Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

Improved KCNQ2 gene missense variant interpretation with artificial intelligence

Alba Saez-Matia, Arantza Muguruza-Montero, Sara M-Alicante, Eider Núñez, Rafael Ramis, Óscar R. Ballesteros, Markel G Ibarluzea, Carmen Fons, View ORCID ProfileAritz Leonardo, Aitor Bergara, Alvaro Villarroel
doi: https://doi.org/10.1101/2022.10.20.513007
Alba Saez-Matia
1Instituto Biofisika, CSIC-UPV/EHU, 48940 Leioa, Spain
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: alvaro.villarroel@csic.es alba.saezmatia@gmail.com
Arantza Muguruza-Montero
1Instituto Biofisika, CSIC-UPV/EHU, 48940 Leioa, Spain
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Sara M-Alicante
1Instituto Biofisika, CSIC-UPV/EHU, 48940 Leioa, Spain
2Departamento de Física, Universidad del País Vasco, UPV/EHU, 48940 Leioa, Spain
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Eider Núñez
1Instituto Biofisika, CSIC-UPV/EHU, 48940 Leioa, Spain
2Departamento de Física, Universidad del País Vasco, UPV/EHU, 48940 Leioa, Spain
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Rafael Ramis
2Departamento de Física, Universidad del País Vasco, UPV/EHU, 48940 Leioa, Spain
4Donostia International Physics Center, 20018 Donostia, Spain
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Óscar R. Ballesteros
2Departamento de Física, Universidad del País Vasco, UPV/EHU, 48940 Leioa, Spain
3Centro de Física de Materiales CFM, CSIC-UPV/EHU, 20018 Donostia, Spain
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Markel G Ibarluzea
2Departamento de Física, Universidad del País Vasco, UPV/EHU, 48940 Leioa, Spain
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Carmen Fons
5Pediatric Neurology Department, Sant Joan de Déu Hospital, Barcelona University, Barcelona, Spain
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Aritz Leonardo
2Departamento de Física, Universidad del País Vasco, UPV/EHU, 48940 Leioa, Spain
4Donostia International Physics Center, 20018 Donostia, Spain
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Aritz Leonardo
Aitor Bergara
2Departamento de Física, Universidad del País Vasco, UPV/EHU, 48940 Leioa, Spain
3Centro de Física de Materiales CFM, CSIC-UPV/EHU, 20018 Donostia, Spain
4Donostia International Physics Center, 20018 Donostia, Spain
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Alvaro Villarroel
1Instituto Biofisika, CSIC-UPV/EHU, 48940 Leioa, Spain
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: alvaro.villarroel@csic.es alba.saezmatia@gmail.com
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Preview PDF
Loading

ABSTRACT

Advances in DNA sequencing technologies have revolutionized rare disease diagnosis, resulting in an increasing volume of available genomic data. Despite this wealth of information and improved procedures to combine data from various sources, identifying the pathogenic causal variants and distinguishing between severe and benign variants remains a key challenge. Mutations in the Kv7.2 voltage-gated potassium channel gene (KCNQ2) have been linked to different subtypes of epilepsies, such as benign familial neonatal epilepsy (BFNE) and epileptic encephalopathy (EE). To date, there is a wide variety of genome-wide computational tools aiming at predicting the pathogenicity of variants. However, previous reports suggest that these genome-wide tools have limited applicability to the KCNQ2 gene related diseases due to overestimation of deleterious mutations and failure to correctly identify benign variants, being, therefore, of limited use in clinical practice. In this work, we found that combining readily available features, such as AlphaFold structural information, Missense Tolerance Ratio (MTR) and other commonly used protein descriptors, provides foundations to build reliable gene-specific machine learning ensemble models. Here, we present a transferable methodology able to accurately predict the pathogenicity of KCNQ2 missense variants with unprecedented sensitivity and specificity scores above 90%.

Competing Interest Statement

The authors have declared no competing interest.

Footnotes

  • Minor typos in the author names

Copyright 
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission.
Back to top
PreviousNext
Posted October 25, 2022.
Download PDF
Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Improved KCNQ2 gene missense variant interpretation with artificial intelligence
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Improved KCNQ2 gene missense variant interpretation with artificial intelligence
Alba Saez-Matia, Arantza Muguruza-Montero, Sara M-Alicante, Eider Núñez, Rafael Ramis, Óscar R. Ballesteros, Markel G Ibarluzea, Carmen Fons, Aritz Leonardo, Aitor Bergara, Alvaro Villarroel
bioRxiv 2022.10.20.513007; doi: https://doi.org/10.1101/2022.10.20.513007
Reddit logo Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
Improved KCNQ2 gene missense variant interpretation with artificial intelligence
Alba Saez-Matia, Arantza Muguruza-Montero, Sara M-Alicante, Eider Núñez, Rafael Ramis, Óscar R. Ballesteros, Markel G Ibarluzea, Carmen Fons, Aritz Leonardo, Aitor Bergara, Alvaro Villarroel
bioRxiv 2022.10.20.513007; doi: https://doi.org/10.1101/2022.10.20.513007

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Pathology
Subject Areas
All Articles
  • Animal Behavior and Cognition (4662)
  • Biochemistry (10316)
  • Bioengineering (7645)
  • Bioinformatics (26251)
  • Biophysics (13484)
  • Cancer Biology (10652)
  • Cell Biology (15366)
  • Clinical Trials (138)
  • Developmental Biology (8470)
  • Ecology (12779)
  • Epidemiology (2067)
  • Evolutionary Biology (16800)
  • Genetics (11373)
  • Genomics (15435)
  • Immunology (10584)
  • Microbiology (25089)
  • Molecular Biology (10175)
  • Neuroscience (54253)
  • Paleontology (398)
  • Pathology (1662)
  • Pharmacology and Toxicology (2884)
  • Physiology (4329)
  • Plant Biology (9216)
  • Scientific Communication and Education (1583)
  • Synthetic Biology (2545)
  • Systems Biology (6763)
  • Zoology (1459)