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Abstract6

The adaptive immune response to foreign antigens is initiated by T-cell receptor (TCR)7

recognition on the antigens. Recent experimental advances have enabled the generation of8

a large amount of TCR data and their cognate antigenic targets, allowing machine learning9

models to predict the binding specificity of TCRs. In this work, we present TEINet, a deep10

learning framework that utilizes transfer learning to address this prediction problem. TEINet11

employs two separately trained encoders to transform TCR and epitope sequences into nu-12

merical vectors, which are subsequently fed into a fully connected neural network to predict13

their binding specificities. A major challenge for binding specificity prediction is the lack of a14

unified approach to sample negative data. Here, we first assess the current negative sampling15

approaches comprehensively and suggest that the Unified Epitope is the most suitable one. Sub-16

sequently, we compare TEINet with three baseline methods and observe that TEINet achieves17

an AUROC of 0.760, which outperforms baseline methods by 6.4-26%. Furthermore, we inves-18

tigate the impacts of the pretraining step and notice that excessive pretraining can adversely19

a↵ect model performance. Our results and analysis show that TEINet can make an accurate20

prediction using only the TCR sequence (CDR3�) and the epitope sequence, providing novel21

insights to understand the interactions between TCRs and epitopes. TEINet is available at22

https://github.com/jiangdada1221/TEINet.23

Introduction24

T cells are critical for the adaptive immune system, providing protection against a wide range25

of pathogens. To recruit T cells in an immune response, the T cell receptors (TCRs) on their26

surface have to recognize a non-self-immunogenic peptide (epitope) presented in the context of27

major histocompatibility complex molecules (MHC). The generation of these protein receptors arises28

mainly from the quasirandom somatic V(D)J recombination process which theoretically can produce29

extremely high TCR diversity of 1015-1020 in an individual, each with unique recognition capacity30

for antigens [1]. Understanding the mechanisms that govern the interaction between TCR and31
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peptide-MHC (pMHC) is considered an essential step toward personalized immunotherapy and the32

development of targeted vaccines.33

Recent advancements in the high-throughput tetramer-associated T cell receptor sequencing34

technique [2] and other experimental approaches such as tetramer analysis [3] and T-scan [4] have35

enabled the generation of an increasing amount of data recording the binding of TCR and epitope.36

More and more interaction pairs are consistently being generated and stored in publicly available37

databases such as VDJdb [5], IEDB [6] and McPAS-TCR [7]. However, the available data are38

still scant compared to the theoretical TCR diversity. Further, the TCR-epitope paired data are39

imbalanced, as a single epitope is often linked by many TCRs. Both of them pose challenges to the40

development of in silico predictive methods.41

Machine learning-based methods are able to capture the potential laws of TCR-epitope binding42

from a large amount of experimental data. With the help of advanced machine learning models,43

several computational methods have been proposed to assess the binding of a TCR and a pMHC44

(epitope). Previously, a branch of research focused on designing epitope-specific models with the45

aim of learning the pattern of TCRs binding to the same epitope. These models range from simple46

sequence alignment-based methods [8] to more complex machine learning models including random47

forest (e.g. TCRex [9]) and the Gaussian process classifier TCRGP [10]. However, they all share two48

downsides: each epitope needs a specific model trained separately; each model requires abundant49

training samples of epitope-specific TCRs, which are not always readily available.50

To fulfill the need to predict the binding specificity of any TCR-epitope pair, previous studies51

have proposed generic models, which exploit the two-tower architecture to encode both the TCRs52

(CDR3�) and the pMHCs (epitope) [11–17]. These generic models can fully capitalize on the cur-53

rently available paired data to unlock the binding patterns between TCRs and epitopes, and transfer54

the knowledge learned from paired samples of epitopes with su�cient binding TCRs to those with55

sparse linking TCRs. Current models have shown moderate predictive performance and demon-56

strated promising potential in understanding cancer progression, prognosis, and responsiveness to57

immunotherapy. For example, Dash et al. developed TCRdist [17] based on sequence similarity58

weighted distances; Moris et al. proposed a CNN-based model ImRex [11]; Weber et al. introduced59

TITAN that encodes epitopes at the atomic level with SMILES sequences using a pretrained deep60

learning model. Furthermore, Lu et al. presented pMTNet [14] that encodes TCRs and pMHCs by61

two respective pre-trained deep learning models and applied pMTNet to investigate tumor progres-62

sion and response to immunotherapy treatment. In particular, transfer learning is becoming a prior63

technique to develop advanced deep learning models for binding prediction since it helps leverage the64

knowledge from other pretraining tasks with abundant data and transfer it to the binding predic-65

tion task. For instance, TITAN, NetTCR [15], and pMTnet utilize pre-trained encoders. However,66

the impact of the pretraining step on the final performance of predicting TCR specificity remains67

undiscovered.68

To train and evaluate supervised models, both positive and negative samples (TCRs and epitopes69

that do not interact with each other) are required. However, the public TCR-epitope interaction70

datasets only collect positive samples, which potentially poses a challenge in model training and71

evaluation. The method of generating negative samples based on the existing TCR and epitope72
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pairs directly a↵ects the model performance. Currently, there are four major strategies for generating73

negative samples: (1) Reference TCR [15, 18]; (2) Random TCR [14]; (3) Random Epitope [12, 16,74

19]; (4) Unified Epitope [11, 20]. Di↵erent models might adopt di↵erent negative sampling strategies75

for this task, which make it di�cult to fairly compare their performance. More importantly, which76

strategy leads to a better generalized model has not been explored and remains an open question.77

In this work, we present TEINet for the prediction of the specificity of TCR binding, using the78

CDR3� chain of TCR and the epitope sequence within the pMHC complex. Following the concept of79

transfer learning, TEINet employs two separate pretrained encoders to convert TCRs and epitopes80

into numerical vectors, utilizing the architecture of recurrent neural networks to handle a variety of81

sequence lengths. We first contrast the four negative sampling strategies applied in the previous work82

to select the superior one. Next, we systematically validated TEINet using a large-scale TCR-epitope83

paired dataset and two independent validation datasets. The results demonstrated the enhancement84

in accuracy made over previous work. We also investigated the impact of the pretraining step on85

the final binding specificity prediction task. Overall, TEINet serves as a reliable computational tool86

for addressing the long-standing problem of predicting the TCR-epitope interaction.87

Methods88

Dataset89

The CDR3 regions of TCR� chains are located in the center of the paratope and are considered as the90

key determinant of specificity in antigen recognition [21]. Although CDR3-↵ and -� synergistically91

drive TCR-epitope recognition [17, 22, 23], the current available databases still record mostly �chain92

paired samples. Thus, we restrict ourselves to CDR3� chain sequences in this study. Besides, with93

the aim of developing a general model that is suitable for most cases, we took the epitope sequence94

inside the pMHC complex as its representation. In order to construct a large and diverse dataset,95

we combined the data recorded in VDJdb database [5], McPAS database [7], and the data collected96

by Lu et al. [14] together.97

The data from VDJdb was downloaded from its public website (https://vdjdb.cdr3.net/) on98

April 5, 2022. It consists of 89,321 curated pairs of CDR3 ↵/� sequences along with their binding99

epitopes and MHC classes, covering three species. We selected only human TCR sequences, removed100

duplicate cases, restricted only MHC class I entries, and only kept the CDR3� and epitope sequences101

whose lengths lie between 5-30 and 7-15 amino acids, respectively. After all these filterings, this102

dataset was reduced to 35,560 unique CDR3�-epitope pairs, among which 33,258 TCRs are assigned103

to 159 epitopes.104

The McPAS-TCR dataset [7] originally contains 39,664 pairs (http://friedmanlab.weizmann.105

ac.il/McPAS-TCR/) and Lu et al. collected a total of 32,607 paring data from a series of previous106

publications and four chromium single-cell immune profiling solution datasets. We performed the107

same preprocessing step on these two datasets and removed all TCR sequences with ambiguous108

amino acids (B, J, O, U, X). Then, these three datasets were merged together, followed by two109

additional filtering steps: removal of duplicate pairs and exclusion of epitopes with less than 10110
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Figure 1: Overview of our constructed dataset. (A) The source of the paired samples in the dataset.
(B) The number of the epitope-associated TCRs. Most TCRs are linked to a small group of epitopes.
(C and D) Venn diagrams showing the number of (C) TCRs and (D) epitopes contributed by each
source dataset.

associated TCR sequences since this merged dataset is highly imbalanced. At last, we constructed a111

large dataset with 44,682 pairs of TCRs and epitopes, among which 41,610 TCRs are linked to 180112

epitopes. An overview of the dataset is shown in Fig. 1.113

Negative sampling strategies114

Since the TCR-epitope dataset contains only positive samples, in order to train a generalized and115

robust supervised model, the negative samples are required and should be generated via a biologically116

and computationally plausible manner to serve as an unbiased estimate of the actual distribution117

of non-binding pairs. For a positive sample di = (ei, ti) 2 D = {di}Ni=1, where ei and ti are the118

interacting epitope and TCR for sample i, the corresponding negative samples are generated through119

four major sampling strategies (Fig. 2A):120

• Reference TCR. In this setting, ei is combined with TCRs that are sampled uniformly from121

the reference TCR dataset R = {tj}. The negative samples for ei are then represented as122
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Figure 2: Illustration of each negative sampling strategy and the overall workflow of TEINet. (A)
Sketch map of the four negative sampling strategies. In this example, there are in total 12 TCR-
epitope binding pairs, with 3 di↵erent epitopes (depicted in yellow, red, and green) linking to 6, 4,
and 2 TCRs, respectively. For Reference TCR strategy, the TCRs are randomly sampled from a
reference TCR dataset inside which TCRs are considered unable to bind epitopes in the positive
data. Here, we choose to generate the same number of pairs in negative data for demonstration. (B)
General workflow of TEINet. TEINet is a two-stage deep learning model using transfer learning. At
the first pretraining stage, two TCRpeg models are trained separately to learn the sequence pattern
of TCRs and epitopes, and produce numerical encodings for them when the pretraining process
is completed. At the next stage, encodings of TCRs and epitopes are concatenated together and
output into a fully connected neural network to leverage the information from each part and make
predictions accordingly.

ni = {(ei, tj)}Mj=1, where tj 2 R and M is the number of negatives samples for a given positive123

sample [15, 18]. This approach stands upon the assumption that TCRs from the reference124

dataset are unlikely to bind epitopes in the positive dataset. The reference TCRs were obtained125

from Montemurro et al. [15] where these TCRs had been exposed to all tested pMHC multimers126

and no binding signals were detected.127

• Random TCR. For this sampling approach, the negative TCRs for ei are sampled uniformly128
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from the set of TCRs in the positive binding pairs while excluding its known true TCR binding129

partner(s) [14]. The negative samples are then represented as ni = {(ei, tk)}Mj=1, where tk 2130

{ti} and (ei, tk) /2 D.131

• Random Epitope. In this strategy, ti is combined with epitopes sampled uniformly from all132

epitopes without its true epitope binder(s) [12, 16, 19]. The sampled negative pairs are ni =133

{(ej , ti)}Mj=1 with ej 2 {ei} and (ej , ti) /2 D.134

• Unified Epitope. Compared to Random Epitope, the only di↵erence of Unified Epitope is that,135

the epitopes are sampled according to their frequency distributions in the positive dataset [11,136

20]; i.e. ni = {(ej , ti)}Mj=1 and Ppos(ej) ⇠ Pneg(ej). This strategy ensures that the frequencies137

of epitopes are unified in the negative data and positive data.138

A systematical comparison between these four negative sampling strategies is an urgent need for139

benchmarking di↵erent models and guiding the development of accurate and generalized models in140

future works. To address this demand, we referred to the field of recommender system and selected141

three evaluation metrics that can be calculated without the attendance of negative samples.142

Precision@k and Recall@k. These two metrics measure the exactness and completeness of143

the top k binding predictions for a given TCR. Assume that a TCR ti in the test set {(ei, ti)}Ni=1144

can bind to a number of bi epitopes (due to cross-reactivity), and a number of mi true interacting145

pairs {(ej , tj)}mi
j=1 lie in the top k predictions, then these two metrics are defined as follows:146

Precision@k =
1

N

NX

i=1

mi

k
(1)

147

Recall@k =
1

N

NX

i=1

mi

bi
(2)

where N is the total number of TCRs in the test set. A higher value of Precision@k indicates that148

the more true binding pairs can be found among the top k predicted pairs; And a higher value of149

Recall@k suggests a higher proportion of predicted binding pairs over all the true binding pairs.150

NDCG@k. The previous two metrics overlook the order of the predictions since the ranking of151

the true predicted binding pairs does not a↵ect the values of both metrics as long as they are in the152

top k predictions. The Normalized Discounted Cumulative Gain (NDCG) measures how relevant153

the predictions are and how good the ordering is, which is calculated by:154

NDCG@k =
DCG@k

IDCG@k
, (3)

where the definitions and formulas of DCG@k and IDCG@k are described in Supplementary Text S1.155

Overall, these three metrics are complementary to each other and help to determine the superiority156

of the four negative sampling strategies. A higher value of any of the three metrics indicates a better157

model performance.158

7

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 21, 2022. ; https://doi.org/10.1101/2022.10.20.513029doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.20.513029
http://creativecommons.org/licenses/by-nc/4.0/


Pretrained encoder159

To numerically encode TCR and epitopes, we capitalized on the transfer learning technique. We have160

earlier proposed an autoencoder model, TCRpeg [24] that utilizes a recurrent neural network with161

GRU layers to characterize the TCR repertoires and demonstrated that it can produce high-quality162

vector encodings for TCR sequences. As an autoencoder model, TCRpeg is capable of capturing163

key features of sequence input via unsupervised learning of mapping between the latent space and164

sequence space, and more importantly, using TCRpeg for pretraining only needs plain amino acid165

sequences which are currently abundant. In addition, unlike the encoders in TITAN or pMTNet,166

TCRpeg can process sequences of arbitrary lengths without the need to pad them to a fixed length.167

Thus, we decided to employ two separate pretrained TCRpeg models as the encoders for TCRs and168

epitopes, respectively. A detailed description of TCRpeg is given in Supplementary Text S2.169

To pretrain TCRpeg for encoding TCRs (TCRpeg-TCR), we fed TCRpeg with 106 TCR se-170

quences collected from Emerson et al. [25]. We set the feature size of TCRpeg to 768 and trained171

it for 20 epochs by minimizing the cross-entropy loss between the output soft-maxed logits and the172

one-hot encoded representation of the input sequences. For encodings of epitopes, we trained an-173

other TCRpeg model (TCRpeg-Epi) with the identical architecture of TCRpeg-TCR using 362,456174

unique epitope sequences collected from Mei et al. [26] with lengths ranging from 8 to 14 amino175

acids. Details on the pretraining process of TCRpeg are elaborated in Supplementary Text S3.176

Model architecture177

Figure 2B delineates an overview of the architecture of TEINet. Conceptually, the complex task178

of predicting the TCR-epitope interaction is decomposed into two steps to lower the di�culty level179

of the final prediction task. First, two encoding networks are pretrained so that the amino acid180

sequences of TCRs and epitopes could be represented by numerical vectors. Next, we concatenated181

these two vector encodings to form the final representations for TCR-epitope pairs. In the final step,182

we built a fully connected neural network (FCN) on top of these combined vector encodings to fuse183

the knowledge extracted from TCRs and epitopes. Specifically, the FCN consists of three hidden184

layers with 768, 384, and 96 neurons with the dropout [27] rate set to 0.15 to prevent overfitting.185

Before feature concatenation, we employed the layer normalization [28] to numerically stabilize each186

group of features. All neurons use the scaled exponential linear unit (SELU [29]) activation function,187

except for the output neuron which applies the sigmoid activation function.188

Model training189

TEINet was implemented in Python 3.6 and built on the deep learning framework PyTorch [30].190

TEINet was trained and evaluated under a 5-fold cross-validation procedure. Instead of inferring191

TEINet on a static dataset with negative pairs sampled prior to the training process, we adopted a192

dynamic sampling strategy: the negative examples are sampled on the fly at each training step using193

the sampling strategies described in the previous section. This dynamic sampling strategy demon-194

strates improved performance over static training (Supplementary Figure S1). For all experiments195

8

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 21, 2022. ; https://doi.org/10.1101/2022.10.20.513029doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.20.513029
http://creativecommons.org/licenses/by-nc/4.0/


in this work, the negative pairs were sampled 10 times more than positive pairs. TEINet optimized196

binary cross entropy loss with Adam algorithm [31] and an initial learning rate of 1 ⇥ 10�3. The197

model was trained for 30 epochs with a batch size of 48. The learning rate was reduced at the 21st198

and 27th epoch by a factor of 0.1.199

Results200

Comparison of di↵erent negative sampling strategies201

We trained TEINet with each negative sampling method and observed that they could achieve202

performance in di↵erent scales (Supplementary Figure S2). For example, using Reference TCR203

leads to an average AUROC (area under the receiver operating characteristic) of 0.797, whereas the204

performance achieves an AUROC of 0.934 under Random Epitope, which is unexpectedly high yet205

useless.206

We first compared the three negative sampling methods: Random TCR, Reference TCR, and207

Unified Epitope. The negative data generated by these methods possess similar frequency distribu-208

tions of epitopes with those in the positive data. Table 1 shows the Precision, Recall, and NDCG of209

each schema using the TEINet. These results first demonstrated that Random TCR and Reference210

TCR obtained similar performance, indicating that sampling TCRs from the reference TCR pool or211

TCRs in positive data have a comparable e↵ect on the model training. Reference TCR is slightly212

better than Random TCR, as TCRs drawn from another sequence pool constructed from healthy213

donors are less likely to interact with epitopes than shu✏ed TCRs from the positive data; i.e., Ran-214

dom TCR might produce more false negative pairs. Unified Epitope achieved superior performance215

among these three strategies by a large margin. It indicates that Unified Epitope can help develop a216

more robust and generalized model for the TCR-epitope interaction prediction task. We attributed217

its superior performance to the uniformity of the distribution of TCRs and epitopes across positive218

and negative data.219

We next contrasted Unified Epitope with Random Epitope. It seems that Random Epitope is a220

perfect sampling strategy since it achieved extremely high values of Precision, Recall, and NDCG221

(Table 1), and achieved an average AUROC of 0.934. However, these high values are overesti-222

mated and misleading due to the inherent imbalance of the data. Note that the number of epitope-223

interacting TCRs follows an extreme long-tail distribution (Fig. 3A, 1B, and Supplementary Figure224

S3) that most TCRs (70%) are associated with the top 5% epitopes. As a result, Random Epitope225

would produce skewed negative data that most majority of epitopes were matched with far more226

negative TCRs than positive TCRs (Supplementary Figure S3). Trained with such a skewed dataset,227

TEINet was driven to make predictions based on the epitope sequences without the participation of228

TCRs, as discussed in Dens et al. [32]. That is, when the input pairs consist of frequent epitopes, the229

model tends to predict “1s”, and conversely, it is likely to predict “0s” when encountering pairs with230

infrequent epitopes. Thus, TEINet with Random Epitope obtains a misleading high performance:231

(1) for TCRs, TEINet often predicts high scores when they are linked to frequent epitopes, which232

results in high Precision, Recall, and NDCG since frequent epitopes appear in most paired samples;233
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Figure 3: Distribution of the number of epitope-associated TCRs and the average prediction scores
for them. (A) Distribution of the number of positive and negative TCRs sampled by Random
Epitope for the 30 most abundant epitopes. Given that the epitopes are sampled randomly for each
TCR and the epitope-associated TCRs follow an extreme long-tail distribution, there are far fewer
negative samples than positive samples for abundant epitopes, whereas for most epitopes, there are
far more nagative samples than positive samples. (B) The average prediction scores for the positive
and negative pairs of the top 5 most abundant epitopes. “Pos” and “Neg” stand for positive and
negative samples; “RE” and “UE” represent Random Epitope and Unified Epitope. We observed
that for both positive and negative pairs of abundant epitopes, Random Epitope will produce high
predictive scores. Such a problem is greatly relieved by Unified Epitope.

(2) for epitopes, TEINet tends to predict high scores for pairs with frequent epitopes that possess234

abundant positive binding TCRs and sparse negative binding TCRs, and low scores for pairs with235

rare epitopes that are linked to abundant negative TCRs and sparse positive binding TCRs, which236

leads to high AUROC. Indeed, TEINet with Random Epitope obtained high prediction scores for237

both positive and negative pairs with frequent epitopes (Fig. 3B). For instance, it outputs an aver-238

age prediction score of 0.99 and 0.93 for respective positive and negative pairs of the most frequent239

epitope (KLGGALQAK). As a result, those negative pairs will be classified as false positives in the240

generic performance evaluation. Moreover, due to the long-tail distribution of the epitope-associated241

TCRs, Random Epitope will generate far fewer negative pairs than positive pairs, so that those false242

positives have minor impact on the generic performance evaluation, resulting in a misleading high243

AUROC.244

Overall, our results and analysis indicate that Unified Epitope is more appropriate for negative245

sampling in the TCR-epitope prediction task, which is further supported in the evaluation on in-246

dependent datasets (see the following section). To eliminate potential model bias introduced by247
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TEINet, we performed the same experiments using the ImRex model and obtained similar results248

(Supplementary Table S1). In the remaining experiments, Unified Epitope is selected as the default249

strategy.250

Table 1: The Precision, Recall, and NDCG of each negative sampling method.

Method Precision@3 Recall@3 NDCG@3 Precision@10Recall@10 NDCG@10

Reference TCR 0.093±0.002 0.275±0.007 0.255±0.006 0.036±0.001 0.356±0.009 0.284±0.007

Random TCR 0.085±0.002 0.251±0.004 0.226±0.004 0.033±0.001 0.322±0.003 0.252±0.003

Unified Epitope 0.129±0.004 0.380±0.012 0.334±0.011 0.052±0.001 0.506±0.014 0.380±0.012

Random Epitope 0.192±0.002 0.567±0.006 0.484±0.006 0.081±0.001 0.788±0.002 0.565±0.005

Figure 4: Performance of TEINet and the three baseline models. (A) The receiver operator charac-
teristic (ROC) curves for each model. The area under the ROC curve (AUROC) values are shown
in the legend. (B) The precision-recall (PRC) curves for each model. The area under the PRC curve
(AUPRC) values are shown in the legend. (C) The AUROC for each model according to di↵erent
similarity thresholds for filtering the test set. (D) The per-epitope AUROC performance for the top
30 most abundant epitopes. TEINet outperforms ImRex in these epitopes.

Performance of TEINet251

To assess the performance of TEINet, we compared it with three existing approaches: ImRex [11],252

TITAN [12] and pMTNet [14]. ImRex encodes TCRs and epitopes based on their physicochemical253

properties and utilizes a CNN (convolutional neural network) to process the combined encodings.254
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Similar to our proposed TEINet, TITAN and pMTNet both make use of the pretrained encoders.255

The pMTNet additionally incorporates the information of the MHC allele associated with the epitope256

to make the prediction.257

Figure 4A and 4B show the AUROC and AUPRC of TEINet as well as the three baseline mod-258

els. TEINet outperforms the baseline methods with an AUROC of 0.760 and an AUPRC of 0.321,259

while the second best comparative model ImRex has an AUROC of 0.714 and an AUPRC of 0.269.260

Moreover, we calculated the Precision, Recall, and NDCG of ImRex and still observed superior per-261

formance of TEINet (Supplementary Table S1). With learnable encoders that possess the capability262

of processing sequences in any length, TEINet can better extract sequence information and conse-263

quently make more accurate predictions. To investigate whether the superiority of TEINet retains264

when the similarity of TCRs between training and evaluation datasets decreases, we filtered out pairs265

in the test set with specific TCRs according to the Levenstein similarity thresholds (Supplementary266

Text S4). Figure 4C demonstrates the corresponding performance of each model under di↵erent267

similarity thresholds. Again, TEINet outperforms other baseline models. Further, to resolve the268

concern that pairs consisting of frequent epitopes would dominate the e↵ects on performance, we269

report the per-epitope AUROC derived by evaluating on paired data for one specific epitope in270

Fig. 4D. We found no explicit correlation between the AUROC and the number of training samples,271

indicating that the complexities of the binding pattern for each epitope are di↵erent. Similar results272

were also found in Moris et al. [11]. Besides, TEINet is still superior, with the ImRex lagging behind273

for most epitopes (Fig. 4D).274

Impact of pretraining275

Transfer learning is becoming an integral part of the design of deep learning models for the prediction276

of TCR binding specificity. Recently developed models tend to employ pretrained encoders to277

transform amino acid sequences into vector representations [12, 14, 15, 19]. An analysis of the278

impact of the pretraining step is in demand to provide a better understanding of the pretrained279

encoders.280

First, without the pretraining step, the performance of TEINet dropped significantly with an281

AUROC of 0.675, which demonstrated the necessity of the pretraining step. Next, we explored the282

influence of the TCR and epitope encoders singly and simultaneously (Fig. 5A-C). It is clear that the283

pretraining of TCRs greatly enhanced the model performance (Fig. 5A), whereas the pretraining of284

epitopes only brought about slight and unstable improvement (Fig. 5B). Given that the diversity of285

TCRs (41,610 unique samples) is much higher than that of epitopes (180 unique samples), pretraining286

of TCRs enables them to be distributed separably in the feature space, which is more important287

for making a prediction. Further, these two encoders improved the performance synergistically and288

achieved the best performance (Fig. 5C). Utilizing both pretrained encoders enhanced the AUROC289

by around 0.01 than using the TCR encoder alone. Notably, we observed that when the pretraining290

of the TCR encoder exceeded a certain epoch, the final performance dropped (Fig. 5A and C).291

Thus, the degree of the pretraining needs to be tuned carefully; otherwise, the model might have292

the problem of overfitting.293
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Figure 5: Investigation of the impact of the pretraining stage and further validations of TEINet.
(A-C) The AUROC values with the encoders trained for di↵erent epochs. (A) Only pretrain the
encoder for TCRs. (B) Only pretrain the encoder for epitopes. (C) Pretrain the encoders for TCRs
and epitopes. (D) The absolute di↵erence of prediction scores for each model between the contacted
and uncontacted residues. Using TEINet, residues with direct contacts are more likely to induce
larger changes in the predicted binding strength than non-contact residues. (E and F) The ROC
curves for each model in the two independent test sets: (E) TBAdb and (F) PDB. The corresponding
AUROC values are shown in the legend.

Structural analysis294

Perturbation (mutational) analysis can be used to detect the important amino acid residues for295

the model prediction [14, 24, 33]. We grouped TCR residues by whether or not they formed any296

direct contact with any residue of epitopes within 5Å and assumed that substitutions inside the297

contact region would lead to dramatic changes in the predicted binding score. To analyze the298

e↵ects of predictive models on the contact/non-contact region, we collected 105 solved TCR-epitope299

interacting complex structures from the public RCSB Protein Data Bank (PDB) database [34] as300

the ground truth data. We performed the alanine scanning technique in biophysics studies [35]301

on the TCRs in the PDB database using the predictive models. Figure 5D illustrates the average302

score di↵erence for each model inside the contact and non-contact region. We observed that for303

TEINet, the contact residues were more likely to induce larger drops in predicted TCR-epitope304

binding strength than non-contact residues, which supports our assumption.305
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Evaluation on independent datasets306

To further compare the predictive performance of each model, we collected two independent test307

sets. We selected the TBAdb [36] dataset, which includes 439 binding pairs on 414 unique TCRs308

and 42 epitopes as our first independent test set; The 105 interacting pairs extracted from the PDB309

database aforementioned were selected as the second independent test set. As before, the same310

filtering procedure was applied to them. Figure 5E and 5F show the performance of each model311

on the independent test sets. Again, TEINet achieved superior performance over the other baseline312

methods. Note that for the PDB dataset, TEINet obtained a lower AUROC value of 0.646. We313

attributed it to the small overlap of epitopes as there is only 1 epitope in the PDB dataset that also314

appears in the training data. Moreover, given that the PDB dataset is an approximately balanced315

dataset with each epitope binding with 1 or 2 TCRs, the Random Epitope and Unified Epitope will316

generate similar negative data, which enables us to compare these two strategies by the AUROC317

value. Thus, we trained two TEINets each using Random Epitope or Unified Epitope during the318

training process and then evaluated them on the PDB database constructed with Random Epitope.319

We observed that TEINet trained with Random Epitope obtained an AUROC of 0.572, which was320

surpassed by Unified Epitope by a large margin with an AUROC of 0.644 (Supplementary Figure321

S4). This finding further supports the advantage of Unified Epitope.322

1 Discussion323

The prediction of TCR specificity to epitope has been a challenging problem. The immense search-324

ing space of immune receptors, lack of curated training samples, and absence of negative samples325

remain issues for algorithm development. In recent years, public databases have been accumulat-326

ing an enormous amount of TCR-epitope interacting data. Benefiting from the enrichment of data327

enrichment of available data, it is possible to develop accurate deep learning models to tackle the328

challenging task of TCR-epitope interaction prediction.329

In this work, we have proposed TEINet, a new deep learning model for predicting the TCR330

binding specificity. TEINet only requires the CDR3� chain of the TCR and epitope sequence of331

the pMHC complex to make the prediction. Though the CDR3↵ chain and the MHC allele are332

shown to be beneficial in this task [10, 13–15, 23], the paired data is still rare compared to single-333

chain data, which limits the generalizability of the pair-chain model. We leave the exploration of334

both CDR3 chains and MHC alleles in future work. TEINet employed the TCRpeg [24], a deep335

autoregressive model, to extract the sequence information of TCRs and epitopes and transform336

them into numerical vector space. The TCRpeg was pretrained in a self-supervised learning manner337

on large-scale sequence data to learn a more general pattern to encode TCRs/epitopes. TEINet338

then combined the encodings of TCRs and epitopes and used a fully-connected neural network to339

make the final prediction, leveraging the knowledge from TCRs and epitopes.340

To train and evaluate a supervised model, negative samples are required. However, currently341

there is no unified method for negative sampling, which poses a challenge for comparing di↵erent342

models. For example, Random TCR was applied in pMTNet [14]; Reference TCR was applied in343

14

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 21, 2022. ; https://doi.org/10.1101/2022.10.20.513029doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.20.513029
http://creativecommons.org/licenses/by-nc/4.0/


NetTCR [15, 18]; Random Epitope was employed in TITAN [12]; Unified Epitope was employed344

in ImRex [11]. We thus proposed three metrics, Precision, Recall, and NDCG that are unrelated345

to negative samples to compare di↵erent sampling strategies. We manifested that Unified Epitope346

is the winner among these four sampling schemas for the development of a more accurate model,347

given that it achieved superior Precision, Recall, and NDCG among the first three schemas and348

that Random Epitope breaks the uniformity between positive and negative data, which leads to349

misleading performance. Thus, we recommend Unified Epitope as the default negative sampling350

method in future works.351

To showcase the predictive strength of TEINet, we compared TEINet with another three pub-352

lished deep learning models: ImRex [11], TITAN [12], and pMTNet [14]. We performed the 5-fold353

cross-validation procedure on our constructed dataset which consists of 44,682 interacting pairs. We354

observed that TEINet achieved an AUROC of 0.760 and an AUPRC of 0.321 and outperformed other355

comparative models with the best AUROC of 0.714 and AUPRC of 0.269. Further, we also evaluated356

and compared these models on two additional independent test sets. Again, TEINet surpassed other357

baseline models.358

The usage of the transfer learning technique has become a trend in the design of deep learning359

models for the TCR-epitope binding prediction task. Instead of using the physicochemical properties360

of amino acid sequences to construct the features of TCRs and epitopes, many recently published361

models capitalized on the pretrained encoders that leveraged the knowledge learned from other362

tasks with abundant data [12, 14, 15, 19]. However, the impact of the pretraining step on the final363

prediction accuracy remains unknown, which could potentially hinder the exploitability of pretrained364

encoders. Here, we disentangled the e↵ect from each encoder (Fig. 5A-5C). We first observed that365

the pretraining of the TCR encoder improved the TEINet by a much larger margin than that of366

the epitope encoder, which could be explained by the vast diversity of TCRs. More importantly,367

we found that excessive pretraining might harm the performance, so that the degree of pretraining368

needs to be tuned carefully.369

At last, we analyzed whether the prediction from TEINet can reveal the structural information370

of the interacting complex. We grouped residues of TCRs that form any contact with epitope within371

5Å into the contact region. Contact residues should be more important than non-contact residues372

in forming the interaction between TCRs and epitopes [37]. Indeed, larger drops of predicted scores373

were observed inside the contact region than non-contact region using TEINet.374

In summary, we have designed TEINet to predict the interaction between TCRs and their epi-375

tope targets. Our results demonstrate that TEINet achieved superior performance over three other376

comparative models only by using the information of CDR3� chains and epitope sequences. We377

also compared di↵erent negative sampling strategies and suggested that Unified Epitope is more378

appropriate for the development of a generalized model. We expected that with enhanced accuracy379

in predicting the potential immune response of T-cells to epitopes, TEINet could be beneficial for380

the in silico design and implementation of immunotherapy in the era of personalized medicine.381
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