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6 Abstract

7 The adaptive immune response to foreign antigens is initiated by T-cell receptor (TCR)
8 recognition on the antigens. Recent experimental advances have enabled the generation of
9 a large amount of TCR data and their cognate antigenic targets, allowing machine learning
10 models to predict the binding specificity of TCRs. In this work, we present TEINet, a deep
11 learning framework that utilizes transfer learning to address this prediction problem. TEINet
12 employs two separately trained encoders to transform TCR and epitope sequences into nu-
13 merical vectors, which are subsequently fed into a fully connected neural network to predict
1 their binding specificities. A major challenge for binding specificity prediction is the lack of a
15 unified approach to sample negative data. Here, we first assess the current negative sampling
16 approaches comprehensively and suggest that the Unified Epitope is the most suitable one. Sub-
17 sequently, we compare TEINet with three baseline methods and observe that TEINet achieves
18 an AUROC of 0.760, which outperforms baseline methods by 6.4-26%. Furthermore, we inves-
19 tigate the impacts of the pretraining step and notice that excessive pretraining can adversely
20 affect model performance. Our results and analysis show that TEINet can make an accurate
21 prediction using only the TCR sequence (CDR3S) and the epitope sequence, providing novel
2 insights to understand the interactions between TCRs and epitopes. TEINet is available at
23 https://github.com/jiangdadal1221/TEINet.

» Introduction

s T cells are critical for the adaptive immune system, providing protection against a wide range
s of pathogens. To recruit T cells in an immune response, the T cell receptors (TCRs) on their
x surface have to recognize a non-self-immunogenic peptide (epitope) presented in the context of
s major histocompatibility complex molecules (MHC). The generation of these protein receptors arises
2 mainly from the quasirandom somatic V(D)J recombination process which theoretically can produce
2 extremely high TCR diversity of 10!°-10%° in an individual, each with unique recognition capacity

a for antigens [1]. Understanding the mechanisms that govern the interaction between TCR and
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2 peptide-MHC (pMHC) is considered an essential step toward personalized immunotherapy and the
33 development of targeted vaccines.

N Recent advancements in the high-throughput tetramer-associated T cell receptor sequencing
55 technique [2] and other experimental approaches such as tetramer analysis [3] and T-scan [4] have
3 enabled the generation of an increasing amount of data recording the binding of TCR and epitope.
sz More and more interaction pairs are consistently being generated and stored in publicly available
s databases such as VDJdb [5], IEDB [6] and McPAS-TCR [7]. However, the available data are
s still scant compared to the theoretical TCR. diversity. Further, the TCR-epitope paired data are
w0 imbalanced, as a single epitope is often linked by many TCRs. Both of them pose challenges to the
a development of in silico predictive methods.

P Machine learning-based methods are able to capture the potential laws of TCR~epitope binding
s from a large amount of experimental data. With the help of advanced machine learning models,
w  several computational methods have been proposed to assess the binding of a TCR and a pMHC
s (epitope). Previously, a branch of research focused on designing epitope-specific models with the
s aim of learning the pattern of TCRs binding to the same epitope. These models range from simple
« sequence alignment-based methods [8] to more complex machine learning models including random
s forest (e.g. TCRex [9]) and the Gaussian process classifier TCRGP [10]. However, they all share two
w downsides: each epitope needs a specific model trained separately; each model requires abundant
s training samples of epitope-specific TCRs, which are not always readily available.

51 To fulfill the need to predict the binding specificity of any TCR-epitope pair, previous studies
2 have proposed generic models, which exploit the two-tower architecture to encode both the TCRs
53 (CDR3p) and the pMHCs (epitope) [11-17]. These generic models can fully capitalize on the cur-
s« rently available paired data to unlock the binding patterns between TCRs and epitopes, and transfer
55 the knowledge learned from paired samples of epitopes with sufficient binding TCRs to those with
ss sparse linking TCRs. Current models have shown moderate predictive performance and demon-
s strated promising potential in understanding cancer progression, prognosis, and responsiveness to
s immunotherapy. For example, Dash et al. developed TCRdist [17] based on sequence similarity
5o weighted distances; Moris et al. proposed a CNN-based model ImRex [11]; Weber et al. introduced
s TITAN that encodes epitopes at the atomic level with SMILES sequences using a pretrained deep
s learning model. Furthermore, Lu et al. presented pMTNet [14] that encodes TCRs and pMHCs by
62 two respective pre-trained deep learning models and applied pMTNet to investigate tumor progres-
63 sion and response to immunotherapy treatment. In particular, transfer learning is becoming a prior
6 technique to develop advanced deep learning models for binding prediction since it helps leverage the
e knowledge from other pretraining tasks with abundant data and transfer it to the binding predic-
o tion task. For instance, TITAN, NetTCR [15], and pMTnet utilize pre-trained encoders. However,
e the impact of the pretraining step on the final performance of predicting TCR specificity remains
6 undiscovered.

69 To train and evaluate supervised models, both positive and negative samples (TCRs and epitopes
o that do not interact with each other) are required. However, the public TCR-epitope interaction
n datasets only collect positive samples, which potentially poses a challenge in model training and

7 evaluation. The method of generating negative samples based on the existing TCR and epitope
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73 pairs directly affects the model performance. Currently, there are four major strategies for generating
n  negative samples: (1) Reference TCR [15, 18]; (2) Random TCR [14]; (3) Random Epitope [12, 16,
s 19]; (4) Unified Epitope [11, 20]. Different models might adopt different negative sampling strategies
7 for this task, which make it difficult to fairly compare their performance. More importantly, which
7 strategy leads to a better generalized model has not been explored and remains an open question.

78 In this work, we present TEINet for the prediction of the specificity of TCR binding, using the
7o CDR3p chain of TCR and the epitope sequence within the pMHC complex. Following the concept of
s transfer learning, TEINet employs two separate pretrained encoders to convert TCRs and epitopes
&1 into numerical vectors, utilizing the architecture of recurrent neural networks to handle a variety of
s sequence lengths. We first contrast the four negative sampling strategies applied in the previous work
s to select the superior one. Next, we systematically validated TEINet using a large-scale TCR-epitope
s paired dataset and two independent validation datasets. The results demonstrated the enhancement
s in accuracy made over previous work. We also investigated the impact of the pretraining step on
s the final binding specificity prediction task. Overall, TEINet serves as a reliable computational tool

ez for addressing the long-standing problem of predicting the TCR-epitope interaction.

» Methods

» Dataset

o0 The CDR3 regions of TCRS chains are located in the center of the paratope and are considered as the
o key determinant of specificity in antigen recognition [21]. Although CDR3-« and -3 synergistically
o drive TCR-epitope recognition [17, 22, 23], the current available databases still record mostly Schain
o3 paired samples. Thus, we restrict ourselves to CDR3/5 chain sequences in this study. Besides, with
o« the aim of developing a general model that is suitable for most cases, we took the epitope sequence
os inside the pMHC complex as its representation. In order to construct a large and diverse dataset,
s we combined the data recorded in VDJdb database [5], McPAS database [7], and the data collected
o by Lu et al. [14] together.

% The data from VDJdb was downloaded from its public website (https://vdjdb.cdr3.net/) on
o April 5, 2022. Tt consists of 89,321 curated pairs of CDR3 «/f sequences along with their binding
w0 epitopes and MHC classes, covering three species. We selected only human TCR sequences, removed
1w duplicate cases, restricted only MHC class I entries, and only kept the CDR3 and epitope sequences
12 whose lengths lie between 5-30 and 7-15 amino acids, respectively. After all these filterings, this
103 dataset was reduced to 35,560 unique CDR3p3-epitope pairs, among which 33,258 TCRs are assigned
s to 159 epitopes.

105 The McPAS-TCR dataset [7] originally contains 39,664 pairs (http://friedmanlab.weizmann.
s ac.il/McPAS-TCR/) and Lu et al. collected a total of 32,607 paring data from a series of previous
w7 publications and four chromium single-cell immune profiling solution datasets. We performed the
108 same preprocessing step on these two datasets and removed all TCR sequences with ambiguous
0o amino acids (B, J, O, U, X). Then, these three datasets were merged together, followed by two

uo additional filtering steps: removal of duplicate pairs and exclusion of epitopes with less than 10
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Figure 1: Overview of our constructed dataset. (A) The source of the paired samples in the dataset.
(B) The number of the epitope-associated TCRs. Most TCRs are linked to a small group of epitopes.
(C and D) Venn diagrams showing the number of (C) TCRs and (D) epitopes contributed by each
source dataset.

m  associated TCR sequences since this merged dataset is highly imbalanced. At last, we constructed a
n2  large dataset with 44,682 pairs of TCRs and epitopes, among which 41,610 TCRs are linked to 180

u3  epitopes. An overview of the dataset is shown in Fig. 1.

us  Negative sampling strategies

us  Since the TCR~epitope dataset contains only positive samples, in order to train a generalized and
ue robust supervised model, the negative samples are required and should be generated via a biologically
u7 and computationally plausible manner to serve as an unbiased estimate of the actual distribution
us  of non-binding pairs. For a positive sample d; = (e;,t;) € D = {d;}}Y,, where e; and t; are the
no interacting epitope and TCR for sample 4, the corresponding negative samples are generated through

120 four major sampling strategies (Fig. 2A):

121 o Reference TCR. In this setting, e; is combined with TCRs that are sampled uniformly from

122 the reference TCR dataset R = {t;}. The negative samples for e; are then represented as
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Figure 2: Tllustration of each negative sampling strategy and the overall workflow of TEINet. (A)
Sketch map of the four negative sampling strategies. In this example, there are in total 12 TCR-
epitope binding pairs, with 3 different epitopes (depicted in yellow, red, and green) linking to 6, 4,
and 2 TCRs, respectively. For Reference TCR strategy, the TCRs are randomly sampled from a
reference TCR dataset inside which TCRs are considered unable to bind epitopes in the positive
data. Here, we choose to generate the same number of pairs in negative data for demonstration. (B)
General workflow of TEINet. TEINet is a two-stage deep learning model using transfer learning. At
the first pretraining stage, two TCRpeg models are trained separately to learn the sequence pattern
of TCRs and epitopes, and produce numerical encodings for them when the pretraining process
is completed. At the next stage, encodings of TCRs and epitopes are concatenated together and
output into a fully connected neural network to leverage the information from each part and make
predictions accordingly.

123 n; = {(es, t;)}}L,, where t; € R and M is the number of negatives samples for a given positive
124 sample [15, 18]. This approach stands upon the assumption that TCRs from the reference
125 dataset are unlikely to bind epitopes in the positive dataset. The reference TCRs were obtained
126 from Montemurro et al. [15] where these TCRs had been exposed to all tested pMHC multimers
127 and no binding signals were detected.

128 e Random TCR. For this sampling approach, the negative TCRs for e; are sampled uniformly


https://doi.org/10.1101/2022.10.20.513029
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.10.20.513029; this version posted October 21, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

129 from the set of TCRs in the positive binding pairs while excluding its known true TCR binding
130 partner(s) [14]. The negative samples are then represented as n; = {(ei,tk)}jj\il, where ¢, €
131 {tl} and (6i,tk) ¢ D.

132 e Random FEpitope. In this strategy, t; is combined with epitopes sampled uniformly from all
133 epitopes without its true epitope binder(s) [12, 16, 19]. The sampled negative pairs are n; =
134 {(Bj,ti)}jﬂil with e; € {62} and (ej,ti) §é D.

135 e Unified Epitope. Compared to Random Epitope, the only difference of Unified Epitope is that,
136 the epitopes are sampled according to their frequency distributions in the positive dataset [11,
137 20J; i.e. m; = {(ej,t:)};2, and Ppos(ej) ~ Pneg(e;). This strategy ensures that the frequencies
138 of epitopes are unified in the negative data and positive data.

139 A systematical comparison between these four negative sampling strategies is an urgent need for

1w benchmarking different models and guiding the development of accurate and generalized models in
1w future works. To address this demand, we referred to the field of recommender system and selected
w2 three evaluation metrics that can be calculated without the attendance of negative samples.

13 Precision@k and Recall@k. These two metrics measure the exactness and completeness of
s the top k binding predictions for a given TCR. Assume that a TCR ¢; in the test set {(e;, ;)}Y,
15 can bind to a number of b; epitopes (due to cross-reactivity), and a number of m; true interacting

us  pairs {(ej, ;) ;"2’1 lie in the top k predictions, then these two metrics are defined as follows:

N
1 i
Precision@Qk = N ;:1 % (1)
147
1 X my
Rwd@kzﬁgﬂaf (2)

s  where N is the total number of TCRs in the test set. A higher value of Precision@k indicates that
19 the more true binding pairs can be found among the top k predicted pairs; And a higher value of
150 Recall@k suggests a higher proportion of predicted binding pairs over all the true binding pairs.

151 NDCG®@k. The previous two metrics overlook the order of the predictions since the ranking of
12 the true predicted binding pairs does not affect the values of both metrics as long as they are in the
153 top k predictions. The Normalized Discounted Cumulative Gain (NDCG) measures how relevant

s the predictions are and how good the ordering is, which is calculated by:

DCGQk
NDCG@k = 255 (3)

155 where the definitions and formulas of DCG@k and IDCG@k are described in Supplementary Text S1.
156 Overall, these three metrics are complementary to each other and help to determine the superiority
157 of the four negative sampling strategies. A higher value of any of the three metrics indicates a better

158 model performance.
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s Pretrained encoder

10 To numerically encode TCR and epitopes, we capitalized on the transfer learning technique. We have
1 earlier proposed an autoencoder model, TCRpeg [24] that utilizes a recurrent neural network with
12 GRU layers to characterize the TCR repertoires and demonstrated that it can produce high-quality
163 vector encodings for TCR sequences. As an autoencoder model, TCRpeg is capable of capturing
w4 key features of sequence input via unsupervised learning of mapping between the latent space and
165 sequence space, and more importantly, using TCRpeg for pretraining only needs plain amino acid
166 sequences which are currently abundant. In addition, unlike the encoders in TITAN or pMTNet,
1w TCRpeg can process sequences of arbitrary lengths without the need to pad them to a fixed length.
s Thus, we decided to employ two separate pretrained TCRpeg models as the encoders for TCRs and
160 epitopes, respectively. A detailed description of TCRpeg is given in Supplementary Text S2.

170 To pretrain TCRpeg for encoding TCRs (TCRpeg-TCR), we fed TCRpeg with 105 TCR se-
wm  quences collected from Emerson et al. [25]. We set the feature size of TCRpeg to 768 and trained
w2 it for 20 epochs by minimizing the cross-entropy loss between the output soft-maxed logits and the
173 one-hot encoded representation of the input sequences. For encodings of epitopes, we trained an-
e other TCRpeg model (TCRpeg-Epi) with the identical architecture of TCRpeg-TCR using 362,456
s unique epitope sequences collected from Mei et al. [26] with lengths ranging from 8 to 14 amino

e acids. Details on the pretraining process of TCRpeg are elaborated in Supplementary Text S3.

w Model architecture

s Figure 2B delineates an overview of the architecture of TEINet. Conceptually, the complex task
w9 of predicting the TCR-epitope interaction is decomposed into two steps to lower the difficulty level
1o of the final prediction task. First, two encoding networks are pretrained so that the amino acid
11 sequences of TCRs and epitopes could be represented by numerical vectors. Next, we concatenated
12 these two vector encodings to form the final representations for TCR-epitope pairs. In the final step,
13 we built a fully connected neural network (FCN) on top of these combined vector encodings to fuse
1« the knowledge extracted from TCRs and epitopes. Specifically, the FCN consists of three hidden
s layers with 768, 384, and 96 neurons with the dropout [27] rate set to 0.15 to prevent overfitting.
185 Before feature concatenation, we employed the layer normalization [28] to numerically stabilize each
17 group of features. All neurons use the scaled exponential linear unit (SELU [29]) activation function,

188 except for the output neuron which applies the sigmoid activation function.

w Model training

wo TEINet was implemented in Python 3.6 and built on the deep learning framework PyTorch [30].
11 TEINet was trained and evaluated under a 5-fold cross-validation procedure. Instead of inferring
12 TEINet on a static dataset with negative pairs sampled prior to the training process, we adopted a
13 dynamic sampling strategy: the negative examples are sampled on the fly at each training step using
104 the sampling strategies described in the previous section. This dynamic sampling strategy demon-

105 strates improved performance over static training (Supplementary Figure S1). For all experiments
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106 in this work, the negative pairs were sampled 10 times more than positive pairs. TEINet optimized
w7 binary cross entropy loss with Adam algorithm [31] and an initial learning rate of 1 x 1072, The
1s model was trained for 30 epochs with a batch size of 48. The learning rate was reduced at the 21st
19 and 27th epoch by a factor of 0.1.

» Results

. Comparison of different negative sampling strategies

22 We trained TEINet with each negative sampling method and observed that they could achieve
203 performance in different scales (Supplementary Figure S2). For example, using Reference TCR
2¢  leads to an average AUROC (area under the receiver operating characteristic) of 0.797, whereas the
2s  performance achieves an AUROC of 0.934 under Random Epitope, which is unexpectedly high yet
206 useless.

207 We first compared the three negative sampling methods: Random TCR, Reference TCR, and
28 Unified Epitope. The negative data generated by these methods possess similar frequency distribu-
200 tions of epitopes with those in the positive data. Table 1 shows the Precision, Recall, and NDCG of
20 each schema using the TEINet. These results first demonstrated that Random TCR and Reference
an TCR obtained similar performance, indicating that sampling TCRs from the reference TCR pool or
a2 TCRs in positive data have a comparable effect on the model training. Reference TCR is slightly
a3 better than Random TCR, as TCRs drawn from another sequence pool constructed from healthy
2 donors are less likely to interact with epitopes than shuffled TCRs from the positive data; i.e., Ran-
25 dom TCR might produce more false negative pairs. Unified Epitope achieved superior performance
26 among these three strategies by a large margin. It indicates that Unified Epitope can help develop a
217 more robust and generalized model for the TCR~epitope interaction prediction task. We attributed
a8 its superior performance to the uniformity of the distribution of TCRs and epitopes across positive
a0 and negative data.

220 We next contrasted Unified Epitope with Random Epitope. It seems that Random FEpitope is a
a1 perfect sampling strategy since it achieved extremely high values of Precision, Recall, and NDCG
22 (Table 1), and achieved an average AUROC of 0.934. However, these high values are overesti-
23 mated and misleading due to the inherent imbalance of the data. Note that the number of epitope-
2¢ interacting TCRs follows an extreme long-tail distribution (Fig. 3A, 1B, and Supplementary Figure
25 S3) that most TCRs (70%) are associated with the top 5% epitopes. As a result, Random Epitope
26  would produce skewed negative data that most majority of epitopes were matched with far more
27 negative TCRs than positive TCRs (Supplementary Figure S3). Trained with such a skewed dataset,
»s  TEINet was driven to make predictions based on the epitope sequences without the participation of
20 TCRs, as discussed in Dens et al. [32]. That is, when the input pairs consist of frequent epitopes, the
20  model tends to predict “1s”, and conversely, it is likely to predict “0s” when encountering pairs with
2 infrequent epitopes. Thus, TEINet with Random Epitope obtains a misleading high performance:
22 (1) for TCRs, TEINet often predicts high scores when they are linked to frequent epitopes, which

233 results in high Precision, Recall, and NDCG since frequent epitopes appear in most paired samples;
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Figure 3: Distribution of the number of epitope-associated TCRs and the average prediction scores
for them. (A) Distribution of the number of positive and negative TCRs sampled by Random
Epitope for the 30 most abundant epitopes. Given that the epitopes are sampled randomly for each
TCR and the epitope-associated TCRs follow an extreme long-tail distribution, there are far fewer
negative samples than positive samples for abundant epitopes, whereas for most epitopes, there are
far more nagative samples than positive samples. (B) The average prediction scores for the positive
and negative pairs of the top 5 most abundant epitopes. “Pos” and “Neg” stand for positive and
negative samples; “RE” and “UE” represent Random Epitope and Unified Epitope. We observed
that for both positive and negative pairs of abundant epitopes, Random Epitope will produce high
predictive scores. Such a problem is greatly relieved by Unified Epitope.

24 (2) for epitopes, TEINet tends to predict high scores for pairs with frequent epitopes that possess
25 abundant positive binding TCRs and sparse negative binding TCRs, and low scores for pairs with
26 rare epitopes that are linked to abundant negative TCRs and sparse positive binding TCRs, which
2 leads to high AUROC. Indeed, TEINet with Random Epitope obtained high prediction scores for
28 both positive and negative pairs with frequent epitopes (Fig. 3B). For instance, it outputs an aver-
29 age prediction score of 0.99 and 0.93 for respective positive and negative pairs of the most frequent
20 epitope (KLGGALQAK). As a result, those negative pairs will be classified as false positives in the
2 generic performance evaluation. Moreover, due to the long-tail distribution of the epitope-associated
x2 TCRs, Random Epitope will generate far fewer negative pairs than positive pairs, so that those false
23 positives have minor impact on the generic performance evaluation, resulting in a misleading high
e AUROC.

25 Overall, our results and analysis indicate that Unified Epitope is more appropriate for negative
xus  sampling in the TCR-epitope prediction task, which is further supported in the evaluation on in-

27 dependent datasets (see the following section). To eliminate potential model bias introduced by

10
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xus  TEINet, we performed the same experiments using the ImRex model and obtained similar results

29 (Supplementary Table S1). In the remaining experiments, Unified Epitope is selected as the default
x0  Strategy.

Table 1: The Precision, Recall, and NDCG of each negative sampling method.

Method Precision@3  Recall@3 NDCG@3 Precision@l0Recall@10 NDCG@10
Reference TCR  0.093+0.002 0.2754+0.007 0.2554+0.006 0.036+0.001 0.356+£0.009 0.284+0.007
Random TCR  0.085+0.002 0.251+0.004 0.226£0.004 0.033£0.001 0.322£0.003 0.252£0.003
Unified Epitope  0.12940.004  0.38040.012 0.3344+0.011 0.0524+0.001 0.506+0.014 0.380+0.012

Random Epitope  0.1924£0.002 0.567+0.006 0.484+0.006 0.081£0.001 0.788+0.002 0.565+0.005
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Figure 4: Performance of TEINet and the three baseline models. (A) The receiver operator charac-
teristic (ROC) curves for each model. The area under the ROC curve (AUROC) values are shown
in the legend. (B) The precision-recall (PRC) curves for each model. The area under the PRC curve
(AUPRC) values are shown in the legend. (C) The AUROC for each model according to different
similarity thresholds for filtering the test set. (D) The per-epitope AUROC performance for the top
30 most abundant epitopes. TEINet outperforms ImRex in these epitopes.

»  Performance of TEINet

2 To assess the performance of TEINet, we compared it with three existing approaches: ImRex [11],
3 TITAN [12] and pMTNet [14]. ImRex encodes TCRs and epitopes based on their physicochemical

¢ properties and utilizes a CNN (convolutional neural network) to process the combined encodings.
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»s  Similar to our proposed TEINet, TITAN and pMTNet both make use of the pretrained encoders.
s The pMTNet additionally incorporates the information of the MHC allele associated with the epitope
»7  to make the prediction.

258 Figure 4A and 4B show the AUROC and AUPRC of TEINet as well as the three baseline mod-
»0 els. TEINet outperforms the baseline methods with an AUROC of 0.760 and an AUPRC of 0.321,
x%0  while the second best comparative model ImRex has an AUROC of 0.714 and an AUPRC of 0.269.
%1 Moreover, we calculated the Precision, Recall, and NDCG of ImRex and still observed superior per-
x2 formance of TEINet (Supplementary Table S1). With learnable encoders that possess the capability
%3 of processing sequences in any length, TEINet can better extract sequence information and conse-
% quently make more accurate predictions. To investigate whether the superiority of TEINet retains
265 when the similarity of TCRs between training and evaluation datasets decreases, we filtered out pairs
»6 in the test set with specific TCRs according to the Levenstein similarity thresholds (Supplementary
s Text S4). Figure 4C demonstrates the corresponding performance of each model under different
x%s similarity thresholds. Again, TEINet outperforms other baseline models. Further, to resolve the
20 concern that pairs consisting of frequent epitopes would dominate the effects on performance, we
a0 report the per-epitope AUROC derived by evaluating on paired data for one specific epitope in
on Fig. 4D. We found no explicit correlation between the AUROC and the number of training samples,
a2 indicating that the complexities of the binding pattern for each epitope are different. Similar results
a3 were also found in Moris et al. [11]. Besides, TEINet is still superior, with the ImRex lagging behind
2 for most epitopes (Fig. 4D).

s Impact of pretraining

o Transfer learning is becoming an integral part of the design of deep learning models for the prediction
a7 of TCR binding specificity. Recently developed models tend to employ pretrained encoders to
zs  transform amino acid sequences into vector representations [12, 14, 15, 19]. An analysis of the
a9 impact of the pretraining step is in demand to provide a better understanding of the pretrained
20 encoders.

281 First, without the pretraining step, the performance of TEINet dropped significantly with an
22 AUROC of 0.675, which demonstrated the necessity of the pretraining step. Next, we explored the
283 influence of the TCR and epitope encoders singly and simultaneously (Fig. 5A-C). It is clear that the
s pretraining of TCRs greatly enhanced the model performance (Fig. 5A), whereas the pretraining of
285 epitopes only brought about slight and unstable improvement (Fig. 5B). Given that the diversity of
26 TCRs (41,610 unique samples) is much higher than that of epitopes (180 unique samples), pretraining
257 of TCRs enables them to be distributed separably in the feature space, which is more important
2s  for making a prediction. Further, these two encoders improved the performance synergistically and
280 achieved the best performance (Fig. 5C). Utilizing both pretrained encoders enhanced the AUROC
20 by around 0.01 than using the TCR encoder alone. Notably, we observed that when the pretraining
21 of the TCR encoder exceeded a certain epoch, the final performance dropped (Fig. 5A and C).
22 Thus, the degree of the pretraining needs to be tuned carefully; otherwise, the model might have

203 the problem of overfitting.

12


https://doi.org/10.1101/2022.10.20.513029
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.10.20.513029; this version posted October 21, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

15 20 25 30 o 5 10
Epoch

TEINet ImRex pMTnet 08

0.8

0.6

0.4

0.2

Absolute prediction score difference

0.0

oo

i

EEBOITID O GO O

oo

: Median

Mean difference in
contacted region

TEINet: 0.204
ImRex:0.013
pMTnet:0.126

Mean difference in
uncontacted region

TEINet: 0.129

ImRex: 0.014
pMTnet: 0.105

Contacted Uncontacted Contacted Uncontacted Contacted Uncontacted

True Positive Rate

True Positive Rate

°
S

°
kY

°

0.0

—— TEINet (AUC = 0.791)
& —— ImRex (AUC = 0.524)
pMTnet (AUC = 0.770)

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

—— TEINet (AUC = 0.646)
—— ImRex (AUC = 0.566)
pMTnet (AUC = 0.601)

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

Figure 5: Investigation of the impact of the pretraining stage and further validations of TEINet.
(A-C) The AUROC values with the encoders trained for different epochs. (A) Only pretrain the
encoder for TCRs. (B) Only pretrain the encoder for epitopes. (C) Pretrain the encoders for TCRs
and epitopes. (D) The absolute difference of prediction scores for each model between the contacted
and uncontacted residues. Using TEINet, residues with direct contacts are more likely to induce
larger changes in the predicted binding strength than non-contact residues. (E and F) The ROC
curves for each model in the two independent test sets: (E) TBAdb and (F) PDB. The corresponding
AUROC values are shown in the legend.

294

Structural analysis

25 Perturbation (mutational) analysis can be used to detect the important amino acid residues for

26 the model prediction [14, 24, 33]. We grouped TCR residues by whether or not they formed any
7 direct contact with any residue of epitopes within 54 and assumed that substitutions inside the

28 contact region would lead to dramatic changes in the predicted binding score. To analyze the

20 effects of predictive models on the contact/non-contact region, we collected 105 solved TCR-epitope
interacting complex structures from the public RCSB Protein Data Bank (PDB) database [34] as

the ground truth data. We performed the alanine scanning technique in biophysics studies [35]

300
301
sz on the TCRs in the PDB database using the predictive models. Figure 5D illustrates the average
s3  score difference for each model inside the contact and non-contact region. We observed that for
304

TEINet, the contact residues were more likely to induce larger drops in predicted TCR-epitope

35 binding strength than non-contact residues, which supports our assumption.
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s Kvaluation on independent datasets

s To further compare the predictive performance of each model, we collected two independent test
w8 sets. We selected the TBAdb [36] dataset, which includes 439 binding pairs on 414 unique TCRs
a0 and 42 epitopes as our first independent test set; The 105 interacting pairs extracted from the PDB
a0 database aforementioned were selected as the second independent test set. As before, the same
an filtering procedure was applied to them. Figure 5E and 5F show the performance of each model
sz on the independent test sets. Again, TEINet achieved superior performance over the other baseline
a3 methods. Note that for the PDB dataset, TEINet obtained a lower AUROC value of 0.646. We
s attributed it to the small overlap of epitopes as there is only 1 epitope in the PDB dataset that also
a5 appears in the training data. Moreover, given that the PDB dataset is an approximately balanced
as  dataset with each epitope binding with 1 or 2 TCRs, the Random Epitope and Unified Epitope will
a7 generate similar negative data, which enables us to compare these two strategies by the AUROC
ss value. Thus, we trained two TEINets each using Random Epitope or Unified Epitope during the
a0 training process and then evaluated them on the PDB database constructed with Random Epitope.
20  We observed that TEINet trained with Random Epitope obtained an AUROC of 0.572, which was
a surpassed by Unified Epitope by a large margin with an AUROC of 0.644 (Supplementary Figure
s2 S4). This finding further supports the advantage of Unified Epitope.

» 1 Discussion

322 The prediction of TCR specificity to epitope has been a challenging problem. The immense search-
s ing space of immune receptors, lack of curated training samples, and absence of negative samples
36 remain issues for algorithm development. In recent years, public databases have been accumulat-
w7 ing an enormous amount of TCR~epitope interacting data. Benefiting from the enrichment of data
s enrichment of available data, it is possible to develop accurate deep learning models to tackle the
29 challenging task of TCR-epitope interaction prediction.

330 In this work, we have proposed TEINet, a new deep learning model for predicting the TCR
s binding specificity. TEINet only requires the CDR35 chain of the TCR and epitope sequence of
s the pMHC complex to make the prediction. Though the CDR3« chain and the MHC allele are
s shown to be beneficial in this task [10, 13-15, 23], the paired data is still rare compared to single-
s chain data, which limits the generalizability of the pair-chain model. We leave the exploration of
15 both CDR3 chains and MHC alleles in future work. TEINet employed the TCRpeg [24], a deep
s autoregressive model, to extract the sequence information of TCRs and epitopes and transform
37 them into numerical vector space. The TCRpeg was pretrained in a self-supervised learning manner
18 on large-scale sequence data to learn a more general pattern to encode TCRs/epitopes. TEINet
30 then combined the encodings of TCRs and epitopes and used a fully-connected neural network to
uo  make the final prediction, leveraging the knowledge from TCRs and epitopes.

31 To train and evaluate a supervised model, negative samples are required. However, currently
sz there is no unified method for negative sampling, which poses a challenge for comparing different

a3 models. For example, Random TCR was applied in pMTNet [14]; Reference TCR was applied in
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s NetTCR [15, 18]; Random Epitope was employed in TITAN [12]; Unified Epitope was employed
us in ImRex [11]. We thus proposed three metrics, Precision, Recall, and NDCG that are unrelated
us to negative samples to compare different sampling strategies. We manifested that Unified Epitope
w7 1s the winner among these four sampling schemas for the development of a more accurate model,
us  given that it achieved superior Precision, Recall, and NDCG among the first three schemas and
us  that Random FEpitope breaks the uniformity between positive and negative data, which leads to
0 misleading performance. Thus, we recommend Unified Epitope as the default negative sampling
1 method in future works.

35 To showcase the predictive strength of TEINet, we compared TEINet with another three pub-
353 lished deep learning models: ImRex [11], TITAN [12], and pMTNet [14]. We performed the 5-fold
s cross-validation procedure on our constructed dataset which consists of 44,682 interacting pairs. We
s observed that TEINet achieved an AUROC of 0.760 and an AUPRC of 0.321 and outperformed other
6 comparative models with the best AUROC of 0.714 and AUPRC of 0.269. Further, we also evaluated
7 and compared these models on two additional independent test sets. Again, TEINet surpassed other
s baseline models.

350 The usage of the transfer learning technique has become a trend in the design of deep learning
w0 models for the TCR-epitope binding prediction task. Instead of using the physicochemical properties
1 of amino acid sequences to construct the features of TCRs and epitopes, many recently published
2 models capitalized on the pretrained encoders that leveraged the knowledge learned from other
33 tasks with abundant data [12, 14, 15, 19]. However, the impact of the pretraining step on the final
3¢ prediction accuracy remains unknown, which could potentially hinder the exploitability of pretrained
s encoders. Here, we disentangled the effect from each encoder (Fig. 5A-5C). We first observed that
w6 the pretraining of the TCR encoder improved the TEINet by a much larger margin than that of
7 the epitope encoder, which could be explained by the vast diversity of TCRs. More importantly,
ws  we found that excessive pretraining might harm the performance, so that the degree of pretraining
w0 needs to be tuned carefully.

370 At last, we analyzed whether the prediction from TEINet can reveal the structural information
sn  of the interacting complex. We grouped residues of TCRs that form any contact with epitope within
72 5A into the contact region. Contact residues should be more important than non-contact residues
s in forming the interaction between TCRs and epitopes [37]. Indeed, larger drops of predicted scores
s were observed inside the contact region than non-contact region using TEINet.

375 In summary, we have designed TEINet to predict the interaction between TCRs and their epi-
s tope targets. Our results demonstrate that TEINet achieved superior performance over three other
sz comparative models only by using the information of CDR3f chains and epitope sequences. We
sis also compared different negative sampling strategies and suggested that Unified Epitope is more
so  appropriate for the development of a generalized model. We expected that with enhanced accuracy
s in predicting the potential immune response of T-cells to epitopes, TEINet could be beneficial for

s the in silico design and implementation of immunotherapy in the era of personalized medicine.
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