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 26 

Abstract 27 

Genome search and/or classification is a key step in microbiome studies and has become 28 

more challenging due to the increasing number of available (reference) genomes in 29 

recent years and the fact that traditional methods do not scale well with larger databases. 30 

By combining a kmer hashing-based genomic distance metric (Probminhash) with a 31 

graph based nearest neighbor search (NNS) algorithm (called Hierarchical Navigable 32 

Small World Graphs), we developed a new program, GSearch, that is at least ten times 33 

faster than alternative tools for the same purposes while maintaining high accuracy. 34 

GSearch can identify/classify eight thousand query genomes against all available 35 

microbial and viral genomic species within several minutes on a personal laptop, using 36 

only ~6GB of memory. Further, GSearch can scale well with millions of database 37 

genomes based on a database splitting strategy. Therefore, GSearch solves a major 38 

bottleneck in current and future microbiome studies that require genome search and/or 39 

classification. 40 

 41 

Keywords: genome search, microbial genomes, MAGs, MinHash, nearest neighbor 42 
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 48 

Introduction 49 

Classifying microbial species based on either universal marker genes (e.g., 16S or 50 

18S rRNA genes) or entire genomes represents a re-occurring task in environmental and 51 

clinical microbiome studies. However, this task is challenging because i) whether or not 52 

microbes (bacteria, fungi) and viruses form discrete population clusters (or species), 53 

remains an open question 1, and ii) the microbial species in nature are still severely under-54 

sampled by the available genomes. For instance, there are 1012 bacterial and fungal 55 

species in nature according to a recent estimation 2 and even more viral species 56 

(e.g. >1014 species). Yet, only ~17,000 bacterial species have been described and even 57 

fewer (around 15,000) are represented by complete or draft genome 3. Due to the recent 58 

improvements in DNA sequencing and single-cell technologies, metagenomic surveys 59 

can now recover hundreds, if not thousands, of these yet-to-be-described species from 60 

environmental or clinical samples 4, 5, filling in the gap in the described diversity mentioned 61 

above. This has created a new challenge, however; that is, identifying these new 62 

genomes against the exponentially increasing number of available (described) genomes 63 

has become computationally intractable. Nonetheless, the recent high-throughput 64 

sequencing of isolate genomes as well as metagenomic studies of natural populations 65 

have shown that species may exist and be commonly circumscribed based on a 95% 66 

genome-aggregate average nucleotide identity (ANI) threshold, at least for prokaryotes 67 

and viruses 6, 7. This threshold represents convenient means in searching and identifying 68 
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new genomes against the already descried species and determining whether or not they 69 

represent novel species 8. 70 

 71 

The number of curated draft or complete prokaryotic genomes has reached 72 

317,542 in the newest release of the GTDB database, and 2,332,702 in the latest IMG/VR 73 

database for viruses, representing 65,703 prokaryotic and 935,122 viral distinct species 74 

at the 95% ANI level 9, 10. Searching of query genomes against these large databases to 75 

find closely-related database/reference genomes for taxonomy classification based on 76 

the traditional brute-force methods, meaning, performing all vs. all searches, has become 77 

impractical, even for fast searching algorithms and/or small-to-medium computer clusters. 78 

For this task, faster search strategies are necessary. In addition to the searching strategy, 79 

the actual algorithm used to determine overall genetic relatedness between the query and 80 

the databased genomes is critical. While the traditional blast-based ANI among closely 81 

related genomes at the species level, and the genome-aggregate average amino acid 82 

identity (AAI) for genomes related at the genus level or above, have been proven to be 83 

highly accurate for genetic relatedness estimation across microbial and viral genomes 11-84 

13, they are too slow to use when dealing with more than a few dozen genomes. Faster 85 

implementations based on k-mer counting have been recently described to alleviate this 86 

bottleneck such as FastANI and MASH 14, 15, but these methods still do not scale with an 87 

increasing number of database (or query) genomes, especially based on an all vs. all 88 

search strategy. Further, defining genetic distance (or relatedness) based on kmer 89 

profiles can be problematic for incomplete genomes, which are commonly recovered from 90 

metagenomic surveys, and/or genomes with lots of repeats. Kmer-weighted approaches 91 
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are advantageous in the latter cases because repeated genomic fragments can be 92 

considered when hashing but they have not been widely adopted yet 16, 17. Recently, a 93 

phylogeny-based approach using a handful of universal genes (n= ~100) was developed 94 

to accelerate genome classification 18. However, phylogenetic replacement based on 95 

concatenated universal gene tree can be memory demanding (300+ GB) and slow, 96 

especially for a large number of or a few deep-branching (novel) query genomes, and this 97 

approach cannot be applied to viral genomes, which lack universal genes. Further, 98 

universal genes due to their essentiality, are typically under stronger (purifying) selection 99 

and thus, evolve slower than the genome average. This property makes universal genes 100 

appropriate for comparisons among distantly related genomes, e.g., to classify genomes 101 

belong to new class or new phylum, but not the species and genus levels 18, 19.  102 

One of the most generally used approaches for finding closely related information 103 

to a query, while circumventing an all vs. all search, is the K-Nearest Neighbor Search 104 

(K-NNS). The K-NNS approach has been used for 16S rRNA gene-based classification 105 

followed by a vote strategy 20, 21 and, more recently, for whole genome and metagenome 106 

comparisons based on shared kmers 14. Approximate nearest neighbor search (ANN) 107 

algorithms, such as locality-sensitive hashing (LSH) 22, 23 , k-dimension tree 24, random 108 

projection trees 25, k-graph 26 and proximity graph 27, 28 have been recently used to 109 

accelerate ANN search process. Proximity graph, as implemented for example in the 110 

hierarchical navigable small world graph (HNSW) 29, has been shown to be one of the 111 

fastest ANN search algorithms 30. HNSW incrementally builds a multi-layer structure 112 

consisting of a hierarchical set of proximity graphs (layers) for nested subsets of the 113 

stored elements. Then, through smart neighbor selection heuristics, inserting and 114 
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searching the query elements in the proximity graphs can be very fast while preserving 115 

high accuracy, even for highly clustered data 27, 29. Therefore, finding the closest genomes 116 

in a database can be substantially accelerated by using HNSW.  117 

Here, we describe GSearch (for Genome Search), a tool that combines the most 118 

efficient nearest neighbor search approaches (HNSW) with a universal approach to 119 

measure genetic relatedness among any microbial genome, including viral genomes, 120 

Probminhash 31, implemented in the Rust language for higher speed. Probminhash is 121 

based on shared kmers, weighted by their abundance and normalized by total kmer size, 122 

which can account for genome incompleteness of prokaryotic genomes and repeats 123 

commonly found in eukaryotic and sometimes in prokaryotic genomes. Essentially, 124 

Probminhash computes the normalized weighted Jaccard distance between each pair of 125 

genomes and subsequently, the normalized (by total kmer size) weighted Jaccard 126 

distance is used as input to build HNSW to create the graph of the database genomes. 127 

Accordingly, the search of the query genome(s) against the graph to find the nearest 128 

neighbors for classification purposes becomes an ultra-fast step using GSearch and can 129 

be universally applied to all microbial genomes. The novelty of GSearch also includes a 130 

hierarchical pipeline that involves both nucleotide-level (when query genomes have close 131 

relatives at the species level) and  amino-acid-level searching (when query genomes are 132 

somehow novel), which provides robust classification for query genomes regardless of 133 

their degree of novelty, as well as a database-splitting strategy that allows GSearch to 134 

scale up well to millions of database genome sequences.  135 

 136 

Results 137 
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Probminhash as a robust metric for genome relatedness of prokaryotes 138 

Correlations between Probminhash distance (or we called it ProbMASH after 139 

transformation) and ANI (determined by FastANI) or MASH distance showed that 140 

Probminhash is robust and slightly better than MASH for determining distances among 141 

bacterial genomes related at ~80% ANI, or higher, i.e., closely related genomes of the 142 

same or closely-related species (Spearman rho=0.9643 and 0.9640 respectively, 143 

P<0.001, Figure S1 (a) and (b), note that for finding best hits compare to ANI, Spearman 144 

rank correlation is more relevant than Pearson correlation). For moderately related 145 

genomes, for which nucleotide-level ANI or distances are known to lose accuracy, 146 

Probminhash was still robust compared to MASH for bacterial genomes (amino acid 147 

distance or AAI), especially among genomes showing between ~52% and 95% AAI 148 

(Spearman rho=0.90, P<0.01, Supplementary Figure S2 (a) and (b)). Below ~50% AAI, 149 

both Probminhash and MASH distance lose accuracy compared to AAI. However, AAI of 150 

just universal genes provides a robust measurement of genetic relatedness at this level 151 

of distantly related genomes 19, and we show here that Probminhash distance for the 152 

same set of universal genes is also robust (Spearman rho=0.9390, P<0.001, 153 

Supplementary Figure S3). Thus, for distantly related (i.e., deep-branching) query 154 

genomes, e.g., their closest genome in the database is related at the order level or higher, 155 

restricting the search to the universal genes can provide robust classifications. 156 

 157 

Graph building and search against reference prokaryotic genomes is faster than 158 

alternative methods 159 
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To build the database graph for the entire GTDB v207 database (65,703 unique, non-160 

redundant prokaryotic species) at the nucleotide level, the tohnsw module of GSearch 161 

took 2.3 h on a 24-thread computing node and scaled well with increasing number of 162 

threads (Figure 2 (a)). Maximum memory required for the building step was 28.3 GB. The 163 

total size of written database files on disk was ~3.0 GB. There are 3 layers for the dumped 164 

graph, 65180, 519 and 4 genomes for layer 0,1 and 2 respectively. The searching of query 165 

genomes against this database graph, requesting best 50 neighbors for 1000 query 166 

genomes, which represented different previously known as well as novel species of eight 167 

bacterial phyla (see Methods for details on query genome selection), took 2.3 min 168 

(database loading 6 seconds) on a 24 thread machine and also scaled well with 169 

increasing number of threads (Figure 3 (a)). The memory requirement for the request 170 

(search) step was only 3.0 GB for storing the entire database file in memory. To evaluate 171 

the accuracy of these results, we compared the best neighbors found by GSearch with 172 

brute-force FastANI and GTDB-tk. All best neighbors found by brute-force FastANI and 173 

GTDB-tk for query genomes with close relatives in the database (e.g., showing >80% 174 

ANI) were found by GSearch (Supplemental File 1). Top 5 neighbors were 99.4% 175 

overlapping and top 10 were 96.3% overlapping between GSearch and the other two 176 

methods for the testing query genomes. We also compared the speed with MASH for the 177 

same kmer and sketch size and MASH dist step took 7.51 min for comparing 1000 178 

genomes with database using 24 threads. The speedup compared to MASH was even 179 

larger for ~8,000 query genomes. Specifically, it took 12.5 min for GSearch to find the top 180 

50 best hits (Supplementary Figure S4 (a)) while MASH took 80.8 minutes on the same 181 

24 thread machine. However, for a given number database genomes, speedup is 182 
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saturated to log(N) as the number of query genome increases, where N is the number of 183 

database genomes. GSearch will be orders of magnitude faster than MASH for larger 184 

species database with millions of genomic species (see also phage section). GSearch 185 

query time for a given number of genomes is related to the number of database genomes 186 

in a O(log(N)) manner while brute-force methods are O(N), and our empirical analysis is 187 

consistent with the theoretical log(N) prediction (Supplementary Figure S4 (b)). 188 

 189 

For building the amino-acid level graph for moderately related query genomes, all GTDB 190 

v207 genomes are used for gene calling by FragGeneScanRs and subsequently, the 191 

predicted amino acid sequences for each genome are used for the tohnsw module. The 192 

graph building step took 1.4 h (Figure 2 (b)) with maximum memory required for the 193 

building step to be 37.7 GB. The total size of written database files on disk by GSearch 194 

was 5.9 GB. There were 65158, 543 and 2 genomes for layer 0,1 and 2 respectively. 195 

Requesting 50 neighbors for 1000 genomes at this amino-acid level took 1.52 minutes 196 

with memory requirement ~6.0 GB (database loading 9 seconds; Figure 3(b)). Top 5 197 

neighbors were 98.9% recall with those of the brute-force MASH or blast-based AAI 198 

approaches, with 97.1% overlap for the 10 top neighbors. In comparison, MASH dist took 199 

5.96 min using 24 threads; for 8000 query genomes, MASH dist took 47.2 min while 200 

GSearch took 5.6 min. 201 

 202 

Finally, for most distantly related query genomes, the graph building for the universal 203 

gene set follows the same logic with the amino-acid level graph mentioned above except 204 

for using a smaller kmer size (k=5) due to the smaller kmer space of 120 universal genes 205 
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vs. the whole-genome level (e.g., a few thousand genes). It took 7.76 min to build the 206 

database (Figure 2(c)) and 32 seconds to request 50 neighbors for 1000 queries on a 24 207 

threads node (Figure 3(c)) with similar high recall to the amino-acid level search (with top 208 

5 and top 10 recall, 98.2% and 97.1%, respectively). 209 

 210 

We also evaluated the effect of genome completeness on search and classification 211 

accuracy given that bacterial genomes recovered from environmental metagenomes are 212 

frequently incomplete. GSearch was robust to genome incompleteness down to 50% 213 

completeness level, e.g., 80% of top 10 best matches are found, while accuracy 214 

decreased considerably below this level (Supplementary table S6). 215 

 216 

Graph database building and searching for phage and fungal genomes 217 

Graph building and requesting for phage genomes is not effective at the nucleotide level 218 

because many phage genera are too diverse and do not have close relatives in the public 219 

genomic database; that is, the database is too sparse. Accordingly, kmer-based methods 220 

(e.g., MASH and probminhash) will often lead to imperfect graph structure for viral 221 

genomes. Therefore, we build only an amino-acid level graph for viral genomes, using all 222 

genes in the genome due to the lack of universal genes for viral genomes. Database 223 

building took 23.895 h on a 24-thread node (Supplementary Figure S6 (a)). Request 1000 224 

neighbors scales well with increasing number of threads and took about 4.4 min 225 

(database load takes additional 1.9 min) using 24 threads (Supplementary Figure S6 (b)). 226 

Top 10 neighbors for 1000 query phage genomes were still highly overlapping (98.32% 227 

recall; Supplemental Table S1) with the brute-force MASH-based approach. For such 228 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 21, 2022. ; https://doi.org/10.1101/2022.10.21.513218doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.21.513218
http://creativecommons.org/licenses/by-nd/4.0/


11 

large database, GSearch is about 20X faster than the brute-force MASH (Supplementary 229 

Tables S1). We also compare GSearch with a new database build method called 230 

PhageCloud, which relies on manually curated genome labels (e.g., environmental 231 

source) for graph database building in Neo4j database software and Dashing software 232 

for distance/relatedness computation. Since PhageCloud provides only a website and 233 

allows only one genome query at a time, we searched only one phage genome at a time 234 

with GSearch and MASH against the same database (Gut Phage Database 32). It took 37 235 

seconds for finding the two best matches with PhageCloud while GSearch took 15 236 

seconds (database loading 14 seconds, search 1 second) for the same search. MASH 237 

on the other hand took 4 minutes to find the same 2 best matches. It should be noted, 238 

however, that, because the database is already available (loaded) on PhageCloud’s 239 

website, 37 seconds is only for search and website responses (average value for 5 runs 240 

on 5 different days) whereas GSearch took only 1.5 second for the same step. 241 

 242 

Graph building for fungal genomes is slower compared to prokaryotic genomes, despite 243 

the smaller number of available fungal genomes (n=9700) because the average fungal 244 

genome size is much larger and kmer and sketch size are accordingly much larger (k=21, 245 

s=48000). It took 2.3 h on a 24 thread node to build the nucleotide-level graph for these 246 

fungal genomes. Searching step was also slower due to the larger kmer space. 247 

Accordingly, it took 3.13 min for identifying 50 neighbors for 50 query fungal genomes 248 

while MASH tool 4.4 min. Nonetheless, recall was still very high (~99.4%) against MASH 249 

and MUMMER-based ANI for the same datasets. For the amino-acid level graph, the time 250 

for graph building was only 0.61 h, shorter than the corresponding prokaryotic graph due 251 
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to the lower coding density of fungal genomes relative to the prokaryotic genomes. 252 

Identifying 50 neighbors for 50 query fungal genomes at the amino-acid level took 1.24 253 

min (MASH took 2.59 min) with similar high top 5 recall (~99.7%) against brute-force 254 

MASH (-a) and blastp-based AAI.  Note that the difference in run time will be much larger 255 

between MASH and GSearch as the number of fungal database genome increases, 256 

which is similar to that of bacterial genomes 257 

 258 

Combining the three graphs/levels together and comparison with GTDB-tk for prokaryotic 259 

genome classification 260 

A three-step pipeline was developed to allow the identification and classification of a 261 

query genome, depending on its level of novelty compared to the database genomes 262 

(Figure 4). Specifically, when the query genome does not find a match in the database 263 

better than ANI > 78%, corresponding to probminhash distance 0.9850, the nucleotide-264 

level graph is abandoned, and the amino-acid level is used instead. If no match against 265 

the latter graph is found above 52% AAI, corresponding to 0.9375 probminhash distance, 266 

the amino-acid level is abandoned, and the universal gene graph is used instead (uAAI 267 

based on universal gene below 80% indicates new order or higher taxonomic rank)(Figure 268 

4). The overall running time for classifying 1000 prokaryotic genomes of varied levels of 269 

taxonomic novelty on different computing platforms is showed in Table 1. On a 24 thread 270 

Linux node, it took a total of 5.85 minutes while it took 19.49 minutes on an intel Core i7 271 

laptop (2017 release) CPU personal laptop (6.02 minutes on the most recent ARM64 272 

CPU laptop). Classifying 1000 genomes using GTDB-tk took 244.7 min on the same Linux 273 
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node with 24 threads (Figure 3 (d), memory requirement is ~328G) while MASH takes 274 

53.7 min for 1000 genomes using 24 threads for the 3 steps. 275 

 276 

In terms of the accuracy of the nearest neighbors found, query genomes (699 out of the 277 

total 1000) that had a best match higher than 78% ANI against the GTDB database 278 

genomes (i.e., a match at the same or closely related species), GSearch classified them 279 

exactly the same with GTDB-tk and FastANI (Supplementary File 1, only 100/699 are 280 

shown for simplicity). For the remaining 301 genomes that did not have same or closely 281 

related species-level matches, for 266 of them (or 87.1%), GSearch also provided the 282 

same classification with GTDB-tk but several inconsistencies were observed for 39/301 283 

genomes (Supplementary Figure S5). Specifically, we noticed that for GTDB-tk, which 284 

relies on RED values and tree topology, several genomes (n=14) were still classified at 285 

the genus level even though AAI value against the best database genomes found was 286 

below 60%, and some genomes (n=16) were still classified at the family level but not the 287 

genus level even though their best AAI value was above 65%. Several genomes (n=9) 288 

were classified at the order level but not family level even though their best AAI value was 289 

above 52%. Therefore, high consistency was overall observed between GSearch and 290 

GTDB-tk assignments, and the few differences noted were probably associated with 291 

contaminated (low quality) MAGs or taxonomic inconsistencies, which was challenging to 292 

assess further, and/or the peculiarities of each method. Since Probminhash distance 293 

correlated well with AAI in the range of AAI values between 52% and 95%, the 294 

classification results were always consistent with AAI-based classification, e.g., best 295 

matches of 65% AAI or higher were classified at the same genus by GSearch and blast-296 
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based AAI and best matches of 52% < AAI < 65% were typically classified at the same 297 

family 33 . 298 

 299 

Database split for large genomic species database 300 

For large databases (for example, >1 million bacterial genomes), the graph building and 301 

requesting step could require a large amount of memory (due to the larger kmer space) 302 

that is typically not available in a single computer node. We therefore provide a database 303 

split solution for such large databases. The average database building time on each node 304 

(for each piece of the database after the splitting step) scales linearly with increasing 305 

nodes/processors and requires much less memory (1/n total memory compared to when 306 

building in one node) (Supplementary Figure S7(a)). The searching time scales sub-307 

linearly with increasing number of nodes (Supplementary Figure S7(b)). The top 10 best 308 

neighbor by splitting the database were exactly the same as the non-splitting strategy 309 

(Supplementary file 2). Note that without multi-node support (e.g., run database build 310 

sequentially), database build time is nearly the same with non-split strategy but memory 311 

requirement is only 1/n, where n is the number of database pieces, despite the fact that 312 

total request time will be larger (time*n in Supplementary Figure S7(b)). However, since 313 

the request step is very fast, even for a decent number of pieces, overall runtime is still 314 

short with the database split approach. The database split strategy is especially useful 315 

when memory requirement is not satisfied on host machine for larger genomic species 316 

database (e.g., millions of genomes). 317 

 318 

Discussion 319 
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A popular way to assess genetic relatedness among genomes is ANI, which 320 

corresponds well to both 16S/18S rRNA gene identity and DNA-DNA hybridization values, 321 

the golden standards of fungal and prokaryotic taxonomies 11. As the number of available 322 

microbial genomes has grown at an unprecedented speed recently (e.g., there are 30% 323 

more (new) species in GTDB v202 (2020) vs. v207 (2022), and the number of bacterial  324 

species genomes alone is expected to surpass 1 million in the near future), the traditional 325 

way that blast-based ANI or faster kmer-based implementations (e.g., FastANI or MASH) 326 

are applied as an all vs. all search strategy (brute-force) does not scale because the 327 

running time grows linearly with increasing number of query genomes and/or genomes in 328 

the database. Phylogenetic approaches based on quick (approximate) maximum 329 

likelihood algorithms and a handful of universal genes as implemented -for example- in 330 

GTDB-Tk could be faster than brute-force approaches but are often not precise and 331 

require a large amount of memory for querying step 18, 34 while the database building step 332 

could take several weeks of run time because the underlying multiple sequence alignment 333 

of the database genomes is computationally intensive. Further, approaches that reply on 334 

k-medoid clustering to avoid all vs. all comparisons could be sometimes trapped into local 335 

minima because of arbitrary partitioning of database genomes into clusters, a known 336 

limitation of these methods 19. Our GSearch software effectively circumvents these 337 

limitations by combining a new kmer hashing-based (Probminhash) algorithm for fast 338 

computation of genetic relatedness among genomes with a graph based nearest neighbor 339 

search algorithm. Accordingly, GSearch is at least an order of magnitude faster than 340 

alternative approaches for the same purposes. Note that GSearch could also be applied 341 

to whole metagenome comparisons and identification of the most similar metagenomes 342 
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in a series because ProbMinhash can estimate metagenomic distance in a similar way to 343 

genomes. 344 

To the best of our knowledge, no current tool can efficiently search very large 345 

genome databases. GSearch is able to handle a million microbial genomes on a small-346 

to-average computer cluster since the dumped database file size is proportional to the 347 

total number of genomes in database for fixed sketch size and graph parameters. 348 

Specifically, with a million genome species, dumped file size (amino acid) will be 349 

5.9G*20=118 GB, a modest computational requirement for current computer clusters. 350 

Further, due to the nature of graph based NNS algorithm, there is no need to build the 351 

entire database at once, but the database can split it into smaller pieces and thus, a 352 

separate graph database be built for each piece as exemplified above and depending on 353 

the computational resources available. For a modern laptop with 16 GB memory, a 354 

database on one million species can be split into 10 pieces, so dumped file for each piece 355 

will be only 11.8 GB, which can be loaded into memory, and then collect the results from 356 

each piece within an approximate total running time of 30 minutes (assume each part will 357 

be 3 minutes) (Supplementary table S7). With this logic, a computing node with 24 threads 358 

and 256 GB of memory available can easily deal with 20 million bacterial genomes. This 359 

represents a major improvement compared to existing tools for the same purposes.  360 

It is also important to note that we could seemingly replace Probminhash with 361 

another relatedness algorithm should such an algorithm become available and has 362 

advantages in terms of speed and/or precision. Related to this, ANI as currently 363 

implemented -for instance- in FastANI is not appropriate for this function because it is not 364 

metric (that is, for the FastANI distances calculated among three genomes A, B, and C, 365 
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(A,B) + (B, C) is not necessary larger than (A,C), especially for genomes related at the 366 

phylum level). To solve this “metric” problem, a norm adjusted proximity graph (NAPG) 367 

was proposed based on inner product and it shows improvements in terms of both speed 368 

and recall 35. This could be another direction for further improving the speed and recall of 369 

GSearch and/or the use of other metrics in place of Prominhash distances. In the 370 

meanwhile, Probminhash was used in GSearch because it is metric, which ensures 371 

neighbor diversity when building the graph, but also equally applicable to any microbial 372 

genome, including viral genomes, in addition to its advantages for kmer weighting and  373 

normalization mentioned above.  374 

Another distinguishing aspect of GSearch (tohnsw module) is the speed and 375 

flexibility in building reference databases. Indeed, users could build reference databases 376 

(graphs) for any number and type (e.g., prokaryotic vs. viral) of genomes, up to several 377 

millions of genomes.  The high efficiency in building graphs allows users to also test and 378 

optimize the key parameters of the graph, the M and ef_construct parameters. For any 379 

given database size, M and ef_construct determine the quality of the graph and graph 380 

build speed. Small M and ef_construct may lead to frequent traps in local minima and 381 

thus, low recall while large M and ef_construct may lead to slow speed without 382 

proportional improvement in recall (Supplemental Table S2). Therefore, there is a tradeoff 383 

between accuracy and speed that should be evaluated first. However, for most users this 384 

task would not be necessary because they will work with pre-built databases such as 385 

those provided here. Further, the search step against these pre-build databases with 386 

query genomes of known taxonomy for evaluating recall and tradeoffs can be performed, 387 

within minutes, on any modern laptop with 5-6 GB of memory (Table 1).  388 
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Kmer-based methods for genetic relatedness estimation such as Probminhash 389 

have lower accuracy between moderately-to-distantly related genomes compare to 390 

alignment-based tools (see supplement Note 4 for further discussion). Our empirical 391 

evaluation showed that this relatedness level, for nucleotide searches, is around 78% ANI 392 

and 52% AAI for the amino-acid searches (e.g., probminhash distances do not correlate 393 

well with blast-based ANI and AAI at these levels). To circumvent this limitation, we 394 

designed a 3-step framework as part of GSearch to classify bacterial genomes that show 395 

different levels of novelty compared to the database genomes, with high accuracy. This 396 

framework included a search at the universal gene level for deep-branching genomes 397 

that are novel at the phylum level (e.g., showing <52% AAI), for which searching at the 398 

entire proteome level is less accurate. Recently, methods that employ kmers that allow 399 

mismatches, that is, spaced kmers 36, have shown promise in accurately estimating 400 

genomic relatedness even among distantly related genomes with gains in speed and has 401 

already been applied in classification. To apply spaced kmer to entire genomes, the 402 

recently developed “tensor sketch” approaches could be explored in the future to simplify 403 

the pipeline for bacterial and viral genomes 37. In the meanwhile, the probminhash 404 

approach, essentially a Jaccard distance estimation via MinHash-based analysis of kmers, is 405 

highly efficiently, and, importantly, can effectively deal with incomplete genomes or 406 

genomes of (drastically) different length, an known limitation of MASH-based methods 38. 407 

Comparing genomes of different length is not uncommon, e.g., bacterial genome size can 408 

differ by more than two-fold, as can be the case between MAGs of different level of 409 

completeness or when searching a short sequence (e.g., a bacteriophage genome) 410 

against a large genome collection (e.g., whole viral genome database). Probminhash is 411 
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more robust with genomes of unknown completeness by weighting completed genomes 412 

more due to the kmer normalization step, and our own analysis showed that it is robust 413 

down to 50% completeness level (Supplemental Table S6), which is also the most 414 

commonly used standard for selecting MAGs of sufficient/high quality 39. 415 

In general, the genome relatedness estimated, or best database matching genome 416 

identified by GSearch were highly consistent with Blast-based AAI results or phylogenetic 417 

placement of the genome using GTDB-tk, particularly for query genomes with close 418 

relatives in the database related at the species or genus level (Supplementary File 1, 419 

Supplementary Figure S5). For more distantly related query genomes relative to database 420 

genomes, classification results of GSearch showed some differences with GTDB-tk. 421 

These differences were not always possible to assess further for the most correct genome 422 

placement but could be due, at least partly, to the incompleteness and/or contamination 423 

of query or/and database genomes, which renders the resulting concatenated alignment 424 

of a few universal genes used by GTDB-tk unreliable 40 (and it is a few amino-acid 425 

positions per gene that are used in the final alignment). In contrast, the AAI and 426 

Probminhash approaches should be more robust to changes of a small number of genes 427 

because the entire proteome is considered 15.  428 

 Graph-based NNS methods achieve good performance compared to tree based 429 

and locality-sensitive hashing (LSH) methods. Building a HNSW graph relies on proximity 430 

of database element; so, if the distances among database elements, in our case 431 

genomes, cannot be effectively estimated via hashing algorithms, the navigation in graph 432 

will be less efficient (e.g., get trapped in local minima) because the edges to choose from 433 

will not be accurate estimations of the targeted genomes they represent. This is especially 434 
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true for highly sparse/distantly related and diverse dataset, like the viral genome 435 

database, e.g., two phage genomes could often share very little genomic information 436 

(kmers) in the current dataset. This is confirmed by our own results when using 437 

nucleotide-level search to build the viral graph. Hence, the amino acid level will be much 438 

more robust for viral genomes and is the recommended level to use. Finally, the HNSW 439 

graph, and graph-based K-NNS in general, can be further improved by adding shortcut 440 

edges and maintaining a dynamic list of candidates, compared to a fixed list of candidates 441 

by default 41. Graph reordering, a cache optimization that works by placing neighboring 442 

nodes in consecutive (or near-consecutive) memory locations, can also be applied to 443 

improve the speed of HNSW 42. Another new direction for graph based NNS will be using 444 

Graphics Processing Unit (GPU) instead of CPU because GPUs are more efficient in 445 

handling matrix computations and machine learning tasks 43. We will explore these 446 

options in future version of GSearch. 447 

 448 

To summarize, GSearch, based on Probminhash and HNSW, solves a major 449 

current challenge in classification of microbial genomes, especially given the exponential 450 

increase in the number of newly sequenced genomes due to its efficiency and scalability. 451 

GSearch will serve the entire microbial sciences for several years to come since it can be 452 

applied to fungal, bacterial and viral genomes and will accelerate the process to find new 453 

biological knowledge. 454 

 455 

Data availability 456 
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All the mentioned pre-built database for bacteria, fungi and phage genomes can be found 457 

at: http://enve-omics.ce.gatech.edu/data/gsearch  458 
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Briefly, GSearch is composed of the following steps. Initially, the genetic relatedness 588 

among a collection of database genomes is determined based on the probability MinHash 589 

algorithm (or Probminhash), which computes the normalized weighted Jaccard distance 590 

using the probminhash3a algorithm implemented in the probminhash 1. The normalized 591 

weighted Jaccard distances are then used as input for building HNSW graphs (note that 592 

a distance computation is required only when that genome pair is required for graph 593 

building, thus GSearch avoids all vs. all distance computations). Genomes are 594 

subsequently recursively added as the nearest neighbors of each node in the built graph 595 

file with the same distance computation procedure. The built graph database file is stored 596 

on disk. Query genomes are then searched against graph database and subsequently, 597 

best neighbors are returned for classification. In this process, the best neighbor (or 598 

neighbors) is also identified based on the smallest normalized weighted Jaccard distance 599 

obtained. 600 

 601 

Probminhash 602 

MASH is a hashing-based algorithm based on MinHash 2, which is very efficient for 603 

comparing genome/metagenome overall similarity 3. MASH distances represent a kmer-604 

based overall overlap between sequences according to a minimal evolutionary model. 605 

Essentially, MASH distance is the Jaccard similarity value of kmer shared between 606 

sequence sets A and B. However, MASH, and similar MinHash-based tools, have several 607 

limitations; most notably, the loss of k-mer frequency information (only presence/absence 608 

of kmer is counted) and the impact of relative set size (e.g., completeness level of a 609 

genome) on the Jaccard similarity estimates 3, 4 Although some recent MinHash 610 
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implementations address these limitations (e.g., the over-sketching and track-abundance 611 

methods of the MinHash-based tools finch , sourmash’ or FracMinHash and 612 

HyperLogLog) 5-8, they do not utilize the frequencies of all observed k-mers in generating 613 

the kmer-profile (sketch) for a given sequence set. More recently, in the HULK software, 614 

consistent weighted sampling (D2histosketch, P-MinHash algorithm was proposed for Jp) 615 

9 was utilized to incorporate k-mer frequency information when estimating weighted and 616 

standard Jaccard similarity, which effectively addresses these limitations mentioned 617 

above 10. Notably, the hash algorithm (P-MinHash) used in D2histosketch could be further 618 

optimized to achieve a time complexity below O(nm) (where m denotes the signature size 619 

and n is the number of elements with nonzero weight in two sequence sets), further 620 

improving the performance of applications such as HULK. Motivated by the 621 

SuperMinHash for conventional Jaccard similarity estimation 11 and BagMinHash 622 

algorithm for weighted Jaccard similarity estimation 12, probminhash (probminhash 3(a) 623 

and 4 algorithm) is orders of magnitude faster than the original algorithm P-MinHash 624 

proposed in D2histosketch 1. Probminhash estimates the Jaccard probability Jp index, and 625 

1- Jp is indeed a metric on probability distributions and is Pareto optimal (Supplementary 626 

Note 1) 1, 13. Therefore, we reimplemented the Probminhash algorithm in Rust to estimate 627 

genetic relatedness between any two genomes based on normalized (weighted) Jaccard 628 

distances according to the original ProbMinHash paper 1 (Supplementary Note 1) . The 629 

Rust reimplementation of Probminhash can be found at: https://github.com/jean-630 

pierreBoth/probminhash. Two important parameters of Probminhash are the sketch size 631 

and kmer size. Similar to MinHash sketches, Probminhash sketches are also shared 632 
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hashes from hashed kmer set by taking into account of kmer weights (See Figure 1 of 633 

MASH paper). Time complexity analysis for ProbMinHash is in Supplementary Note 3. 634 

To benchmark probminhash against MASH, we use the same sketch size 635 

(s=12000) and kmer size (k=16) for bacterial genomes at the nucleotide level and kmer 636 

size (k=7) at the amino acid level for both database building and searching. For fungal 637 

genomes a larger sketch size (48000) was used due to much larger gennome size Details 638 

of kmer choosing logic can be found in Supplementary Note 2. For graph search results, 639 

we also perform the same transformation of MASH distance from normalized weighted 640 

Jaccard distance to probMASH distance for convenience to compare with ANI based 641 

methods. 642 

 643 

Hierarchical Navigable Small World Graphs (HNSW) 644 

Generally, the framework of graph-based ANN search algorithm (here HNSW) can be 645 

summarized as the following two steps: 1) build a proximity graph (HNSW) where each 646 

node represents a database vector. Each database vector will connect with a few of its 647 

neighbors while maintaining small world property in each layer of HNSW. 2) Given a query 648 

vector (or sequence, kmer profile in our case), perform a greedy search on the proximity 649 

graph by comparing the query vector with database vectors under the searching 650 

measures (e.g., cosine similarity or L2 similarity, in our case probminhash distance). 651 

Then, the most similar candidates are returned as outputs. The key point for these two-652 

step methods is step 1, to construct a high-quality index graph, which provides a proper 653 

balance between the searching efficiency and effectiveness. To guarantee the searching 654 
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efficiency, the degree (number of maximum allowed neighbors, denoted as M) of each 655 

node is usually restricted to a small number (normally 20~200) while width of search for 656 

neighbor during inserting (denoted as ef_construct) is usually a larger number (above 657 

1000) to increase the chance to find best M neighbors by increasing the diversity of 658 

neighbors due to the larger number of them. Building graph and searching query against 659 

the graph follow very similar greedy search procedures except that there is an extra 660 

reverse updating of neighbors list for each vector when inserting database vector 661 

(building), one by one, into the existing graph (Figure 1 (a)). The first phase of the 662 

insertion/building process starts from the top layer by greedily traversing the graph in 663 

order to find maximum M closest neighbors to the inserted element P in the layer by doing 664 

ef_construct times search (Figure 1 (a)). After that, the algorithm continues the search 665 

from the next layer using the closest neighbor found from the previous layer as entry 666 

point, and the process repeats until to the bottom layer. Closest neighbors at each layer 667 

are found by a greedy and heuristic search algorithm (Figure 1 (b) and (c)). For building, 668 

after searches are finished at the bottom layer for each inserted element, a reverse update 669 

step will be performed to update the neighbor list of each node in the existing graph while 670 

for searching this is not needed. The overall database building time complexity is 671 

O(N*log(N)), where N is the number of nodes in the graph. For searching, since there is 672 

no need to reverse update best neighbor list for each node in the graph, time complexity 673 

is (only) O(log(N)) (See Supplementary Note 3). Theoretical guarantee of graph-based 674 

algorithm can be found in Supplementary Note 5. 675 

 676 

Program implementation details in Rust 677 
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We reimplemented the original hnswlib library written in C++ using the Rust programming 678 

language for its memory safety and thread use efficiency 11. To benchmark our 679 

reimplementation of hnswlib, we followed standard ANN benchmark procedures using 680 

two popular testing datasets (MINST and SIFT1M) based on their Euclidean distance14. 681 

Our results showed that, for the MINST fashion dataset (784 dimensions, 60,000 vectors), 682 

recall for top 100 neighbors of 10,000 query vectors is greater than 98% for a smaller 683 

number of M and ef_construct, and even higher recall rate (99.86%) for a medium M and 684 

ef_construct while query speed is not compromised (Supplemental Table S2). For the 685 

SIFT1M dataset (128 dimensions, 1,000,000 vectors), recall for top 100 neighbors of 686 

10,000 query vectors was 99.77% for a medium M and ef_construct (Supplemental Table 687 

S3 and S4). The Rust package hnswlib-rs can be found at: https://github.com/jean-688 

pierreBoth/hnswlib-rs. For each genomic database, we chose M and ef_construct 689 

experimentally, by gradually increasing M and ef_construct while monitoring query speed 690 

and recall, similar to what is shown in Supplementary Table S2 for MNIST dataset. We 691 

stopped the assessment when there was only a marginal increase in accuracy but decent 692 

decrease in speed. To leverage between recall and speed, we use M=128 and 693 

ef_search=1600 for graph building for GTDB database fungal database while M=128, 694 

ef_search=3200 for phage database. There are 2 modules in total: tohnsw and request. 695 

Tohnsw is to build graph by gradually inserting genomes into graph while request is to 696 

query new genomes against the graph database built in the tohnsw step. Tohnsw starts 697 

from reading database genomes and generating kmer profile and sketches for distance 698 

calculation. By selecting a random genome as the first genome to insert to the graph, 699 

tohnsw module gradually add genomes to existing graph file following HNSW constructing 700 
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rules mentioned above by computing Probminhash distance between genomes. 701 

Whenever a genome is going to be inserted into the existing graph, each genome in the 702 

graph will hold a list that store the M closest neighbors/genomes that are linked to itself 703 

and the distance to these neighbors. Then the distances of this genome with the nearest 704 

neighbors (M) of entry genome in this layer will be computed/searched (ef_construct 705 

times) using Probminhash3a algorithm and the smallest distance of the neighbor 706 

genomes will be the new entry genome. This process will be repeated until the nearest 707 

genomes (<= M) in the layer are found and subsequently, the program will go to the layer 708 

below it using the genome that was represented by the nearest genome in the above 709 

layer as new entry genome in the new layer. The search layer algorithm is repeated until 710 

to the bottom layer is reached/analyzed. In contrast to the default settings in the original 711 

hnswlib, we allow the two parameters of neighbor selecting heuristics, extendCandidates 712 

to be true and keepPrunedConnections to be false because our genomic data is 713 

extremely clustered and there is no need to fix the number of connections per element 714 

considering the maximum connection allowed. Request module will load the graph 715 

database and then search query genomes against it to return best neighbors of each 716 

query following exact the same procedure with building step without updating the 717 

database. Both tohnsw and request module are paralleled for high performance (see 718 

Supplementary Note 6). The GSearch software can be found here: 719 

https://github.com/jean-pierreBoth/archaea or here: 720 

https://gitlab.com/Jianshu_Zhao/archaea.  GSearch relies on Kmerutils 721 

(https://github.com/jean-pierreBoth/kmerutils), which is a Rust package to manipulate 722 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 21, 2022. ; https://doi.org/10.1101/2022.10.21.513218doi: bioRxiv preprint 

https://github.com/jean-pierreBoth/archaea
https://gitlab.com/Jianshu_Zhao/archaea
https://doi.org/10.1101/2022.10.21.513218
http://creativecommons.org/licenses/by-nd/4.0/


30 

genomic fasta files including kmer string compression, kmer counting, filtering using 723 

cuckoo filter et.al. 724 

Installation guide, manual and pre-built binaries can also be found. We provide static 725 

binaries on the release page for major platforms such as Linux and MacOS, with support 726 

for different CPU structures, e.g. Intel x86_64 or ARM64. GSearch program can be run 727 

like this : 1) Build a graph database, which can be done running the following command: 728 

tohnsw -d ./GTDB_r207 -k 16 -s 12000 -n 128 --ef 1600; 2) Request neighbors of query 729 

genomes: request -b . -r ../query_folder -n 50 (--aa). 730 

 731 

Prokaryotic classification pipeline 732 

      The amino-acid level graph showed that closest neighbors were found, with high 733 

recall, when the query shared at least 52% AAI to its best neighbor. For more divergent 734 

genomes, showing lower than 52% AAI equivalent, whole-genome amino-acid level graph 735 

loses accuracy and we had to switch to universal, single-copy protein-coding genes. For 736 

the nucleotide-level graph, we used kmer=16 for bacteria and archaea to have high 737 

specificity for closely related database genomes (95% ANI to each other in GTDB 738 

database). For building the whole-genome amino-acid graph, we used k=7 to have the 739 

best specificity without compromising sensitivity, which is also consistent with previous 740 

research on amino acid sequences classification based on kmers 15. For building graph 741 

based on universal gene set, we use k=5 because of much smaller total amino acid size. 742 

For details on the range of kmer that could be used for bacteria genome and proteome, 743 

bacteriophage genome and proteome, see Supplemental Notes 2.  744 
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The proteome of each genome was predicted by FragGeneScanRs for 745 

performance purpose compare to Prodigal despite small loss in precision (Supplementary 746 

Table S5) 16. Hmmsearch in the hmmer software 16 was used to extract universal gene 747 

collection for bacteria and archaea genome for the universal gene graph. Note that for 748 

phage genomes, this last step was not used because there is no universal single copy 749 

genes for viral genomes. Evaluation of the speed and memory requiremetns for all steps 750 

mentioned above were performed on a RHEL (Red Hat Enterprise Linux) v7.9 with 2.70 751 

GHz Intel(R) Xeon(R) Gold 6226 CPU. Unless noted otherwise, all 24 threads of the CPU 752 

are available by default. 753 

 754 

Distributed implementation and database splitting 755 

To accommodate the increasing number of genomes that become available at an 756 

unprecedented speed in recent years and will soon reach 1 million or more, we provide 757 

an option to randomly split the database into a given number of pieces and build graph 758 

database separately for each piece. In the end, all best neighbors returned from each 759 

piece will be pooled and sorted by distance to have a new best K neighbor collection 760 

returned to the user for each query genome. We hereby prove that in terms of requesting 761 

top K best neighbors, the database split strategy is equivalent to non-split database 762 

strategy as long as the requested best neighbors for each database piece is larger than 763 

or equals to requested best neighbors in the non-split strategy. The underlying reason is 764 

that the best neighbors globally are also the best locally 17. The database split and request 765 

will be done sequentially, on one node, without multi-node support. For now, we split 766 

GTDB database in to 5 pieces for testing purposes. In theory, a large database can be 767 
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split into any pieces as long as each piece can be used to build HNSW. In practice, a 768 

reasonable way is to split so that memory requirement for each piece is equal or smaller 769 

than the total memory of host machine. The. database split idea has been used in several 770 

graph-based larger scale (e.g., billions) nearest neighbor search tasks in industry 17, 18.  771 

 772 

Species database and testing genomes for benchmarking and recall 773 

GTDB version 207 was used to build database for bacteria and archaea genome species 774 

19. It appears that virtually all metagenome-assembled dsDNA viral populations form 775 

discrete genotypic clusters/species and can be appropriately delineated using a ≥95% 776 

genome-wide ANI cut-off 20. The IMGVR database version 3, with species representatives 777 

at a ≥95% genome-wide ANI were used for database building 21. For fungal genomes, 778 

all genomes downloaded from the MycoCosm project (on 24th Jan., 2022) were used 22. 779 

The amino acid sequences of predicted gene on the genomes were obtained using 780 

FragGeneScanRs. The Universal Single Copy Gene (USCG) gene set for GTDB 781 

genomes were also extracted via hmmer software. 782 

To test the performance of our pipeline, we specifically chose genomes that are 783 

not included in the GTDB database (the database was used for graph building). In 784 

particular, the bacterial/archaeal genomes, mostly MAGs, reported by Ye and colleagues 785 

23 and Tara Ocean MAGs (total 8,466 MAGs) 24 were used. We randomly selected 1000 786 

genomes/MAGs from Ye’s collection and use them as query genomes to test the 787 

performance and accuracy of GSearch. To compare with other database search tools for 788 

large database e.g. phage database, we compare GSearch with PhageCloud 25, which 789 
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builds a graph database based on the labels of each phage genome (e.g., environment 790 

source) and its search algorithm is Dashing2 (not published). 791 

 792 

Recall of AAI-, ANI- and MinHash-based nearest neighbor searching for 793 

bacteria/archaea, fungi and bacteriophage genomes. 794 

To benchmark how GSearch performs compared to ANI/AAI- and MinHash-based tools, 795 

we ran FastANI, Diamond blastp-based AAI and Mash to find the best neighbors for the 796 

same query dataset and evaluate whether or not the best neighbors found by GSearch 797 

were the same. FastANI parameters for the bacterial dataset were the following: fastANI 798 

--ql query_path.txt --rl gtdb_path.txt -k 16 -p 24 --minFrac 3000 -o ANI.txt. GTDB 799 

database was split into 50 subsets and run each subset parallelly on a multi-node 800 

supercomputer to reduce memory requirement. MASH parameters were: mash sketch -a 801 

(for AA only) -k 21 (7 for AA) -s 12000 -p 24 GTDB/*.fna > gtdb.msh; mash dist -p 24 802 

gtdb.msh query.msh. For AAI calculation, the corresponding script in the enveomics 803 

package 26 was used: aai.rb -1 query.faa -2 db.faa -p diamond -t 24. Hmmer was used to 804 

search for universal single copy gene against pre-built hmm profiles (120 for archaea and 805 

122 for bacteria respectively); the profiles were obtained from the GTDB-tk software. For 806 

bacteriophage genome, FastANI fragment size 1000 was used instead of 3000 while 807 

aai.rb fragment size is 500 instead of 1000 with minimal number of matches of 5. MASH 808 

kmer size 11 and 7 was used for nucleotides and amino acid, respectively, for 809 

bacteriophage. For fungal genome ANI calculation, we use MUMMER v4.0.0 with default 810 

parameters 27. Gene prediction for fungal genomes was performed using GeneMark-ES 811 

v2 (--fungus --ES) 28. Kmer size 21 and 11 was used for fungal genomes in MASH for 812 
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nucleotides and amino acid, respectively. Detailed description of kmer size for each type 813 

of genome can be found in Supplemental Note 2. 814 

We calculated recall for our tool compare to standard ANI/AAI and MASH in the 815 

following way: since biological species database are generally sparse because we are far 816 

away from sequencing all species in the environment and likely the existence of natural 817 

gaps in diversity, a larger top K by HNSW (e.g., 100) compared to the value used in 818 

standard benchmark dataset will offer little, if any advantage, especially when the query 819 

are relatively new, e.g. a new family compare to database genomes. Therefore, we use 820 

top 5 and 10. Top 5 and top 10 recall are calculated based on top 5 and 10 neighbors 821 

found by our tool and the available tools, and if all top 5 or 10 found by the latter tools 822 

were also in top 5 or 10 of our tool, then recall was 100%. Similarly, if only 4 or 9 are 823 

found by our tools, then recall was 80% and 90% respectively. However, if the distance 824 

of query to some of the top 10 or top 5 neighbors found by our tool at the nucleotide level 825 

was larger than 0.9850 for bacterial genomes, these matches will be filtered out and only 826 

those neighbors below 0.9850 will be used  (e.g. 8 out of 10 are kept, so only top 8 is 827 

compared) because we have shown that above this threshold, Minhash-based methods 828 

will lose accuracy and this is not specific to HNSW. Similar rules were applied for the 829 

amino acid level searches with the threshold 0.9720 for filtering out bacterial genomes. 830 
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 Figures 923 

Figure 1. Schematic overview of GSearch building graph and searching graph steps. 924 

(a) Graph was clasped into hierarchical layers following exponential decay probability. 925 

In this graph, ef and M, represent the number of searches when finding nearest 926 

neighbors and maximum allowed number of neighbors for each node, respectively. In 927 

each layer, starting from an entry node (random or inherit from layer above it, 928 

depending on whether it is the top layer or not), GSearch finds the closest connected 929 

neighbor of the entry node and assigns it as the new entry point P (b), and then 930 

traverses in a greedy manner (i.e., update the entry point using the newly found closest 931 

connected neighbor (c)) until the nearest neighbor in the layer is found, and then goes 932 

to next layer. This process is repeated until required number of nearest neighbors are 933 

all found for the given new querying/inserting point. For building graph, after the 934 

required number of nearest neighbors are found, a reverse update step will be 935 

performed to update neighbor list of all nodes in the graph. 936 

 937 
 938 
 939 
 940 
 941 
 942 
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Figure 2. Scalability of database building process with the number of threads used. Panels 972 

show total wall time (y=axes) for building GTDB genome (nucleotide level) (a), whole-genome 973 

proteome (amino acid level) (b) and universal gene set proteome (c) databases. All tests were 974 

ran on a 24-thread Intel (R) Xeon (R) Gold 6226 processor, with 40GB memory available.  975 
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 989 
 990 
Figure 3. Total request time (wall time) for searching query genomes against the pre-built 991 
database of all GTDB genome (v207) at the whole-genome nucleotide (a), whole-genome 992 
proteome (b) and universal gene set proteome (c) levels. 100, 300 and 1000 query genomes 993 
(figure key) were used on a 24-thread Intel (R) Xeon (R) Gold 6226 processor. On average, 994 
database loading time ranged from 5-10 seconds. (d) is time needed to classify the same 995 
genomes using GTDB-Tk on the same 24-thread node. 996 
 997 
 998 
 999 
 1000 
 1001 
 1002 
 1003 
 1004 
 1005 
 1006 
 1007 
 1008 
 1009 
 1010 
 1011 
 1012 
 1013 
Figure 4. Overview of the GSearch pipeline for classifying prokaryotic genomes. Orange boxes 1014 
denote steps that aim to prepare genome files, in different formats, for graph building while 1015 
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green boxes denote building steps of the graph database (in nucleotide or amino acid format). 1016 
Blue boxes indicate input/query genomes to search against the database while grey boxes 1017 
indicate classification output for each input. Gene prediction was done using FragGeneScanRs 1018 
and hmmsearch as part of the hmmer software for homology search. Two key steps of 1019 
GSearch: tohnsw (aa) and request (aa) are used to build graph database and request new 1020 
genomes, respectively. Two thresholds are used in the pipeline to decide between whole 1021 
nucleotide vs. whole-genome amino acid search and whole-genome amino acid vs. universal 1022 
gene amino acid, 78% ANI and 52% AAI, corresponding to Probminhash distance 0.9850 and 1023 
0.9375, respectively (see main text). 1024 
 1025 
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Table 1. Request/search performance on major CPU platforms for GTDB v207 database for 1046 
1000 queries. 1047 

CPU Number 
of 

threads 

Clock 
speed 
(GHz) 

Request 
time for nt 

(min) 

Gene 
Prediction-

FGSrs 
(min)c 

Request 
time for 

proteome 
(min) 

hmmsear
ch time 
(min)d 

Request 
time for 
USCG 
(min) 

Intel (R) Xeon 
(R) Gold 
6226a 

24 2.70 2.329 1.348 1.334 0.524 0.117 

Intel (R) Core 
i7-7770HQb 

8 2.80 8.654 6.764 2.041 1.534 0.510 

AMD EPYC 
7513aa 

32(24 
used) 

2.60 1.937 1.120 1.021 0.345 0.102 

Apple M1 Prob 10 3.22 2.369 2.12 0.866 0.498 0.168 

 1048 
 1049 
a RHEL v7.9, Linux v3.10.0-1160, all threads used. 1050 
bMacOS v12.3, Darwin 21.4.0, all threads used. 1051 
cParallel package was used to run multiprocess at the same time. FGSrs stands for FragGeneScanRs. Note that in practice only 1052 
those genomes failed in the Request for nt step (best found is less than 78% ANI) will be used in this step. 1053 
dOnly 100 genomes are used for testing hmmsearch because this step is for very new genomes at order level or above and we 1054 
often do not have that many new genomes in a real-world dataset. Parallel Packages was used to run multiple processes of 1055 
hmmsearch, one thread per process for hmmsearch. 1056 
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