
1

Main manuscript contains the following: 1
1. Main txt (abstract, introduction, results and discussion), Line 8 – Line 579; 2
2. Online Methods, Line 588 - line 896; 3
3. Figures and Tables, Line 924 – Line 1057; 4
4. Supplementary figures, tables and notes (in Supplementary_figures_tables_notes.pdf) 5
5. Supplementary files (in Supplementary_files.zip) 6

 7

GSearch: Ultra-Fast and Scalable Microbial Genome Search 8

by combining Kmer Hashing with Hierarchical Navigable 9

Small World Graphs 10

 11

Jianshu Zhao1,2,7, Jean Pierre-both3,7, Luis M. Rodriguez-R4,5,6, Konstantinos T. 12

Konstantinidis1,2,4,* 13

1Center for Bioinformatics and Computational Biology, Georgia Institute of Technology, 14

Atlanta, Georgia, USA 15

2School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA 16

3 Université Paris-Saclay, CEA, List, Palaiseau, France 17

4School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, 18

Georgia, USA 19

5Department of Microbiology, University of Innsbruck, Innsbruck, Austria 20

6Digital Science Center (DiSC), University of Innsbruck, Innsbruck, Austria 21

7Those authors contribute equally 22

*Corresponding author, Konstantinos T. Konstantinidis 23

(kostas.konstantinidis@gatech.edu) 24

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 21, 2022. ; https://doi.org/10.1101/2022.10.21.513218doi: bioRxiv preprint

mailto:kostas.konstantinidis@gatech.edu
https://doi.org/10.1101/2022.10.21.513218
http://creativecommons.org/licenses/by-nd/4.0/

2

 25

 26

Abstract 27

Genome search and/or classification is a key step in microbiome studies and has become 28

more challenging due to the increasing number of available (reference) genomes in 29

recent years and the fact that traditional methods do not scale well with larger databases. 30

By combining a kmer hashing-based genomic distance metric (Probminhash) with a 31

graph based nearest neighbor search (NNS) algorithm (called Hierarchical Navigable 32

Small World Graphs), we developed a new program, GSearch, that is at least ten times 33

faster than alternative tools for the same purposes while maintaining high accuracy. 34

GSearch can identify/classify eight thousand query genomes against all available 35

microbial and viral genomic species within several minutes on a personal laptop, using 36

only ~6GB of memory. Further, GSearch can scale well with millions of database 37

genomes based on a database splitting strategy. Therefore, GSearch solves a major 38

bottleneck in current and future microbiome studies that require genome search and/or 39

classification. 40

 41

Keywords: genome search, microbial genomes, MAGs, MinHash, nearest neighbor 42

search, classification, hierarchical small world graphs, HNSW 43

 44

 45

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 21, 2022. ; https://doi.org/10.1101/2022.10.21.513218doi: bioRxiv preprint

https://doi.org/10.1101/2022.10.21.513218
http://creativecommons.org/licenses/by-nd/4.0/

3

 46

 47

 48

Introduction 49

Classifying microbial species based on either universal marker genes (e.g., 16S or 50

18S rRNA genes) or entire genomes represents a re-occurring task in environmental and 51

clinical microbiome studies. However, this task is challenging because i) whether or not 52

microbes (bacteria, fungi) and viruses form discrete population clusters (or species), 53

remains an open question 1, and ii) the microbial species in nature are still severely under-54

sampled by the available genomes. For instance, there are 1012 bacterial and fungal 55

species in nature according to a recent estimation 2 and even more viral species 56

(e.g. >1014 species). Yet, only ~17,000 bacterial species have been described and even 57

fewer (around 15,000) are represented by complete or draft genome 3. Due to the recent 58

improvements in DNA sequencing and single-cell technologies, metagenomic surveys 59

can now recover hundreds, if not thousands, of these yet-to-be-described species from 60

environmental or clinical samples 4, 5, filling in the gap in the described diversity mentioned 61

above. This has created a new challenge, however; that is, identifying these new 62

genomes against the exponentially increasing number of available (described) genomes 63

has become computationally intractable. Nonetheless, the recent high-throughput 64

sequencing of isolate genomes as well as metagenomic studies of natural populations 65

have shown that species may exist and be commonly circumscribed based on a 95% 66

genome-aggregate average nucleotide identity (ANI) threshold, at least for prokaryotes 67

and viruses 6, 7. This threshold represents convenient means in searching and identifying 68

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 21, 2022. ; https://doi.org/10.1101/2022.10.21.513218doi: bioRxiv preprint

https://doi.org/10.1101/2022.10.21.513218
http://creativecommons.org/licenses/by-nd/4.0/

4

new genomes against the already descried species and determining whether or not they 69

represent novel species 8. 70

 71

The number of curated draft or complete prokaryotic genomes has reached 72

317,542 in the newest release of the GTDB database, and 2,332,702 in the latest IMG/VR 73

database for viruses, representing 65,703 prokaryotic and 935,122 viral distinct species 74

at the 95% ANI level 9, 10. Searching of query genomes against these large databases to 75

find closely-related database/reference genomes for taxonomy classification based on 76

the traditional brute-force methods, meaning, performing all vs. all searches, has become 77

impractical, even for fast searching algorithms and/or small-to-medium computer clusters. 78

For this task, faster search strategies are necessary. In addition to the searching strategy, 79

the actual algorithm used to determine overall genetic relatedness between the query and 80

the databased genomes is critical. While the traditional blast-based ANI among closely 81

related genomes at the species level, and the genome-aggregate average amino acid 82

identity (AAI) for genomes related at the genus level or above, have been proven to be 83

highly accurate for genetic relatedness estimation across microbial and viral genomes 11-84

13, they are too slow to use when dealing with more than a few dozen genomes. Faster 85

implementations based on k-mer counting have been recently described to alleviate this 86

bottleneck such as FastANI and MASH 14, 15, but these methods still do not scale with an 87

increasing number of database (or query) genomes, especially based on an all vs. all 88

search strategy. Further, defining genetic distance (or relatedness) based on kmer 89

profiles can be problematic for incomplete genomes, which are commonly recovered from 90

metagenomic surveys, and/or genomes with lots of repeats. Kmer-weighted approaches 91

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 21, 2022. ; https://doi.org/10.1101/2022.10.21.513218doi: bioRxiv preprint

https://doi.org/10.1101/2022.10.21.513218
http://creativecommons.org/licenses/by-nd/4.0/

5

are advantageous in the latter cases because repeated genomic fragments can be 92

considered when hashing but they have not been widely adopted yet 16, 17. Recently, a 93

phylogeny-based approach using a handful of universal genes (n= ~100) was developed 94

to accelerate genome classification 18. However, phylogenetic replacement based on 95

concatenated universal gene tree can be memory demanding (300+ GB) and slow, 96

especially for a large number of or a few deep-branching (novel) query genomes, and this 97

approach cannot be applied to viral genomes, which lack universal genes. Further, 98

universal genes due to their essentiality, are typically under stronger (purifying) selection 99

and thus, evolve slower than the genome average. This property makes universal genes 100

appropriate for comparisons among distantly related genomes, e.g., to classify genomes 101

belong to new class or new phylum, but not the species and genus levels 18, 19. 102

One of the most generally used approaches for finding closely related information 103

to a query, while circumventing an all vs. all search, is the K-Nearest Neighbor Search 104

(K-NNS). The K-NNS approach has been used for 16S rRNA gene-based classification 105

followed by a vote strategy 20, 21 and, more recently, for whole genome and metagenome 106

comparisons based on shared kmers 14. Approximate nearest neighbor search (ANN) 107

algorithms, such as locality-sensitive hashing (LSH) 22, 23 , k-dimension tree 24, random 108

projection trees 25, k-graph 26 and proximity graph 27, 28 have been recently used to 109

accelerate ANN search process. Proximity graph, as implemented for example in the 110

hierarchical navigable small world graph (HNSW) 29, has been shown to be one of the 111

fastest ANN search algorithms 30. HNSW incrementally builds a multi-layer structure 112

consisting of a hierarchical set of proximity graphs (layers) for nested subsets of the 113

stored elements. Then, through smart neighbor selection heuristics, inserting and 114

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 21, 2022. ; https://doi.org/10.1101/2022.10.21.513218doi: bioRxiv preprint

https://doi.org/10.1101/2022.10.21.513218
http://creativecommons.org/licenses/by-nd/4.0/

6

searching the query elements in the proximity graphs can be very fast while preserving 115

high accuracy, even for highly clustered data 27, 29. Therefore, finding the closest genomes 116

in a database can be substantially accelerated by using HNSW. 117

Here, we describe GSearch (for Genome Search), a tool that combines the most 118

efficient nearest neighbor search approaches (HNSW) with a universal approach to 119

measure genetic relatedness among any microbial genome, including viral genomes, 120

Probminhash 31, implemented in the Rust language for higher speed. Probminhash is 121

based on shared kmers, weighted by their abundance and normalized by total kmer size, 122

which can account for genome incompleteness of prokaryotic genomes and repeats 123

commonly found in eukaryotic and sometimes in prokaryotic genomes. Essentially, 124

Probminhash computes the normalized weighted Jaccard distance between each pair of 125

genomes and subsequently, the normalized (by total kmer size) weighted Jaccard 126

distance is used as input to build HNSW to create the graph of the database genomes. 127

Accordingly, the search of the query genome(s) against the graph to find the nearest 128

neighbors for classification purposes becomes an ultra-fast step using GSearch and can 129

be universally applied to all microbial genomes. The novelty of GSearch also includes a 130

hierarchical pipeline that involves both nucleotide-level (when query genomes have close 131

relatives at the species level) and amino-acid-level searching (when query genomes are 132

somehow novel), which provides robust classification for query genomes regardless of 133

their degree of novelty, as well as a database-splitting strategy that allows GSearch to 134

scale up well to millions of database genome sequences. 135

 136

Results 137

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 21, 2022. ; https://doi.org/10.1101/2022.10.21.513218doi: bioRxiv preprint

https://doi.org/10.1101/2022.10.21.513218
http://creativecommons.org/licenses/by-nd/4.0/

7

Probminhash as a robust metric for genome relatedness of prokaryotes 138

Correlations between Probminhash distance (or we called it ProbMASH after 139

transformation) and ANI (determined by FastANI) or MASH distance showed that 140

Probminhash is robust and slightly better than MASH for determining distances among 141

bacterial genomes related at ~80% ANI, or higher, i.e., closely related genomes of the 142

same or closely-related species (Spearman rho=0.9643 and 0.9640 respectively, 143

P<0.001, Figure S1 (a) and (b), note that for finding best hits compare to ANI, Spearman 144

rank correlation is more relevant than Pearson correlation). For moderately related 145

genomes, for which nucleotide-level ANI or distances are known to lose accuracy, 146

Probminhash was still robust compared to MASH for bacterial genomes (amino acid 147

distance or AAI), especially among genomes showing between ~52% and 95% AAI 148

(Spearman rho=0.90, P<0.01, Supplementary Figure S2 (a) and (b)). Below ~50% AAI, 149

both Probminhash and MASH distance lose accuracy compared to AAI. However, AAI of 150

just universal genes provides a robust measurement of genetic relatedness at this level 151

of distantly related genomes 19, and we show here that Probminhash distance for the 152

same set of universal genes is also robust (Spearman rho=0.9390, P<0.001, 153

Supplementary Figure S3). Thus, for distantly related (i.e., deep-branching) query 154

genomes, e.g., their closest genome in the database is related at the order level or higher, 155

restricting the search to the universal genes can provide robust classifications. 156

 157

Graph building and search against reference prokaryotic genomes is faster than 158

alternative methods 159

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 21, 2022. ; https://doi.org/10.1101/2022.10.21.513218doi: bioRxiv preprint

https://doi.org/10.1101/2022.10.21.513218
http://creativecommons.org/licenses/by-nd/4.0/

8

To build the database graph for the entire GTDB v207 database (65,703 unique, non-160

redundant prokaryotic species) at the nucleotide level, the tohnsw module of GSearch 161

took 2.3 h on a 24-thread computing node and scaled well with increasing number of 162

threads (Figure 2 (a)). Maximum memory required for the building step was 28.3 GB. The 163

total size of written database files on disk was ~3.0 GB. There are 3 layers for the dumped 164

graph, 65180, 519 and 4 genomes for layer 0,1 and 2 respectively. The searching of query 165

genomes against this database graph, requesting best 50 neighbors for 1000 query 166

genomes, which represented different previously known as well as novel species of eight 167

bacterial phyla (see Methods for details on query genome selection), took 2.3 min 168

(database loading 6 seconds) on a 24 thread machine and also scaled well with 169

increasing number of threads (Figure 3 (a)). The memory requirement for the request 170

(search) step was only 3.0 GB for storing the entire database file in memory. To evaluate 171

the accuracy of these results, we compared the best neighbors found by GSearch with 172

brute-force FastANI and GTDB-tk. All best neighbors found by brute-force FastANI and 173

GTDB-tk for query genomes with close relatives in the database (e.g., showing >80% 174

ANI) were found by GSearch (Supplemental File 1). Top 5 neighbors were 99.4% 175

overlapping and top 10 were 96.3% overlapping between GSearch and the other two 176

methods for the testing query genomes. We also compared the speed with MASH for the 177

same kmer and sketch size and MASH dist step took 7.51 min for comparing 1000 178

genomes with database using 24 threads. The speedup compared to MASH was even 179

larger for ~8,000 query genomes. Specifically, it took 12.5 min for GSearch to find the top 180

50 best hits (Supplementary Figure S4 (a)) while MASH took 80.8 minutes on the same 181

24 thread machine. However, for a given number database genomes, speedup is 182

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 21, 2022. ; https://doi.org/10.1101/2022.10.21.513218doi: bioRxiv preprint

https://doi.org/10.1101/2022.10.21.513218
http://creativecommons.org/licenses/by-nd/4.0/

9

saturated to log(N) as the number of query genome increases, where N is the number of 183

database genomes. GSearch will be orders of magnitude faster than MASH for larger 184

species database with millions of genomic species (see also phage section). GSearch 185

query time for a given number of genomes is related to the number of database genomes 186

in a O(log(N)) manner while brute-force methods are O(N), and our empirical analysis is 187

consistent with the theoretical log(N) prediction (Supplementary Figure S4 (b)). 188

 189

For building the amino-acid level graph for moderately related query genomes, all GTDB 190

v207 genomes are used for gene calling by FragGeneScanRs and subsequently, the 191

predicted amino acid sequences for each genome are used for the tohnsw module. The 192

graph building step took 1.4 h (Figure 2 (b)) with maximum memory required for the 193

building step to be 37.7 GB. The total size of written database files on disk by GSearch 194

was 5.9 GB. There were 65158, 543 and 2 genomes for layer 0,1 and 2 respectively. 195

Requesting 50 neighbors for 1000 genomes at this amino-acid level took 1.52 minutes 196

with memory requirement ~6.0 GB (database loading 9 seconds; Figure 3(b)). Top 5 197

neighbors were 98.9% recall with those of the brute-force MASH or blast-based AAI 198

approaches, with 97.1% overlap for the 10 top neighbors. In comparison, MASH dist took 199

5.96 min using 24 threads; for 8000 query genomes, MASH dist took 47.2 min while 200

GSearch took 5.6 min. 201

 202

Finally, for most distantly related query genomes, the graph building for the universal 203

gene set follows the same logic with the amino-acid level graph mentioned above except 204

for using a smaller kmer size (k=5) due to the smaller kmer space of 120 universal genes 205

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 21, 2022. ; https://doi.org/10.1101/2022.10.21.513218doi: bioRxiv preprint

https://doi.org/10.1101/2022.10.21.513218
http://creativecommons.org/licenses/by-nd/4.0/

10

vs. the whole-genome level (e.g., a few thousand genes). It took 7.76 min to build the 206

database (Figure 2(c)) and 32 seconds to request 50 neighbors for 1000 queries on a 24 207

threads node (Figure 3(c)) with similar high recall to the amino-acid level search (with top 208

5 and top 10 recall, 98.2% and 97.1%, respectively). 209

 210

We also evaluated the effect of genome completeness on search and classification 211

accuracy given that bacterial genomes recovered from environmental metagenomes are 212

frequently incomplete. GSearch was robust to genome incompleteness down to 50% 213

completeness level, e.g., 80% of top 10 best matches are found, while accuracy 214

decreased considerably below this level (Supplementary table S6). 215

 216

Graph database building and searching for phage and fungal genomes 217

Graph building and requesting for phage genomes is not effective at the nucleotide level 218

because many phage genera are too diverse and do not have close relatives in the public 219

genomic database; that is, the database is too sparse. Accordingly, kmer-based methods 220

(e.g., MASH and probminhash) will often lead to imperfect graph structure for viral 221

genomes. Therefore, we build only an amino-acid level graph for viral genomes, using all 222

genes in the genome due to the lack of universal genes for viral genomes. Database 223

building took 23.895 h on a 24-thread node (Supplementary Figure S6 (a)). Request 1000 224

neighbors scales well with increasing number of threads and took about 4.4 min 225

(database load takes additional 1.9 min) using 24 threads (Supplementary Figure S6 (b)). 226

Top 10 neighbors for 1000 query phage genomes were still highly overlapping (98.32% 227

recall; Supplemental Table S1) with the brute-force MASH-based approach. For such 228

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 21, 2022. ; https://doi.org/10.1101/2022.10.21.513218doi: bioRxiv preprint

https://doi.org/10.1101/2022.10.21.513218
http://creativecommons.org/licenses/by-nd/4.0/

11

large database, GSearch is about 20X faster than the brute-force MASH (Supplementary 229

Tables S1). We also compare GSearch with a new database build method called 230

PhageCloud, which relies on manually curated genome labels (e.g., environmental 231

source) for graph database building in Neo4j database software and Dashing software 232

for distance/relatedness computation. Since PhageCloud provides only a website and 233

allows only one genome query at a time, we searched only one phage genome at a time 234

with GSearch and MASH against the same database (Gut Phage Database 32). It took 37 235

seconds for finding the two best matches with PhageCloud while GSearch took 15 236

seconds (database loading 14 seconds, search 1 second) for the same search. MASH 237

on the other hand took 4 minutes to find the same 2 best matches. It should be noted, 238

however, that, because the database is already available (loaded) on PhageCloud’s 239

website, 37 seconds is only for search and website responses (average value for 5 runs 240

on 5 different days) whereas GSearch took only 1.5 second for the same step. 241

 242

Graph building for fungal genomes is slower compared to prokaryotic genomes, despite 243

the smaller number of available fungal genomes (n=9700) because the average fungal 244

genome size is much larger and kmer and sketch size are accordingly much larger (k=21, 245

s=48000). It took 2.3 h on a 24 thread node to build the nucleotide-level graph for these 246

fungal genomes. Searching step was also slower due to the larger kmer space. 247

Accordingly, it took 3.13 min for identifying 50 neighbors for 50 query fungal genomes 248

while MASH tool 4.4 min. Nonetheless, recall was still very high (~99.4%) against MASH 249

and MUMMER-based ANI for the same datasets. For the amino-acid level graph, the time 250

for graph building was only 0.61 h, shorter than the corresponding prokaryotic graph due 251

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 21, 2022. ; https://doi.org/10.1101/2022.10.21.513218doi: bioRxiv preprint

https://doi.org/10.1101/2022.10.21.513218
http://creativecommons.org/licenses/by-nd/4.0/

12

to the lower coding density of fungal genomes relative to the prokaryotic genomes. 252

Identifying 50 neighbors for 50 query fungal genomes at the amino-acid level took 1.24 253

min (MASH took 2.59 min) with similar high top 5 recall (~99.7%) against brute-force 254

MASH (-a) and blastp-based AAI. Note that the difference in run time will be much larger 255

between MASH and GSearch as the number of fungal database genome increases, 256

which is similar to that of bacterial genomes 257

 258

Combining the three graphs/levels together and comparison with GTDB-tk for prokaryotic 259

genome classification 260

A three-step pipeline was developed to allow the identification and classification of a 261

query genome, depending on its level of novelty compared to the database genomes 262

(Figure 4). Specifically, when the query genome does not find a match in the database 263

better than ANI > 78%, corresponding to probminhash distance 0.9850, the nucleotide-264

level graph is abandoned, and the amino-acid level is used instead. If no match against 265

the latter graph is found above 52% AAI, corresponding to 0.9375 probminhash distance, 266

the amino-acid level is abandoned, and the universal gene graph is used instead (uAAI 267

based on universal gene below 80% indicates new order or higher taxonomic rank)(Figure 268

4). The overall running time for classifying 1000 prokaryotic genomes of varied levels of 269

taxonomic novelty on different computing platforms is showed in Table 1. On a 24 thread 270

Linux node, it took a total of 5.85 minutes while it took 19.49 minutes on an intel Core i7 271

laptop (2017 release) CPU personal laptop (6.02 minutes on the most recent ARM64 272

CPU laptop). Classifying 1000 genomes using GTDB-tk took 244.7 min on the same Linux 273

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 21, 2022. ; https://doi.org/10.1101/2022.10.21.513218doi: bioRxiv preprint

https://doi.org/10.1101/2022.10.21.513218
http://creativecommons.org/licenses/by-nd/4.0/

13

node with 24 threads (Figure 3 (d), memory requirement is ~328G) while MASH takes 274

53.7 min for 1000 genomes using 24 threads for the 3 steps. 275

 276

In terms of the accuracy of the nearest neighbors found, query genomes (699 out of the 277

total 1000) that had a best match higher than 78% ANI against the GTDB database 278

genomes (i.e., a match at the same or closely related species), GSearch classified them 279

exactly the same with GTDB-tk and FastANI (Supplementary File 1, only 100/699 are 280

shown for simplicity). For the remaining 301 genomes that did not have same or closely 281

related species-level matches, for 266 of them (or 87.1%), GSearch also provided the 282

same classification with GTDB-tk but several inconsistencies were observed for 39/301 283

genomes (Supplementary Figure S5). Specifically, we noticed that for GTDB-tk, which 284

relies on RED values and tree topology, several genomes (n=14) were still classified at 285

the genus level even though AAI value against the best database genomes found was 286

below 60%, and some genomes (n=16) were still classified at the family level but not the 287

genus level even though their best AAI value was above 65%. Several genomes (n=9) 288

were classified at the order level but not family level even though their best AAI value was 289

above 52%. Therefore, high consistency was overall observed between GSearch and 290

GTDB-tk assignments, and the few differences noted were probably associated with 291

contaminated (low quality) MAGs or taxonomic inconsistencies, which was challenging to 292

assess further, and/or the peculiarities of each method. Since Probminhash distance 293

correlated well with AAI in the range of AAI values between 52% and 95%, the 294

classification results were always consistent with AAI-based classification, e.g., best 295

matches of 65% AAI or higher were classified at the same genus by GSearch and blast-296

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 21, 2022. ; https://doi.org/10.1101/2022.10.21.513218doi: bioRxiv preprint

https://doi.org/10.1101/2022.10.21.513218
http://creativecommons.org/licenses/by-nd/4.0/

14

based AAI and best matches of 52% < AAI < 65% were typically classified at the same 297

family 33 . 298

 299

Database split for large genomic species database 300

For large databases (for example, >1 million bacterial genomes), the graph building and 301

requesting step could require a large amount of memory (due to the larger kmer space) 302

that is typically not available in a single computer node. We therefore provide a database 303

split solution for such large databases. The average database building time on each node 304

(for each piece of the database after the splitting step) scales linearly with increasing 305

nodes/processors and requires much less memory (1/n total memory compared to when 306

building in one node) (Supplementary Figure S7(a)). The searching time scales sub-307

linearly with increasing number of nodes (Supplementary Figure S7(b)). The top 10 best 308

neighbor by splitting the database were exactly the same as the non-splitting strategy 309

(Supplementary file 2). Note that without multi-node support (e.g., run database build 310

sequentially), database build time is nearly the same with non-split strategy but memory 311

requirement is only 1/n, where n is the number of database pieces, despite the fact that 312

total request time will be larger (time*n in Supplementary Figure S7(b)). However, since 313

the request step is very fast, even for a decent number of pieces, overall runtime is still 314

short with the database split approach. The database split strategy is especially useful 315

when memory requirement is not satisfied on host machine for larger genomic species 316

database (e.g., millions of genomes). 317

 318

Discussion 319

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 21, 2022. ; https://doi.org/10.1101/2022.10.21.513218doi: bioRxiv preprint

https://doi.org/10.1101/2022.10.21.513218
http://creativecommons.org/licenses/by-nd/4.0/

15

A popular way to assess genetic relatedness among genomes is ANI, which 320

corresponds well to both 16S/18S rRNA gene identity and DNA-DNA hybridization values, 321

the golden standards of fungal and prokaryotic taxonomies 11. As the number of available 322

microbial genomes has grown at an unprecedented speed recently (e.g., there are 30% 323

more (new) species in GTDB v202 (2020) vs. v207 (2022), and the number of bacterial 324

species genomes alone is expected to surpass 1 million in the near future), the traditional 325

way that blast-based ANI or faster kmer-based implementations (e.g., FastANI or MASH) 326

are applied as an all vs. all search strategy (brute-force) does not scale because the 327

running time grows linearly with increasing number of query genomes and/or genomes in 328

the database. Phylogenetic approaches based on quick (approximate) maximum 329

likelihood algorithms and a handful of universal genes as implemented -for example- in 330

GTDB-Tk could be faster than brute-force approaches but are often not precise and 331

require a large amount of memory for querying step 18, 34 while the database building step 332

could take several weeks of run time because the underlying multiple sequence alignment 333

of the database genomes is computationally intensive. Further, approaches that reply on 334

k-medoid clustering to avoid all vs. all comparisons could be sometimes trapped into local 335

minima because of arbitrary partitioning of database genomes into clusters, a known 336

limitation of these methods 19. Our GSearch software effectively circumvents these 337

limitations by combining a new kmer hashing-based (Probminhash) algorithm for fast 338

computation of genetic relatedness among genomes with a graph based nearest neighbor 339

search algorithm. Accordingly, GSearch is at least an order of magnitude faster than 340

alternative approaches for the same purposes. Note that GSearch could also be applied 341

to whole metagenome comparisons and identification of the most similar metagenomes 342

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 21, 2022. ; https://doi.org/10.1101/2022.10.21.513218doi: bioRxiv preprint

https://doi.org/10.1101/2022.10.21.513218
http://creativecommons.org/licenses/by-nd/4.0/

16

in a series because ProbMinhash can estimate metagenomic distance in a similar way to 343

genomes. 344

To the best of our knowledge, no current tool can efficiently search very large 345

genome databases. GSearch is able to handle a million microbial genomes on a small-346

to-average computer cluster since the dumped database file size is proportional to the 347

total number of genomes in database for fixed sketch size and graph parameters. 348

Specifically, with a million genome species, dumped file size (amino acid) will be 349

5.9G*20=118 GB, a modest computational requirement for current computer clusters. 350

Further, due to the nature of graph based NNS algorithm, there is no need to build the 351

entire database at once, but the database can split it into smaller pieces and thus, a 352

separate graph database be built for each piece as exemplified above and depending on 353

the computational resources available. For a modern laptop with 16 GB memory, a 354

database on one million species can be split into 10 pieces, so dumped file for each piece 355

will be only 11.8 GB, which can be loaded into memory, and then collect the results from 356

each piece within an approximate total running time of 30 minutes (assume each part will 357

be 3 minutes) (Supplementary table S7). With this logic, a computing node with 24 threads 358

and 256 GB of memory available can easily deal with 20 million bacterial genomes. This 359

represents a major improvement compared to existing tools for the same purposes. 360

It is also important to note that we could seemingly replace Probminhash with 361

another relatedness algorithm should such an algorithm become available and has 362

advantages in terms of speed and/or precision. Related to this, ANI as currently 363

implemented -for instance- in FastANI is not appropriate for this function because it is not 364

metric (that is, for the FastANI distances calculated among three genomes A, B, and C, 365

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 21, 2022. ; https://doi.org/10.1101/2022.10.21.513218doi: bioRxiv preprint

https://doi.org/10.1101/2022.10.21.513218
http://creativecommons.org/licenses/by-nd/4.0/

17

(A,B) + (B, C) is not necessary larger than (A,C), especially for genomes related at the 366

phylum level). To solve this “metric” problem, a norm adjusted proximity graph (NAPG) 367

was proposed based on inner product and it shows improvements in terms of both speed 368

and recall 35. This could be another direction for further improving the speed and recall of 369

GSearch and/or the use of other metrics in place of Prominhash distances. In the 370

meanwhile, Probminhash was used in GSearch because it is metric, which ensures 371

neighbor diversity when building the graph, but also equally applicable to any microbial 372

genome, including viral genomes, in addition to its advantages for kmer weighting and 373

normalization mentioned above. 374

Another distinguishing aspect of GSearch (tohnsw module) is the speed and 375

flexibility in building reference databases. Indeed, users could build reference databases 376

(graphs) for any number and type (e.g., prokaryotic vs. viral) of genomes, up to several 377

millions of genomes. The high efficiency in building graphs allows users to also test and 378

optimize the key parameters of the graph, the M and ef_construct parameters. For any 379

given database size, M and ef_construct determine the quality of the graph and graph 380

build speed. Small M and ef_construct may lead to frequent traps in local minima and 381

thus, low recall while large M and ef_construct may lead to slow speed without 382

proportional improvement in recall (Supplemental Table S2). Therefore, there is a tradeoff 383

between accuracy and speed that should be evaluated first. However, for most users this 384

task would not be necessary because they will work with pre-built databases such as 385

those provided here. Further, the search step against these pre-build databases with 386

query genomes of known taxonomy for evaluating recall and tradeoffs can be performed, 387

within minutes, on any modern laptop with 5-6 GB of memory (Table 1). 388

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 21, 2022. ; https://doi.org/10.1101/2022.10.21.513218doi: bioRxiv preprint

https://doi.org/10.1101/2022.10.21.513218
http://creativecommons.org/licenses/by-nd/4.0/

18

Kmer-based methods for genetic relatedness estimation such as Probminhash 389

have lower accuracy between moderately-to-distantly related genomes compare to 390

alignment-based tools (see supplement Note 4 for further discussion). Our empirical 391

evaluation showed that this relatedness level, for nucleotide searches, is around 78% ANI 392

and 52% AAI for the amino-acid searches (e.g., probminhash distances do not correlate 393

well with blast-based ANI and AAI at these levels). To circumvent this limitation, we 394

designed a 3-step framework as part of GSearch to classify bacterial genomes that show 395

different levels of novelty compared to the database genomes, with high accuracy. This 396

framework included a search at the universal gene level for deep-branching genomes 397

that are novel at the phylum level (e.g., showing <52% AAI), for which searching at the 398

entire proteome level is less accurate. Recently, methods that employ kmers that allow 399

mismatches, that is, spaced kmers 36, have shown promise in accurately estimating 400

genomic relatedness even among distantly related genomes with gains in speed and has 401

already been applied in classification. To apply spaced kmer to entire genomes, the 402

recently developed “tensor sketch” approaches could be explored in the future to simplify 403

the pipeline for bacterial and viral genomes 37. In the meanwhile, the probminhash 404

approach, essentially a Jaccard distance estimation via MinHash-based analysis of kmers, is 405

highly efficiently, and, importantly, can effectively deal with incomplete genomes or 406

genomes of (drastically) different length, an known limitation of MASH-based methods 38. 407

Comparing genomes of different length is not uncommon, e.g., bacterial genome size can 408

differ by more than two-fold, as can be the case between MAGs of different level of 409

completeness or when searching a short sequence (e.g., a bacteriophage genome) 410

against a large genome collection (e.g., whole viral genome database). Probminhash is 411

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 21, 2022. ; https://doi.org/10.1101/2022.10.21.513218doi: bioRxiv preprint

https://doi.org/10.1101/2022.10.21.513218
http://creativecommons.org/licenses/by-nd/4.0/

19

more robust with genomes of unknown completeness by weighting completed genomes 412

more due to the kmer normalization step, and our own analysis showed that it is robust 413

down to 50% completeness level (Supplemental Table S6), which is also the most 414

commonly used standard for selecting MAGs of sufficient/high quality 39. 415

In general, the genome relatedness estimated, or best database matching genome 416

identified by GSearch were highly consistent with Blast-based AAI results or phylogenetic 417

placement of the genome using GTDB-tk, particularly for query genomes with close 418

relatives in the database related at the species or genus level (Supplementary File 1, 419

Supplementary Figure S5). For more distantly related query genomes relative to database 420

genomes, classification results of GSearch showed some differences with GTDB-tk. 421

These differences were not always possible to assess further for the most correct genome 422

placement but could be due, at least partly, to the incompleteness and/or contamination 423

of query or/and database genomes, which renders the resulting concatenated alignment 424

of a few universal genes used by GTDB-tk unreliable 40 (and it is a few amino-acid 425

positions per gene that are used in the final alignment). In contrast, the AAI and 426

Probminhash approaches should be more robust to changes of a small number of genes 427

because the entire proteome is considered 15. 428

 Graph-based NNS methods achieve good performance compared to tree based 429

and locality-sensitive hashing (LSH) methods. Building a HNSW graph relies on proximity 430

of database element; so, if the distances among database elements, in our case 431

genomes, cannot be effectively estimated via hashing algorithms, the navigation in graph 432

will be less efficient (e.g., get trapped in local minima) because the edges to choose from 433

will not be accurate estimations of the targeted genomes they represent. This is especially 434

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 21, 2022. ; https://doi.org/10.1101/2022.10.21.513218doi: bioRxiv preprint

https://doi.org/10.1101/2022.10.21.513218
http://creativecommons.org/licenses/by-nd/4.0/

20

true for highly sparse/distantly related and diverse dataset, like the viral genome 435

database, e.g., two phage genomes could often share very little genomic information 436

(kmers) in the current dataset. This is confirmed by our own results when using 437

nucleotide-level search to build the viral graph. Hence, the amino acid level will be much 438

more robust for viral genomes and is the recommended level to use. Finally, the HNSW 439

graph, and graph-based K-NNS in general, can be further improved by adding shortcut 440

edges and maintaining a dynamic list of candidates, compared to a fixed list of candidates 441

by default 41. Graph reordering, a cache optimization that works by placing neighboring 442

nodes in consecutive (or near-consecutive) memory locations, can also be applied to 443

improve the speed of HNSW 42. Another new direction for graph based NNS will be using 444

Graphics Processing Unit (GPU) instead of CPU because GPUs are more efficient in 445

handling matrix computations and machine learning tasks 43. We will explore these 446

options in future version of GSearch. 447

 448

To summarize, GSearch, based on Probminhash and HNSW, solves a major 449

current challenge in classification of microbial genomes, especially given the exponential 450

increase in the number of newly sequenced genomes due to its efficiency and scalability. 451

GSearch will serve the entire microbial sciences for several years to come since it can be 452

applied to fungal, bacterial and viral genomes and will accelerate the process to find new 453

biological knowledge. 454

 455

Data availability 456

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 21, 2022. ; https://doi.org/10.1101/2022.10.21.513218doi: bioRxiv preprint

https://doi.org/10.1101/2022.10.21.513218
http://creativecommons.org/licenses/by-nd/4.0/

21

All the mentioned pre-built database for bacteria, fungi and phage genomes can be found 457

at: http://enve-omics.ce.gatech.edu/data/gsearch 458

 459

Author Contribution 460

J.Z, L.M and K.K designed the work, J.Z and J.P-B wrote the code (Genome part and 461

algorithm part respectively), J.P-B implemented the Rust libraries of Kmerutils, 462

Probminhash and Hnswlib-rs. J.Z and K.K wrote the paper. J.Z did the analysis and 463

benchmark. 464

 465

Acknowledgment 466

This work was supported by the US National Science Foundation (Award No 1759831 467

and 2129823 to KTK). We want to thank PACE (Partnership for Advanced Computing 468

Environment) at Georgia Tech for providing computing resources. We want to thank Kenji 469

Gerhardt for helpful discussion on benchmarking against traditional ANI/AAI based tools 470

and Chirag Jain for discussion on the graph based nearest neighbor search. 471

 472

Reference 473

1. Bobay, L.-M. & Ochman, H. Biological species in the viral world. Proceedings of the 474
National Academy of Sciences 115, 6040-6045 (2018). 475

2. Locey, K.J. & Lennon, J.T. Scaling laws predict global microbial diversity. Proceedings of 476
the National Academy of Sciences 113, 5970-5975 (2016). 477

3. Federhen, S. Type material in the NCBI Taxonomy Database. Nucleic Acids Research 478
43, D1086-D1098 (2014). 479

4. Almeida, A. et al. A unified catalog of 204,938 reference genomes from the human gut 480
microbiome. Nature Biotechnology 39, 105-114 (2021). 481

5. Nayfach, S. et al. A genomic catalog of Earth’s microbiomes. Nature Biotechnology 39, 482
499-509 (2021). 483

6. Caro‐Quintero, A. & Konstantinidis, K.T. Bacterial species may exist, metagenomics 484
reveal. Environmental microbiology 14, 347-355 (2012). 485

7. Deng, L. et al. Viral tagging reveals discrete populations in Synechococcus viral genome 486
sequence space. Nature 513, 242-245 (2014). 487

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 21, 2022. ; https://doi.org/10.1101/2022.10.21.513218doi: bioRxiv preprint

http://enve-omics.ce.gatech.edu/data/gsearch
https://doi.org/10.1101/2022.10.21.513218
http://creativecommons.org/licenses/by-nd/4.0/

22

8. Rodriguez-R, L.M., Jain, C., Conrad, R.E., Aluru, S. & Konstantinidis, K.T. Reply to: “Re-488
evaluating the evidence for a universal genetic boundary among microbial species”. 489
Nature Communications 12, 4060 (2021). 490

9. Parks, D.H. et al. GTDB: an ongoing census of bacterial and archaeal diversity through a 491
phylogenetically consistent, rank normalized and complete genome-based taxonomy. 492
Nucleic Acids Research (2021). 493

10. Roux, S. et al. IMG/VR v3: an integrated ecological and evolutionary framework for 494
interrogating genomes of uncultivated viruses. Nucleic acids research 49, D764-D775 495
(2021). 496

11. Konstantinidis, K.T. & Tiedje, J.M. Genomic insights that advance the species definition 497
for prokaryotes. Proceedings of the National Academy of Sciences 102, 2567-2572 498
(2005). 499

12. Konstantinidis, K.T. & Tiedje, J.M. Towards a Genome-Based Taxonomy for 500
Prokaryotes. Journal of Bacteriology 187, 6258-6264 (2005). 501

13. Goris, J. et al. DNA–DNA hybridization values and their relationship to whole-genome 502
sequence similarities. International Journal of Systematic and Evolutionary Microbiology 503
57, 81-91 (2007). 504

14. Ondov, B.D. et al. Mash: fast genome and metagenome distance estimation using 505
MinHash. Genome Biology 17, 132 (2016). 506

15. Jain, C., Rodriguez-R, L.M., Phillippy, A.M., Konstantinidis, K.T. & Aluru, S. High 507
throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. 508
Nature Communications 9, 5114 (2018). 509

16. Brown, C.T. & Irber, L. sourmash: a library for MinHash sketching of DNA. Journal of 510
Open Source Software 1, 27 (2016). 511

17. Bovee, R. & Greenfield, N. Finch: a tool adding dynamic abundance filtering to genomic 512
MinHashing. Journal of Open Source Software 3, 505 (2018). 513

18. Chaumeil, P.-A., Mussig, A.J., Hugenholtz, P. & Parks, D.H. GTDB-Tk: a toolkit to 514
classify genomes with the Genome Taxonomy Database. Bioinformatics 36, 1925-1927 515
(2019). 516

19. Rodriguez-R, L.M. et al. The Microbial Genomes Atlas (MiGA) webserver: taxonomic 517
and gene diversity analysis of Archaea and Bacteria at the whole genome level. Nucleic 518
Acids Research 46, W282-W288 (2018). 519

20. Wang, Q., Garrity, G.M., Tiedje, J.M. & Cole, J.R. Naïve Bayesian Classifier for Rapid 520
Assignment of rRNA Sequences into the New Bacterial Taxonomy. Applied and 521
Environmental Microbiology 73, 5261-5267 (2007). 522

21. Schloss, P.D. et al. Introducing mothur: Open-Source, Platform-Independent, 523
Community-Supported Software for Describing and Comparing Microbial Communities. 524
Applied and Environmental Microbiology 75, 7537-7541 (2009). 525

22. Indyk, P. & Motwani, R. in Proceedings of the thirtieth annual ACM symposium on 526
Theory of computing 604-613 (1998). 527

23. Gionis, A., Indyk, P. & Motwani, R. in Vldb, Vol. 99 518-529 (1999). 528
24. Bentley, J.L. Multidimensional binary search trees used for associative searching. 529

Communications of the ACM 18, 509-517 (1975). 530
25. Dasgupta, S. & Sinha, K. in Proceedings of the 26th Annual Conference on Learning 531

Theory, Vol. 30. (eds. S.-S. Shai & S. Ingo) 317--337 (PMLR, Proceedings of Machine 532
Learning Research; 2013). 533

26. Dong, W., Moses, C. & Li, K. in Proceedings of the 20th international conference on 534
World wide web 577-586 (2011). 535

27. Malkov, Y., Ponomarenko, A., Logvinov, A. & Krylov, V. Approximate nearest neighbor 536
algorithm based on navigable small world graphs. Information Systems 45, 61-68 537
(2014). 538

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 21, 2022. ; https://doi.org/10.1101/2022.10.21.513218doi: bioRxiv preprint

https://doi.org/10.1101/2022.10.21.513218
http://creativecommons.org/licenses/by-nd/4.0/

23

28. Fu, C., Xiang, C., Wang, C. & Cai, D. Fast approximate nearest neighbor search with the 539
navigating spreading-out graph. arXiv preprint arXiv:1707.00143 (2017). 540

29. Malkov, Y.A. & Yashunin, D.A. Efficient and Robust Approximate Nearest Neighbor 541
Search Using Hierarchical Navigable Small World Graphs. IEEE Transactions on Pattern 542
Analysis and Machine Intelligence 42, 824-836 (2020). 543

30. Aumüller, M., Bernhardsson, E. & Faithfull, A. ANN-Benchmarks: A benchmarking tool 544
for approximate nearest neighbor algorithms. Information Systems 87, 101374 (2020). 545

31. Ertl, O. ProbMinHash – A Class of Locality-Sensitive Hash Algorithms for the 546
(Probability) Jaccard Similarity. IEEE Transactions on Knowledge and Data Engineering, 547
1-1 (2020). 548

32. Camarillo-Guerrero, L.F., Almeida, A., Rangel-Pineros, G., Finn, R.D. & Lawley, T.D. 549
Massive expansion of human gut bacteriophage diversity. Cell 184, 1098-1109.e1099 550
(2021). 551

33. Konstantinidis, K.T., Rosselló-Móra, R. & Amann, R. Uncultivated microbes in need of 552
their own taxonomy. The ISME Journal 11, 2399-2406 (2017). 553

34. Chaumeil, P.-A., Mussig, A.J., Hugenholtz, P. & Parks, D.H. GTDB-Tk v2: memory 554
friendly classification with the Genome Taxonomy Database. bioRxiv, 555
2022.2007.2011.499641 (2022). 556

35. Tan, S. et al. in Proceedings of the 27th ACM SIGKDD Conference on Knowledge 557
Discovery & Data Mining 1552–1560 (Association for Computing Machinery, Virtual 558
Event, Singapore; 2021). 559

36. Břinda, K., Sykulski, M. & Kucherov, G. Spaced seeds improve k-mer-based 560
metagenomic classification. Bioinformatics 31, 3584-3592 (2015). 561

37. Joudaki, A., Rätsch, G. & Kahles, A. Fast Alignment-Free Similarity Estimation By 562
Tensor Sketching. bioRxiv (2021). 563

38. Koslicki, D. & Zabeti, H. Improving MinHash via the containment index with applications 564
to metagenomic analysis. Applied Mathematics and Computation 354, 206-215 (2019). 565

39. Bowers, R.M. et al. Minimum information about a single amplified genome (MISAG) and 566
a metagenome-assembled genome (MIMAG) of bacteria and archaea. Nature 567
Biotechnology 35, 725-731 (2017). 568

40. Tan, G. et al. Current Methods for Automated Filtering of Multiple Sequence Alignments 569
Frequently Worsen Single-Gene Phylogenetic Inference. Systematic Biology 64, 778-570
791 (2015). 571

41. Prokhorenkova, L. & Shekhovtsov, A. in Proceedings of the 37th International 572
Conference on Machine Learning, Vol. 119. (eds. D. Hal, III & S. Aarti) 7803--7813 573
(PMLR, Proceedings of Machine Learning Research; 2020). 574

42. Coleman, B., Segarra, S., Shrivastava, A. & Smola, A. Graph Reordering for Cache-575
Efficient Near Neighbor Search. arXiv preprint arXiv:2104.03221 (2021). 576

43. Groh, F., Ruppert, L., Wieschollek, P. & Lensch, H. GGNN: Graph-based GPU Nearest 577
Neighbor Search. IEEE Transactions on Big Data, 1-1 (2022). 578

 579

 580

 581

 582

 583

 584

 585

 586

Methods and Material/Online Methods 587

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 21, 2022. ; https://doi.org/10.1101/2022.10.21.513218doi: bioRxiv preprint

https://doi.org/10.1101/2022.10.21.513218
http://creativecommons.org/licenses/by-nd/4.0/

24

Briefly, GSearch is composed of the following steps. Initially, the genetic relatedness 588

among a collection of database genomes is determined based on the probability MinHash 589

algorithm (or Probminhash), which computes the normalized weighted Jaccard distance 590

using the probminhash3a algorithm implemented in the probminhash 1. The normalized 591

weighted Jaccard distances are then used as input for building HNSW graphs (note that 592

a distance computation is required only when that genome pair is required for graph 593

building, thus GSearch avoids all vs. all distance computations). Genomes are 594

subsequently recursively added as the nearest neighbors of each node in the built graph 595

file with the same distance computation procedure. The built graph database file is stored 596

on disk. Query genomes are then searched against graph database and subsequently, 597

best neighbors are returned for classification. In this process, the best neighbor (or 598

neighbors) is also identified based on the smallest normalized weighted Jaccard distance 599

obtained. 600

 601

Probminhash 602

MASH is a hashing-based algorithm based on MinHash 2, which is very efficient for 603

comparing genome/metagenome overall similarity 3. MASH distances represent a kmer-604

based overall overlap between sequences according to a minimal evolutionary model. 605

Essentially, MASH distance is the Jaccard similarity value of kmer shared between 606

sequence sets A and B. However, MASH, and similar MinHash-based tools, have several 607

limitations; most notably, the loss of k-mer frequency information (only presence/absence 608

of kmer is counted) and the impact of relative set size (e.g., completeness level of a 609

genome) on the Jaccard similarity estimates 3, 4 Although some recent MinHash 610

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 21, 2022. ; https://doi.org/10.1101/2022.10.21.513218doi: bioRxiv preprint

https://doi.org/10.1101/2022.10.21.513218
http://creativecommons.org/licenses/by-nd/4.0/

25

implementations address these limitations (e.g., the over-sketching and track-abundance 611

methods of the MinHash-based tools finch , sourmash’ or FracMinHash and 612

HyperLogLog) 5-8, they do not utilize the frequencies of all observed k-mers in generating 613

the kmer-profile (sketch) for a given sequence set. More recently, in the HULK software, 614

consistent weighted sampling (D2histosketch, P-MinHash algorithm was proposed for Jp) 615

9 was utilized to incorporate k-mer frequency information when estimating weighted and 616

standard Jaccard similarity, which effectively addresses these limitations mentioned 617

above 10. Notably, the hash algorithm (P-MinHash) used in D2histosketch could be further 618

optimized to achieve a time complexity below O(nm) (where m denotes the signature size 619

and n is the number of elements with nonzero weight in two sequence sets), further 620

improving the performance of applications such as HULK. Motivated by the 621

SuperMinHash for conventional Jaccard similarity estimation 11 and BagMinHash 622

algorithm for weighted Jaccard similarity estimation 12, probminhash (probminhash 3(a) 623

and 4 algorithm) is orders of magnitude faster than the original algorithm P-MinHash 624

proposed in D2histosketch 1. Probminhash estimates the Jaccard probability Jp index, and 625

1- Jp is indeed a metric on probability distributions and is Pareto optimal (Supplementary 626

Note 1) 1, 13. Therefore, we reimplemented the Probminhash algorithm in Rust to estimate 627

genetic relatedness between any two genomes based on normalized (weighted) Jaccard 628

distances according to the original ProbMinHash paper 1 (Supplementary Note 1) . The 629

Rust reimplementation of Probminhash can be found at: https://github.com/jean-630

pierreBoth/probminhash. Two important parameters of Probminhash are the sketch size 631

and kmer size. Similar to MinHash sketches, Probminhash sketches are also shared 632

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 21, 2022. ; https://doi.org/10.1101/2022.10.21.513218doi: bioRxiv preprint

https://github.com/jean-pierreBoth/probminhash
https://github.com/jean-pierreBoth/probminhash
https://doi.org/10.1101/2022.10.21.513218
http://creativecommons.org/licenses/by-nd/4.0/

26

hashes from hashed kmer set by taking into account of kmer weights (See Figure 1 of 633

MASH paper). Time complexity analysis for ProbMinHash is in Supplementary Note 3. 634

To benchmark probminhash against MASH, we use the same sketch size 635

(s=12000) and kmer size (k=16) for bacterial genomes at the nucleotide level and kmer 636

size (k=7) at the amino acid level for both database building and searching. For fungal 637

genomes a larger sketch size (48000) was used due to much larger gennome size Details 638

of kmer choosing logic can be found in Supplementary Note 2. For graph search results, 639

we also perform the same transformation of MASH distance from normalized weighted 640

Jaccard distance to probMASH distance for convenience to compare with ANI based 641

methods. 642

 643

Hierarchical Navigable Small World Graphs (HNSW) 644

Generally, the framework of graph-based ANN search algorithm (here HNSW) can be 645

summarized as the following two steps: 1) build a proximity graph (HNSW) where each 646

node represents a database vector. Each database vector will connect with a few of its 647

neighbors while maintaining small world property in each layer of HNSW. 2) Given a query 648

vector (or sequence, kmer profile in our case), perform a greedy search on the proximity 649

graph by comparing the query vector with database vectors under the searching 650

measures (e.g., cosine similarity or L2 similarity, in our case probminhash distance). 651

Then, the most similar candidates are returned as outputs. The key point for these two-652

step methods is step 1, to construct a high-quality index graph, which provides a proper 653

balance between the searching efficiency and effectiveness. To guarantee the searching 654

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 21, 2022. ; https://doi.org/10.1101/2022.10.21.513218doi: bioRxiv preprint

https://doi.org/10.1101/2022.10.21.513218
http://creativecommons.org/licenses/by-nd/4.0/

27

efficiency, the degree (number of maximum allowed neighbors, denoted as M) of each 655

node is usually restricted to a small number (normally 20~200) while width of search for 656

neighbor during inserting (denoted as ef_construct) is usually a larger number (above 657

1000) to increase the chance to find best M neighbors by increasing the diversity of 658

neighbors due to the larger number of them. Building graph and searching query against 659

the graph follow very similar greedy search procedures except that there is an extra 660

reverse updating of neighbors list for each vector when inserting database vector 661

(building), one by one, into the existing graph (Figure 1 (a)). The first phase of the 662

insertion/building process starts from the top layer by greedily traversing the graph in 663

order to find maximum M closest neighbors to the inserted element P in the layer by doing 664

ef_construct times search (Figure 1 (a)). After that, the algorithm continues the search 665

from the next layer using the closest neighbor found from the previous layer as entry 666

point, and the process repeats until to the bottom layer. Closest neighbors at each layer 667

are found by a greedy and heuristic search algorithm (Figure 1 (b) and (c)). For building, 668

after searches are finished at the bottom layer for each inserted element, a reverse update 669

step will be performed to update the neighbor list of each node in the existing graph while 670

for searching this is not needed. The overall database building time complexity is 671

O(N*log(N)), where N is the number of nodes in the graph. For searching, since there is 672

no need to reverse update best neighbor list for each node in the graph, time complexity 673

is (only) O(log(N)) (See Supplementary Note 3). Theoretical guarantee of graph-based 674

algorithm can be found in Supplementary Note 5. 675

 676

Program implementation details in Rust 677

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 21, 2022. ; https://doi.org/10.1101/2022.10.21.513218doi: bioRxiv preprint

https://doi.org/10.1101/2022.10.21.513218
http://creativecommons.org/licenses/by-nd/4.0/

28

We reimplemented the original hnswlib library written in C++ using the Rust programming 678

language for its memory safety and thread use efficiency 11. To benchmark our 679

reimplementation of hnswlib, we followed standard ANN benchmark procedures using 680

two popular testing datasets (MINST and SIFT1M) based on their Euclidean distance14. 681

Our results showed that, for the MINST fashion dataset (784 dimensions, 60,000 vectors), 682

recall for top 100 neighbors of 10,000 query vectors is greater than 98% for a smaller 683

number of M and ef_construct, and even higher recall rate (99.86%) for a medium M and 684

ef_construct while query speed is not compromised (Supplemental Table S2). For the 685

SIFT1M dataset (128 dimensions, 1,000,000 vectors), recall for top 100 neighbors of 686

10,000 query vectors was 99.77% for a medium M and ef_construct (Supplemental Table 687

S3 and S4). The Rust package hnswlib-rs can be found at: https://github.com/jean-688

pierreBoth/hnswlib-rs. For each genomic database, we chose M and ef_construct 689

experimentally, by gradually increasing M and ef_construct while monitoring query speed 690

and recall, similar to what is shown in Supplementary Table S2 for MNIST dataset. We 691

stopped the assessment when there was only a marginal increase in accuracy but decent 692

decrease in speed. To leverage between recall and speed, we use M=128 and 693

ef_search=1600 for graph building for GTDB database fungal database while M=128, 694

ef_search=3200 for phage database. There are 2 modules in total: tohnsw and request. 695

Tohnsw is to build graph by gradually inserting genomes into graph while request is to 696

query new genomes against the graph database built in the tohnsw step. Tohnsw starts 697

from reading database genomes and generating kmer profile and sketches for distance 698

calculation. By selecting a random genome as the first genome to insert to the graph, 699

tohnsw module gradually add genomes to existing graph file following HNSW constructing 700

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 21, 2022. ; https://doi.org/10.1101/2022.10.21.513218doi: bioRxiv preprint

https://github.com/jean-pierreBoth/hnswlib-rs
https://github.com/jean-pierreBoth/hnswlib-rs
https://doi.org/10.1101/2022.10.21.513218
http://creativecommons.org/licenses/by-nd/4.0/

29

rules mentioned above by computing Probminhash distance between genomes. 701

Whenever a genome is going to be inserted into the existing graph, each genome in the 702

graph will hold a list that store the M closest neighbors/genomes that are linked to itself 703

and the distance to these neighbors. Then the distances of this genome with the nearest 704

neighbors (M) of entry genome in this layer will be computed/searched (ef_construct 705

times) using Probminhash3a algorithm and the smallest distance of the neighbor 706

genomes will be the new entry genome. This process will be repeated until the nearest 707

genomes (<= M) in the layer are found and subsequently, the program will go to the layer 708

below it using the genome that was represented by the nearest genome in the above 709

layer as new entry genome in the new layer. The search layer algorithm is repeated until 710

to the bottom layer is reached/analyzed. In contrast to the default settings in the original 711

hnswlib, we allow the two parameters of neighbor selecting heuristics, extendCandidates 712

to be true and keepPrunedConnections to be false because our genomic data is 713

extremely clustered and there is no need to fix the number of connections per element 714

considering the maximum connection allowed. Request module will load the graph 715

database and then search query genomes against it to return best neighbors of each 716

query following exact the same procedure with building step without updating the 717

database. Both tohnsw and request module are paralleled for high performance (see 718

Supplementary Note 6). The GSearch software can be found here: 719

https://github.com/jean-pierreBoth/archaea or here: 720

https://gitlab.com/Jianshu_Zhao/archaea. GSearch relies on Kmerutils 721

(https://github.com/jean-pierreBoth/kmerutils), which is a Rust package to manipulate 722

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 21, 2022. ; https://doi.org/10.1101/2022.10.21.513218doi: bioRxiv preprint

https://github.com/jean-pierreBoth/archaea
https://gitlab.com/Jianshu_Zhao/archaea
https://doi.org/10.1101/2022.10.21.513218
http://creativecommons.org/licenses/by-nd/4.0/

30

genomic fasta files including kmer string compression, kmer counting, filtering using 723

cuckoo filter et.al. 724

Installation guide, manual and pre-built binaries can also be found. We provide static 725

binaries on the release page for major platforms such as Linux and MacOS, with support 726

for different CPU structures, e.g. Intel x86_64 or ARM64. GSearch program can be run 727

like this : 1) Build a graph database, which can be done running the following command: 728

tohnsw -d ./GTDB_r207 -k 16 -s 12000 -n 128 --ef 1600; 2) Request neighbors of query 729

genomes: request -b . -r ../query_folder -n 50 (--aa). 730

 731

Prokaryotic classification pipeline 732

 The amino-acid level graph showed that closest neighbors were found, with high 733

recall, when the query shared at least 52% AAI to its best neighbor. For more divergent 734

genomes, showing lower than 52% AAI equivalent, whole-genome amino-acid level graph 735

loses accuracy and we had to switch to universal, single-copy protein-coding genes. For 736

the nucleotide-level graph, we used kmer=16 for bacteria and archaea to have high 737

specificity for closely related database genomes (95% ANI to each other in GTDB 738

database). For building the whole-genome amino-acid graph, we used k=7 to have the 739

best specificity without compromising sensitivity, which is also consistent with previous 740

research on amino acid sequences classification based on kmers 15. For building graph 741

based on universal gene set, we use k=5 because of much smaller total amino acid size. 742

For details on the range of kmer that could be used for bacteria genome and proteome, 743

bacteriophage genome and proteome, see Supplemental Notes 2. 744

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 21, 2022. ; https://doi.org/10.1101/2022.10.21.513218doi: bioRxiv preprint

https://doi.org/10.1101/2022.10.21.513218
http://creativecommons.org/licenses/by-nd/4.0/

31

The proteome of each genome was predicted by FragGeneScanRs for 745

performance purpose compare to Prodigal despite small loss in precision (Supplementary 746

Table S5) 16. Hmmsearch in the hmmer software 16 was used to extract universal gene 747

collection for bacteria and archaea genome for the universal gene graph. Note that for 748

phage genomes, this last step was not used because there is no universal single copy 749

genes for viral genomes. Evaluation of the speed and memory requiremetns for all steps 750

mentioned above were performed on a RHEL (Red Hat Enterprise Linux) v7.9 with 2.70 751

GHz Intel(R) Xeon(R) Gold 6226 CPU. Unless noted otherwise, all 24 threads of the CPU 752

are available by default. 753

 754

Distributed implementation and database splitting 755

To accommodate the increasing number of genomes that become available at an 756

unprecedented speed in recent years and will soon reach 1 million or more, we provide 757

an option to randomly split the database into a given number of pieces and build graph 758

database separately for each piece. In the end, all best neighbors returned from each 759

piece will be pooled and sorted by distance to have a new best K neighbor collection 760

returned to the user for each query genome. We hereby prove that in terms of requesting 761

top K best neighbors, the database split strategy is equivalent to non-split database 762

strategy as long as the requested best neighbors for each database piece is larger than 763

or equals to requested best neighbors in the non-split strategy. The underlying reason is 764

that the best neighbors globally are also the best locally 17. The database split and request 765

will be done sequentially, on one node, without multi-node support. For now, we split 766

GTDB database in to 5 pieces for testing purposes. In theory, a large database can be 767

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 21, 2022. ; https://doi.org/10.1101/2022.10.21.513218doi: bioRxiv preprint

https://doi.org/10.1101/2022.10.21.513218
http://creativecommons.org/licenses/by-nd/4.0/

32

split into any pieces as long as each piece can be used to build HNSW. In practice, a 768

reasonable way is to split so that memory requirement for each piece is equal or smaller 769

than the total memory of host machine. The. database split idea has been used in several 770

graph-based larger scale (e.g., billions) nearest neighbor search tasks in industry 17, 18. 771

 772

Species database and testing genomes for benchmarking and recall 773

GTDB version 207 was used to build database for bacteria and archaea genome species 774

19. It appears that virtually all metagenome-assembled dsDNA viral populations form 775

discrete genotypic clusters/species and can be appropriately delineated using a ≥95% 776

genome-wide ANI cut-off 20. The IMGVR database version 3, with species representatives 777

at a ≥95% genome-wide ANI were used for database building 21. For fungal genomes, 778

all genomes downloaded from the MycoCosm project (on 24th Jan., 2022) were used 22. 779

The amino acid sequences of predicted gene on the genomes were obtained using 780

FragGeneScanRs. The Universal Single Copy Gene (USCG) gene set for GTDB 781

genomes were also extracted via hmmer software. 782

To test the performance of our pipeline, we specifically chose genomes that are 783

not included in the GTDB database (the database was used for graph building). In 784

particular, the bacterial/archaeal genomes, mostly MAGs, reported by Ye and colleagues 785

23 and Tara Ocean MAGs (total 8,466 MAGs) 24 were used. We randomly selected 1000 786

genomes/MAGs from Ye’s collection and use them as query genomes to test the 787

performance and accuracy of GSearch. To compare with other database search tools for 788

large database e.g. phage database, we compare GSearch with PhageCloud 25, which 789

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 21, 2022. ; https://doi.org/10.1101/2022.10.21.513218doi: bioRxiv preprint

https://doi.org/10.1101/2022.10.21.513218
http://creativecommons.org/licenses/by-nd/4.0/

33

builds a graph database based on the labels of each phage genome (e.g., environment 790

source) and its search algorithm is Dashing2 (not published). 791

 792

Recall of AAI-, ANI- and MinHash-based nearest neighbor searching for 793

bacteria/archaea, fungi and bacteriophage genomes. 794

To benchmark how GSearch performs compared to ANI/AAI- and MinHash-based tools, 795

we ran FastANI, Diamond blastp-based AAI and Mash to find the best neighbors for the 796

same query dataset and evaluate whether or not the best neighbors found by GSearch 797

were the same. FastANI parameters for the bacterial dataset were the following: fastANI 798

--ql query_path.txt --rl gtdb_path.txt -k 16 -p 24 --minFrac 3000 -o ANI.txt. GTDB 799

database was split into 50 subsets and run each subset parallelly on a multi-node 800

supercomputer to reduce memory requirement. MASH parameters were: mash sketch -a 801

(for AA only) -k 21 (7 for AA) -s 12000 -p 24 GTDB/*.fna > gtdb.msh; mash dist -p 24 802

gtdb.msh query.msh. For AAI calculation, the corresponding script in the enveomics 803

package 26 was used: aai.rb -1 query.faa -2 db.faa -p diamond -t 24. Hmmer was used to 804

search for universal single copy gene against pre-built hmm profiles (120 for archaea and 805

122 for bacteria respectively); the profiles were obtained from the GTDB-tk software. For 806

bacteriophage genome, FastANI fragment size 1000 was used instead of 3000 while 807

aai.rb fragment size is 500 instead of 1000 with minimal number of matches of 5. MASH 808

kmer size 11 and 7 was used for nucleotides and amino acid, respectively, for 809

bacteriophage. For fungal genome ANI calculation, we use MUMMER v4.0.0 with default 810

parameters 27. Gene prediction for fungal genomes was performed using GeneMark-ES 811

v2 (--fungus --ES) 28. Kmer size 21 and 11 was used for fungal genomes in MASH for 812

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 21, 2022. ; https://doi.org/10.1101/2022.10.21.513218doi: bioRxiv preprint

https://doi.org/10.1101/2022.10.21.513218
http://creativecommons.org/licenses/by-nd/4.0/

34

nucleotides and amino acid, respectively. Detailed description of kmer size for each type 813

of genome can be found in Supplemental Note 2. 814

We calculated recall for our tool compare to standard ANI/AAI and MASH in the 815

following way: since biological species database are generally sparse because we are far 816

away from sequencing all species in the environment and likely the existence of natural 817

gaps in diversity, a larger top K by HNSW (e.g., 100) compared to the value used in 818

standard benchmark dataset will offer little, if any advantage, especially when the query 819

are relatively new, e.g. a new family compare to database genomes. Therefore, we use 820

top 5 and 10. Top 5 and top 10 recall are calculated based on top 5 and 10 neighbors 821

found by our tool and the available tools, and if all top 5 or 10 found by the latter tools 822

were also in top 5 or 10 of our tool, then recall was 100%. Similarly, if only 4 or 9 are 823

found by our tools, then recall was 80% and 90% respectively. However, if the distance 824

of query to some of the top 10 or top 5 neighbors found by our tool at the nucleotide level 825

was larger than 0.9850 for bacterial genomes, these matches will be filtered out and only 826

those neighbors below 0.9850 will be used (e.g. 8 out of 10 are kept, so only top 8 is 827

compared) because we have shown that above this threshold, Minhash-based methods 828

will lose accuracy and this is not specific to HNSW. Similar rules were applied for the 829

amino acid level searches with the threshold 0.9720 for filtering out bacterial genomes. 830

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 21, 2022. ; https://doi.org/10.1101/2022.10.21.513218doi: bioRxiv preprint

https://doi.org/10.1101/2022.10.21.513218
http://creativecommons.org/licenses/by-nd/4.0/

35

References 831

1. Ertl, O. ProbMinHash – A Class of Locality-Sensitive Hash Algorithms for the 832
(Probability) Jaccard Similarity. IEEE Transactions on Knowledge and Data Engineering, 833
1-1 (2020). 834

2. Broder, A.Z. in Proceedings. Compression and Complexity of SEQUENCES 1997 (Cat. 835
No. 97TB100171) 21-29 (IEEE, 1997). 836

3. Ondov, B.D. et al. Mash: fast genome and metagenome distance estimation using 837
MinHash. Genome Biology 17, 132 (2016). 838

4. Koslicki, D. & Zabeti, H. Improving MinHash via the containment index with applications 839
to metagenomic analysis. Applied Mathematics and Computation 354, 206-215 (2019). 840

5. Brown, C.T. & Irber, L. sourmash: a library for MinHash sketching of DNA. Journal of 841
Open Source Software 1, 27 (2016). 842

6. Bovee, R. & Greenfield, N. Finch: a tool adding dynamic abundance filtering to genomic 843
MinHashing. Journal of Open Source Software 3, 505 (2018). 844

7. Irber, L. et al. Lightweight compositional analysis of metagenomes with FracMinHash 845
and minimum metagenome covers. bioRxiv, 2022.2001.2011.475838 (2022). 846

8. Baker, D.N. & Langmead, B. Dashing: fast and accurate genomic distances with 847
HyperLogLog. Genome Biology 20, 265 (2019). 848

9. Yang, D., Li, B., Rettig, L. & Cudré-Mauroux, P. D2histoSketch: Discriminative and 849
Dynamic Similarity-Preserving Sketching of Streaming Histograms. IEEE Transactions 850
on Knowledge and Data Engineering 31, 1898-1911 (2019). 851

10. Rowe, W.P.M. et al. Streaming histogram sketching for rapid microbiome analytics. 852
Microbiome 7, 40 (2019). 853

11. Ertl, O. Superminhash-A new minwise hashing algorithm for jaccard similarity estimation. 854
arXiv preprint arXiv:1706.05698 (2017). 855

12. Ertl, O. in Proceedings of the 24th ACM SIGKDD International Conference on 856
Knowledge Discovery & Data Mining 1368–1377 (Association for Computing 857
Machinery, London, United Kingdom; 2018). 858

13. Ioffe, S. in 2010 IEEE International Conference on Data Mining 246-255 (2010). 859
14. Aumüller, M., Bernhardsson, E. & Faithfull, A. ANN-Benchmarks: A benchmarking tool 860

for approximate nearest neighbor algorithms. Information Systems 87, 101374 (2020). 861
15. Déraspe, M., Boisvert, S., Laviolette, F., Roy, P.H. & Corbeil, J. Fast protein database as 862

a service with kAAmer. bioRxiv, 2020.2004.2001.019984 (2020). 863
16. Van der Jeugt, F., Dawyndt, P. & Mesuere, B. FragGeneScanRs: faster gene prediction 864

for short reads. BMC Bioinformatics 23, 198 (2022). 865
17. Malkov, Y.A. & Yashunin, D.A. Efficient and Robust Approximate Nearest Neighbor 866

Search Using Hierarchical Navigable Small World Graphs. IEEE Transactions on Pattern 867
Analysis and Machine Intelligence 42, 824-836 (2020). 868

18. Fu, C., Xiang, C., Wang, C. & Cai, D. Fast approximate nearest neighbor search with the 869
navigating spreading-out graph. arXiv preprint arXiv:1707.00143 (2017). 870

19. Parks, D.H. et al. GTDB: an ongoing census of bacterial and archaeal diversity through a 871
phylogenetically consistent, rank normalized and complete genome-based taxonomy. 872
Nucleic Acids Research (2021). 873

20. Gregory, A.C. et al. Marine DNA viral macro-and microdiversity from pole to pole. Cell 874
177, 1109-1123. e1114 (2019). 875

21. Roux, S. et al. IMG/VR v3: an integrated ecological and evolutionary framework for 876
interrogating genomes of uncultivated viruses. Nucleic acids research 49, D764-D775 877
(2021). 878

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 21, 2022. ; https://doi.org/10.1101/2022.10.21.513218doi: bioRxiv preprint

https://doi.org/10.1101/2022.10.21.513218
http://creativecommons.org/licenses/by-nd/4.0/

36

22. Grigoriev, I.V. et al. MycoCosm portal: gearing up for 1000 fungal genomes. Nucleic 879
acids research 42, D699-D704 (2014). 880

23. Ye, L., Mei, R., Liu, W.-T., Ren, H. & Zhang, X.-X. Machine learning-aided analyses of 881
thousands of draft genomes reveal specific features of activated sludge processes. 882
Microbiome 8, 1-13 (2020). 883

24. Nishimura, Y. & Yoshizawa, S. The OceanDNA MAG catalog contains over 50,000 884
prokaryotic genomes originated from various marine environments. Scientific Data 9, 885
305 (2022). 886

25. Rangel-Pineros, G. et al. From Trees to Clouds: PhageClouds for Fast Comparison of∼ 887
640,000 Phage Genomic Sequences and Host-Centric Visualization Using Genomic 888
Network Graphs. PHAGE 2, 194-203 (2021). 889

26. Rodriguez-R, L.M. & Konstantinidis, K.T. (PeerJ Preprints, 2016). 890
27. Marçais, G. et al. MUMmer4: A fast and versatile genome alignment system. PLOS 891

Computational Biology 14, e1005944 (2018). 892
28. Ter-Hovhannisyan, V., Lomsadze, A., Chernoff, Y.O. & Borodovsky, M. Gene prediction 893

in novel fungal genomes using an ab initio algorithm with unsupervised training. Genome 894
research 18, 1979-1990 (2008). 895

 896

 897

 898

 899

 900

 901

 902

 903

 904

 905

 906

 907

 908

 909

 910

 911

 912

 913

 914

 915

 916

 917

 918

 919

 920

 921

 922

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 21, 2022. ; https://doi.org/10.1101/2022.10.21.513218doi: bioRxiv preprint

https://doi.org/10.1101/2022.10.21.513218
http://creativecommons.org/licenses/by-nd/4.0/

37

 Figures 923

Figure 1. Schematic overview of GSearch building graph and searching graph steps. 924

(a) Graph was clasped into hierarchical layers following exponential decay probability. 925

In this graph, ef and M, represent the number of searches when finding nearest 926

neighbors and maximum allowed number of neighbors for each node, respectively. In 927

each layer, starting from an entry node (random or inherit from layer above it, 928

depending on whether it is the top layer or not), GSearch finds the closest connected 929

neighbor of the entry node and assigns it as the new entry point P (b), and then 930

traverses in a greedy manner (i.e., update the entry point using the newly found closest 931

connected neighbor (c)) until the nearest neighbor in the layer is found, and then goes 932

to next layer. This process is repeated until required number of nearest neighbors are 933

all found for the given new querying/inserting point. For building graph, after the 934

required number of nearest neighbors are found, a reverse update step will be 935

performed to update neighbor list of all nodes in the graph. 936

 937
 938
 939
 940
 941
 942

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 21, 2022. ; https://doi.org/10.1101/2022.10.21.513218doi: bioRxiv preprint

https://doi.org/10.1101/2022.10.21.513218
http://creativecommons.org/licenses/by-nd/4.0/

38

 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
Figure 2. Scalability of database building process with the number of threads used. Panels 972

show total wall time (y=axes) for building GTDB genome (nucleotide level) (a), whole-genome 973

proteome (amino acid level) (b) and universal gene set proteome (c) databases. All tests were 974

ran on a 24-thread Intel (R) Xeon (R) Gold 6226 processor, with 40GB memory available. 975

 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 21, 2022. ; https://doi.org/10.1101/2022.10.21.513218doi: bioRxiv preprint

https://doi.org/10.1101/2022.10.21.513218
http://creativecommons.org/licenses/by-nd/4.0/

39

 989
 990
Figure 3. Total request time (wall time) for searching query genomes against the pre-built 991
database of all GTDB genome (v207) at the whole-genome nucleotide (a), whole-genome 992
proteome (b) and universal gene set proteome (c) levels. 100, 300 and 1000 query genomes 993
(figure key) were used on a 24-thread Intel (R) Xeon (R) Gold 6226 processor. On average, 994
database loading time ranged from 5-10 seconds. (d) is time needed to classify the same 995
genomes using GTDB-Tk on the same 24-thread node. 996
 997
 998
 999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
Figure 4. Overview of the GSearch pipeline for classifying prokaryotic genomes. Orange boxes 1014
denote steps that aim to prepare genome files, in different formats, for graph building while 1015

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 21, 2022. ; https://doi.org/10.1101/2022.10.21.513218doi: bioRxiv preprint

https://doi.org/10.1101/2022.10.21.513218
http://creativecommons.org/licenses/by-nd/4.0/

40

green boxes denote building steps of the graph database (in nucleotide or amino acid format). 1016
Blue boxes indicate input/query genomes to search against the database while grey boxes 1017
indicate classification output for each input. Gene prediction was done using FragGeneScanRs 1018
and hmmsearch as part of the hmmer software for homology search. Two key steps of 1019
GSearch: tohnsw (aa) and request (aa) are used to build graph database and request new 1020
genomes, respectively. Two thresholds are used in the pipeline to decide between whole 1021
nucleotide vs. whole-genome amino acid search and whole-genome amino acid vs. universal 1022
gene amino acid, 78% ANI and 52% AAI, corresponding to Probminhash distance 0.9850 and 1023
0.9375, respectively (see main text). 1024
 1025

 1026

 1027

 1028

 1029

 1030

 1031

 1032

 1033

 1034

 1035

 1036

 1037

 1038

 1039

 1040

 1041

 1042

 1043

Tables 1044
 1045

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 21, 2022. ; https://doi.org/10.1101/2022.10.21.513218doi: bioRxiv preprint

https://doi.org/10.1101/2022.10.21.513218
http://creativecommons.org/licenses/by-nd/4.0/

41

Table 1. Request/search performance on major CPU platforms for GTDB v207 database for 1046
1000 queries. 1047

CPU Number
of

threads

Clock
speed
(GHz)

Request
time for nt

(min)

Gene
Prediction-

FGSrs
(min)c

Request
time for

proteome
(min)

hmmsear
ch time
(min)d

Request
time for
USCG
(min)

Intel (R) Xeon
(R) Gold
6226a

24 2.70 2.329 1.348 1.334 0.524 0.117

Intel (R) Core
i7-7770HQb

8 2.80 8.654 6.764 2.041 1.534 0.510

AMD EPYC
7513aa

32(24
used)

2.60 1.937 1.120 1.021 0.345 0.102

Apple M1 Prob 10 3.22 2.369 2.12 0.866 0.498 0.168

 1048
 1049
a RHEL v7.9, Linux v3.10.0-1160, all threads used. 1050
bMacOS v12.3, Darwin 21.4.0, all threads used. 1051
cParallel package was used to run multiprocess at the same time. FGSrs stands for FragGeneScanRs. Note that in practice only 1052
those genomes failed in the Request for nt step (best found is less than 78% ANI) will be used in this step. 1053
dOnly 100 genomes are used for testing hmmsearch because this step is for very new genomes at order level or above and we 1054
often do not have that many new genomes in a real-world dataset. Parallel Packages was used to run multiple processes of 1055
hmmsearch, one thread per process for hmmsearch. 1056

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 21, 2022. ; https://doi.org/10.1101/2022.10.21.513218doi: bioRxiv preprint

https://doi.org/10.1101/2022.10.21.513218
http://creativecommons.org/licenses/by-nd/4.0/

	References

