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 2 

ABSTRACT 26 

Background : In the plant sciences, results of laboratory studies often do not translate well 27 

to the field because lab growth conditions are very different from field conditions. To help 28 

close this lab-field gap, we developed a new strategy for studying the wiring of plant traits 29 

directly in the field, based on molecular profiling and phenotyping of individual plants of the 30 

same genetic background grown in the same field. This single-plant omics strategy leverages 31 

uncontrolled micro-environmental variation across the field and stochastic variation among 32 

the individual plants as information sources, rather than controlled perturbations. Here, we 33 

use single-plant omics on winter-type Brassica napus (rapeseed) plants to investigate to what 34 

extent rosette-stage gene expression profiles can be linked to the early and late phenotypes 35 

of individual field-grown plants.  36 

 37 

Results : We find that rosette leaf gene expression in autumn has substantial predictive 38 

power for both autumnal leaf phenotypes and final yield in spring. Many of the top predictor 39 

genes are linked to developmental processes known to occur in autumn in winter-type B. 40 

napus accessions, such as the juvenile-to-adult and vegetative-to-reproductive phase 41 

transitions, indicating that the yield potential of winter-type B. napus is influenced by 42 

autumnal development.  43 

 44 

Conclusions : Our results show that profiling individual plants under uncontrolled field 45 

conditions is a valid strategy for identifying genes and processes influencing crop yield in the 46 

field.  47 

 48 
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KEYWORDS 49 
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 52 

BACKGROUND 53 

One of the major aims of molecular biology research is to unravel how genes influence 54 

phenotypes. This usually involves applying perturbations to the genome or growth 55 

environment of an organism of interest and analyzing the ensuing molecular and phenotypic 56 

responses. Generally, well-chosen perturbations are applied in a controlled experimental 57 

setting, and technical and biological replicates are performed to allow for sufficiently 58 

powerful analyses despite noise in the data. Noise in this context may refer to measurement 59 

errors, noise due to uncontrolled factors in the experimental setup, or noise due to cellular 60 

or environmental stochasticity. The main purpose of avoiding or averaging out such noise is 61 

to facilitate causal interpretation of the link between a perturbation and its molecular and 62 

phenotypic effects.   63 

 64 

It is becoming increasingly clear however that data noise caused by uncontrolled 65 

experimental factors and even purely stochastic effects can be a valuable source of 66 

information, instead of merely a nuisance. Several studies have shown that stochastic gene 67 

expression noise in single cells can be used to infer regulatory influences (1-3). Gene networks 68 

are also increasingly inferred from single-cell gene expression datasets in which differences 69 

among cells are not purely due to stochastic effects in an otherwise homogeneous cell 70 

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 23, 2022. ; https://doi.org/10.1101/2022.10.21.513275doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.21.513275
http://creativecommons.org/licenses/by-nd/4.0/


 4 

population, but reflect additional uncontrolled heterogeneity among cells, e.g. in the 71 

temporal progression of a cell differentiation program (4-10).  72 

 73 

In addition, several studies have investigated the information content of ‘noise’ datasets in 74 

which the profiled entities are multicellular individuals rather than single cells. Bhosale, Jewell 75 

et al. (11) found that gene expression noise among individual Arabidopsis thaliana plants 76 

grown under the same conditions harbored as much information on the function of genes as 77 

gene expression responses to controlled perturbations. The dataset analyzed by Bhosale, 78 

Jewell et al. (11) was however not ideal because it contained data on plants of three different 79 

accessions grown in six different labs (12), causing lab and accession effects that had to be 80 

removed computationally to uncover the individual plant noise of interest. Recently, a study 81 

on a cleaner A. thaliana seedling dataset confirmed that gene expression noise among 82 

individuals of the same background grown under the same lab conditions contains useful 83 

information on gene functions and regulatory relationships (13).  84 

 85 

A common denominator in the aforementioned studies is that even under controlled 86 

conditions, each cell or individual is subject to a set of stochastic or other perturbations that 87 

escape experimental control, and that these uncontrolled perturbations, like any 88 

perturbations, generate responses that contain valuable information on the wiring of gene 89 

networks. Although most studies to date focused on the information content of noise under 90 

controlled lab conditions, there is no reason to believe that ‘noise’ datasets generated under 91 

less controlled conditions would be less valuable. On the contrary, studies performed in a 92 

more natural setting in which organisms are subject to uncontrolled perturbations may yield 93 
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information that cannot easily be recovered from experiments under controlled lab 94 

conditions.  95 

 96 

In the plant sciences for instance, controlled growth conditions in a laboratory are generally 97 

very different from field conditions, in which plants are subject to a plethora of highly variable 98 

environmental cues that often have non-additive phenotypic effects (14-21). Results obtained 99 

in the laboratory therefore often translate poorly to the field (14, 22-26). Narrowing this lab-100 

field gap is essential to speed up the development of new crop varieties and optimized 101 

agricultural practices, both of which are direly needed in view of the current challenges posed 102 

by world population growth, land use and climate change. One option to narrow the lab-field 103 

gap is to make lab conditions more field-like (22), but the decreased experimental control this 104 

implies challenges traditional experimental design practices to e.g. ensure reproducibility. 105 

Another option is to perform interventional experiments in the field rather than the lab, but 106 

controlled interventions in a field may be costly and the level of control that can be achieved 107 

is often limited (22). Observational ‘uncontrolled perturbation’ studies on the other hand can 108 

easily be set up in the field. Observational data come with their own array of challenges 109 

however, e.g. that many of the perturbations influencing the study subjects may remain 110 

unobserved and hence unknown, and that it is generally much more challenging to establish 111 

cause-effect relationships from observational data (27). Nevertheless, even purely 112 

correlational data generated in the field may help narrow the lab-field gap in plant sciences.  113 

 114 

To assess the information content of plant molecular responses to uncontrolled perturbations 115 

occurring in a field environment, we previously generated transcriptome and metabolome 116 

data on the primary ear leaf of 60 individual Zea mays (maize) plants of the same genetic 117 
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background grown in the same field (28). Similar to what was found for lab-grown A. thaliana 118 

plants (11), the transcriptomes of the individual field-grown maize plants were found to 119 

contain as much information on maize gene function as transcriptomes profiling the response 120 

of maize plants to controlled perturbations in the lab. In addition, we found that the single-121 

plant transcriptome and metabolome data had better-than-random predictive power for 122 

several phenotypes that were measured for the individual plants, and the prediction models 123 

also produced sensible candidate genes for these phenotypes (28). However, only a few 124 

phenotypes were measured in this study, and they were either closely associated with the 125 

material sampled for molecular profiling, not fully developed or both.  126 

 127 

Here, we investigate in more detail how much phenotype information can be extracted from 128 

the transcriptomes of single plants subject to uncontrolled perturbations under field 129 

conditions. To this end, we profiled the rosette-stage leaf transcriptome of individual field-130 

grown plants of  the winter-type accession Darmor of Brassica napus (rapeseed), an important 131 

oilseed crop (29). Additionally, a wide range of phenotypes was measured for all plants 132 

throughout the growing season. We find that the autumnal leaf transcriptomes of the 133 

individual plants do not only have predictive power for autumnal leaf phenotypes but also for 134 

yield phenotypes measured more than 5 months later, such as silique count and total seed 135 

weight. Furthermore, we find that many of the genes that feature prominently in our 136 

predictive models are related to developmental processes known to occur in autumn in 137 

winter-type Brassica napus, in particular the juvenile-to-adult and vegetative-to-reproductive 138 

phase transitions. Our results suggest that micro-environmental variations across the field 139 

cause a gradual buildup of developmental differences among plants that ultimately result in 140 

yield differences at the end of the growing season. 141 
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RESULTS 142 

Field trial, expression profiling and phenotyping  143 

One hundred Brassica napus plants of the winter-type accession Darmor were grown in a field 144 

in a 10x10 equispaced grid pattern with 0.5 m distance between rows and columns (Fig. 1). 145 

On November 28, 2016, the eighth rosette leaf (leaf 8) of 62 non-border plants was harvested, 146 

and the harvested leaves were expression-profiled individually (see Methods and Additional 147 

File 1: Table S1). After leaf sampling, the plants were allowed to overwinter and set seed in 148 

spring. 62 phenotypes were recorded for all plants, ranging from rosette areas and individual 149 

leaf measurements in autumn to root and shoot measurements at harvest the following 150 

spring (Additional File 1: Table S1). Likely because of the low planting density, many of the 151 

plants developed one or more secondary inflorescence stems at ground level, which is not 152 

usually observed for B. napus grown under lab conditions or in the field at agronomically 153 

relevant planting densities. These secondary stems (further referred to as side stems) were 154 

harvested separately from the primary inflorescence stem with its cauline secondary 155 

inflorescences (further referred to as stem 1).  Several yield phenotypes were measured for 156 

both stem 1 and the entire shoot (i.e. stem 1 plus side stems), including dry weight, seed 157 

weight, seed count and silique count. Cauline secondary inflorescence stems on stem 1 and 158 

tertiary inflorescence stems on the side stems (both further referred to as branches) were 159 

also counted, and branch counts are reported for both stem 1 and the entire shoot (the latter 160 

being the sum of branch counts on stem 1 and the side stems). Shoot growth phenotypes 161 

such as the time of maximum shoot growth, the maximum shoot growth rate and the end of 162 

shoot growth were derived from plant height time series data through curve fitting (see 163 

Methods). Several phenotypes were defined as ratios of other phenotypes, e.g. the ratio of 164 
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total seed weight to shoot dry weight and the ratio of the total number of seeds to the total 165 

number of siliques per plant.  166 

 167 

Fig. 1 Field trial layout and PCA plots for gene expression and phenotypes. A Plants were sown 168 

on a 10x10 equispaced grid with 0.5 m between rows and columns. Plant identifiers combine 169 

a number indicating the row (01-08) and a letter indicating the column (A-H) in which the 170 

plant was sown. Only plants with leaf 8 gene expression and phenotype profiles are labeled, 171 

border plants and grid positions at which no plants emerged are indicated by grey squares. B 172 

Plot of the first two principal components of the leaf 8 gene expression dataset, after 173 

normalization and RNA-seq batch correction (see Methods). C Plot of the first two principal 174 

components in the phenotype dataset. Individual plants in B and C are colored according to 175 

the color gradient in A, with similar coloring of plants indicating spatial proximity in the field. 176 

 177 

Exploratory data analysis 178 

Principal component analysis (PCA) suggests that there are no subpopulations of plants with 179 

distinct expression or phenotype profiles (Fig. 1). A few relative outliers are visible however, 180 

e.g. plant 04G in the phenotype PCA plot (Fig. 1C), a very small plant that yielded barely any 181 

seeds. Single-nucleotide polymorphism (SNP) analysis of the RNA-seq data (see Methods) did 182 
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 9 

not uncover signs of substantial genetic substructure in the plant population (Additional File 183 

2: Fig. S1).  184 

 185 

Mapping of the field coordinates on the expression and phenotype PCA plots on the other 186 

hand suggests that there is spatial structure in the data (Fig. 1). However, the levels of only 187 

169 out of 76,808 transcripts and 1 out of 41 phenotypes (root system width) were found to 188 

be significantly spatially autocorrelated across the field (Moran’s I, Benjamini-Hochberg (BH) 189 

adjusted permutation test p-values (q-values) < 0.05, Additional File 3: Table S2, Additional 190 

File 2: Fig. S2). In a previous study on a similar number of field-grown maize plants (28), 191 

14.17% of transcripts were found to be significantly spatially autocorrelated at q ≤ 0.01, which 192 

is considerably more than the 0.22% recovered here at q ≤ 0.05. This may be due to 193 

differences in the way Moran’s I values and their significance were calculated in Cruz, De 194 

Meyer et al. (28) versus the present study (see Methods). To assess whether some functional 195 

classes of genes have on average a stronger or weaker spatial autocorrelation signal than 196 

other classes, regardless of the statistical significance of the Moran’s I values, two-sided 197 

Mann-Whitney U (MWU) tests (30) were performed on the transcript list ranked in order of 198 

decreasing Moran’s I value. Genes involved in e.g. photosynthesis, translation, the response 199 

to abiotic stimuli, response to cytokinin, regulation of circadian rhythm, photoperiodism and 200 

the vegetative to reproductive phase transition were found to have a significantly higher 201 

Moran’s I on average than other genes (MWU q ≤ 0.05, Additional File 3: Table S2). This 202 

suggests that there is spatial patterning in the data, but that its discovery may be hampered 203 

by a lack of statistical power due to the small size of the field trial.  204 

 205 
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Most continuous phenotypes and high-count discrete phenotypes (e.g. seed and silique 206 

counts) are at least approximately normally distributed (Anderson-Darling and Shapiro-Wilk 207 

normality tests, p > 0.01, Additional File 4: Table S3), with the exception of five ratio 208 

phenotypes (seeds per silique, seeds per silique stem 1, seed weight/dry weight stem 1, total 209 

seed weight/shoot dry weight and branches per stem), leaf count (74 DAS) and two shoot 210 

growth phenotypes (time of max shoot growth and end of shoot growth). Many of these 211 

phenotypes exhibit relative outliers that may influence normality testing results (Additional 212 

File 2: Fig. S3). When removing outliers (see Methods), four additional phenotypes (seeds per 213 

silique, seeds per silique stem 1, stem 1 seed weight/ stem 1 dry weight, total seed 214 

weight/shoot dry weight) were found to be approximately normally distributed (Anderson-215 

Darling and Shapiro-Wilk normality test, p > 0.01, Additional File 4: Table S3). 216 

 217 

Some phenotypes were found to be more variable across the field than others. Dry weight, 218 

seed and silique phenotypes at harvest are the most variable, with coefficients of variation 219 

(CVs) between 43.7% and 51.9% (Additional File 4: Table S3). Taproot length also has a high 220 

CV (42.8%). Plant height (278 DAS) and shoot growth parameters exhibit the lowest CV values 221 

(< 7%). Most ratio phenotypes also have relatively low CV values (≤ 20.3%), with the exception 222 

of siliques per branch (35.3%), siliques per branch stem 1 (35.0%) and branches per stem 223 

(33.6%). When removing outliers, the CV of some of these ratio phenotypes is further 224 

reduced, notably for seed weight stem 1/dry weight stem 1 (20.3% → 9.5%), total seed 225 

weight/shoot dry weight (18.1% → 8.9%), seeds per silique (19.5% → 14.7%) and seeds per 226 

silique stem 1 (19.4% → 14.6%). Leaf and branch phenotypes generally exhibit intermediate 227 

CVs. Whereas leaf 8 fresh weight (81 DAS), leaf 8 area (81 DAS), total branch count and rosette 228 

area (42 DAS) have a CV ≥ 30%, other leaf 8 and leaf 6 phenotypes and branch count stem 1 229 
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exhibit a CV in the range 19.1%-23.2%, and leaf 8 chlorophyll content (81 DAS) has a CV of 230 

only 12.5%.  231 

 232 

Gene expression also exhibits substantial variability across the field. Ignoring genes expressed 233 

in less than 10 samples, the median gene has an expression CV of 34.2% (Additional File 4: 234 

Table S3). To investigate whether some classes of genes vary more in expression than others 235 

across the field, we ranked B. napus genes based on a normalized version of their expression 236 

CV (normCV, see Methods and Additional File 4: Table S3). MWU tests (30) were performed 237 

to assess whether any Gene Ontology (GO) biological processes are represented more at the 238 

top or bottom of the normCV-ranked gene list than expected by chance (Additional File 4: 239 

Table S3). As observed in earlier studies on populations of lab-grown Arabidopsis thaliana 240 

Col-0 plants (31) and field-grown Zea mays B104 plants (28), genes involved in photosynthesis 241 

and responses to biotic and abiotic stimuli were found to be on average more variably 242 

expressed than other genes, while genes involved in housekeeping functions related to 243 

protein, RNA and DNA metabolism were found to be on average more stably expressed across 244 

the field (Additional File 4: Table S3). To what extent high gene expression variability is due 245 

to either variability in the levels of external stimuli experienced by the individual plants or due 246 

to a higher intrinsic noisiness of a gene’s expression levels (on the scale of entire leaves) is 247 

unclear. Some categories of genes with more variable expression across the field, such as 248 

genes involved in photosynthesis or response to abiotic stimuli, also exhibit higher Moran’s I 249 

values on average, suggesting that their variability may be linked to external stimuli that are 250 

spatially patterned. On the other hand, most genes with highly variable expression do not 251 

exhibit strong spatial patterns (Additional File 2: Fig. S4), which indicates that their expression 252 
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variability may be caused by intrinsic stochastic factors, or alternatively by extrinsic factors 253 

that are not spatially autocorrelated at the field sampling resolution employed.  254 

 255 

Linking phenotypes to the leaf 8 expression profiles of single genes 256 

To assess how much information leaf 8 gene expression profiles contain on the phenotypes 257 

of individual plants, we used linear mixed-effect (lme) models to associate plant phenotypes 258 

with the autumnal leaf 8 expression profile of single genes, taking into account spatial 259 

autocorrelation effects (see Methods). Between 11,986 and 14,032 gene expression profiles, 260 

out of 76,808, were found to be significantly associated (q ≤ 0.05) with leaf 8 phenotypes such 261 

as leaf 8 length, width, area and fresh weight (Table 1 , Additional File 5: Table S4). That leaf 262 

8 phenotypes yield more associated genes than other phenotypes is not surprising, given that 263 

leaf 8 was used for gene expression profiling. Next to leaf 8 phenotypes, also other leaf and 264 

rosette phenotypes feature more associated genes than non-leaf phenotypes, except for leaf 265 

6 length (74 DAS). The gene sets associated with leaf phenotypes are generally significantly 266 

enriched (hypergeometric test, q ≤ 0.05) in genes involved in e.g. response to biotic and 267 

abiotic stimuli (salt), photosynthesis, circumnutation, cell wall biogenesis, amino acid 268 

metabolism and response to sulfate and nitrogen starvation (Additional File 6: Table S5). 269 

Additionally, leaf phenotype-related gene lists show significant enrichment, notably among 270 

transcription factors, in genes involved in dorsal/ventral, adaxial/abaxial and radial pattern 271 

formation, phloem, xylem and procambium histogenesis, and meristem development 272 

(Additional File 6: Table S5).  273 

 274 

Interestingly, appreciable numbers of gene-phenotype associations were found as well for 275 

several phenotypes that are only distantly related in space and time to the leaf 8 material 276 
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profiled for RNA-seq. In particular seed, silique and shoot dry weight phenotypes yielded high 277 

numbers of associated genes, ranging from 1,859 genes for total shoot dry weight to 1,248 278 

genes for the silique count on stem 1 at harvest (Table 1, Additional File 5: Table S4). Many 279 

of the gene sets associated with these phenotypes are enriched in genes involved in nitrate 280 

assimilation, superoxide metabolism, circumnutation, circadian rhythm, response to biotic 281 

and abiotic stimuli (cold, salt, water deprivation), response to nutrient levels (nitrogen, 282 

sulphate and phosphate starvation), and, in particular among transcription factors, phosphate 283 

ion homeostasis, histone modification, regulation of the vegetative to reproductive phase 284 

transition and floral organ morphogenesis (Additional File 6: Table S5). 1,110 genes were 285 

found associated with the branch count on stem 1, with GO enrichments similar to those 286 

obtained for dry weight, silique and seed phenotypes (Additional File 6: Table S5).  In 287 

contrast, the total branch count phenotype only yields a set of 89 associated genes (Table 1, 288 

Additional File 5: Table S4), which is however also strongly enriched in e.g. superoxide 289 

metabolism and salt stress genes. The fact that the total branch count is composed of cauline 290 

secondary inflorescence stems on stem 1 and tertiary inflorescence stems on the side stems 291 

may render this phenotype less relevant. 292 

 293 

Phenotypes with very low CV such as leaf 8 chlorophyll content (81 DAS), the maximum shoot 294 

growth rate and end of shoot growth yielded no significantly associated genes, suggesting 295 

that the biological variation of these phenotypes is limited and that the observed variation 296 

may be dominated by technical noise (Table 1, Additional File 5: Table S4).  The phenotype 297 

with the lowest CV on the other hand, the time of maximal shoot growth (CV=0.6%), features 298 

3,498 significant leaf 8 gene expression correlates. The associated gene set is strongly 299 

enriched in genes involved in e.g. cell wall biogenesis and response to biotic stimuli 300 
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(Additional File 6: Table S5). For plant height (278 DAS) (CV = 6.8%), 99 associated genes are 301 

found with minor GO enrichments.  302 

 303 

 304 

Table 1 Numbers of significant gene expression-phenotype associations. For any given 305 

phenotype, results are reported on the complete gene set (n=76,808; ‘All genes’ columns) 306 

and on the set of transcription factors (n=2,521; ‘Transcription factors’ columns). In both 307 

cases, the results shown include (from left to right) the total number of significant gene 308 

expression-phenotype associations (q ≤ 0.05), the most significant gene and its q-value.  309 

Phenotype # Significant Most significant q # Significant Most significant q

leaf 8 length (76 DAS) 14032 BnaC07g39340D 4.35E-14 453 BnaA05g33840D 4.44E-09
leaf 8 width (76 DAS) 13695 BnaC07g39340D 1.62E-15 429 BnaA05g33840D 6.98E-09
leaf 8 width (81 DAS) 13605 BnaA02g18860D 1.37E-12 420 BnaA05g33840D 1.36E-08
leaf 8 fresh weight (81 DAS) 12989 BnaC07g39340D 5.79E-12 412 BnaAnng02740D 4.17E-08
leaf 8 area (81 DAS) 12569 BnaC07g39340D 1.29E-13 408 BnaAnng02740D 1.64E-08
leaf 8 length (81 DAS) 11986 BnaA01g14450D 6.39E-14 383 BnaA05g27750D 5.25E-08
leaf count (74 DAS) 10442 BnaC04g49060D 1.86E-07 313 BnaA05g33840D 2.16E-06
rosette area (42 DAS) 7196 BnaC09g39140D 7.14E-06 212 BnaA06g39930D 1.06E-04
leaf 6 width (74 DAS) 5386 BnaA09g04980D 2.05E-05 184 BnaA05g27750D 2.76E-04
time of max shoot growth 3498 BnaC06g28860D 7.29E-07 89 BnaC04g03950D 5.42E-06
total shoot dry weight 1859 BnaA05g29010D 1.37E-06 76 BnaCnng05590D 2.36E-04
total shoot dry weight (w/o seeds) 1802 BnaA05g29010D 8.88E-07 68 BnaAnng37500D 4.89E-04
dry weight stem 1 1612 BnaA05g29010D 2.79E-06 72 BnaC01g37260D 5.87E-05
dry weight stem 1 (w/o seeds) 1611 BnaA05g29010D 6.82E-06 75 BnaA08g12050D 3.13E-04
total seed weight 1598 BnaA06g35450D 1.02E-05 66 BnaCnng05590D 6.05E-05
total seed count 1545 BnaA06g35450D 9.10E-06 63 BnaCnng05590D 1.12E-04
seed weight stem 1 1539 BnaA05g29010D 1.65E-05 66 BnaC01g37260D 1.65E-05
total silique count 1520 BnaA06g35450D 3.92E-05 64 BnaCnng05590D 7.12E-04
seed count stem 1 1449 BnaC01g37260D 2.58E-05 67 BnaC01g37260D 2.58E-05
leaf 6 length (74 DAS) 1345 BnaA09g04980D 2.37E-04 34 BnaA02g18720D 8.39E-03
silique count stem 1 1248 BnaA05g29010D 6.32E-05 56 BnaC01g37260D 6.32E-05
branch count stem 1 1110 BnaA06g35450D 2.52E-04 39 BnaC01g37260D 1.95E-03
siliques per branch stem 1 593 BnaA01g17100D 2.24E-03 29 BnaC01g37260D 2.48E-03
total seed weight/shoot dry weight 458 BnaC09g50070D 2.24E-05 13 BnaC04g55440D 4.81E-04
seed weight stem 1/dry weight stem 1 280 BnaA03g50380D 8.90E-04 6 BnaC03g62970D 3.39E-03
branch count stem 1/length stem 1 240 BnaAnng11300D 8.22E-03 5 BnaC01g37260D 4.04E-02
seeds per silique stem 1 233 BnaC05g45470D 8.73E-04 9 BnaC04g03950D 4.42E-03
seeds per silique 112 BnaA08g07570D 9.01E-04 3 BnaC04g03950D 1.43E-02
plant height (278 DAS) 99 BnaA06g34140D 7.20E-04 5 BnaC01g37260D 2.48E-02
total branch count 89 BnaA06g35450D 2.39E-03 1 BnaCnng05590D 5.82E-03
root system width 4 BnaA01g06800D 7.53E-03 0 - -
siliques per branch 3 BnaAnng39720D 2.22E-02 0 - -
branches per stem 0 - - 0 - -
taproot length 0 - - 0 - -
leaf 8 chlorophyll content (81 DAS) 0 - - 0 - -
max shoot growth rate 0 - - 0 - -
end of shoot growth 0 - - 0 - -
rosette lesions (74 DAS) 0 - - 0 - -
leaf 6 lesions (74 DAS) 0 - - 0 - -
leaf 8 lesions (76 DAS) 0 - - 0 - -
stem count 0 - - 0 - -

All genes Transcription factors

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 23, 2022. ; https://doi.org/10.1101/2022.10.21.513275doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.21.513275
http://creativecommons.org/licenses/by-nd/4.0/


 15 

No genes were found associated (q ≤ 0.05) with taproot length and only four with root system 310 

width, suggesting that autumnal leaf 8 gene expression may not contain a lot of information 311 

on root phenotypes. On the other hand, given the difficulty of recovering intact root systems 312 

from the soil, it is not excluded that root measurement errors may have influenced these 313 

results. 314 

 315 

Ratio phenotypes exhibit between 0 and 593 associated genes. In particular the branches per 316 

stem and siliques per branch ratios do poorly (0 and 3 associated genes, respectively). Both 317 

involve the total branch count, which is itself only associated with 89 genes. Ratios involving 318 

the branch count on stem 1 on the other hand yield between 240 and 593 associated genes. 319 

One potential reason for ratio phenotypes having at most a few hundred gene associations is 320 

that ratios suffer from increased error levels due to the propagation of measurement errors 321 

from both the numerator and denominator. This may be particularly problematic for ratios of 322 

highly correlated variables such as the seeds per silique and seed weight/dry weight 323 

phenotypes (both for stem 1 and the entire shoot), which exhibit a low CV and likely have 324 

even lower true biological variation. No genes were found associated at q ≤ 0.05 with 325 

qualitative or low-count discrete phenotypes such as rosette lesions (74 DAS), leaf 6 lesions 326 

(74 DAS), leaf 8 lesions (76 DAS) and stem count (i.e. stem 1 plus the number of side stems). 327 

 328 

Leaf and final yield phenotypes of individual field-grown B. napus plants can 329 

be predicted to a considerable extent from their autumnal leaf 8 330 

transcriptome  331 
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We built random forest (RF) and elastic net (enet) models to predict the phenotypes of 332 

individual plants from their autumnal leaf 8 transcriptome, using either all genes or only 333 

transcription factors (TFs) as potential features and using three different feature selection 334 

techniques (see Methods). For each combination of phenotype, model type (RF or enet), 335 

potential feature set (all genes or TFs) and feature selection technique, 9 repeat models were 336 

learned, each time using 10-fold cross-validation with different splits (see Methods), resulting 337 

per combination in a total of 90 test sets and 9 test set predictions per plant. The best model 338 

for a given phenotype and potential feature set was taken to be the one with the highest 339 

median test R2 value across all 90 test sets for continuous and high-count phenotypes (see 340 

Methods), or the highest median test accuracy for qualitative or low-count discrete 341 

phenotypes (Table 2, Additional File 7: Table S6).     342 

 343 

Not surprisingly, leaf 8 phenotypes, which are most closely related in space and time to the 344 

material sampled for transcriptome profiling, are the most predictable. Except for the leaf 8 345 

chlorophyll content at sampling time (81 DAS), which features very poor prediction 346 

performance, the median test R2 scores for leaf 8 phenotypes range from 0.48 to 0.70 when 347 

using all genes as potential features. Other leaf-related phenotypes such as leaf 6 width (74 348 

DAS, median test R2 = 0.38), rosette area (42 DAS, median test R2 = 0.23) and leaf 6 length (74 349 

DAS, median test R2 = 0.07) are comparatively less predictable.  350 

 351 

Surprisingly, many of the final seed, silique and shoot dry weight phenotypes are more 352 

predictable from the autumnal leaf 8 transcriptome than leaf 6 and rosette phenotypes, with 353 

seed weight on stem 1 rivaling the leaf 8 phenotypes in terms of median test R2 value (Table 354 

2, Additional File 7: Table S6, Fig. 2, Additional File 2: Fig. S5). All seed weight, seed and 355 
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silique count and shoot dry weight phenotypes have median test R2 values in the range 0.35 356 

- 0.51 for the ‘all genes’ models, which is in all cases higher than the 95th percentile of test R2 357 

values obtained from single train-test splits on 90 datasets in which the phenotype values 358 

were permuted (Additional File 7: Table S6). In other words, the model for the real data train-359 

test split with median test R2 outperforms 95% of the models for comparable train-test splits 360 

on randomized data. Note that this serves only as an indication of model performance on real 361 

versus randomized data, not as a formal test assessing whether the median test R2 score on 362 

real data is significantly higher than expected at random. The latter would require the 9 times 363 

repeated 10-fold cross-validation setup used on the real data to be used on each of the 364 

permuted datasets as well (instead of the single train-test split per permutation used here), 365 

which is computationally prohibitive.  366 

 367 

Interestingly, yield phenotypes measured for stem 1 are generally slightly more predictable 368 

than the corresponding phenotypes measured for the entire shoot, with median test R2 score 369 

differences between stem 1 and total shoot phenotypes in the range 0.02-0.09 for the ‘all 370 

genes’ models and 0.05-0.13 for the ‘transcription factors’ models. This suggests that gene 371 

expression levels in leaf 8 of the rosette may be more predictive for phenotypes of stem 1 372 

(i.e. the primary inflorescence stem and its cauline secondary inflorescences) than for 373 

phenotypes measured on the whole shoot (i.e. including the secondary inflorescence stems 374 

branching at ground level).  375 

 376 

Root phenotypes, branching phenotypes, final plant height (278 DAS) and shoot growth 377 

phenotypes are generally poorly predictable (Table 2). Plant height and shoot growth 378 

phenotypes are likely poorly predictable because they show little variation across the field 379 
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(Additional File 4: Table S3), increasing the risk that measurement error outweighs biological 380 

variation. Also taproot length and root system width may suffer from measurement errors. 381 

The total branch count and branch count stem 1 phenotypes on the other hand have a high 382 

CV and likely limited measurement error, suggesting that leaf 8 gene expression profiles may 383 

contain less information on these branching phenotypes than on leaf, seed, silique and dry 384 

weight phenotypes. 385 

 386 

Most phenotypes calculated as ratios of other phenotypes are very poorly predictable, even 387 

if the constituent phenotypes have high prediction performance values. For instance, the 388 

median test R2 value for seeds per silique (total seed count divided by total silique count) is 389 

negative (-0.14), whereas both total seed count and total silique count have median test R2 390 

values ≥ 0.38. In many cases however, the numerator and denominator phenotypes of a ratio 391 

are highly correlated, leading to a derived phenotype with a small range that may be 392 

dominated by noise propagated from measurement errors in the constituent phenotypes 393 

rather than biological variability. The number of siliques per branch on stem 1 and the entire 394 

shoot are notable exceptions with high CV values and reasonable prediction performance 395 

(Table 2). The latter ratio phenotypes are highly correlated with the number of siliques on 396 

stem 1 (PCC = 0.92) and the entire shoot (PCC = 0.72), respectively, indicating that the number 397 

of siliques per branch is an important determinant of silique count, in addition to the number 398 

of branches (PCC between total branch count and total silique count = 0.87, PCC between 399 

branch count stem 1 and silique count stem 1 = 0.82).  400 
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 401 

Table 2 Best-performing multi-gene and single-gene models for each phenotype. Results are 402 

shown for models including all genes as potential features (‘All genes’ columns), models 403 
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including only TFs as potential features (‘Transcription factors’ columns) and models using a 404 

single gene as feature (‘Single gene’ columns). For the best all-gene and TF models for 405 

continuous or high-count discrete phenotypes, columns from left to right indicate the feature 406 

selection technique used (median = selection of features with median rlog gene expression > 407 

0, spearman = Spearman correlation, hsic-5000 = HSIC lasso, see Methods), the model type 408 

(enet = elastic net, rf = random forest), the median test R2 and the median pooled Pearson 409 

correlation coefficient (PCC, see Methods). Stars in the median test R2 column indicate that 410 

the median test R2 score on real data is higher than the 95th percentile of test R2 scores on 411 

permuted data (Additional File 7: Table S6). For qualitative and low-count phenotypes, the 412 

median test accuracy was used as a performance metric instead of the median test R2 (see 413 

Methods). Single-gene model columns include the best-performing gene and the 414 

corresponding median test R2 and median pooled PCC. All single-gene models are cross-415 

validated lme models with spatial error structure. The CV column contains the coefficients of 416 

variation for the phenotypes.  417 

 418 

 419 

 420 
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 421 

Fig. 2 Predictions versus observations for the best-scoring leaf and yield phenotypes. A 422 

Predicted versus measured values for leaf 8 width (76 DAS), using the ‘all genes’ model with 423 

the best median test R2 score (enet + median feature selection, Table 2). B Predicted versus 424 

measured values for seed weight stem 1, using the ‘all genes’ model with the best median 425 

test R2 score (enet + Spearman feature selection, Table 2). Vertical grey lines range from the 426 

minimum to the maximum predicted value for a given plant across all model repeats, and 427 

colored dots represent predictions for the repeat with the median pooled R2 score (i.e. the R2 428 

score of the pooled test set predictions in the repeat concerned). Different marker colors 429 

indicate the 10 different test sets in this repeat. Perfect predictions are located on the dashed 430 

diagonal line in each panel.  431 

 432 

To compare multi-gene models to single-gene models in terms of phenotype prediction 433 

performance, we used the same repeated cross-validation setup as used for the multi-gene 434 

models to calculate median test R2 scores and median pooled PCC values for single-gene 435 

models (lme models with spatial structure, see previous section). Cross-validation scores were 436 

pooled R² = 0.74
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calculated for each of the 100 genes most significantly associated with a given phenotype 437 

(lowest q-value for gene coefficient in lme model, Additional File 7: Table S6).  438 

 439 

For leaf 8 phenotypes, the best multi-gene models generally have only slightly better median 440 

test R2 scores than the best single-gene models (Table 2). In other words, multi-gene models 441 

offer little benefit over single-gene models for quantitative prediction of leaf 8 phenotypes. 442 

For leaf 8 length at 76 DAS and 81 DAS, the best single-gene models even outperform the 443 

multi-gene models. Single-gene models also outperform multi-gene models for several other 444 

phenotypes, sometimes with a wide margin, e.g. for plant height (278 DAS), branch count on 445 

stem 1, leaf count (74 DAS), leaf 6 length (74 DAS) and rosette area (42 DAS). This suggests 446 

that the multi-gene models are vulnerable to overfitting. In particular phenotypes with low 447 

single-gene model performance tend to exhibit a multi-gene model performance that is even 448 

lower, suggesting that the extent of multi-gene model overfitting is inversely correlated with 449 

the proportion of trait variance explained by single genes. An alternative explanation for the 450 

observation that the best single-gene models sometimes outperform the corresponding 451 

multi-gene models may be the ‘winner’s curse’ effect, also known as selection bias (32), 452 

whereby the apparently best-performing single-gene models may overestimate prediction 453 

performance. 454 

 455 

Most of the phenotypes with comparatively high single-gene model performance scores 456 

however exhibit a modest increase of multi-gene model performance over the best single-457 

gene model. Like most of the leaf 8-associated traits, total seed weight, total seed count and 458 

most of the shoot dry weight traits are modestly better predicted by multi-gene models than 459 

by single-gene models. Many of the seed and silique traits related to stem 1 on the other hand 460 
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(seed weight, seed count and silique count on stem 1, the number of siliques per branch on 461 

stem 1) are substantially better predicted by multi-gene models than by single-gene models. 462 

This indicates that several distinct gene expression patterns are likely relevant for quantitative 463 

prediction of stem 1 seed and silique traits.  464 

 465 

For most ratio phenotypes, both the multi-gene and single-gene models have very poor 466 

prediction performance, in particular when the numerator and denominator phenotypes that 467 

make up the ratio are very highly correlated. In these cases, the denominator is essentially 468 

already a good predictor of the numerator. To assess whether any gene expression profiles 469 

contain additional information on the numerator given knowledge of the denominator, we 470 

used alternative single-gene models with a log link (see Methods) to predict the numerators 471 

of the seeds per silique ratio on stem 1 and the branches per stem ratio (seed count stem 1 472 

and total branch count, respectively) conditioned on their denominator (silique count stem 1 473 

and stem count, respectively). These models are not suited for making predictions in practice, 474 

given the need to know the denominator, but they may indicate whether prediction of the 475 

ratio based on gene expression is at all feasible and if so, which genes may be important. If 476 

no genes are found to be predictive for the numerator (and hence the ratio) conditioned on 477 

the denominator, then attempts to predict the ratio phenotype unconditionally are likely to 478 

be unsuccessful. For both seeds per silique stem 1 and branches per stem, the fitted 479 

coefficients and residuals look reasonable for the best predictor genes (Additional File 2: Fig. 480 

S6, Additional File 2: Fig. S7). The corresponding models succeed in suppressing a few of the 481 

more extreme residuals of the base model (without gene expression effect), without 482 

improving predictions for most other plants. However, no gene coefficients were found to be 483 

significantly different from zero for any phenotype after BH correction (q<0.05), neither in 484 
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models assuming constant error variance nor in models with heteroscedastic and/or spatially 485 

covarying error structures (see Methods). This indicates that the poor performance of the 486 

original multi-gene and single-gene models for these phenotypes is to be expected. 487 

 488 

Top predictors for leaf phenotypes  489 

The best multi-gene prediction performance scores were obtained for leaf 8 phenotypes. To 490 

assess whether the genes featuring most prominently in the multi-gene models for leaf 491 

phenotypes make biological sense, we focused on the top-10 predictor lists of the TF-based 492 

models for leaf 8 length and width (76 DAS and 81 DAS), fresh weight (81 DAS) and area (81 493 

DAS), and leaf 6 length and width (74 DAS) (Additional File 7: Table S6).  As these leaf 494 

phenotypes are generally highly correlated (PCC between leaf 8 phenotype in the range 495 

[0.78,0.97], PCC between leaf 8 and leaf 6 phenotypes in range [0.45, 0.60]), many of the most 496 

important predictors (TFs) in the random forest and elastic net models are shared among 497 

phenotypes. We therefore grouped the top-10 predictor lists for the different phenotypes in 498 

two sets, one for the random forest (RF) models (Fig. 3) and one for the elastic net (enet) 499 

models (Additional File 2: Fig. S8). The rationale for looking at the TF models instead of the 500 

models built on all genes is that TFs are more likely than the average gene to have been 501 

functionally characterized to some extent, and are more likely to be causally involved in 502 

phenotype regulation (although it needs to be stressed that our analysis remains entirely 503 

correlational). Given the relative lack of experimentally determined gene functions in B. 504 

napus, most of the functional interpretation given below for B. napus genes is based on the 505 

experimentally determined functions of likely orthologs in A. thaliana (see Methods). 506 

 507 
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 508 

Fig. 3 Top predictor genes in random forest models of leaf phenotypes. A clustered heatmap 509 

of the z-scored gene expression profiles of the top genes for predicting leaf phenotypes is 510 

shown centrally (blue-red color scale, Ward.D2 hierarchical clustering). The leaf phenotypes 511 

concerned and their z-scored profiles across plants are shown at the bottom (dark blue-yellow 512 

heatmap with plant identifiers at the bottom). For each of these phenotypes, the top-10 most 513 

important genes (highest median gini importance across all 90 cross-validation splits) of the 514 

RF model with the highest median test R2 score are included on the figure (gene identifiers 515 

are shown at right). The mostly dark blue score panel to the left of the expression heatmap 516 

shows the median gini importance scores of the selected genes in each of the selected 517 

phenotype models, normalized to the maximum importance score per model to make the 518 
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color scales of the different models (columns) comparable. The mostly yellow frequency panel 519 

to the left of the score panel shows the frequencies at which genes were selected as features 520 

across all 90 cross-validation splits of a given model.  Grey squares in the score and frequency 521 

panels indicate that a given gene was not selected as a feature in a given model. The 522 

phenotypes in the score and frequency panels are identified by numbers (1-8) on top of the 523 

panels, corresponding to the numbers associated with the phenotypes in the bottom 524 

phenotype panel. On top of the score panel, the feature selection techniques used in the best-525 

scoring RF models for each phenotype are shown (median = selection of features with median 526 

rlog gene expression > 0, spearman = Spearman correlation, hsic-5000 = HSIC lasso, see 527 

Methods), as well as the corresponding test and pooled R2 scores rounded to the nearest 0.1 528 

and then multiplied by ten (e.g. a test R2 score of 0.38 would be denoted as 4).   529 

 530 

Many of the top TF predictors for leaf phenotypes have A. thaliana orthologs with known 531 

functions in leaf development.  One TF with high importance scores in both the RF and enet 532 

models is BnaCnng05590D, a putative ortholog of the homeodomain leucine zipper class I 533 

(HD-ZIP I) gene ARABIDOPSIS THALIANA HOMEOBOX 1 (AtHB1/AT3G01470). Both the RF and 534 

enet top predictor sets additionally contain BnaA05g33840D, another putative ortholog of 535 

AtHB1. Ectopic AtHB1 overexpression in tobacco seedlings was previously shown to lead to 536 

de-etiolated phenotypes in the dark, including true leaf development (33). Mutation of an 537 

upstream open reading frame in the AtHB1 5’ untranslated region that normally represses 538 

AtHB1 translation was shown to lead to smaller, more serrated leaves, smaller rosettes, a 539 

delay of the vegetative-to-reproductive phase transition and siliques containing fewer seeds 540 

in A. thaliana (34). Similarly, AtHB1 overexpression in a silencing-deficient rdr6-12 mutant 541 

background resulted in plants with shorter and more serrated leaves (35). 542 
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 543 

The enet top predictor list for leaf phenotypes also contains another HD-ZIP I gene, 544 

BnaC02g43700D, which is putatively orthologous to AtHB5 (AT5G65310) or AtHB16 545 

(AT4G40060). Similar to AtHB1, overexpression of AtHB16 leads to smaller, more serrated 546 

leaves exhibiting reduced cell expansion, smaller rosettes and siliques containing fewer seeds 547 

(36). Additionally, AtHB16 overexpression was reported to reduce the flowering time 548 

sensitivity to differences in photoperiod in A. thaliana (36). 549 

 550 

Next to HD-ZIP I genes, the RF and enet top predictor lists contain several other HD-ZIP genes.  551 

BnaA06g18550D in the RF top predictor list is putatively orthologous to the A. thaliana gene 552 

REVOLUTA (AtREV/AT5G60690), which encodes a HD-ZIP III transcription factor known to 553 

regulate postembryonic meristem initiation (37) and several polarity-associated growth 554 

processes in A. thaliana, including abaxial-adaxial patterning in leaves (38). Loss-of-function 555 

atrev-1 mutant plants were shown to exhibit overgrowth and deformation of rosette and 556 

cauline leaves after bolting (39). The RF top predictor list also contains two additional HD-ZIP 557 

III gene family members, BnaC06g05240D and BnaA06g01940D, that are putatively 558 

orthologous to AtHB8 (AT4G32880) or AtHB15 (AT1G52150). AtHB8 and AtHB15 are thought 559 

to have effects on postembryonic meristem initiation that are antagonistic to the effects of 560 

AtREV (40). On the other hand, gain-of-function mutations in AtHB15, like gain-of-function 561 

mutations in AtREV, have been shown to result in adaxialized leaves (41).  Both AtHB8 and 562 

AtHB15 are thought to function prominently in vascular development, possibly 563 

antagonistically (41-44). Furthermore, the enet top predictor list includes BnaC03g02700D, a 564 

HD-ZIP II gene putatively orthologous to AtHAT3 (AT3G60390), AtHAT14 (AT5G06710), 565 
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AtHB17 (AT2G01430) or AtHB18 (AT1G70920). AtHAT3 is known to be involved in leaf 566 

abaxial/adaxial patterning (45), and to be regulated by AtREV (46). 567 

 568 

Both the RF and enet top predictor lists prominently feature putative orthologs of A. thaliana 569 

WUSCHEL RELATED HOMEOBOX (AtWOX) genes: BnaA05g27750D (RF and enet) and 570 

BnaC05g41930D (enet). Both genes are putatively orthologous to AtWOX5 (AT3G11260) or 571 

AtWOX7 (AT5G05770). Next to roles in root development, AtWOX5 was reported to act 572 

redundantly with AtWOX1 and AtWOX3 to control leaf shape by promoting lateral leaf growth 573 

(47).  AtWOX1, 2, 3 and 5 were also shown to regulate the expression of REVOLUTA (AtREV) 574 

and other HD-ZIP III genes in the shoot apical meristem (48), and AtWOX1 and AtWOX3 are 575 

thought to regulate HD-ZIP III genes in lateral leaf regions, thereby contributing to the 576 

maintenance of adaxial/abaxial patterning at the margin of growing leaves (49). 577 

 578 

Not all transcription factors in the RF and enet models are equally important for all leaf 579 

phenotypes. BnaCnng06440D (AtMYB60/AT1G08810) for instance has higher RF and (to a 580 

lesser extent) enet importance scores for leaf 8 area (81 DAS) and leaf 8 fresh weight (81 DAS) 581 

than for other leaf phenotypes. Its likely A. thaliana ortholog AtMYB60 is involved in 582 

regulating stomatal opening, and its expression is downregulated under drought (50). 583 

atmyb60-1 null mutant plants exhibit a constitutive reduction of stomatal opening and 584 

decreased transpirational water loss under drought (50). A second TF in the RF models with 585 

higher importance for leaf 8 area (81 DAS) and leaf 8 fresh weight (81 DAS) than for other leaf 586 

phenotypes is BnaC06g36000D (AtHB33/AtZHD5/AT1G75240). Its likely ortholog AtHB33 587 

codes for a zinc-finger homeodomain TF downregulated in response to abscisic acid (ABA), 588 

which e.g. induces stomatal closure (51). Constitutive AtHB33 overexpression in A. thaliana 589 
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resulted in accelerated growth, larger leaves and larger epidermal cells (52). A third TF in the 590 

RF models with mildly higher importance for leaf 8 area (81 DAS) and leaf 8 fresh weight (81 591 

DAS) is BnaCnn59450D. Overexpression of its putative orthologs AtSHN2 (AT5G11190) and 592 

AtSHN3 (AT5G25390) in A. thaliana resulted in folded and twisted leaves, shiny green leaf 593 

surfaces with increased levels and altered composition of cuticular wax, increased cuticular 594 

permeability, larger pavement cells, reduced trichome number and stomatal density, and 595 

increased drought tolerance (53).  596 

 597 

Both the RF and enet top-10 lists feature several orthologs of A. thaliana NUCLEAR FACTOR 598 

Y, SUBUNIT A (AtNF-YA) genes (putative A. thaliana orthologs in parentheses): 599 

BnaAnng02740D (AtNF-YA2/10, AT3G05690/AT5G06510, RF), BnaA10g24470D (AtNF-600 

YA2/10, AT3G05690/AT5G06510, RF and enet), BnaC06g33980D (AtNF-YA3/8, 601 

AT1G72830/AT1G17590, enet) and BnaC01g37260D (AtNF-YA5/6, AT1G54160/AT3G14020, 602 

RF). All four genes are negatively correlated with leaf phenotypes in the field expression 603 

dataset. NF-Y transcription factor complexes are heterotrimers, consisting of A, B and C 604 

subunits, that function in various developmental programs and abiotic stress responses in 605 

plants (54). AtNF-YA2 and AtNF-YA10 were previously found to regulate leaf size in A. 606 

thaliana, with their overexpression promoting cell expansion (55). AtNF-YA5 was found to 607 

promote drought resistance, with atnf-ya5 knockout plants and AtNF-YA5-overexpressing 608 

plants displaying increased and reduced leaf water loss, respectively, relative to wild-type 609 

plants (56). AtNF-YA8 was recently found to negatively regulate the juvenile-to-adult 610 

(vegetative) phase change by activating the transcription of AtMIR156 genes (57). 611 

Overexpression of AtNF-YA8 resulted in a delay of the juvenile-to-adult transition and thereby 612 

reduced leaf sizes and altered leaf shapes (57).  613 
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 614 

Interestingly, several of the top-TFs recovered in the multi-gene models for leaf phenotypes 615 

are linked to the regulation of flowering. Plant NF-Y complexes for instance are known to also 616 

function in the regulation of flowering time (54). Overexpression of the aforementioned AtNF-617 

YA8 gene was found to delay flowering time (57), and similar observations were made for 618 

other AtNF-YA genes such as AtNF-YA1 (AtHAP2A, AT5G12840), AtNF-YA2, AtNF-YA3, AtNF-619 

YA4 (At2g34720), AtNF-YA7 (At1g30500) and AtNF-YA10 (58, 59). It has been suggested that 620 

the photoperiodic flowering regulator CONSTANS (AtCO) may compete with NF-YA subunits 621 

in the NF-Y complex to form an alternative complex activating FLOWERING LOCUS T (FT) 622 

expression in A. thaliana, thereby promoting flowering (58). Additionally, AtNF-YA2 has been 623 

suggested to function as a negative regulator of flowering in an alternative, stress-mediated 624 

flowering pathway (60). On the other hand, AtNF-YA2 was recently suggested to positively 625 

regulate flowering by directly influencing AtFT expression (61).  626 

 627 

The A. thaliana orthologs of several of the aforementioned HD-ZIP genes 628 

(BnaCnng05590D/AtHB1, BnaA05g33840D/AtHB1, BnaC02g43700D/AtHB16, 629 

BnaC06g05240D/AtHB15, BnaA06g01940D/AtHB15) have also been linked to regulation of 630 

the juvenile-to-adult and/or vegetative-to-reproductive phase changes (34, 36, 41). 631 

Furthermore, both the enet and RF predictor lists contain BnaA06g39930D, a putative 632 

ortholog of EARLY FLOWERING MYB PROTEIN (AtEFM/AT2G03500) in A. thaliana. AtEFM is 633 

known to directly repress the expression of FLOWERING LOCUS T (AtFT, AT1G65480) in the 634 

leaf vasculature, and is thought to mediate the effects of temperature and light cues on the 635 

timing of the floral transition (62). The RF predictor list additionally contains BnaC05g31460D, 636 

a putative ortholog of AtJMJD5 (AtJMJ30, AT3G20810), the protein product of which interacts 637 
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with AtEFM to repress AtFT (62). The RF and enet top predictor lists also contain 638 

BnaA07g12050D, a putative ortholog of the floral homeotic gene APETALA2 639 

(AtAP2/AT4G36920) or the related euAPETALA2 gene AtTOE3 (AT5G67180). Both AtAP2 and 640 

AtTOE3 are known to repress AGAMOUS (AtAG) expression during floral patterning (63). 641 

 642 

In summary, 15/42 and 11/35 transcription factors in the RF and enet lists of top leaf 643 

phenotype predictors, respectively, have putative A. thaliana orthologs linked to leaf 644 

development and patterning, the juvenile-to-adult phase change, the floral transition or 645 

drought response. 646 

 647 

Top predictors for seed, silique and shoot dry weight phenotypes 648 

Next to leaf 8 phenotypes, also the seed, silique and shoot dry weight phenotypes (further 649 

referred to as ‘yield’ phenotypes) of the individual plants at harvest (late spring) could be 650 

predicted to a considerable extent from autumnal leaf 8 transcriptome data (see above). 651 

Similar to the leaf phenotypes, the yield phenotypes are highly correlated (PCC range [0.84-652 

0.99]) and hence have a lot of high-scoring RF and enet predictors in common (Additional File 653 

7: Table S6, Fig. 4, Additional File 2: Fig. S9). Furthermore, these phenotypes are also 654 

significantly correlated with leaf phenotypes (PCC range [0.47, 0.74]), leading to a substantial 655 

overlap between the top-10 predictor lists of yield and leaf phenotypes. 656 

 657 
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 658 

Fig. 4 Top predictor genes in elastic net models of yield phenotypes. A clustered heatmap of 659 

the z-scored gene expression profiles of the top genes for predicting yield phenotypes is 660 

shown centrally (blue-red color scale, Ward.D2 hierarchical clustering). The yield phenotypes 661 

concerned and their z-scored profiles across plants are shown at the bottom (dark blue-yellow 662 

heatmap with plant identifiers at the bottom). For each of these phenotypes, the top-10 most 663 

important genes (highest median elastic net coefficients across all 90 cross-validation splits) 664 

of the enet model with the highest median test R2 score are included on the figure (gene 665 

identifiers are shown at right). The mostly green-blue score panel to the left of the expression 666 

heatmap shows the median elastic net coefficients of the selected genes in each of the 667 

selected phenotype models, normalized to the maximum coefficient per model to make the 668 
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color scales of the different models (columns) comparable. The mostly yellow frequency panel 669 

to the left of the score panel shows the frequencies at which genes were selected as features 670 

across all 90 cross-validation splits of a given model.  Grey squares in the score and frequency 671 

panels indicate that a given gene was not selected as a feature in a given model. The 672 

phenotypes in the score and frequency panels are identified by numbers (1-8) on top of the 673 

panels, corresponding to the numbers associated with the phenotypes in the bottom 674 

phenotype panel. On top of the score panel, the feature selection techniques used in the best-675 

scoring enet models for each phenotype are shown (median = selection of features with 676 

median rlog gene expression > 0, spearman = Spearman correlation, hsic-5000 = HSIC lasso, 677 

see Methods), as well as the corresponding test and pooled R2 scores rounded to the nearest 678 

0.1 and then multiplied by ten (e.g. a test R2 score of 0.38 would be denoted as 4).     679 

 680 

In particular, virtually all TF genes in the leaf top-10 predictor lists with links to the juvenile-681 

to-adult or vegetative-to-reproductive phase changes and flowering also feature prominently 682 

in the RF or enet top-10 predictor lists for yield phenotypes, including BnaCnng05590D 683 

(AtHB1/AT3G01470), BnaC02g43700D (AtHB5/AT5G65310 or AtHB16/AT4G40060),  684 

BnaA07g12050D (AtAP2/AT4G36920), BnaAnng02740D (AtNF-YA2/10, 685 

AT3G05690/AT5G06510), BnaA10g24470D (AtNF-YA2/10, AT3G05690/AT5G06510), 686 

BnaC06g33980D (AtNF-YA3/8, AT1G72830/AT1G17590) and BnaC01g37260D (AtNF-YA5/6, 687 

AT1G54160/AT3G14020). Furthermore, like the top predictor lists for leaf phenotypes, the 688 

enet top predictor list for yield phenotypes contains a putative ortholog of the A. thaliana 689 

gene EARLY FLOWERING MYB PROTEIN (AtEFM/AT2G03500), but a different one 690 

(BnaAnng34750D).  691 

 692 
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Furthermore, many of the top predictor TF genes for yield phenotypes that are absent from 693 

the top-10 predictor lists for leaf phenotypes also have A. thaliana orthologs involved in 694 

processes related to the floral transition and flowering. In the combined set of top-10 enet 695 

predictors for shoot dry weight, seed and silique phenotypes (Fig. 4, n=29), five genes code 696 

for AGAMOUS-LIKE MADS-box transcription factors (best candidate A. thaliana orthologs and 697 

associated AGI codes are given between parentheses): BnaC05g17630D 698 

(AtAGL104/AT1G22130), BnaA02g15390D (AtAGL12/AT1G71692), BnaA02g00370D 699 

(BnFLC.A2, AtFLC/AT5G10140), BnaA01g02900D (AtAGL16/AT3G57230), and 700 

BnaA09g53680D (AtAGL30/AT2G03060). BnFLC.A2 is orthologous to A. thaliana FLOWERING 701 

LOCUS C (AtFLC), a key repressor of the floral transition (64, 65). Two AGAMOUS-LIKE genes 702 

feature in the combined set of top-10 RF predictors for yield phenotypes (Additional File 2: 703 

Fig. S9, n=21): BnaA02g15390D (AtAGL12/AT1G71692) and BnaA09g05500D 704 

(AtAGL8/AtFUL/FRUITFULL/AT5G60910). AtFUL is thought to regulate the floral transition 705 

downstream of AtFT in the shoot apical meristem, partially redundantly with AtSOC1 706 

(AtAGL20, AT2G45660) (66, 67). AtAP2 (APETALA2) and AtFUL are thought to form a bistable 707 

switch mechanism through mutual repression that regulates early stages of the floral 708 

transition at the shoot apical meristem (68). Negative regulation of AtAP2 and several AP2-709 

LIKE genes by AtFUL was also found to contribute to meristem arrest at the end of flowering 710 

(69). ful mutants were found to exhibit a delayed floral transition (68) and increased flower 711 

production, but decreased seed set (69).  712 

 713 

The enet top predictor list also features BnaA09g18260D, a HD-ZIP II gene putatively 714 

orthologous to JAIBA (AtJAB/AtHAT1/AT4G17460) or AtHAT2 (AT5G47370). AtJAB was shown 715 

to be involved in male and female reproductive development and floral meristem 716 
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determination in A. thaliana, and jab loss-of-function mutants exhibit an increased number 717 

of floral buds per inflorescence but a reduced number of seeds per silique (70), not unlike ful 718 

mutants. The enet top predictor list also contains two HD-ZIP IV genes, BnaA09g50360D 719 

(AtHDG2/ AT1G05230) and BnaC03g31960D (AtANL2/ AT4G00730). A combination of hdg2 720 

and pdf2 null mutant alleles in A. thaliana was shown earlier to produce flowers with sepaloid 721 

petals and carpeloid stamens (71). BnaC03g31960D also features in the enet top predictor list 722 

for leaf phenotypes, but less prominently (Additional File 2: Fig. S8). 723 

 724 

Furthermore, the gene BnaA08g12050D is ranked highly in both the enet and RF top predictor 725 

lists. The best candidate ortholog of this gene in A. thaliana is AtMYB3R1 (AT4G32730), coding 726 

for a regulator of cell proliferation that acts in a module with AtTSO1 to balance cell 727 

proliferation with differentiation in developing roots and shoots (72). Loss-of-function 728 

mutations in AtMYB3R1 suppress all phenotypes of the tso1-1 mutant, among others a lack 729 

of floral organ differentiation (72). BnaA08g12050D also features as a predictor for leaf 6 730 

length (74 DAS) and leaf 8 area (81 DAS) in Additional File 2: Fig. S8. 731 

 732 

BnaC07g27110D and BnaC01g22040D in the enet predictor list are putative orthologs of 733 

AtGATA16 (AT5G49300) and AtGATA17(AT3G16870) or AtGATA17L(AT4G16141), 734 

respectively.  Evidence suggests these and other LLM-domain B-GATA transcription factors 735 

are involved (at least partially redundantly) in the regulation of flowering time, silique length, 736 

seed set and other developmental processes (73). The enet top predictor list also contains 737 

BnaC04g33670D and BnaA08g16860D, BZIP genes putatively orthologous to the A. thaliana 738 

genes DRINK ME (AtDKM/AtBZIP30/AT2G21230) and DRINK ME-LIKE 739 

(AtDKML/AtBZIP29/AT4G38900), respectively. AtDKM and AtDKML are negative regulators of 740 
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reproductive development and growth (74). AtDKM overexpression in A. thaliana results in 741 

smaller plants with fewer floral buds and shorter siliques, while a dkm mutant show the 742 

opposite phenotype (74). dkml mutant plants also exhibited increased silique length but 743 

slightly fewer floral buds than wild-type plants (74). AtDKM was shown to interact in planta 744 

with several regulators of meristem development, including WUSCHEL (AtWU), HECATE1 745 

(AtHEC1), the aforementioned JAIBA and NGATHA1 (AtNGA1) (74). Interestingly, the RF top 746 

predictor list contains a putative ortholog of NGATHA1 (AtNGA1/AT2G46870) or NGATHA2 747 

(AtNGA2/AT3G61970), namely BnaA09g39540D. AtNGA1 and AtNGA2 are known to be 748 

involved in gynoecium development and were recently shown to also have a function in 749 

regulating shoot apical meristem development (75). Another likely regulator of meristem 750 

development, BnaC07g43590D, is found in the enet predictor list. BnaC07g43590D is most 751 

likely an ortholog of ARABIDOPSIS RESPONSE REGULATOR 10 (AtARR10/AT4G31920) or 12 752 

(AtARR12/AT2G25180), both known to directly activate the expression of WUSCHEL and to 753 

play a role in shoot apical meristem regeneration and maintenance (76). 754 

 755 

In summary, 17/29 and 11/21 TF genes in the enet and RF lists of top yield predictors, 756 

respectively, have putative A. thaliana orthologs linked to the juvenile-to-adult phase change, 757 

the floral transition, flowering or regulation of meristem development.  758 

 759 

Predicting final yield phenotypes from early growth phenotypes 760 

As a baseline to assess the prediction performance of the molecular models, we trained 761 

models predicting plant phenotypes in spring (mostly phenotypes at harvest) from single or 762 

multiple autumnal leaf and rosette phenotypes. For these single- and multi-phenotype 763 
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models, the same modeling approaches were used as for the single- or multi-gene models, 764 

respectively (see Methods).    765 

 766 

Interestingly, many of the mature plant phenotypes can be predicted to a considerable extent 767 

from phenotypes measured earlier in the growing season (Table 3, Additional File 8: Table 768 

S7). In particular the models for phenotypes measured on the entire shoot (total seed, silique 769 

and branch count, total seed weight, total shoot dry weight) perform surprisingly well. For 770 

most of these phenotypes, the performance of the early-phenotype models is only slightly 771 

less than that of the best single-gene or multi-gene model, and the early-phenotype models 772 

for total seed weight and total branch count even outperform the molecular models (in the 773 

case of total branch count even substantially so). Also for branching phenotypes related to 774 

stem 1 (branch count stem 1, branch count stem 1/length stem 1), the best early-phenotype 775 

models feature high prediction performance scores. For other stem 1 phenotypes however 776 

(seed weight, seed count, silique count and siliques per branch on stem 1, stem 1 dry weight 777 

with and without seeds), the molecular models clearly outperform the early-phenotype 778 

models.  779 

 780 

Most multi-phenotype models with appreciable prediction performance (median test R2 > 781 

0.10), both for whole-shoot and stem 1 phenotypes, feature leaf 8 area (81 DAS) as the top 782 

predictor (Table 3). Leaf 8 area (81 DAS) is generally also the most predictive early phenotype 783 

in the corresponding sets of single-phenotype models. The multi-phenotype models with the 784 

best prediction performance scores, i.e. those for whole-shoot phenotypes and stem 1 785 

branching phenotypes (but not the other stem 1 phenotypes), generally also feature rosette 786 

area (42 DAS) as a predictor of some importance (Additional File 8: Table S7). For total branch 787 
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count, branch count stem 1 and branch count stem 1/length stem 1, rosette area (42 DAS) is 788 

even the top predictor in either the RF or enet model, or both (Additional File 8: Table S7). 789 

Rosette area (42 DAS) itself is only moderately predictable from the leaf 8 molecular data, 790 

which may explain why multi-phenotype models are better at predicting these branching 791 

phenotypes than multi-gene models. 792 

 793 

 794 

Table 3 Best-performing multi-phenotype and single-phenotype models for mature plant 795 

phenotypes. Results are shown for models including all early phenotypes as potential 796 

features (multi-phenotype models) and models using a single early phenotype as feature 797 

(single-phenotype models). For the best multi-phenotype models, columns from left to right 798 

indicate the model type used (enet = elastic net, rf = random forest), the median test R2 and 799 

the median pooled PCC (see Methods). Single-phenotype columns include the best-800 

Mature plant phenotypes Model type Median   
test R2

Median 
pooled PCC Top phenotype Median   

test R2
Median 

pooled PCC
seed weight stem 1 enet 0.33 0.59 leaf 8 area (81 DAS) 0.32 0.63

seed count stem 1 rf 0.25 0.57 leaf 8 area (81 DAS) 0.26 0.61

silique count stem 1 enet 0.24 0.55 leaf 6 width (74 DAS) 0.22 0.53

total seed count rf 0.40 0.66 leaf 8 area (81 DAS) 0.44 0.71

dry weight stem 1 enet 0.26 0.57 leaf 8 area (81 DAS) 0.35 0.62

dry weight stem 1 (w/o seeds) enet 0.18 0.54 leaf 8 area (81 DAS) 0.30 0.59

total seed weight enet 0.45 0.68 leaf 8 area (81 DAS) 0.46 0.72

total shoot dry weight enet 0.38 0.67 leaf 8 area (81 DAS) 0.44 0.71

total silique count rf 0.36 0.63 leaf 8 area (81 DAS) 0.41 0.70

siliques per branch stem 1 enet 0.14 0.47 leaf 8 area (81 DAS) 0.07 0.48

total shoot dry weight (w/o seeds) enet 0.29 0.63 leaf 8 area (81 DAS) 0.37 0.68

branch count stem 1 enet 0.35 0.64 leaf 8 area (81 DAS) 0.34 0.65

siliques per branch enet -0.04 0.32 leaf 6 width (74 DAS) -0.07 0.36

plant height enet 0.23 0.58 leaf 8 length (81 DAS) 0.25 0.61

total branch count rf 0.40 0.69 rosette area (42 DAS) 0.38 0.65

branch count stem 1/length stem 1 rf 0.33 0.63 leaf 8 area (81 DAS) 0.22 0.56

max shoot growth rate enet 0.04 0.40 leaf 8 width (81 DAS) 0.04 0.41

root system width rf 0.04 0.42 leaf 8 length (81 DAS) 0.05 0.39

time of max shoot growth enet -0.01 0.53 leaf 8 width (81 DAS) 0.08 0.53

taproot length rf -0.02 0.33 leaf 8 width (81 DAS) 0.01 0.33

branches per stem enet -0.14 -0.22 leaf 8 lesions (76 DAS) -0.15 0.14

seeds per silique enet -0.17 -0.18 leaf 8 length (81 DAS) -0.07 0.18

seeds per silique stem 1 enet -0.15 -0.06 leaf 8 length (81 DAS) -0.04 0.23

seed weight stem 1/dry weight stem 1 enet -0.15 -0.40 leaf 8 lesions (76 DAS) -0.19 -0.19

total seed weight/shoot dry weight enet -0.16 -0.39 leaf 8 lesions (76 DAS) -0.18 -0.06

end of shoot growth enet -0.15 0.20 leaf 8 width (81 DAS) -0.12 0.30

All early phenotypes Single early phenotypes
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performing early phenotype (‘Top phenotype’ column) and the corresponding median test R2 801 

and median pooled PCC.  All single-phenotype models are cross-validated lme models with 802 

spatial error structure. 803 

 804 

Our results indicate that the leaf 8 molecular data offer little benefit over early-phenotype 805 

measurements for quantitative prediction of mature phenotypes measured on the entire 806 

plant. On the other hand, the leaf 8 molecular data yields substantially better models than 807 

the early-phenotype data for most mature stem 1 phenotypes. Often, the multi-gene models 808 

for stem 1 phenotypes are also slightly better than the multi-gene models for the 809 

corresponding whole-plant phenotypes (see previous section). This suggests that the 810 

molecular makeup of the 8th rosette leaf at the time of sampling contained more information 811 

on the development of the primary flowering stem and its cauline secondary inflorescences 812 

than on the development of side stems at ground level. Early phenotypes on the other hand 813 

may contain more information on whole-plant yield phenotypes than on phenotypes 814 

specifically related to stem 1. 815 

 816 

Given that even the earliest of the autumnal phenotypes considered thus far, the rosette area 817 

at 42 DAS, still has some predictive power for several yield phenotypes (median test R2 > 0.10 818 

for total branch count, seed count, seed weight and silique count, total dry weight with and 819 

without seeds, branch count stem 1 and branch count stem 1/length stem 1), we assessed 820 

whether earlier rosette areas (v2, see Methods) are also predictive for these phenotypes (Fig. 821 

5, Additional File 9: Table S8). Median test  𝑅! scores were found to decrease when using 822 

earlier rosette areas as predictors, with rosette areas measured ≤ 28 DAS generally yielding 823 

low (< 0.10) and in many cases negative median test  𝑅! scores. When using the earliest 824 
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rosette area (14 DAS) as predictor, the median pooled 𝑅! and PCC scores are however still in 825 

the ranges [0.05, 0.20] and [0.27, 0.45], respectively, indicating that even the earliest rosette 826 

area measurements contain some information on final yield phenotypes. 827 

 828 

 829 

Fig. 5 Predictive power of early rosette areas for yield phenotypes. In each subplot, median 830 

test R2 values are plotted for lme models predicting the given phenotype from early rosette 831 

areas v2 (14-42 DAS, x-axis). Only mature phenotypes that can be predicted from rosette area 832 

(42 DAS) with a median test R2 > 0.1 are shown. Blue lines are ordinary least-squares linear 833 

regressions, with shaded areas indicating 95% confidence intervals on the trendline. Most 834 

phenotypes exhibit a rather dichotomous median test R2 profile with rosette areas v2 from 835 

14 to 28 DAS yielding substantially lower median test R2 values than rosette areas v2 from 32 836 

to 42 DAS. Accordingly, linear model fits at 28 and 32 DAS are often poor. 837 

 838 

 839 
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DISCUSSION 840 

In this study, we used machine learning models to predict the phenotypes of individual B. 841 

napus Darmor plants grown in the same field from rosette-stage leaf gene expression data. 842 

Our results show that many plant phenotypes can be predicted to a substantial extent from 843 

leaf 8 gene expression. Phenotypes closely related in time and space to the material sampled 844 

for RNA-seq, in particular leaf 8 phenotypes, generally feature good prediction performance, 845 

in accordance with results obtained earlier in a similar setup for maize (28). Interestingly 846 

however, also many of the phenotypes measured at the end of the growing season, ~5.5 847 

months after leaf sampling for RNA-seq, feature high prediction performance. In particular 848 

seed yield, silique and dry weight traits exhibit prediction performance scores in the same 849 

range as the autumnal leaf and rosette phenotypes.  850 

 851 

Azodi et al. (77) predicted several agronomically relevant mature plant traits (plant height, 852 

grain yield and flowering time) in a population of maize inbred lines from genetic marker data, 853 

whole-seedling transcriptome data and combinations thereof. Their transcriptome-based 854 

models exhibited PCC scores between predicted and measured values in the range [0.50, 855 

0.61] for flowering time, [0.42, 0.51] for plant height and [0.47, 0.55] for 300 kernel weight 856 

(77). In the present study, the transcriptome-based models for mature plant traits in B. napus 857 

(ignoring ratio phenotypes) exhibit median pooled PCC scores in the range [0.57, 0.77] for 858 

seed phenotypes, [0.51, 0.74] for silique phenotypes, [0.56, 0.73] for shoot dry weight 859 

phenotypes, [0.40, 0.56] for branch count phenotypes, [0.40, 0.53] for plant height (278 DAS) 860 

and [0.07, 0.36] for root phenotypes (Table 2, Additional File 7: Table S6). Comparing the 861 

observed PCC ranges of both studies suggests that mature traits of individual plants of the 862 

same line grown in the same field are as predictable from early-stage transcriptome data as 863 
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average mature traits in a diversity panel. However, direct comparison of the PCC values 864 

across studies is complicated by differences in the phenotypes predicted, prediction and 865 

scoring methodology and factors affecting model training, scoring and overfitting potential 866 

such as the study population size (388 lines in the maize study versus 62 B. napus plants in 867 

the present study) and the number of potential model features (31,238 genes in the maize 868 

study versus 76,808 genes in the B. napus dataset). Also the species difference and the tissue 869 

and developmental time point sampled for RNA-seq (whole seedlings at the V1 stage for 870 

maize versus rosette leaf 8, 81 DAS, for B. napus) may impact how well a transcriptome can 871 

predict a given phenotype. The most comparable models are likely the whole-transcriptome-872 

based random forest model for maize plant height, with a PCC of 0.42 (77), and the median-873 

filter random forest model for the height of individual B. napus plants (without feature 874 

selection other than removing genes with rlog expression >0 in less than half of the samples, 875 

reducing the feature set to 55,166 genes), with a median pooled PCC of 0.43 (Additional File 876 

7: Table S6).  877 

 878 

Given that the single-plant transcriptome data can quantitatively predict many plant 879 

phenotypes better than expected by chance, the top predictor genes may shed light on 880 

biological processes that impact phenotypes in the field. Many of the top predictors in the TF 881 

models for seed, silique and dry weight phenotypes for instance are known to function in the 882 

floral transition. From the perspective of our experimental setup, it makes sense that such 883 

genes are recovered, as it is known that the floral transition starts in autumn in winter-type 884 

B. napus accessions (78, 79), i.e. around the time that rosette leaves were harvested for RNA-885 

seq in the present field trial, and is set in motion to a large extent by systemic signals 886 

emanating from leaves in Brassicaceae and other plant families (80-82).  887 
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 888 

Mechanistic interpretation of the correlational links between top predictor genes and 889 

phenotypes is however not straightforward. Putative orthologs of AtHB1 and AtHB16 are for 890 

instance found among the top predictors positively correlated with both leaf and yield 891 

phenotypes (Fig. 4, Additional File 2: Fig. S9), but upregulation of these genes in A. thaliana 892 

was previously found to lead to smaller and more serrated leaves (35, 36), to delay the 893 

vegetative-to-reproductive phase transition and to result in siliques bearing fewer seeds (34, 894 

36). Some top predictors that correlate negatively with yield phenotypes have putative A. 895 

thaliana orthologs that are thought to function primarily as negative regulators of the floral 896 

transition in leaves, e.g. AtNF-YA genes (58, 59), but others are putatively orthologous to a 897 

positive regulator of the floral transition, such as AtFUL. Other floral transition regulators 898 

recovered as predictors in our yield models, e.g. orthologs of AtFLC and AtEFM, do not by 899 

themselves exhibit a significant positive or negative correlation with yield phenotypes.  900 

 901 

Most likely, the associations recovered between individual plant phenotypes and autumnal 902 

leaf gene expression patterns are due to developmental timing differences among the plants, 903 

rather than reflecting the effects of upregulation or downregulation of specific regulators. In 904 

the A. thaliana developmental gene expression atlas of Klepikova et al. (83), orthologs of 905 

predictors positively correlated with leaf size such as AtHB1 and AtHB16 are more highly 906 

expressed in mature A. thaliana leaves (at flowering), while orthologs of predictors negatively 907 

correlated with leaf size such as AtREV, AtWOX5 and AtHAT3 are more highly expressed in 908 

young leaves.  This suggests that plants with low expression of AtHB1/16 orthologs and high 909 

expression of AtREV/AtWOX5/AtHAT3 orthologs had a more juvenile (and hence smaller) leaf 910 

8 at the autumnal sampling time point, which explains the observed gene expression-leaf 911 
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phenotype correlations. That autumnal leaf phenotypes and final yield phenotypes have 912 

several developmental predictors in common (e.g. AtHB1) and that the autumnal leaf 913 

phenotypes themselves are also predictive of yield indicates that the developmental 914 

differences in autumn impacted final yield. These differences were not limited to differences 915 

in leaf development, as evidenced by the fact that the predictor sets for both leaf and yield 916 

phenotypes also contain regulators of plant-wide developmental phase transitions occurring 917 

in autumn (juvenile-to-adult, vegetative-to-reproductive).  918 

 919 

In summary, our results indicate that the yield potential of the individual plants was already 920 

determined to a large extent by their developmental state at the time of leaf sampling in 921 

autumn. Mendham and Scott (84) previously found that the size of winter-type B. napus 922 

plants at the time of inflorescence initiation affects their yield potential, in the context of an 923 

experiment assessing sowing date effects on yield. Our results show that even when sown on 924 

the same date in the same field, individual winter-type B. napus plants of the same line display 925 

developmental differences in autumn that correlate with yield differences in spring. Even if 926 

only part of the variability in e.g. total seed weight (CV = 46.9%) observed in our trial is due to 927 

autumnal effects on plant growth and development, the gains of mitigating such effects could 928 

be substantial. 929 

 930 

The question remains however what could have caused the developmental differences 931 

among plants in the present field trial. One potential cause is differences in seed germination 932 

and seedling emergence across the field. In wheat, it was established previously that relative 933 

differences in seedling emergence date are strongly correlated with differences in final yield 934 

(85). Next to seed quality, many environmental factors are known to impact the timing of 935 
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seed germination and seedling emergence, including soil structure (86), soil temperature (87), 936 

sowing depth (85, 87), soil water potential, oxygenation and light quality (88), and soil 937 

nutrients (89). The seedling emergence date was not recorded in the present field trial, but 938 

the closest proxy that was measured, namely rosette area at 14 DAS, was found to be a bad 939 

predictor for yield, indicating that variation in seed germination and seedling emergence 940 

across the field did not by themselves have a major impact on yield. The observation that 941 

later rosette areas are progressively better at predicting yield rather suggests that 942 

developmental differences among plants accumulated over time.  943 

 944 

The observation that genes involved in the regulation of circadian rhythm, photoperiodism 945 

and the vegetative-to-reproductive phase transition are on average more spatially 946 

autocorrelated in the autumnal gene expression dataset than the average gene suggests that 947 

spatially patterned micro-environmental factors may be linked to the variability of 948 

developmental gene expression in autumn, and ultimately yield variability in spring. That the 949 

phenotypes are influenced by environmental factors is also suggested by the observation that 950 

the sets of genes associated with leaf and yield phenotypes are heavily enriched in genes 951 

involved in responses to abiotic and biotic stimuli and nutrient levels (Additional File 6: Table 952 

S5). The finding that developmental processes feature more prominently in the TF-based 953 

phenotype prediction models than responses to environmental stimuli indicates that micro-954 

environmental variations among plants in the present field trial may have influenced plant 955 

phenotypes mainly by influencing development. More work is needed however to establish 956 

whether and how micro-environmental variability impacts the growth and development of 957 

individual plants in the same field. To address this, additional field trials need to be performed 958 

in which, next to the gene expression and phenotypes of individual plants, also a range of 959 
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environmental parameters is measured on the single-plant level (e.g. soil structure and 960 

chemistry).  961 

 962 

Additional single-plant field trials are also needed to assess to what extent the predictive 963 

models, gene-phenotype and process-phenotype associations learned from the present field 964 

trial generalize to other soils and meteorological conditions, other time points or tissues 965 

sampled for RNA-seq, and other cultivars. Given the developmental nature of many of the top 966 

predictors in the current models, it is likely that our current prediction models, based on leaf 967 

gene expression data for a single field trial at a single time point, will not perform well when 968 

applied on follow-up field trials, even when using the same cultivar in a similar field under 969 

roughly the same climate conditions. Differences in weather conditions and other 970 

environmental factors across trials may for instance influence the timing of developmental 971 

phase transitions, making it all but impossible to sample the exact same developmental time 972 

point in follow-up trials. If leaf gene expression were to be profiled at a slightly earlier or later 973 

developmental time point than in the present trial, the current top predictors may no longer 974 

be adequate phenotype proxies and other genes that function earlier or later in e.g. the floral 975 

transition may become relevant instead. The construction of robust prediction models will 976 

therefore likely require single-plant data generated under a wide variety of field conditions 977 

and sampling schemes. We want to emphasize however that quantitative prediction of single-978 

plant phenotypes is not the primary goal we envision for single-plant omics experiments. 979 

Rather, the primary aim is to identify which biological processes, environmental factors and 980 

associated genes may influence plant phenotypes in the field. In this respect, any additional 981 

genes and processes identified in follow-up trials would add to our overall knowledge on how 982 

rapeseed plants grow in a field. 983 
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 984 

It is worth pointing out that the dataset generated in this study may also serve other purposes 985 

than gene-phenotype association. Earlier, we have shown that field-generated single-plant 986 

transcriptomics data can also be used efficiently to predict the function of genes (28). Given 987 

the complex genome duplication history of B. napus (90), the combination of gene function 988 

prediction and gene-phenotype association may be particularly useful to shed light on which 989 

B. napus genes in a (long) list of paralogs are most likely functionally orthologous to a given 990 

A. thaliana gene, and how paralogs have diverged in function. This knowledge may in turn be 991 

useful in the context of genetic engineering and breeding efforts to optimize yield and stress 992 

tolerance in B. napus.   993 

 994 

CONCLUSIONS 995 

We have shown that individual B. napus plants of the same background grown in the same 996 

field exhibit considerable variation in gene expression and phenotypes, and that the plants’ 997 

autumnal gene expression profiles have predictive power for their yield in spring. Many of the 998 

top yield predictor genes are associated with developmental processes occurring in autumn 999 

in winter-type B. napus, such as the juvenile-to-adult and floral transitions. Together, this 1000 

indicates that autumnal development has a major influence on the yield potential of winter-1001 

type B. napus plants. In summary, our data show that profiling individual plants under 1002 

uncontrolled field conditions is a valid strategy for identifying genes and processes influencing 1003 

crop yield in the field.  1004 

 1005 

 1006 

 1007 
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METHODS 1008 

Field trial setup 1009 

Seeds from the winter-type Brassica napus accession Darmor (BnASSYST-120) were sown in 1010 

a field in Merelbeke, Belgium (50°58'24.9"N 3°46'49.1"E) on September 8, 2016. Three seeds 1011 

were sown at ~2 cm depth at each of 100 points arranged in a 10x10 grid with 0.5 m spacing 1012 

within and between rows. Seedlings were thinned out to leave one seedling growing at each 1013 

grid point. Early- and late-emerging seedlings were pruned preferentially (based on visual 1014 

assessment) to make the remaining seedling population as homogeneous as possible. At two 1015 

points, no seedlings emerged. 1016 

Plots of Miscanthus sinensis, M. sacchariflorus and Miscanthus hybrids were grown to the 1017 

northeast and southeast of the B. napus field trial, and maize was grown to the northwest, at 1018 

distances >5 m. The field plot was surrounded by chicken wire and covered by netting to keep 1019 

out birds and large herbivores. The netting was removed in spring when plants grew taller 1020 

than ~1 m. Additionally, perimeter fencing was used to protect the field trial and the mobile 1021 

weather station on site (see Additional File 1: Table S1 for weather station data).   1022 

After germination, individual plant images were taken twice a week between September 22 1023 

and October 20, 2016 (9 time points) to assess the projected leaf area of the growing rosettes. 1024 

Nadir images were taken using a D90 camera (Nikon Inc., USA) equipped with a 35 mm lens 1025 

(AF-S DX Nikkor 35 mm F1.8G, Nikon Inc., USA) set at iso 200, f/8. The shutter speed could 1026 

vary to allow for a proper exposure, determined by the camera. The camera/tripod was 1027 

positioned away from the sun to avoid shadows in the images taken. For each time point a 1028 

grey calibration card (Novoflex grey card 15 x 20 cm, NOVOFLEX Präzisionstechnik GmbH, 1029 
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Germany) was used to correct the white balance. This card was also used as reference to 1030 

convert pixels to areas in cm2 (see below). The ground sampling difference (GSD) was 0.015 1031 

cm/pixel. 1032 

At 74 DAS, the length and width of leaf 6 (counting upward from the first true leaf) were 1033 

measured non-destructively, leaf 6 lesion and total rosette lesion severity were scored and 1034 

the number of fully emerged rosette leaves (area > ~2 cm2) was recorded. At 76 DAS, leaf 8 1035 

length and width were measured and leaf 8 lesions were scored. The width of leaf blades was 1036 

measured at the widest point. Leaf lengths were measured from the leaf tip to the point 1037 

where the petiole first lacked conspicuous laminar tissue (looking from the leaf tip toward the 1038 

base). Lesion severity was scored qualitatively on a scale from 0 (lesions cover at most five 1039 

percent of the leaf blade or rosette) to 2 (more than half of the leaf or rosette eaten). 1040 

At 81 DAS, on November 28, 2016, the eighth rosette leaves of 62 non-border plants (i.e. the 1041 

plants at all non-border locations where seedlings emerged) were harvested for RNA-1042 

sequencing in a time span of ~1 hour (13:25-14:27). Leaves were cut off where the petiole 1043 

first lacked conspicuous laminar tissue (looking from the leaf tip toward the base) and washed 1044 

with DEPC-treated and sterilized water. The chlorophyll content of each leaf was measured 1045 

at four different positions on the leaf with a CCM-200 chlorophyll content meter (Opti-1046 

Sciences, Inc., Hudson, USA), and the average of these measurements was used in the 1047 

analyses. Leaves were then photographed twice against a white background with a piece of 1048 

millimeter paper to assess the image scale and perspective, a ruler, and color and greyscale 1049 

references, the second time covered with a glass plate to flatten them. Next, the midvein of 1050 

every leaf was cut out using scissors, and the residual leaf material was folded into a pre-1051 

weighed 50 ml tube. The filled 50 ml tube and the midvein were weighed together to measure 1052 
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leaf fresh weight, after which the tube was stored in liquid nitrogen on the field. The entire 1053 

leaf processing pipeline, from cutting a leaf to storing it in liquid nitrogen, was completed for 1054 

each leaf in less than 5 minutes. 1055 

After leaf sampling, the plants were left to overwinter and set seed in spring. After bolting, 1056 

plant height was measured from ground level to the top of the primary flowering stem at 13 1057 

time points between 189 and 231 DAS (Additional File 1: Table S1). One of the plants sampled 1058 

in autumn for RNA-seq, 01C, did not survive until the end of the growth season. The remaining 1059 

61 non-border plants were harvested on June 13, 2017 (278 DAS), at which time ~50% of 1060 

seeds had started changing color from green to black but no significant pod shattering or seed 1061 

predation had occurred. Final plant height at 278 DAS was measured on the field, from ground 1062 

level to the top of the primary flowering stem. Afterwards, shoots were cut off and the root 1063 

systems were dug up. Taproot length was measured from ground level to the deepest root 1064 

tip. Root system width was measured perpendicular to the taproot at the root system’s widest 1065 

point.   1066 

For each harvested plant, the primary flowering stem plus its cauline secondary 1067 

inflorescences (stem 1) and the secondary inflorescence stems branching at ground level (side 1068 

stems) were dried in two separate bags in a well-ventilated, dry attic. The number of branches 1069 

and siliques per stem, the total shoot dry weight and the dry weight of stem 1 were measured 1070 

on dried plants. Seeds were recovered manually from the dried-out pods for stem 1 and the 1071 

side stems separately, and separated from dust and small pod debris using a customized seed 1072 

aspirator with vibration channel (Baumann Saatzuchtbedarf GmbH, Waldenburg, Germany). 1073 

The resulting seed batches for stem 1 and the side stems were weighed and counted using an 1074 
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(Eq. 1) 

elmor C3 seed counter (elmor AG, Schwyz, Switzerland). Seed counts and weights are 1075 

reported for stem 1 and the entire plant (i.e. the sum of stem 1 and the side stems). 1076 

Determination of shoot growth parameters 1077 

Shoot growth parameters (time of maximum shoot growth 𝑡", maximum shoot growth rate 1078 

and the end of shoot growth 𝑡#) were derived by fitting a beta-sigmoid growth curve to the 1079 

time series of 14 plant height measurements between 189 and 278 DAS (91) : 1080 

ℎ(𝑡) = ℎ$ + (ℎ"%& − ℎ$) ∗ *1 +
'!('
'!('"

, ∗ * '
'!
,

#!
#!$#" 										𝑡 < 𝑡# 	1081 

ℎ(𝑡) = ℎ"%&																																																																																		𝑡 ≥ 𝑡# 	1082 

	1083 

With ℎ(𝑡) the plant height at plant age 𝑡, ℎ$ and ℎ"%& the initial and final plant height at 𝑡 =1084 

0 and 𝑡 = 𝑡#, respectively, 𝑡#  the plant age at the end of growth and 𝑡" the plant age at the 1085 

moment of maximal growth. Before curve fitting, the time points in day of year (DOY) at which 1086 

the plant heights were measured were translated to plant ages 𝑡 in growing degree days 1087 

(GDD), i.e. 𝑡(𝑖) = ∑ 𝑚𝑎𝑥(𝑇) − 𝑇* , 0)
)+,
)+$   with 𝑖 the time point in DOY, 𝑇)  the average air 1088 

temperature at 𝑗 DOY (Additional File 1: Table S1) and 𝑇* = 5	℃ a base temperature below 1089 

which no growth is assumed to occur (79, 92). Optimization of the parameters  ℎ$, ℎ"%&, 𝑡#  1090 

and 𝑡" was done with the nls function in R using the ‘port’ algorithm. The maximum shoot 1091 

growth rate was obtained by calculating the derivative of ℎ(𝑡) (Eq. 1) at 𝑡". After curve fitting, 1092 

the values obtained for 𝑡" and 𝑡#  were converted back from GDD to DOY and subsequently 1093 

to DAS.  1094 

Image-based phenotyping 1095 
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Leaf 8 areas (81 DAS) were estimated by segmenting the flattened leaf images taken at the 1096 

time of leaf harvest. The millimeter grid scale on each image was used to correct for 1097 

perspective distortion and to create a uniform spatial resolution across the entire image of 1098 

100 pixels per cm. Images were cropped to remove the grid scale and sample label. 1099 

Segmentation was done by training a U-Net convolutional neural network (93) on a small 1100 

dataset of 25 images for which random patches of foreground and background were 1101 

annotated using VGG Image Annotator (via) v:2.0.7 (94). Random cropping, resizing, rotating 1102 

(by multiples of 90 degrees), mirroring, color-jittering and gaussian blurring were applied to 1103 

artificially increase the training dataset size. The training was done using the Adam optimizer 1104 

(95) in Pytorch v:1.7.1 (96) with default settings. The pixel-wise cross-entropy loss was back-1105 

propagated only for annotated regions of each image. The learning rate was initially set to 1e-1106 

3 and was automatically halved as soon as the minimal training loss stagnated for more than 1107 

3 epochs. The network was trained for 16 epochs. The trained network was validated by 1108 

visually evaluating it on unseen images, and then applied to all flattened leaf images.  1109 

Leaf 8 length and width at 81 DAS were measured on the flattened leaf images using ImageJ 1110 

v:1.50 (97). For measuring leaf 8 length, the midvein was traced from the leaf tip to the cutting 1111 

point (i.e. where the petiole first lacked conspicuous laminar tissue) using the ImageJ 1112 

segmented line tool. Leaf 8 width was measured at the widest point. 1113 

For measuring the projected area of the rosettes photographed at 42 DAS (i.e. the rosette 1114 

imaging date closest to leaf sampling), a dedicated script was developed using the image 1115 

analysis software HALCON (version 13.0.1.1, MVTec Software GmbH, Germany). First, the 1116 

images were cropped to remove parts of adjacent plants visible on the pictures. To remove 1117 

noise, both a gentle Gaussian filter and a median filter were applied. Each RGB image was 1118 
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then converted to the HSV color space, where the Hue channel was used to select the green 1119 

plant parts using a threshold range for the green pixels (34-80) defined based on trial and 1120 

error. Care was taken to also include the petioles. After this, a ‘closing_circle’ operator was 1121 

used and remaining small lesions (due to insect damage) were filled up using the ‘fill_up’ 1122 

operator. Only the largest segmented area was taken into account, to differentiate between 1123 

the plant of interest and small weeds nearby.  1124 

The HALCON segmentation strategy worked well for the rosette images taken at 42 DAS, but 1125 

regularly produced segmentation errors for images of smaller rosettes taken closer to the 1126 

sowing date. An alternative segmentation approach was therefore used on rosette images 1127 

taken at 14, 18, 21, 25, 28, 32, 35 and 39 DAS (and 42 DAS as control). The main difficulty for 1128 

the earlier time points is distinguishing small rosettes from weeds and other distracting 1129 

objects occurring on the field. This requires an algorithm with a larger field of view than what 1130 

a HALCON script or standard U-net (see above) can provide. Instead, a standard pre-trained 1131 

DenseNet M161 (98) was taken and augmented with additional bilinear upsampling layers 1132 

after each ‘dense’ layer of the original algorithm. That is, the last feature layer of DenseNet 1133 

was upsampled with bilinear interpolation and a weighted sum was made with the higher 1134 

resolution ‘dense’ features. This was repeated for each dense layer up to the original input 1135 

resolution. The network was trained for 175 epochs (final mean epoch loss = 0.01) on 54 hand-1136 

labeled images (6 images per time point) using stochastic gradient descent (SGD) with 1137 

momentum (learning rate = 0.001 and momentum = 0.99). The learning rate was divided by 1138 

10 each time the train loss plateaued for more than 4 epochs. Image rotations, mirroring and 1139 

HSV augmentations were used to augment the training data. The trained model was used to 1140 

segment all rosette images. After segmentation, a post-processing step was performed to 1141 

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 23, 2022. ; https://doi.org/10.1101/2022.10.21.513275doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.21.513275
http://creativecommons.org/licenses/by-nd/4.0/


 54 

remove segmented parts of B. napus plants adjacent to the plant of interest and remaining 1142 

weeds, using scikit-image v: 0.19.2 (99). Only the connected component closest to the 1143 

centroid of the image and other components within a 25-pixel distance of this central 1144 

component (e.g. leaves of which the stalk was segmented incorrectly because of a lower 1145 

chlorophyll content) were associated with the plant of interest.  Connected components with 1146 

an area less than 10,000 pixels were filtered out to eliminate small weeds. This approach was 1147 

evaluated visually for all segmentations and proved to work well for most plants. 1148 

Segmentations with missing plant parts or weeds that weren't filtered out by this post-1149 

processing step were manually corrected. A grey calibration card (Novoflex grey card 15 x 20 1150 

cm, NOVOFLEX Präzisionstechnik GmbH, Germany) was used as a reference to convert pixels 1151 

to areas in cm2. The projected rosette areas at 42 DAS estimated by this segmentation 1152 

approach exhibit a Pearson correlation of 0.997 with the areas estimated by the 1153 

aforementioned HALCON script. 1154 

RNA sequencing 1155 

The frozen leaf samples for the 62 harvested non-border plants were grinded, and total RNA 1156 

was extracted using the guanidinium thiocyanate-phenol-chloroform extraction method 1157 

using TRI-reagent (Thermo Fisher Scientific) followed by DNA digestion using the RQ1 RNase-1158 

free DNase kit (Promega). ds cDNA was prepared using the Maxima H Minus Double-Stranded 1159 

cDNA Synthesis Kit (#K2561, Thermo Fisher Scientific) to a concentration of ~17-38 ng/ul in 1160 

10mM Tris-Cl buffer (pH 8.5) at a minimum volume of 30ul. (~0.6 - 1.1 ug total). ds cDNA 1161 

samples were sent to the University of Missouri Genomics Technology Core, where library 1162 

preparation was performed (average insert size of 500 bp) using the Illumina TruSeq DNA 1163 

PCR-Free Library Prep Kit according to the protocol described in (100). 250 bp paired-end 1164 
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(Eq. 2) 

sequencing was performed at the Tufts University Genomics Core on an Illumina HiSeq 2500 1165 

machine in Rapid Run mode. The samples were sequenced in 3 batches (Additional File 1: 1166 

Table S1). 1167 

The raw RNA-seq data was processed using a custom Galaxy pipeline (101) implementing the 1168 

following steps. First, the fastq files were quality-checked using FastQC (v:0.5.1) (102). Next, 1169 

Trimmomatic (v:0.32.1) (103) was used to remove adapters, read fragments with average 1170 

quality below 20 and trimmed reads shorter than 125 base pairs. The trimmed and filtered 1171 

reads were mapped to the Brassica napus Darmor-bzh reference genome v:5 1172 

(https://www.genoscope.cns.fr/brassicanapus/data/) (90) using HISAT2 v:2.0.5 (104) with 1173 

default values for all parameters. Only the uniquely mapping reads or (in the case of multiple 1174 

mappings) the best secondary alignment were kept for the following analyses. The mapping 1175 

files were quantified using HTSeq v:0.6.1p1 (105) with the option ‘Intersection-union’, using 1176 

the genome annotation of the Brassica napus Darmor-bzh reference genome v:5 1177 

(https://www.genoscope.cns.fr/brassicanapus/data/). No filtering steps were performed 1178 

during preprocessing except for removing genes that were not expressed in any samples.  1179 

Counts were normalized across samples and batches using a modified regularized log (rlog) 1180 

model of the DESeq2 (106) package in R. Counts are still modeled in the same way as in the 1181 

original rlog implementation, that is : 1182 

 1183 

𝑘,) 	~	𝑁𝐵?𝜇,) , 𝛼,B 1184 

𝜇,) = 𝑠) × 𝑞,)  1185 

log!?𝑞,)B = 	𝐱) ⋅ 𝛃,  1186 

 1187 
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(Eq. 3) 

Where 𝑘,) ∈ ℕ- is the count of gene 𝑖 in sample 𝑗, which is assumed to be sampled from a 1188 

negative binomial distribution (NB) with estimated mean 𝜇,) ∈ ℝ- and estimated dispersion 1189 

of the 𝑖th gene 𝛼,. 𝜇,)  is taken as the expected count 𝑞,)  for a ‘typical’ library size (i.e. with a 1190 

size factor 𝑠)  = 1), scaled by a library size normalization factor 𝑠)  for sample j. Note that 𝑞,)  1191 

still contains batch effects : 	𝐱) ∈ ℝ. is a vector of 𝑝 = 65 predictors for sample 𝑗, including 1192 

an intercept, 2 dummy variables for the smallest sequencing batches (1 and 3) that capture 1193 

batch effects relative to the largest sequencing batch (2, the effects of which are absorbed in 1194 

the intercept) and dummy variables for each of the 62 plants that were sampled. 𝛃,  ∈ ℝ. 1195 

contains the estimated coefficients for those predictors for gene 𝑖. As in (106), an empirical 1196 

Bayes shrinkage procedure is used to estimate 𝛃,, using a flat prior for the intercept 𝛽,$ and 1197 

the sequencing batch coefficients, and a zero-centered normal prior for each plant coefficient  1198 

𝛽,.% 	(with 𝑝)  the index of the plant corresponding to sample 𝑗), with prior variance estimated 1199 

using quantile matching as described in Love et al. (106). There are only two differences 1200 

compared to Love et al. (106): the first is the addition of two batch coefficients as fixed effects 1201 

in the design matrix, and the second is that log-fold changes used in the prior random effect 1202 

variance computation are estimated relative to the mean of each batch instead of to the mean 1203 

of all samples. Once the model is estimated, rlog counts are computed as in Love et al. (106), 1204 

that is:  1205 

 1206 

𝑟𝑙𝑜𝑔,) ≡	𝛽,$ +	𝛽,.% 	 1207 

 1208 

Note that all samples 𝑗 belonging to the same plant (technical repeats) have the same value 1209 

for 𝛽,.%. The modified rlog transformation removes library size effects and batch effects, 1210 
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unites technical repeats into one estimate and log-transforms the data (reducing 1211 

heteroscedasticity) in a single step. In addition, using random effects for each plant allows 1212 

pooling information from technical repeats while simultaneously basing variance estimates 1213 

on all samples (including samples without technical repeats). This method therefore makes 1214 

maximal use of the available data. The resulting data is show in Additional File 2: Fig. S10. 1215 

SNP detection and population structure analysis  1216 

Trimmed and filtered RNA-seq reads were aligned to the Brassica napus Darmor-bzh 1217 

reference genome v:5 (https://www.genoscope.cns.fr/brassicanapus/data/) (90) using 1218 

HISAT2 v:2.0.5 (104) with default values for all parameters. Genomic variants were detected 1219 

for each plant using NGSEP v:3.3.2 (107) on the aligned reads. For downstream analyses, we 1220 

focused on biallelic SNPs with a minimum genotype quality of 40 and called in at least 49 1221 

samples (80% of the population). Missing calls were imputed using Beagle v:5.1 (108) using 1222 

default parameters, and only SNPs with minor allele frequency (MAF) ≥ 0.05 after imputation 1223 

were kept, resulting in a dataset of 23,188 SNPs.  1224 

 1225 

A neighbor-joining tree was made based on the SNP dataset with TASSEL v:5.2.60 (109), using 1226 

1-IBS (identity by state) as the distance measure while setting the distance from an individual 1227 

to itself to zero. The tree was rendered using the polar tree layout in FigTree v:1.4.3 (110).  1228 

 1229 

Spatial autocorrelation analysis 1230 

Moran’s I was calculated for each gene (phenotype) as 𝐼 = 	 /
0
	(𝐱(𝐱3)

&𝐂(𝐱(𝐱3)
‖(𝐱(𝐱3)‖'

. Where 𝐱 is a 1231 

column vector of rlog gene expression (phenotype) values, 𝑛 is the number of samples and 𝑤 1232 
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is the sum of elements of the connectivity matrix 𝐂. For 𝐂 a binary 𝑛	 × 	𝑛  ‘queens’ 1233 

connectivity matrix was chosen, meaning that neighboring horizontal, vertical and diagonal 1234 

plants are seen as connected. Note that 𝐂 can differ from one phenotype to the next since 1235 

not all phenotypes were available for all samples. For each gene (phenotype), the Moran’s I 1236 

was recalculated on 105 random permutations of 𝐱 to obtain an empirical null distribution, 1237 

which was then compared to the real Moran’s I to obtain a p-value. Finally, p-values were 1238 

corrected across all genes (phenotypes) using the Benjamini-Hochberg (BH) procedure (111). 1239 

All calculations were done using the PySAL python library (112). 1240 

 1241 

Variance analysis 1242 

Principal component analysis (PCA) was done on various normalized versions of the gene 1243 

expression count matrix and on the phenotype dataset (including qualitative phenotypes such 1244 

as leaf 6 lesion severity (74 DAS) but excluding the plant height and rosette area time series 1245 

except for the final time points, i.e. plant height (278 DAS) and rosette area (42 DAS)), using 1246 

the ‘prcomp’ function in the R stats package on the centered gene expression datasets and 1247 

the ‘ppca’ method in pcaMethods v:1.88.0 (113) on the z-scored phenotype dataset. 1248 

Phenotype distributions were plotted using the ‘histogram’ function in Matlab R2018b with 1249 

probability normalization option. Shapiro-Wilk and Anderson-Darling tests were performed 1250 

using the ‘normalitytest’ script (114) and ‘adtest’ functions in Matlab R2018b, respectively.  1251 

Outliers were defined as values more than three scaled median absolute deviations (MAD) 1252 

away from the median, as is default in the Matlab R2018b ‘isOutlier’ function. Outliers were 1253 

only removed for the purpose of calculating their effect on the phenotypes’ normality and 1254 

coefficient of variation (CV), all other analyses used the complete phenotype dataset.    1255 

 1256 
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Normalized coefficients of variation (normCVs) for gene expression profiles were computed 1257 

on batch and library size corrected data (without rlog transform). Normalized counts were 1258 

obtained as 𝑥,) = 𝑘,)/(𝛽,*% × 𝑠)) where 𝛽,*%  is the batch effect for gene 𝑖 in sample 𝑗 as 1259 

estimated in the rlog calculation (see above). Since batch 2 is absorbed in the intercept, 𝛽,*% =1260 

1 for samples of batch 2. Contrary to the rlog transform, this method does not collapse 1261 

technical repeats, and they were instead collapsed by averaging (as in Additional File 2: Fig. 1262 

S10, panel B, but without the log2-transform). From here on, variance analysis followed the 1263 

same procedure as described in Cruz, De Meyer et al. (28). Briefly, a trendline was fitted to 1264 

the 𝐶𝑉! versus mean expression relationship (omitting genes expressed in <10 samples) using 1265 

a generalized linear model (GLM) of the gamma family with identity link of the form 𝐶𝑉!(𝐱) =1266 

𝑎
�̂�_ + 𝑏, with fitting parameters 𝑎 and 𝑏 (115) (Additional File 2: Fig. S11). Code from the 1267 

M3Drop R package (116) was used for this purpose. A normalized CV accounting for the 1268 

observed mean-variance relationship was then calculated as 𝑛𝑜𝑟𝑚𝐶𝑉(𝐱) = log!(𝐶𝑉!(𝐱)/1269 

𝑡𝑟𝑒𝑛𝑑(�̂�)) where 𝑡𝑟𝑒𝑛𝑑(�̂�) is the fitted value at the mean of 𝐱.  1270 

 1271 

GO enrichment analysis 1272 

A Gene Ontology (GO) annotation for Brassica napus was generated using the TRAPID v.2.0 1273 

platform (117) with default parameters on April 16, 2020. Transcript sequences parsed from 1274 

the B. napus Darmor-bzh reference genome annotation v:5 (90) using the gffread v.0.9.6 1275 

utility (118) were used as input for TRAPID, and PLAZA 4.5 dicots (119) was used as the 1276 

reference database. GO enrichment p-values were calculated with hypergeometric tests and 1277 

adjusted for multiple testing (q-values) using the BH procedure (111), either using custom R 1278 

scripts or using BiNGO v:3.0.3 (120). GO categories gravitating toward the top or bottom of 1279 
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gene lists ranked in order of decreasing Moran’s I or normalized CV were detected using two-1280 

sided Mann-Whitney U tests (with genes belonging to the GO category of interest classified 1281 

as group 1 and other genes as group 2), as implemented in the ‘wilcox.test’ function in the R 1282 

stats package v:4.0.5, followed by BH p-value adjustment.  1283 

 1284 

Ortholog inference  1285 

Putative A. thaliana orthologs of B. napus genes were identified in two steps. First, putative 1286 

orthologs of B. napus genes were identified in B. rapa and B. oleracea (source of the A and C 1287 

subgenomes of B. napus, respectively),  based on best similarity hits returned by TRAPID v.2.0 1288 

(117) and on the syntenic relationships reported in Chalhoub et al. (90) and Sun et al. (121). 1289 

Second, putative A. thaliana orthologs of the identified B. rapa and B. oleracea genes were 1290 

retrieved from PLAZA 4.5 dicots (119), which provides orthology inferences integrating four 1291 

different lines of evidence : orthogroup inference within gene families using OrthoFinder 1292 

(122), orthology inference using gene tree-species tree reconciliation, orthology inference 1293 

from best DIAMOND (123) hits and their inparalogs, and positional orthology inference 1294 

through collinearity analysis (124). The most likely A. thaliana orthologs of a given B. napus 1295 

gene were taken to be the putative orthologs that are most strongly supported across both 1296 

inference steps. 1297 

 1298 

Single-feature phenotype prediction models 1299 

Single-gene models.  Linear mixed-effects (lme) models (125) were fitted to predict a 1300 

phenotype given the expression profile of a single gene. That is, given a phenotype vector 𝐲 1301 
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(Eq. 4) 

(Eq. 5) 

and a vector 𝐱 of a given gene’s z-scored expression values across the field, we fit the 1302 

following model: 1303 

 1304 

y =	𝛽$ + 𝛽7x + 𝛆 1305 

𝛆	~	𝒩(0, Ʃ) 1306 

 1307 

where 𝛽$ is the intercept (average phenotype value), 𝛽7 the gene effect coefficient, and 𝛆 the 1308 

residual error which is assumed to follow a multivariate normal distribution with a Gaussian 1309 

covariance structure Ʃ given by:  1310 

Σ,) = 𝜎8! ×	i𝜈	 ×	𝐼,) + (1 − 𝜈) × 𝑒𝑥𝑝 k− l
𝑑,)

𝑟_ m
!
no 1311 

where 𝑑,)  is the physical distance between plant 𝑖 and 𝑗 on the field, 𝜎8! is the overall residual 1312 

phenotype variance, the nugget 𝜈 (between 0 and 1) determines the proportion of the 1313 

residual variance that is independently and identically distributed (iid) as opposed to 1314 

governed by spatial autocorrelation, the range 𝑟 determines how fast the residual phenotype 1315 

correlation between plants drops when the distance between them increases, and 𝐼 is an 1316 

identity matrix. The same model form was used to predict final yield phenotypes, e.g. total 1317 

seed weight, as a function of one of the phenotypes measured early in the growing season, 1318 

e.g. leaf 8 area (81 DAS).  All parameters (𝛽$, 𝛽7, 𝜎8 , 𝑛, 𝑟) are estimated from the data by 1319 

Restricted Maximum Likelihood (ReML) estimation, implemented in the nlme package (126) 1320 

in R. In some cases the lme model didn’t converge and a regular linear model (lm) was used 1321 

instead. p-values for the 𝛽7 coefficients were determined using Wald tests and adjusted for 1322 

multiple testing using the BH procedure (111).     1323 

 1324 
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(Eq. 6) 

For each of the 100 genes with the lowest BH-adjusted 𝛽7 p-value for a given phenotype, a 9-1325 

times repeated 10-fold cross-validation scheme was used to assess the gene’s predictive 1326 

power (see section on multi-gene models for details). The median test 𝑅!score across all 90 1327 

splits was used as a measure of prediction performance. 1328 

 1329 

Single-phenotype models. The same linear mixed-effects (lme) modeling and cross-validation 1330 

strategy as used for the single-gene models was also used also to model spring phenotypes 1331 

as a function of autumnal leaf or rosette phenotypes. Leaf 6 and leaf 8 phenotypes and the 1332 

rosette area at 42 DAS were used as features for predicting all spring phenotypes. In a 1333 

separate analysis, also earlier rosette areas (14-42 DAS) were used as features, in order to 1334 

assess how the predictive power of the projected rosette area for yield phenotypes evolves 1335 

over time. 1336 

 1337 

Alternative single-gene models for ratio phenotypes. For seeds per silique (on stem 1 or the 1338 

entire plant), the following alternative log-link model was fitted using the nlme package (126) 1339 

in R :  1340 

 1341 

ln(𝐸(𝐧⊘ 𝐝)) = 𝛽$ + 𝛽7𝐱 1342 

 1343 

where ⊘ stands for the element-wise division of the numerator n, a vector containing the 1344 

seed count stem 1 for all plants, by the denominator d, a vector containing the silique count 1345 

stem 1 for all plants. x is the expression profile of a given gene across plants. The numerator 1346 

is assumed to follow a normal distribution given the denominator d and the gene expression 1347 

profile 𝐱 : 1348 
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(Eq. 7) 

(Eq. 8) 

𝐧~𝒩(𝐝 ∙ exp(𝛽$ + 𝛽7𝐱) , Σ) 1349 

 1350 

Various error models Σ were tried out. For each gene, Σ is either a constant 𝜎! across all 1351 

plants estimated from the data, a spatially covarying error structure (using a Gaussian 1352 

covariance structure as for the other single-gene models, see above), a heteroscedastic error 1353 

structure with the error variance increasing linearly with the estimate, or a both spatially 1354 

covarying and heteroscedastic error structure. The parameters 𝛽$,	𝛽7, 𝜎! (and optionally the 1355 

nugget and range for spatial models) were estimated using the ‘ngls’ function in nlme. p-1356 

values for the gene expression coefficients 𝛽7 were determined using Wald tests and adjusted 1357 

for multiple testing using the BH procedure (111).  1358 

 1359 

A similar model was used for the branches per stem phenotype :  1360 

 1361 

ln(𝐸((c + 𝐧)⊘ 𝐝)) = 𝛽$ + 𝛽7𝐱 1362 

 1363 

where n is a vector containing the total branch count for all plants, d is a vector containing 1364 

the stem count for all plants, and c is an extra offset introduced to account for the amount of 1365 

branches per stem decreasing with increasing numbers of stems on a plant.  1366 

 1367 

Multi-feature phenotype prediction models 1368 

Multi-gene models. Predictive models were made for each phenotype based on z-scored rlog 1369 

gene expression data, using either all genes or only transcription factors as potential features. 1370 

Random forest (127) and elastic net (128) models were constructed with scikit-learn v:0.23.2 1371 

(129) using a 10-fold cross-validation scheme. Model learning on the training data in each 1372 
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cross-validation split was done in two steps. First a feature selection model was used to select 1373 

promising features, and then a random forest or elastic net model was built on the selected 1374 

features. Three methods were used as alternatives for feature selection. The first feature 1375 

selection technique used was HSIC lasso (130) as implemented in the pyHSICLasso package 1376 

(131), which generally selected at most 200 genes. The second feature selection technique 1377 

was a filter selecting gene expression profiles exhibiting a significant Spearman correlation 1378 

with the phenotype of interest (BH-adjusted q ≤ 0.01 ;  if no features survived this filter, the 1379 

threshold was set at p ≤ 0.001). The third feature selection technique was a filter selecting 1380 

genes with rlog gene expression > 0 in at least half of the samples (median rlog gene 1381 

expression > 0). Elastic net models were built using a fourfold inner cross-validation loop to 1382 

estimate the model hyperparameters. For random forest models, 1000 trees were estimated 1383 

(n_estimators = 1000) using bootstrapping (bootstrap=True), and √𝑛 features (with 𝑛 the 1384 

total number of features) were considered when looking for the best split (max_features = 1385 

“auto”). The hyperparameters ‘max_depth’ (the maximum number of nodes) and 1386 

‘min_samples_leaf’ (the minimal number of samples at each leaf node) were optimized using 1387 

a grid search with possible values (1, 2, 5, 10, 20, 50) and (1, 2, 5) for ‘max_depth’ and 1388 

‘min_samples_leaf’, respectively. Optimal hyperparameters were selected based on 1389 

generalization scores on out-of-bag (oob) samples (oob_score=True). 1390 

 1391 

For each combination of phenotype, machine learning method and feature selection 1392 

technique, 9 repeats of the aforementioned 10-fold cross-validation scheme were performed, 1393 

giving rise to 90 train-test data splits in total. For each split, an out-of-bag (oob) 𝑅! score was 1394 

computed from the predicted and observed phenotype values in the test set, and the median 1395 

oob 𝑅! across all 90 splits (= median test 𝑅!) is reported as a measure of model prediction 1396 
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performance. Alternative 𝑅! values and Pearson correlation (PCC) values were computed 1397 

based on the combined set of test predictions across all 10 splits of a cross-validation repeat. 1398 

The medians of those 𝑅! and PCC values across the 9 cross-validation repeats for a given 1399 

model are reported as the median pooled 𝑅! and median pooled PCC score of the model, 1400 

respectively. 1401 

 1402 

For both elastic net and random forest models, genes of potential interest for a given 1403 

phenotype were ranked based on their median importance across the 90 cross-validation 1404 

splits of the model version with the highest median test 𝑅!score (the difference between 1405 

model versions being the use of different feature selection techniques). For random forest 1406 

models, the gini importance of a gene was used as its importance score. For elastic net 1407 

models, the absolute value of a gene’s estimated model coefficient was used. 1408 

 1409 

Models on permuted datasets. For all continuous and high-count phenotypes and for both 1410 

the ‘all genes’ and ‘transcription factors’ feature sets, models were trained and tested on 90 1411 

datasets in which the phenotype values were permuted, using the same machine learning 1412 

method and feature selection technique as for the model with the best median test R2 score 1413 

on real data for the given phenotype and feature set. For each phenotype and feature set, 1414 

one model was trained per permuted dataset, using a single 90-10 train-test split mimicking 1415 

one fold of the cross validation setup used on real data. 1416 

 1417 

Multi-phenotype models. For all phenotypes measured in spring, additional predictive 1418 

models were made based on z-scored data for 14 leaf and rosette phenotypes measured in 1419 

the preceding autumn. We used the same modeling approach as for the expression-based 1420 
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models (random forest and elastic net, 9 repeats of 10-fold nested cross-validation), except 1421 

that the feature selection step of the expression-based modeling protocol was skipped given 1422 

the low number of potential model features. In this respect, using elastic net models instead 1423 

of a simple linear regression framework is technically also unnecessary, but elastic nets were 1424 

used nevertheless to maximize comparability of the early phenotype-based and expression-1425 

based modeling results.   1426 
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