bubbles. Subsequently, the container was sealed and prepared for MR imaging240

using a Bruker 7T horizontal-bore MRI scanner and a Bruker 72mm quadrature RF coil.241

We acquired whole-brain diffusion-weighted images (DWIs) with a cubic voxel size of 200µm, i.e., a242

375x320x230 imaging matrix on a 7.5x6.4x4.6cm field-of-view (FOV), using a diffusion spin-echo 3D echo-planar243

imaging (EPI) sequence with 50ms echo time (TE), 650ms repetition time (TR), 18 segments and 1.33 partial Fourier244

acceleration. We obtained a total of 112 DWIs using multiple b-value shells (100, 1000, 2500, 4500, 7000, and 10000245

s/mm2) with diffusion-encoding gradient orientations (3, 9, 15, 21, 28, and 36, respectively) uniformly sampling the246

unit sphere on each b-value shell and across shells. The diffusion gradient pulse durations and separations were δ=6ms247

and ∆=28ms, respectively. Each DWI volume was acquired using a single average in 52 minutes. The total duration248

of the diffusion MRI scan was 93 hours and 20 minutes. We processed all whole-brain high-resolution DWIs with the249

TORTOISE software pipeline [Pierpaoli et al., 2010] which includes image registration, Gibbs ringing correction250

[Kellner et al., 2016], denoising [Veraart et al., 2016], corrections for EPI distortion including eddy currents and B0251

inhomogeneities using a high-tissue contrast structural magnetization transfer (MT) scan as an anatomical template.252
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Histological processing253

After imaging, the perfusion-fixed brain specimen was prepared for histological processing with five different stains as254

described in [Saleem et al., 2021]. In brief, the brain blocks were frozen and serially sectioned through the entire255

brain at 50µm thickness in the coronal plane. Next, five sets of interleaved sections were processed for Parvalbumin256

(PV), neurofilament protein (SMI-32), choline acetyltransferase (ChAT), cresyl violet (CV), and Acetylcholinesterase257

(AchE) staining. Finally, we captured high-resolution images of stained sections using a Zeiss high-resolution slide258

scanner with a 20X objective. These images were then manually aligned with the corresponding slices from the MRI259

data for comparison of cortical architectonic features.260

2D CORTECS MRI in the fixed macaque brain261

From the distortion-corrected DWIs we estimated fiber orientation distribution functions and compared their262

orientations in the cortex to those of microscopic structures observed on histological images. We further analyzed the263

high-resolution DWIs using DTI and estimated the voxel reference frame, ϵ1ϵ1
T , ϵ2ϵ2

T , ϵ3ϵ3
T , through eigenvalue264

decomposition of the net diffusion tensor in each voxel (Eq. 1). Subsequently, using the diffusion principal diffusion265

direction ϵ1ϵ1
T , we computed the diffusion weightings of radial and tangential processes, b cos2 ϕg and b sin2 ϕg,266

respectively, for each measurement encoding and in each voxel. Finally, we estimated a piecewise continuous267

approximation of the 2D cDTD correlation spectrum, p(λr, λt), by numerically solving the 2D ILT problem (Eq. 6)268

using linear least-squares error minimization with L2-norm regularization [Hansen, 1992] and positivity constraints. A269

detailed description of the implementation of the spectral reconstruction algorithm can be found in [Avram et al.,270

2019, 2021]. The spectral bins of the cDTDs reconstruction were defined on a 12 x 12 grid of logarithmically spaced271

λr and λt values ranging from 0.01 − 2.00µm2/ms. From the 2D cDTD correlation spectrum p(λr, λt) we derived272

maps of the marginal distributions of the radial and tangential diffusivities, microscopic FA and MD, as well as the273

microscopic FA-MD correlation spectra, pFA−MD(α, µ), and related these results to cortical cytoarchitectonic274

features observed with histology. The microscopic FA-MD correlation spectra were estimated numerically from the275

cDTDs using an 11 x 11 grid of microscopic FA and MD values. We empirically selected several ad hoc spectral276

domains in the 2D joint distributions p(λr, λt) and pFA−MD(α, µ) to best capture the most prominent277

spatial-spectral correlations. We compared maps of the signal components corresponding to these domains to the278

cortical cytoarchitectonic features in the corresponding stained tissue section. The cDTD reconstruction and analysis279

for the numerical simulations and fixed brain experiments were implemented in MATLAB.280

Results281

Monte Carlo Simulations282

Monte Carlo (MC) simulations of 3D and 2D cDTD reconstructions show that it is possible to distinguish subvoxel283

diffusion tensor processes that are aligned in the same voxel reference frame based on differences in the correlations of284

their principal diffusivities using experimental designs that contain only SDE measurements and can be achieved with285

current MRI scanners. Fig. 3 shows the MC results for a ground truth 3D cDTD (i.e., correlation spectrum of286

principal diffusivities) that consists of a mixture of three multivariate log-normal distributions, reflecting the presence287

of 3 microscopic water pools with distinct diffusion tensor properties. The mean normalized spectra reconstructed288

from noisy measurements with various SNR levels provide good estimates for the locations and concentrations (i.e.,289
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areas under the peaks) of individual signal components. Meanwhile, at higher SNR levels, the exact shapes of the290

estimated spectral peaks are more accurately resolved. Lower dimensional marginal distributions derived from the 3D291

cDTDs also reveal the presence of multiple peaks and show improved accuracy at higher SNR levels. Similar results292

were obtained in MC simulations using 2D cDTDs shown in Fig. 4. The ground truth correlation spectrum of radial293

and tangential diffusivities, p(λr, λt), that defines the 2D cDTD consists of a mixture three microscopic diffusion294

processes described by mixtures of multivariate log-normal distributions. The locations and concentrations of these295

peaks can be estimated over a wide range of SNR levels, with improved accuracy at higher SNRs. Errors in the296

estimated spectra may be due to measurement noise, the limited number of measurements, and/or the regularization297

and positivity constraints used to improve the condition number of the spectral reconstruction.298

The spectral resolution depends on the number of measurements with different encodings, the SNR level, and299

the use of constraints and regularization for spectral reconstruction. For a fixed SNR and a wide range of signal300

weightings (e.g., b-values), slowly decaying components have a better contrast-to-noise ratio (CNR) than fast301

decaying ones and can therefore be resolved with higher spectral resolution. The resulting non-uniform spectral302

resolution is not unique to CORTECS MRI but is inherent to the data required by all multidimensional relaxation303

and diffusion spectroscopic MRI methods. These techniques aim to disentangle multiexponential processes by304

quantifying the underlying distribution of decay constants non-parametrically using an ILT-like reconstruction from a305

finite set of measurements. The spectral resolution could be improved using more advanced spectral reconstruction306

algorithms that rely on statistical methods [Prange and Song, 2009], compressed sensing [Bai et al., 2015], various307

constraints [Benjamini and Basser, 2016], Bayesian estimation [McGivney et al., 2018], or deep learning [Pirk et al.,308

2020] to improve spectral resolution.309

In general, the presence of the fixative and the reduced temperature (room temperature vs. body temperature)310

decreases the diffusivities in fixed tissues compared to those observed in the live human brain [Dyrby et al., 2011]. It311

is important to note that if we scale all diffusivities by any factor, say 3, and the b-values used in our experiment by312

its inverse, i.e., 1/3, all signal attenuations, e−bD, remain unchanged. Consequently, the Monte Carlo simulations313

with different SNR levels obtained using fixed brain diffusivities and this study’s experimental design with314

bmax = 10, 000s/mm2 also accurately describe an experiment in which all tissue diffusivities are scaled by a factor of315

3 simulating in vivo conditions and all b-values are scaled by a factor of 1/3, i.e., bmax = 3, 333s/mm2, simulating316

clinical scan parameters.317

Comparison of dMRI and histological sections318

Figure 5 shows a multi-scale side-by-side comparison of a coronal section stained with SMI-32 and the corresponding319

dMRI data in a representative region of the dorsal premotor cortex. At the macroscopic scale (Fig. 5A,B) we can320

clearly see that the dominant diffusion direction in the FOD direction-encoded colored (DEC) image [Dhollander321

et al., 2015] (Fig. 5B) varies continuously along the cortical ribbon and remains perpendicular to the cortical surface.322

At the mesoscopic scale (Fig. 5C,D) the curvature of the cortex becomes less prominent and the tissue architecture323

reveals radially oriented neurofilaments in pyramidal neurons with a staining intensity that varies in a laminar324

pattern reflecting distinct cortical layers. The FODs measured with dMRI in the same region (Fig. 5C) show a good325

alignment of water diffusion with the dominant orientation of the local microstructure at the scale of hundreds of326

micrometers. A careful visual inspection of the SMI-32 section at high magnification (Fig. 5E) reveals the presence of327

cell processes oriented radially and tangentially with respect to the cortical surface. The contribution of tangential328

processes contributes to the slight differences in SMI-32 staining intensities across cortical layers. At this scale, the329

grid-like cortical architecture is clearly observable in the orthogonal orientations of the FOD peaks which vary330
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continuously and coherently across multiple voxels (Fig. 5F). These observations confirm similar results from331

numerous high-resolution dMRI studies and suggest that cortical diffusion processes are locally oriented along332

orthogonal reference frames that match the tissue architecture and do not change significantly at the scale of a few333

hundred micrometers, providing a strong justification for describing diffusion processes at smaller length scales with334

the same fixed locally orthogonal reference frame.335

Cortical architectonic features revealed with cDTD MRI336

The SNR was estimated as the non-diffusion attenuated magnitude signal averaged in a region-of-interest (ROI)337

divided by the noise standard deviation measured in an ROI outside the brain using the raw magnitude signals338

(before post-processing). The cortical SNR varied between 50 and 120. Several imaging artifacts may contribute to339

an underestimation of the SNR, including:340

1. ghosting/aliasing artifacts induced by the vibration of gradient coils (potentially leading to noise overestimation)341

2. inaccurate calibration of the transmit and receive gains causing a non-zero background in the reconstructed342

images (potentially leading to noise overestimation), and343

3. spatial inhomogeneities in the B1 sensitivity (potentially leading to tissue signal underestimation)344

Our preliminary results of imaging 2D cDTDs in cortical GM reveal diffusion processes with distinct joint345

radial and tangential diffusivities and different specificities across cortical domains and layers. In Fig. 6, the spectral346

component images on the diagonal line λr = λt represent isotropic diffusion processes, while those below and above347

this line quantify anisotropic processes that can be described using prolate and oblate diffusion tensors, respectively.348

Comparing the maps of the 1D marginal distributions of λr (Fig. 6, left column) and λt (Fig. 6, top row) we found349

that the spectra of radial diffusivities in tissue microenvironments provides slightly better sensitivity to cortical layers350

than those of tangential diffusivities. Fig. 6B quantitatively maps the concentrations of eight distinct microscopic351

diffusion processes and were computed by integrating the 2D cDTDs over spectral domains (Fig. 6A, color-coded352

outlines) defined empirically based on spatial correlations of spectral components. The resulting signal component353

maps show high specificity to various cortical layers and were in good agreement with the diffusion orientational354

features observed in the FOD maps (Fig. 6C). For example, high concentrations of radial microscopic diffusion355

processes were observed primarily in the mid-cortical layers (Fig. 6B, Components 1 and 7) and in subcortical WM356

(Fig. 6B, Component 2), while high concentrations of more isotropic and tangential microscopic diffusion processes357

were observed primarily in the superficial and deep cortical layers (Fig. 6B, Components 5 and 8). The spatial358

distribution of Component 3 (Fig. 6B) in layer 3 and part of layers 5 and 6 matched with the distribution of359

non-pyramidal neurons in the parvalbumin stained section (not shown in Fig. 6). Meanwhile, the dense and patchy360

distribution of Component 6 (Fig. 6B) localized mainly in layer 5 corresponded to the intensely stained pyramidal361

neurons in this layer in AchE- (not shown in Fig. 6) and SMI-32-stained sections (Fig. 6D).362

Shape-size correlation spectra derived from the cDTD distributions363

The 2D µFA−MD correlation spectral amplitude maps in Fig. 7 provide a tally of the shape-size characteristics of364

the microscopic diffusion tensors of the DTD as a new means to characterize tissue microstructure. The largest365

concentrations of isotropic microscopic diffusion processes (µFA < 0.18) were observed in the upper cortical layers,366

and to a lesser extent, in layer 5. The most anisotropic diffusion processes (µFA > 0.35) were localized in the mid367
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cortical layers and in the subcortical white matter. The signal in subcortical WM voxels spanned a large range of368

µFA values, potentially reflecting diffusion processes with a larger intravoxel orientational variance (e.g.,369

bending/crossing WM fibers) that may be inadequately described by the cDTDs. The 1D marginal distributions of370

both the microscopic fractional anisotropies (Fig. 7A, top row) and mean diffusivities (Fig. 7A, left column) derived371

from the µFA−MD spectra show layer-specific motifs that allow us to distinguish between superficial, mid, and372

deep cortical layers. Spectra of MD values in microscopic water pools show the highest concentration of low MD373

processes in WM (Fig. 7A, component 3), and a mixture of diffusion processes with low and high water mobilities in374

the mid-cortical layers, potentially indicating important differences in cellularity between these layers. Meanwhile,375

spectra of µFA values revealed predominantly anisotropic diffusion processes in the mid-cortical layers and more376

isotropic diffusion processes in the superficial and deep layers. Fig. 7B quantifies the spatial distributions and377

concentrations of five distinct microscopic diffusion components obtained by integrating the 2D µFA−MD378

correlation spectra over empirically defined spectral domains (Fig. 7B, color-coded outlines). In Fig. 7B,379

Components 1, 3, and 4 are specific to the midcortical layers, while Components 2 and 5 are localized almost380

exclusively in the superficial/deep cortical layers and in subcortical WM, respectively. Component 3 in the381

µFA−MD maps (Fig. 7B), shows very high µFA and likely corresponds in part to the signal from Component 1 in382

the λr − λt maps (Fig. 6B) with a small λr and large λt. It appears to suggest the presence of a small concentration383

of highly anisotropic oblate microscopic diffusion tensors.384

It is likely that this component reflects restricted water diffusion within tangentially oriented tissue and cell385

processes (e.g., neurites, neurofilaments) which are powder-averaged within the plane of the mid-cortical layers (Fig.386

5E). In this case, the restricted tangential diffusion processes cannot be accurately modeled using tensors (e.g., a387

powder-average of prolate tensors) and the tangential diffusivities derived with DTD MRI, in general, do not388

accurately reflect the water diffusivities in different pools (e.g., inside or outside the dendrites). Nevertheless, even if389

the cDTD-derived diffusivity and anisotropies spectral components may not be quantitative (i.e., biased), they could390

still provide important clinical information about the density of tangentially oriented neurites or the transverse391

tortuosity of the extracellular space.392

Potential sources of errors393

The accuracy of the measured cDTD spectra depends on several experimental factors such as the number of394

measurements, the diffusion gradient directions, b-values, as well as SNR. During the voxel-wise cDTD395

reconstruction, the dMRI signals are decomposed along the axes of the local frame of reference. Consequently, for the396

same diffusion encoding (i.e., same DWI) the effective diffusion weightings (Eq. 6) of the radial and tangential397

diffusivities, b cos2 ϕg and b sin2 ϕg, respectively, may differ from voxel to voxel. To prevent biases due to the398

orientations of the local microstructure in the reconstructed cDTD maps it is important that the diffusion encodings399

uniformly sample the unit sphere for each b-value and across b-values.400

Two additional potential sources of errors in the spatial-spectral mapping of microscopic diffusion processes401

with CORTECS MRI in this study may arise from 1. inaccuracies in estimating the DTI-derived reference frame, and402

2. inconsistencies between the axes of the DTI-derived reference frames across neighboring voxels due to the sorting403

bias of the diffusion tensor eigenvalue decomposition [Pierpaoli and Basser, 1996]. Both sources of errors become404

more prominent when the dMRI voxel signal is more isotropic. If the signal is isotropic in 3D, the principal diffusion405

axes are poorly-defined and the estimated diffusion reference frames may be inconsistent across adjacent voxels.406

In cortical tissues, the DTI and, more generally, the dMRI signals are radially symmetric even at high spatial407

resolutions and high b-values. As a result, it is difficult to uniquely define orthogonal principal diffusion axes within408
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the tangential orientation. Instead, we can use a more economical characterization of the microscopic diffusion409

processes using a distribution of axisymmetric tensors. The resulting 2D cDTDs are completely defined by the410

correlation spectrum of radial and tangential diffusivities and the dominant diffusion direction (i.e., radial411

orientation), which can be reliably estimated in the cortex. The Diffusion-Encoded Color (DEC) map in Fig. 5 shows412

a continuously varying radial diffusion orientation along the cortical ribbon. Despite variations in diffusion anisotropy413

across cortical layers the principal axis of diffusion corresponding to the largest DTI eigenvalue, ϵ1ϵ1
T , can be reliably414

estimated throughout the cortex and is consistently oriented normal to the cortical surface. Moreover, this415

orientation matches that of the largest FOD peak in each corresponding voxel. The side peaks of the FODs are416

consistently oriented in the tangential plane perpendicular to the radial direction, supporting the orthogonal417

alignment of diffusion processes, in good agreement with findings from previous high-resolution cortical dMRI studies418

[Aggarwal et al., 2015, Kleinnijenhuis et al., 2013, Leuze et al., 2014].419

However, more generally, when DTI data is acquired with lower spatial resolution, low FA values in the cortex420

can bias the measurement of the radial direction that determines the 2D cDTD reference frame in each voxel. In this421

situation, it may be possible to use higher b-values (or longer diffusion times) to improve the sensitivity to the422

orientational features of the dMRI signal, and/or to estimate the voxel reference frame more reliably from the423

directions of the largest FOD peaks. Alternatively, one could derive a cortical reference frame from the curvature of424

the cortex measured using a structural scan with good GM-WM contrast as a proxy for the diffusion reference frame425

[Avram et al., 2020] or use spline interpolation of the diffusion tensor field [Pajevic et al., 2002] in low FA voxels, to426

derive a continuously varying reference frame that is consistent throughout the cortex.427

1 Discussion428

The CORTECS framework greatly simplifies the data acquisition and spectral reconstruction requirements for429

high-resolution DTD MRI and subsumes many previously proposed diffusion tensor models. It provides a practical430

and feasible approach to non-parametric quantitation of microstructural heterogeneity in healthy and diseased tissues.431

At its core, the framework relies on the observation that, in tissues with consistent well-defined architecture, such as432

the cortex, as we increase the spatial resolution from the scale of a conventional dMRI voxel (≈ 2mm) relative to the433

radius of curvature of the underlying anatomy, the intravoxel angular dispersion of diffusion processes decreases. At434

the mesoscopic scale of a few hundred micrometers diffusion processes in distinct tissue microenvironments, e.g.,435

associated with myelin, intra-, extra-axonal water, remain largely coincident along the axes of a common reference436

frame determined by the local tissue architecture. At this length scale, the intravoxel angular dispersion due to437

cortical folding is significantly reduced and differences between subvoxel (microscopic) diffusion processes are438

primarily characterized by their principal diffusivities. Correlations between principal diffusivities explain most of the439

microscopic diffusion heterogeneity. They determine the anisotropies and mean diffusivities of the microscopic440

diffusion tensors, i.e., the shapes and sizes of their diffusion ellipsoids, rather than their relative orientations, allowing441

us to constrain the DTD reconstruction.442

The persistence of the principal diffusion orientations for various signal weightings443

The basis of constraining cortical diffusion processes to be oriented along local orthogonal directions in neural tissue444

has many lines of support. Direct observations of cortical cyto- and myelo-architectonic features with optical and 3D445

electron microscopy reveal dominant radial and tangential orientations. Meanwhile, histological validation studies446
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using high spatial and angular resolution dMRI with a range of mesoscopic spatial resolutions have repeatedly shown447

that in neural tissues the preferential diffusion directions align with the dominant orientation of the underlying448

microstructure. Moreover, results from numerous high-resolution dMRI studies suggest that when the relative signal449

contributions (weightings) from specific water pools are altered using different signal preparations the principal axes450

of the diffusion tensors and the orientations of the dominant FOD peaks in the voxel do not change [Assaf, 2019].451

Concretely, the dominant diffusion orientations do not change significantly in experiments with a wide range of echo452

times (T2-weightings) [Avram, 2011, Avram et al., 2012], repetition times, inversion times (T1-weightings) [Assaf,453

2019], b-values (diffusivity weightings) and diffusion times (chemical exchange and restriction weightings).454

Furthermore, in vivo experiments combining diffusion MRI and magnetization transfer (MT) preparation indicate455

that in white matter fibers the principal diffusion directions of myelin water and non-myelin water pools are456

coincident [Avram et al., 2010]. Similarly, in vivo diffusion tensor spectroscopy experiments of neuronal-specific457

metabolites, such as NAA have shown that diffusion processes in intra- and extracellular water pools are also aligned458

with the diffusion reference frame of the voxel [Ronen et al., 2013]. The persistence of the reference frame under459

various signal preparations suggests that the intravoxel orientational heterogeneity is dominated by the curvature of460

the macroscopic anatomy (e.g., cortical folding, fanning/bending WM pathways), and that water diffusion in specific461

microenvironments of neural tissues can be described adequately with a singular reference frame defined by the462

mesoscopic architecture. Finally, constraining subvoxel cortical diffusion tensor processes to the local reference frame463

of the mesoscopic voxel may also be justified with arguments from developmental biology.464

Orthogonal reference frames in neurodevelopment465

During morphogenesis, diffusion-reaction processes can establish orthogonal concentration gradients [Gregor et al.,466

2005, Turing, 1952] to support the efficient transport of macromolecules such as growth and inhibitory factors. It is467

believed that in early embryogenesis this mechanism [Gregor et al., 2005, Lefèvre and Mangin, 2010] leads to the468

formation of the principal axes of embryonic development: rostro-caudal, medio-lateral, and dorso-ventral [Kingsbury,469

1920]. Similarly, during early brain development diffusion-reaction processes at the microscopic scale, e.g.,470

≈ 10 − 50µm, likely guide the growth of elongated cellular and sub-cellular structures, such as neurofilaments, axons471

and dendrites, which in turn, provide a scaffold for the diffusive migration and active transport of macromolecules472

over longer distances. The progressive elaboration of the orthogonal reference frame provides a plausible explanation473

for the architecture of cortical columns, laminae, and capillaries, at the mesoscopic scales of ≈ 100 − 500µm.474

Diffusion MRI studies in the late stages of fetal neurodevelopment and newborns have shown a decrease in the radial475

coherence of diffusion processes [Dudink et al., 2015, Khan et al., 2019, McKinstry et al., 2002, Takahashi et al., 2011,476

Vasung et al., 2010].477

More generally, several theories of brain development [Chen et al., 2013, Lefèvre and Mangin, 2010, Van Essen,478

1997, Wedeen et al., 2012] suggest to different extents, that similar locally orthogonal reference frames may be479

observed in WM at high spatial resolution. The intravoxel angular dispersion in WM voxels depends on the curvature480

of the fiber pathways (e.g., due to bending and fanning) as well as the presence of fiber crossings. The radii of481

curvature due to bending (e.g., corpus callosum) or fanning (e.g., corticospinal tract) in WM pathways are typically482

larger than those of the cortical folding geometry (e.g., sulci and gyri), even for short-range U-fibers. Consequently,483

at the mesoscopic spatial resolutions required for CORTECS MRI, the residual intravoxel orientational variation of484

diffusion processes in WM is due primarily to the crossing angles of subvoxel fiber populations. CORTECS MRI may485

be applicable in regions containing a single homogeneous WM pathway (i.e., no crossings), such as the corpus486

callosum, but not in most WM voxels that contain fiber populations that do not cross at orthogonal orientations.487
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Nevertheless, the framework could provide an independent method to test the hypothesized local orthogonality [Tax488

et al., 2016, 2017] at various spatial resolutions.489

The dimensionality reduction of cDTDs490

Current approaches for imaging DTDs and/or their features require SDE and MDE measurements and include491

parametric models using SDE [Jian et al., 2007] and combinations of SDE and MDE measurements [Henriques et al.,492

2020, Magdoom et al., 2021, Szczepankiewicz et al., 2016, Westin et al., 2016] as well as non-parametric methods493

[Topgaard, 2017]. Parametric DTD models approximate the solution using analytical functions such as a Wishart494

distribution [Jian et al., 2007] or a constrained normal tensor-variate distribution [Magdoom et al., 2021]. While such495

analytical approximations can estimate DTDs from fewer measurements and lower SNR levels, they drastically limit496

the space of admissible DTDs to those described by a handful of degrees of freedom (i.e., parameters or coefficients).497

The reconstructed DTDs may provide biased assessments in voxels affected by partial volume contributions from498

tissues with very different diffusion properties and may not accurately capture the range of unknown tissue499

alterations that occur in disease. Non-parametric or spectroscopic DTD reconstruction methods [Topgaard, 2017] can500

describe an arbitrary range of tissue compositions but, due to the large spectral dimensionality of the problem,501

require many MDE DWIs with high SNR and computationally intensive statistical reconstruction methods to enforce502

positive definiteness of the solution.503

For a general, unconstrained non-parametric DTD, the microscopic diffusion tensors can have arbitrary504

orientations (Eq. 2). Consequently, the 6-dimensional random variable of the DTD must support both positive and505

negative off-diagonal tensor elements and cannot be analyzed with conventional ILT methods. To overcome this506

limitation, the DTD reconstruction requires computationally intensive statistical methods [Magdoom et al., 2021,507

Topgaard, 2017] to enforce positive definiteness constraints that ensure the physicality of the microscopic diffusion508

tensors. Alternatively, if we describe the DTD using the principal diffusivities, λ1, λ2, λ3 and the three Euler angles509

ϕ, ψ, θ, which define the orientations of the orthonormal directions ϵ1, ϵ2, ϵ3 in Eq. 1, then ϕ, ψ, θ create a510

trigonometric dependence in the signal equation. The key insight of the CORTECS MRI framework is that in tissues511

with well-defined, orthogonal architectures, sampling the spatial dimensions more densely, i.e., increasing the spatial512

resolution, reduces the intravoxel angular dispersion. This allows us to restrict the 3 degrees of freedom that513

determine the orientations of the tensor random variable, i.e. the three Euler angles, and thus reduce the domain of514

the DTD to the orthogonal non-negative 3D space of principal diffusivity random variables that guarantees positive515

definiteness and can be solved with a conventional ILT reconstruction techniques. This trade-off between spatial516

resolution and spectral dimensionality has several important implications for the clinical translation of517

non-parametric DTD MRI.518

Data acquisition requirements for CORTECS MRI519

In general, the SNR requirements for multidimensional spectral (i.e., non-parametric) reconstruction algorithms scale520

exponentially with the dimensionality of the problem. For a 2D spectral reconstruction, an SNR of 100 allows us to521

measure signal attenuations by a factor of 10 along two independent spectral dimensions. Meanwhile, to achieve the522

same effective dynamic range per dimension for a 4D spectral reconstruction, we need an SNR of 10,000. While such523

nominal SNR levels may be achievable on clinical scanners by using sufficiently large voxel sizes, the integrity of the524

data acquired in vivo may be corrupted [Avram et al., 2019, 2021] by:525
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1. imaging artifacts such as ghosting/aliasing, eddy current induced distortions, or Gibbs ringing, which typically526

represent ≈ 1 − 2% of the tissue signal; and527

2. partial volume inconsistencies across DWIs due to subject and physiological motion (e.g., blood flow, pulsations,528

etc.).529

In routine clinical MRI scans, e.g., T1W, T2W, DTI, typical SNR levels are between 20-50, and these signal artifacts530

on the order of ≈ 2% are barely visible. However, for an in vivo SNR = 10,000, these signal instabilities produce an531

artifact-to-noise ratio of 200, potentially biasing the estimation of non-parametric DTDs in high dimensional spaces532

(e.g., 4D or 6D) and rendering them unsuitable for clinical translation.533

On the other hand, CORTECS MRI measures 3D or 2D correlation spectra using efficient diffusion534

preparations (SDEs), fewer measurement encodings (data points), and SNR levels that may be achieved for ultra-high535

resolution in vivo dMRI in the near future. Advances in various technologies including the design of high-field MRI536

scanners [Feinberg et al., 2021], high-performance gradient coils [Feinberg et al., 2021, Foo et al., 2020, Huang et al.,537

2021], high-density RF coil arrays [Hendriks et al., 2019, Keil et al., 2013], as well as efficient high-resolution dMRI538

pulse sequences [Avram et al., 2014b, Feinberg et al., 2010, Setsompop et al., 2018], image acquisition and539

reconstruction strategies [Feinberg et al., 2010, Setsompop et al., 2018], and experimental protocols [Avram et al.,540

2018, 2019, Nilsson et al., 2020] can be integrated synergistically in state-of-the-art MRI systems [Feinberg et al.,541

2021, Foo et al., 2020, Huang et al., 2021] to achieve the spatial resolution, scanning efficiency, and diffusion542

sensitizations required for in vivo CORTECS MRI.543

In our experiment the acquisition of each high-resolution DWI volume required 52minutes. This relatively long544

duration scan duration is due to the use of:545

1. a large imaging matrix of 375x320x230 needed for whole-brain coverage at 200µm resolution, and546

2. 3D diffusion spin echo EPI sequence with segmented k-space acquisition and a relatively long TR of 650ms.547

The TR was chosen so as to minimize gradient heating (i.e., limit the gradient duty cycle), and included a 150ms548

duration for excitation, diffusion preparation, and EPI readout, and a 500ms idle duration. For clinical imaging, both549

factors can be significantly reduced. Firstly, using a multi-slice spin-echo diffusion EPI sequence with multiband550

capabilities one could acquire each DWI volume efficiently (negligible idle duration) in a single TR of 5-10s, albeit at551

a lower SNR. Secondly, it is important to point out that the requirement for high spatial resolution in CORTECS552

MRI does not necessarily require a prohibitively long scan duration. Unlike dMRI fiber tractography, CORTECS553

dMRI does not require whole-brain data. Using outer-volume suppression, reduced FOV, or ZOOM EPI one could554

significantly reduce the imaging matrix size and scan duration while still maintaining the required spatial resolution555

for in vivo scans with human subjects. On the other hand, the scan duration requirement of conventional556

non-parametric DTD methods is inherently limited by the very large number of encodings needed to sample the557

high-dimensional space exhaustively, even when scanning with a reduced FOV.558

Spatial resolution requirement in CORTECS MRI559

The major drawback of CORTECS MRI compared to conventional (unconstrained) nonparametric DTD methods is560

the prerequisite of sufficiently high spatial resolution (≈ 400µm). The spatial resolution at which we can adopt a561

common reference frame for all subvoxel diffusion tensors depends on the cortical folding geometry and may vary562

across the brain. A useful quantity to characterize the validity of this assumption is the dimensionless ratio between563
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the voxel length, x, and the minimum radius of curvature of the macroscopic anatomy (e.g., cortical folding, or564

bending/fanning of WM fibers), R. If this ratio is sufficiently small x
R ≪ 1, then we can ignore orientational565

variations of subvoxel diffusion processes (Fig. 1). For example given a voxel size of x = 0.2mm the expected566

maximum intravoxel angular variance of the microstructural reference frame due to the continuously varying cortical567

folding geometry is ±1.9◦ for R = 5mm and ±4.9◦ for R = 2mm. This angular variation is smaller than even the568

most ambitious estimates of angular resolution limits in diffusion MRI fiber tractography and is unlikely to bias the569

estimated spectra. HARDI experiments using well-calibrated diffusion phantoms with overlapping, highly anisotropic570

coherent structures oriented at different angles cannot typically resolve diffusion processes due to fibers crossing at571

angles < 10◦, even when a large number of gradient orientations with large b-values and high SNR levels are used in572

microimaging or clinical scanners [Guise et al., 2016, Perrin et al., 2005]. This angular resolution limit provides a573

good benchmark for the ability to accurately resolve the orientations of subvoxel diffusion tensor processes with574

conventional 6D nonparametric DTD MRI methods.575

The high spatial resolution requirement in CORTECS MRI can lead to significantly longer acquisition time per576

volume (i.e., per diffusion encoding), when compared to conventional (unconstrained) nonparametric DTD MRI577

methods. These methods require large imaging voxel volumes to achieve the very high SNR and signal dynamic range578

needed for 6D or 4D DTD reconstructions and can be affected by signal artifacts. Moreover, these methods also579

require a large number of joint (multidimensional) econdings to comprehensively sample the high-dimensional580

parameter space, thereby offsetting potential savings in the total scan duration that may be gained by imaging a581

smaller matrix size (i.e., larger voxels), when compared to CORTECS MRI. Most importantly, however, the 6D582

DTDs measured in voxels of ≈ 3mm do not provide any information about the relative spatial distribution of583

subvoxel diffusion tensors, i.e., at length scales smaller than ≈ 3mm. Due to its high spatial resolution requirement,584

CORTECS MRI explicitly measures the relative spatial distributions (and relative orientations!) of diffusion tensor585

processes at much finer length scales, e.g., down to 200µm in our study, providing significantly more information.586

Compared to conventional DTD methods, this higher spatial resolution in CORTECS MRI provides more accurate587

localization and improved sensitivity in the detection of subtle pathological tissue changes, for example in the early588

stages of neurodegeneration.589

Potential for quantifying diffusion time dependence590

All DTD MRI methods assume that the voxel can be viewed as an ensemble of non-exchanging Gaussian (i.e., freely591

diffusing) subvoxel water pools within which the diffusive motions of spins are described with tensors whose592

corresponding ellipsoids have different sizes, shapes, and orientations. In biological tissues, cellular and subcellular593

structures can present microscopic restrictions and hindrances producing a time-dependent (non-Gaussian) diffusion594

in certain water pools. To address this limitation, the MDE-based DTD frameworks [Topgaard, 2017], can be595

extended to include diffusion time dependence [Lundell et al., 2019], and/or analyzed using parametric models596

[Henriques et al., 2020]. The characteristics of time-dependent DTDs can yield important tissue microstructural597

information about the distribution of compartment shapes and sizes [Henriques et al., 2020, Lundell et al., 2019] that598

classical MDE experiments sought to measure [Avram et al., 2013b, Benjamini et al., 2016, Koch and Finsterbusch,599

2008, Komlosh et al., 2018]. However, it can be troublesome to incorporate the dependence of diffusion processes on600

the time-varying diffusion gradient waveforms into the signal equation, even for MDE preparations with well-defined601

diffusion time parameters such as those using double pulsed field gradients [Avram et al., 2013b, Mitra, 1995], or602

rotating field gradients [Avram et al., 2014a]. Conversely, the diffusion time dependence of SDE measurements can603

provide similar information to MDE measurements [Jespersen, 2012] and is described by a well-defined parameter ∆,604
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the separation between the start times of the two diffusion gradient pulses. Moreover, since the voxel reference frame605

does not change significantly with diffusion time [Assaf, 2019], we can directly extend the CORTECS framework to606

map time-dependent cDTDs by repeating the experiment with multiple diffusion times. Imaging correlation spectra of607

diffusion-time-dependent principal diffusivities in microscopic water pools may provide important pathophysiological608

information about microscopic restrictions, chemical exchange, and water transport [Nilsson et al., 2013].609

Relation to other dMRI methods610

The non-parametric cDTD signal representation can be viewed as a multi-tensor generalization of high-resolution611

DTI. It subsumes many parametric tissue diffusion models for WM [Stanisz et al., 1997] and GM [Avram et al., 2020,612

Mulkern et al., 1999] and enables their cross-validation. It can inform the design of more efficient dMRI experiments613

using SDEs and MDEs to measure parametric DTDs and tensor mixture models for specific clinical applications.614

Moreover, it provides an independent method for deriving DTD-related quantities, such as the non-parametric615

distribution of subvoxel MD values which can be measured efficiently in a 6 min clinical scan [Avram et al., 2019]. In616

this way, the proposed framework may help test the validity of various DTD methods and guide their development617

towards achieving higher spatial resolution and greater biological specificity.618

The ability to quantify tissue properties non-parametrically is crucial to our understanding of disease619

progression, tissue regeneration, and neurodevelopment. By quantifying subvoxel DTDs non-parametrically we can620

identify the most prominent spectral features such as the shapes and peaks or multimodal clusters associated with621

specific pathophysiological changes. Once we learn these spectral signatures, we can model the CORTECS-derived622

2D or 3D cDTDs using analytical functions determined by only a few parameters. Disease-specific parametric cDTD623

could be reconstructed swiftly and efficiently from data acquired with lower SNR and a smaller number of encodings.624

Further improvements in biological specificity625

The correlation spectrum of principal diffusivities may reveal signal contributions from specific tissue components,626

such as intra-axonal, extracellular, or myelin water whose diffusion tensors may be coincident and are therefore627

difficult to disentangle based on orientational diffusion characteristics such as FODs derived from HARDI data. A628

further improvement in biological specificity may be achieved by integrating the cDTD measurements with629

multidimensional relaxation MRI methods [Benjamini and Basser, 2017, Kim et al., 2017] which measure the net630

voxel signal as a superposition of contributions from subvoxel water pools with different joint T1-, T2- and diffusion631

properties. However, with the addition of new dimensions for contrast encoding, most implementations of632

diffusion-relaxation correlation MRI on clinical scanners require larger datasets, higher SNR levels as well as the use633

of sophisticated pulse sequences and algorithms to reconstruct five-dimensional [Reymbaut et al., 2021] or634

six-dimensional [de Almeida Martins et al., 2021] correlation spectra. We have recently proposed a more practical635

two-dimensional diffusion-relaxation MRI method for efficiently mapping T1-MD correlation spectra using isotropic636

diffusion encoded (IDE) DWIs [Avram et al., 2021]. Similarly, the CORTECS framework adds the minimum number637

of dimensions (principal diffusivities) needed to efficiently combine T1- or T2- relaxation with diffusion tensor638

spectroscopic imaging.639

Potential applications to neuroscience and neuroradiology640

Mapping water pools in specific cortical microenvironments based on their diffusion tensor properties quantitatively641

and efficiently could have numerous applications in neuroradiology and neuroscience. It may improve the diagnosis of642
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neurodevelopmental disorders and allow us to specifically disentangle contributions from increased dendritic643

arborization and reductions in radial glial fibers to the cortical microstructural changes observed in newborns. In644

addition, it may provide biomarkers for early detection of cortical microstructural changes occurring in epilepsy645

[Lampinen et al., 2020], cancer [Szczepankiewicz et al., 2016], traumatic brain injury [Komlosh et al., 2018], stroke646

[Alves et al., 2022], or multiple sclerosis [He et al., 2021]. Mapping correlations between cortical diffusion processes647

with CORTECS MRI could quantify specific cellular/tissue components providing new parameters for automatic648

cortical parcellation and layer segmentation algorithms. Relating these layer-specific components to input and output649

signaling in cortical areas could allow us to study intracortical connectivity and gain insight into the directionality of650

information flows (signaling) in functional networks throughout the connectome [Olman et al., 2012, Uǧurbil et al.,651

2013]. Because it requires only SDE data, CORTECS MRI can be applied retrospectively to analyze existing652

high-resolution diffusion MRI data sets. Finally, while this study focuses on quantifying diffusion in cortical gray653

matter, CORTECS MRI may also be applicable to other organized tissues with varying degrees of macroscopic and654

microscopic diffusion anisotropies such as in white matter, kidney medulla, heart muscle, skeletal muscle, ligaments,655

tendons, etc.656

2 Conclusions657

This study provides a new framework for empirical and biologically specific analyses of subvoxel diffusion658

heterogeneity in healthy and diseased brain tissue using conventional high-resolution dMRI. From the non-parametric659

cDTDs we can derive additional spectral and scalar parameters, such as the joint size-shape distribution of660

microscopic diffusion tensors. Our preliminary results in the macaque monkey cortex reveal diffusion components661

that correlate well with distinct architectonic features. CORTECS MRI has the potential to advance the clinical662

translation of DTD MRI and the optimization for specific applications in clinical and basic sciences. Features of663

cDTD spectra may help better delineate cortical layers and areas in healthy subjects and may provide new664

biomarkers for finding subtle cortical abnormalities underlying focal dysplasia in epilepsy, microbleeds in traumatic665

brain injury, metastatic cancers, etc.666
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Figure 1. A. As we decrease the voxel size, x, relative to the radius of curvature of the tissue (e.g., due to cortical
folding), R, the intravoxel orientational variance of the continuously varying microstructural reference frame also
decreases. For a voxel with an arbitrary orientation relative to the underlying microstructure, the range of intravoxel
orientational variation due to tissue curvature is ±θmax. B. The value of θmax decreases rapidly at low spatial
resolutions, R/x, but changes very slowly at higher spatial resolutions, R/x. C. A quantitative comparison of θmax

at different voxel sizes assuming a cortical radius of curvature R = 5mm shows the significant reduction in intravoxel
orientational variance due to the effects of anatomical curvature at high spatial resolutions.
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Figure 2. At a mesoscopic length scale cortical cyto- and myeloarchitecture is organized preferentially along the axes
of an orthogonal frame of reference (A). If the dMRI spatial resolution is sufficiently small (Fig. 1) we can measure
DTDs efficiently using the constraints of the CORTECS MRI framework (B). If we constrain all microscopic diffusion
tensors to have the same principal axes of diffusion (C) we can quantify the DTD as the 3D correlation spectrum of
the corresponding principal diffusivities (D). If the microarchitecture varies along a single radial orientation we can
further constrain the DTD to contain only axisymmetric tensors (F) and quantify the 2D correlation spectrum of
the corresponding radial and tangential diffusivities. We can also quantify the shape-size (i.e., microscopic FA-MD)
correlation spectra of microscopic tensors from the 3D (E) or 2D (H) constrained reference frame DTDs (cDTDs).
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Figure 3. Monte-Carlo simulation results illustrating the accuracy and numerical stability of the 3D cDTD
reconstruction as a function of SNR. A: Log-log-log plots of mean normalized 3D cDTD correlation spectra of the
principal diffusivities reconstructed from data with different SNRs. B,C,D: Log-log plots of mean normalized 2D
marginal distributions derived from the 3D cDTDs in the top row. E,F,G: Log plots of the mean normalized 1D
marginal distributions derived from the 3D cDTDs in the top row. H: A numerically simulated illustration of an
ensemble of diffusion tensors described by the ground truth 3D cDTD.
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Figure 4. Monte-Carlo simulation results illustrating the accuracy and numerical stability of the 2D cDTD
reconstruction as a function of SNR. A: Log-log plots of mean normalized 2D cDTD correlation spectra of principal
diffusivities reconstructed at different SNR levels. B,C: Log plots of mean normalized 1D marginal distributions
derived from the 2D cDTDs in the top row. D: A numerically simulated illustration of an ensemble of diffusion
tensors described by the ground truth 2D cDTD.
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Figure 5. Views of the brain anatomy at the macroscopic scale in a coronal tissue section stained with SMI-32 (A)
and the FOD-DEC image in a matched MRI slice (B) showing the dependence of the principal diffusion direction
on the cortical folding geometry. C and D: Enlarged views of the mesoscopic scale of the histological image and
FOD glyphs corresponding to the yellow outlines in A and B, respectively. The cortical architecture shows a laminar
pattern of radially coherent cell processes with different densities (labeled cortical layers). E and F: Enlarged views of
the histological image and FOD glyphs corresponding to the red outline in C and D. The locally coherent alignment
of FOD peaks (F) matches the microstructural tissue architecture comprising radial and tangential cell processes (E).
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Figure 6. A. Spectral component maps of normalized 2D correlation spectra of radial and tangential diffusivities in
a section of the cortex from Fig 5A. Top row: Spectral component maps of the normalized 1D marginal distribution
of tangential diffusivity, λt; Left column: Spectral component maps of the normalized 1D marginal distribution
of radial diffusivity, λr. B. Tissue component maps derived by integrating the 2D cDTD spectral components over
empirically defined spectral regions of interest delineated with different colors show good specificity to cortical layers.
C. Corresponding FODs. D. Corresponding SMI-32 stained section.
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Figure 7. A. Spectral amplitude maps of normalized 2D µFA −MD correlation spectra in the section of the
cortex from Fig. 6. Top row: Spectral component maps of the normalized 1D marginal distribution of microscopic
fractional anisotropy, µFA; Left column: Spectral component maps of the normalized 1D marginal distribution
of the microscopic diffusion tensor mean diffusivities. B. Tissue component maps derived by integrating the 2D
µFA−MD distributions over empirically defined spectral regions reveal strong contrast in the mid-cortical areas.
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