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Abstract  10 

Perturbations in autism spectrum disorder (ASD) risk genes disrupt neural circuit dynamics and 11 

ultimately lead to behavioral abnormalities. To understand how ASD-implicated genes influence 12 

network computation during behavior, we performed in vivo calcium imaging from hundreds of 13 

individual hippocampal CA1 neurons simultaneously in freely locomoting mice with total knockout of 14 

NEXMIF. NEXMIF is an ASD risk gene most highly expressed in the hippocampus, and NEXMIF knockout 15 

in mice creates a range of behavioral deficits, including impaired hippocampal-dependent memory. We 16 

found that NEXMIF knockout does not alter the overall excitability of individual neurons but exaggerates 17 

movement-mediated neuronal responses. At the network level, NEXMIF knockout creates over-18 

synchronization of the CA1 circuit, quantified by pairwise correlation and network closeness centrality. 19 

These neuronal effects observed upon NEXMIF knockout highlight the network consequences of 20 

perturbations in ASD-implicated genes, which have broad implications for cognitive performance and 21 

other ASD-related behavioral disruptions.  22 
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Introduction  28 

Autism spectrum disorder (ASD) is a neurodevelopmental disorder that affects 1 in 54 children (by the age 29 

of 8) in the United States1. ASD is characterized by two core behavioral symptoms. The first is difficulty 30 

with social interaction and communication, and the second is repetitive, restrictive behaviors and 31 

interests2. ASD is often co-morbid with other medical conditions such as epilepsy, gastro-intestinal issues, 32 

sleep problems, and immune dysfunction3. As one of the most heritable neuropsychiatric disorders, the 33 

genetic bases of ASD are widely heterogenous and often polygenic4. Thus far, human genomic studies 34 

have identified numerous genes implicated in ASD risk. To understand the contribution of these genes to 35 

ASD pathophysiology, many transgenic mice5,6 and non-human primates7 containing such gene 36 

disruptions have been developed to model aspects of behavioral, molecular, and cellular phenotypes seen 37 

in individuals with ASD. 38 

Many ASD risk genes are thought to disrupt neural network excitability by increasing excitatory/inhibitory 39 

(E/I) balance within neural circuits8. While there is little direct experimental evidence of how increased 40 

E/I ratio alters network dynamics, computational modeling has revealed that E/I balance is critical for 41 

maintaining proper asynchrony within a network9 and increased E/I ratio elevates neural synchrony 10,11. 42 

Thus, it is possible that ASD risk gene mutations over-synchronize neural networks, leading to a reduction 43 

in network information encoding capability that disturbs cognitive performance12–14. Consistent with this 44 

theoretical framework, ASD animal models with increased E/I balance exhibit increased neuronal 45 

correlations, as well as deficits in social interaction15,16 and sensory discrimination17.  46 

While lacking single neuron resolution, EEG variability analysis in humans has allowed the estimation of 47 

neural synchrony. As EEG provides an aggregate measure of neural activity-dependent extracellular 48 

electrical currents, lower EEG variability is indicative of greater neural synchrony. From a group of ASD 49 

subjects, those without detectable EEG epileptiform activity exhibit lower EEG variability and higher 50 
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functional E/I ratios than typically developing children18. Further, lower EEG variability is associated with 51 

decreased accuracy on a facial recognition task in typically developing children19. Finally, a low-dose 52 

ketamine infusion in healthy adults, thought to increase E/I ratio, creates specific deficits in a spatial 53 

working memory task20. Together, these computational and experimental evidence, in both animal 54 

models and human subjects, indicate that E/I imbalance and neural synchrony could contribute to ASD 55 

network pathophysiology that ultimately results in behavioral disruptions. 56 

Recently, two human genomic studies identified mutations in a X-linked gene, NEXMIF (also known as 57 

KIDLIA, KIAA2022, or Xpn), in several males who presented with ASD, intellectual disability, and other co-58 

morbidities21,22. Since then, several additional studies have reported individuals with ASD with mutations 59 

or deletions in the NEXMIF gene23–35. NEXMIF is now recognized as an ASD-implicated gene in the Simons 60 

Foundation Autism Research Initiative (SFARI) database. NEXMIF is critical for proper neurite extension 61 

and migration in the developing mouse cortex36. In agreement with the E/I imbalance hypothesis, NEXMIF 62 

knockdown causes a 2-fold greater loss of GABAergic synapses compared to glutamatergic synapses in 63 

cultured neurons37. As NEXMIF is an X-linked gene, homozygous NEXMIF knockout in females is 64 

embryonically lethal. In male mice, however, genetic deletion of NEXMIF (NEXMIF KO) results in a variety 65 

of behavioral deficits, most notably reduced social interaction, impaired communication vocalizations, 66 

and increased self-grooming (indicative of repetitive behavior). While initially characterized in the cortex 67 

of developing mice, NEXMIF expression is highest in the hippocampus of adult mice38,39, and NEXMIF KO 68 

mice exhibit impaired spatial memory and contextual fear memory37. As hippocampal structure40–44 and 69 

function45–48 are often disrupted in individuals with ASD, NEXMIF KO animals allow mechanistic analysis 70 

of how NEXMIF deletion alters hippocampal networks. 71 

To understand how ASD-implicated NEXMIF gene mutations alter hippocampal function at both the 72 

cellular and network levels, we performed wide-field calcium imaging of hundreds of individual CA1 73 

neurons simultaneously in NEXMIF KO male mice and WT male littermates during locomotion. NEXMIF 74 
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knockout causes few cellular-level effects, quantified by calcium event shape and frequency in individual 75 

neurons in KO and WT mice. However, we also characterized network effects of NEXMIF knockout using 76 

Pearson correlation and a network closeness centrality metric, and we found that loss of NEXMIF creates 77 

over-synchronization of the CA1 network during locomotion.  78 

 79 

Results 80 

NEXMIF wild-type (WT) and knockout (KO) mice exhibit similar locomotor behavior  81 

NEXMIF expression is most prominent in the hippocampus, and NEXMIF KO mice exhibit severe learning 82 

and memory deficits37,38. To understand how NEXMIF contributes to hippocampal circuit functions, we 83 

characterized CA1 neural responses using calcium imaging while mice were head-fixed and navigating 84 

freely on a spherical treadmill (Figure 1A). Since it is very difficult for NEXMIF KO mice to perform 85 

hippocampal-dependent learning and memory tasks, we examined how NEXMIF knockout changes 86 

hippocampal circuity during locomotion, a fundamental component of spatial navigation.  87 

We first compared voluntary movement kinematics between male homozygous NEXMIF KO mice (n=8 88 

mice) and male WT littermates (n=7 mice). “Resting” and “running” bouts were identified in each 89 

recording session based on movement speed (details in Methods, Figure 1F, G). WT and KO mice exhibited 90 

a similar number of running bouts (periods of continuous running) within each 10-minute session (Figure 91 

1H, WT: 22.0±14.2 bouts, KO: 28.4±16.6 bouts, unpaired t-test, p=0.44, n=16 sessions from 7 WT mice & 92 

n=21 sessions from 8 KO mice), with similar running bout duration (Figure 1I, WT: 12.8±14.9 sec, KO: 93 

10.9±5.43 sec, unpaired t-test, p= 0.73). As KO mice tend to run faster than WT mice during running bouts 94 

(Figure 1J, WT: 10.2±7.3 cm/s, KO: 15.04±6.33 cm/s, unpaired t-test, p= 0.18), average speed during the 95 

entire imaging session tends to be higher in KO mice, but these differences were not significant (Figure 96 

1K, WT: 5.36±5.0 cm/s, KO: 7.25±3.92 cm/s, unpaired t-test, p= 0.43).  97 
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 98 

Calcium event shape and frequency are undisturbed in NEXMIF KO mice  99 

To examine the impact of NEXMIF knockout on both individual hippocampal neurons and the dorsal CA1 100 

circuit, we performed calcium imaging from neurons expressing GCaMP6f, in both WT and KO animals 101 

(Figure 1B, C, D). Each mouse was recorded for 10 minutes per day during voluntary locomotion (Figure 102 

1D, E). The recorded calcium fluorescence videos were motion corrected and individual cells were 103 

segmented49 (Figure 1C). A GCaMP6 fluorescence trace was then extracted for each cell and normalized 104 

to its peak fluorescence to account for variation in GCaMP6f expression between neurons. We then 105 

identified individual calcium events as described previously50 (Figure 2A).  106 

We estimated neural activity using both the rise time and frequency of individual calcium events, as the 107 

rising phase of calcium events captures the sharp increases in intracellular calcium that are common 108 

during spike bursts51. We found that both calcium event rise time and calcium event frequency over the 109 

entire imaging session are similar between WT and KO mice (Figure 2B and C, n=18 sessions from 7 WT 110 

mice and 24 sessions from 8 KO mice, rise time WT: 1.59±0.22 ms, KO: 1.55±0.27 ms, unpaired t-test, p= 111 

0.64; frequency WT: 2.1 ± 0.4 events/min, KO: 2.3 ± 0.5 events/min, unpaired t-test, p=0.22). Additionally, 112 

we used calcium event full width at half-maximum amplitude (FWHM) as a measure of calcium buffering 113 

capacity, because the duration of a calcium event captures overall intracellular calcium change51,52. We 114 

found that FWHM is also similar between WT and KO mice (Figure 2B-D, FWHM WT: 1.90±0.52 ms, KO: 115 

1.81±0.66 ms, unpaired t-test, p= 0.65). Thus, NEXMIF knockout does not affect the overall activity or 116 

calcium buffering capacity of CA1 neurons.   117 

 118 

NEXMIF KO increases the fraction of movement-modulated neurons 119 
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Since CA1 neurons are known to increase their neural activity during locomotion53,54, we next compared 120 

calcium event rates during resting versus running. We found that calcium event rate across the entire 121 

neuron population increased during running in both WT and KO animals (Figure 3A, n= 12 sessions in 6 122 

WT mice and n=20 sessions in 8 KO mice, WT rest: 1.71±0.51 events/min, WT run: 2.79±0.75 events/min, 123 

paired t-test with Bonferroni correction, p =7.76e-5; KO rest: 1.90±0.54 events/min, KO run: 2.93±0.75 124 

events/min, paired t-test with Bonferroni correction, p= 5.08e-8). While KO mice have a slightly elevated 125 

event rate at the population level during both resting and running, this increase was not significant during 126 

either each locomotor state (Figure 3A, unpaired t-test with Bonferroni correction, WT vs KO rest: p= 0.32, 127 

WT vs KO run: p= 0.62).  128 

Since only some CA1 neurons are modulated by locomotion, we next examined whether the small 129 

increases in population calcium event rates observed in KO mice reflect a difference in the fraction of 130 

movement-modulated neurons. To determine whether a neuron is modulated by movement, we 131 

binarized the calcium event trace to represent total neural activity, with ones assigned to the entire rising 132 

phase of each calcium event and zeros everywhere else (Figure 3C, D, G, H). We then computed the 133 

difference in neural activity during running versus resting and compared it to a shuffled null distribution. 134 

In each shuffle, we circularly shifted each binarized calcium trace by a random temporal offset relative to 135 

movement and calculated the difference in activity between the running periods and resting periods. This 136 

procedure was repeated 1000 times to form the null distribution.  A cell was deemed to be movement-137 

modulated if the observed neural activity difference was greater than the 97.5th percentile of the shuffled 138 

null distribution for that cell (Figure 3C, D, G, H). Using this analysis, we found that 31.0 ± 1.8% of neurons 139 

were movement-modulated in KO animals, significantly higher than the 25.7 ± 2.0% observed in WT 140 

(Figure 3B-J, n= 1805 cells from 6 WT mice and n= 2530 cells from 8 KO mice, Fisher’s exact test, p= 1.6e-141 

4). The percentage of cells that were movement-modulated in each session did not depend on the time 142 

the animal spent running or the animal’s average speed during the session for either mouse group or 143 
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behavioral condition (Figure S1). This increase in proportion of movement-modulated cells in KO mice 144 

suggests that NEXMIF knockout specifically increases behavioral responses of individual CA1 cells. As 145 

NEXMIF knockout increases E/I synaptic ratio of individual cells37, our results provide direct experimental 146 

evidence that increased E/I ratio by ASD risk gene mutation accordingly increases behaviorally-evoked 147 

responses, consistent with the observation that sensory stimuli lead to an over-activation of the 148 

hippocampus in individuals with ASD48. 149 

 150 

Neuronal correlation is increased in NEXMIF KO mice during both resting and running 151 

Computational studies have shown that increased E/I ratio increases pairwise correlations amongst 152 

neuronal populations, thus decreasing network information coding capability10–12. Additionally, several 153 

animal models with deletions of ASD risk genes have increased neuronal correlations16,17. NEXMIF 154 

knockout increases E/I ratio, like many other ASD risk gene mutations, we next examined whether NEXMIF 155 

knockout influences CA1 neuronal correlations by calculating Pearson’s correlation between 156 

simultaneously recorded neuron pairs (Figure 4A, B). To account for variations in event rate, we 157 

determined whether the measured correlation between each neuron pair was significantly greater than 158 

chance observation given the event rates of the neurons in the pair. To estimate chance observations, we 159 

shifted the binarized traces of two neurons relative to one another with a random time lag and obtained 160 

a shuffled Pearson correlation coefficient. We repeated this shuffling procedure 2000 times to create a 161 

shuffled null distribution. If the observed correlation coefficient was greater than the 95th percentile of 162 

the shuffled null distribution, the neuron pair was deemed significantly correlated (correlated pair). If the 163 

observed correlation coefficient was below the 95th percentile of the shuffled distribution, the correlation 164 

was deemed non-significant (random pair). We found KO animals contained more correlated cell pairs 165 

compared to WT mice, during both resting and running conditions (Figure 4C, Fisher’s exact test, WT rest 166 
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vs KO rest: p= 7.7e-32; WT run vs KO run: p= 3.4e-127). The number of correlated pairs dropped during 167 

running in both WT and KO mice (Figure 4C, WT rest: 8.12±0.10%, WT run: 6.55±0.09%, Fisher’s exact test, 168 

p= 2.1e-121; KO rest: 8.93±0.09%, KO run: 8.09±0.09%, Fisher’s exact test, p= 1.76e-37). These results 169 

indicate that locomotion desynchronizes the CA1 network, and NEXMIF knockout leads to abnormally 170 

elevated synchronization regardless of behavioral conditions. 171 

We then evaluated the strength of correlation by comparing correlation coefficients. We found that 172 

correlation coefficients between correlated pairs were similar between WT and KO mice during both 173 

resting and running (Figure 4D, n= 12 sessions in 6 WT mice and n=20 sessions in 8 KO mice, correlated 174 

pairs: WT rest: 0.16±0.05, WT run: 0.22±0.07, KO rest: 0.17±0.05, KO run: 0.19±0.06, paired t-test with 175 

Bonferroni correction, WT rest vs WT run: p= 0.12, KO rest vs KO run: p= 0.50; unpaired t-test with 176 

Bonferroni correction, WT rest vs KO rest: p= 0.70, WT run vs KO run: p= 0.22). The correlation coefficients 177 

of random pairs were also similar between WT and KO during both behavioral conditions (Figure 4E, n= 178 

12 sessions in 6 WT mice and n=20 sessions in 8 KO mice, random pairs: WT rest: 0.05±0.02, WT run: 179 

0.06±0.03, KO rest: 0.05±0.02, KO run: 0.05±0.02, paired t-test with Bonferroni correction, WT rest vs WT 180 

run: p= 0.12, KO rest vs KO run: p= 0.53; unpaired t-test with Bonferroni correction, WT rest vs KO rest: 181 

p= 0.62, WT run vs KO run: p= 0.26). Thus, NEXMIF knockout increases functional network connectivity 182 

regardless of behavioral condition by synchronizing more neurons, without altering the strength of the 183 

connectivity. 184 

 185 

In KO animals, a larger fraction of movement-modulated cells are correlated during running  186 

To directly compare how CA1 network correlation strength differs between the two behavioral states, we 187 

identified correlated pairs that are session-relevant by calculating pairwise Pearson correlations over the 188 

entire recording session. In WT mice, the correlation strengths of these session-relevant cells were the 189 
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same between resting and running, indicating that when an animal switches between the two behavioral 190 

states, CA1 network connectivity remains stable (Figure 4G, WT rest: 0.10, WT run: 0.11 paired t-test with 191 

Bonferroni correction, p=0.18). In KO mice, however, correlation strength among session-relevant cells is 192 

significantly higher during running than resting, indicating that with loss of NEXMIF, functional 193 

connectivity in the CA1 network is predominately driven by correlated activity during running (Figure 4G, 194 

KO rest: 0.09, KO run: 0.12, paired t-test with Bonferroni correction, p=1.2e-5; unpaired t-test with 195 

Bonferroni correction, WT rest vs KO rest: p=0.09, WT run vs KO run: p=0.29). This result indicates that 196 

NEXMIF knockout leads to over-synchronization during running. 197 

As locomotion evoked responses from a larger fraction of cells in KO animals (Figure 3), we next examined 198 

whether functional connectivity differs between populations of movement-modulated cells versus non-199 

movement-modulated cells. We first identified correlated pairs among movement-modulated cells versus 200 

non-movement-modulated cells. In WT animals, similar fractions of correlated cells were observed 201 

amongst modulated cells and non-modulated cells (Figure 4F, modulated cell pairs: 9.5±4.4%, non-202 

modulated cell pairs: 7.3±1.8%, paired t-test with Bonferroni correction, p= 0.09). However, in KO animals, 203 

a strikingly larger fraction of movement-modulated cells were correlated (14.8±8.6%) compared to non-204 

movement-modulated cells (8.3±3.1%, Figure 4F, paired t-test with Bonferroni correction, p= 6.5e-4). 205 

Correlation strength was similar for correlated pairs amongst movement-modulated cells versus non-206 

movement-modulated cells in both WT and KO animals (WT modulated 0.10±0.04 vs non-modulated 207 

0.10±0.04: p=0.26; KO modulated 0.09±0.04 vs non-modulated 0.08±0.03: p= 0.16, paired t-test with 208 

Bonferroni correction). Thus, NEXMIF knockout not only increases the fraction of neurons that respond 209 

to movement, but also increases the functional connectivity amongst movement-modulated cells.  210 

 211 

CA1 network connectivity is exaggerated during locomotion in NEXMIF KO 212 
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To further characterize functional connectivity within the CA1 network, we next created network maps 213 

using the correlated cell pairs during either resting or running. Each cell is a node in the network, and a 214 

correlated cell pair is connected by an edge between those two nodes. As fluorescence imaging allowed 215 

us to visualize the anatomical relationship between recorded neurons, we first arranged the network 216 

using the anatomical position of each cell (Figure 5A). We did not observe any obvious patterns in the 217 

closeness centrality within CA1 networks in the anatomical maps. Consequently, to better visualize 218 

network connectivity, we arranged each map as a force-directed graph where cells are positioned based 219 

on the strength of their functional connectivity with other cells rather than absolute anatomical location 220 

(Figure 5B). In WT force-directed maps, cells were more tightly clustered, indicating higher connectivity, 221 

during resting versus running. However, KO force-directed maps showed similar patterns of clustering 222 

across resting and running (Figure 5B).    223 

Thus, to quantify the connectivity of each network, we calculated its average closeness centrality, which 224 

takes both number of connections and edge strength (correlation coefficient) into account (Methods). 225 

Briefly, a greater closeness centrality value for a neuron indicates that the neuron is connected, both 226 

directly and indirectly, to a greater number of nodes in the network. In accordance with our observations 227 

of the force-directed maps, we found that closeness centrality decreases in WT mice during running 228 

compared to resting, indicating that the CA1 network is less interconnected, and thus desynchronized, 229 

during locomotion (Figure 5C, WT rest: 28.8, WT run: 25.2, paired t-test with Bonferroni correction, 230 

p=0.01). This overall network-level desynchronization is consistent with our observations that fewer cell 231 

pairs were correlated during locomotion and that correlated cell pairs showed similar correlation strength 232 

in WT mice (Figure 4C, D). In contrast, in KO mice, closeness centrality did not change between running 233 

and resting, indicating that the KO network fails to desynchronize during locomotion (Figure 5C, KO rest: 234 

26.4, KO run:26.2, paired t-test with Bonferroni correction, p=0.76; unpaired t-test with Bonferroni 235 

correction, WT rest vs KO rest: p=0.1, WT run vs KO run: p=0.56). In KO mice, the fraction of correlated 236 
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cells is higher than WT in both behavioral conditions, and amongst cell pairs correlated amongst the whole 237 

session, correlation strength increased during running (Figure 4C, G). The interaction of these two effects, 238 

which occur at the level of cell pairs, could contribute to the overall lack of change in functional 239 

connectivity at the network level. Together, these results demonstrate that while the WT CA1 network 240 

desynchronizes during locomotion, the NEXMIF KO CA1 network fails to do so.  241 

 242 

Discussion  243 

In this study, we examined how loss of NEXMIF, an ASD risk gene, influences individual CA1 neuron’s 244 

response and CA1 network connectivity during locomotion. As we used single-cell resolution calcium 245 

imaging during voluntary navigation to interrogate the hippocampal CA1 network, we are able to compare 246 

the patterns of neural activation during quiescent immobility versus active locomotion. We found that 247 

spontaneous calcium event rate is similar between WT and KO mice, but a larger percentage of CA1 248 

neurons are activated during movement in KO mice. Furthermore, a greater fraction of neurons within 249 

the CA1 network are correlated in KO animals, and movement-responsive cells are more correlated in KO 250 

animal than in WT animals. Finally, we also found that the KO network is overly connected during 251 

locomotion specifically. Overall, our results demonstrate that NEXMIF knockout leads to increased 252 

behaviorally-evoked responses and elevated network synchronization, both of which could contribute to 253 

the disruption of CA1 network coding ability during behavior.   254 

As increased cellular and synaptic level E/I ratio in ASD can lead to increased neuronal excitability, ASD is 255 

often co-morbid with epilepsy, particularly in individuals with NEXMIF mutations3,35.  We did not observe 256 

differences in basal calcium event rate in NEXMIF KO mice, which indicates the presence of homeostatic 257 

mechanisms that counteract the increased synaptic E/I ratio shown previously by Gilbert et al.37,55. 258 

However, we detected significantly more neurons that selectively increased their activity during 259 
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movement in KO animals, providing direct evidence that in NEXMIF knockout, elevated synaptic E/I ratio 260 

does not translate to a broad increase in spontaneous neuronal excitability, but rather a selective increase 261 

in responding during relevant behavior. This behavioral state-specific increase in neuronal excitability in 262 

the CA1 could be due to a global increase in synaptic inputs to CA1 during movement, in which increased 263 

E/I synaptic ratio leads to greater excitatory drive to CA1 neurons. However, it is also possible that the 264 

observed excitability increase reflects movement-dependent changes in intrinsic biophysical neuronal 265 

properties, in addition to altered synaptic inputs. 266 

Another leading hypothesis of ASD pathophysiology argues for overconnectivity within local brain regions 267 

and underconnectivity between interconnected brain regions, supported by several exciting human 268 

studies56–62. We observed increased fractions of correlated CA1 neuron pairs in KO animals during both 269 

immobility and active locomotion. Additionally, in session-relevant cell pairs from KO mice, correlation 270 

strength increases during running. Most strikingly, we also detected a selective increase in the number of 271 

correlated cell pairs within movement-relevant cells, and no difference in closeness centrality during 272 

running. Each of these observations is consistent with increased functional connectivity within the CA1 273 

circuit of NEXMIF KO mice during locomotion, supporting the local overconnectivity hypothesis. Elevated 274 

E/I synaptic ratio could contribute to this increased functional connectivity10,11, but again, we cannot rule 275 

out the possibility that NEXMIF knockout also changes intrinsic biophysical properties that lead to the 276 

observed over-synchronization. Further work is needed to better understand the exact mechanisms by 277 

which NEXMIF alters both cellular biophysical properties such as ion channel expression and functional 278 

connectivity between the hippocampus and its cortical targets.  279 

While the fractions of correlated pairs increased in KO animals, the correlation strength of these pairs 280 

remained constant across behavioral conditions in WT and KO animals, indicating that functional 281 

connectivity strength between neurons is not sensitive to behavioral state or NEXMIF knockout. 282 

Interestingly, the number of correlated cells decreases in WT animals during locomotion, and WT animals 283 
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exhibit fewer correlated cell pairs amongst locomotion-relevant cells. Additionally, closeness centrality of 284 

the WT network decreases during running, confirming decreased functional connectivity in the WT CA1 285 

network during movement. Desynchronization of the neuronal population would lead to increased 286 

information encoding capability, consistent with the idea that CA1 network encodes relevant information 287 

during movement63. As locomotion is a fundamental component of spatial navigation and memory, this 288 

dynamic change in information coding capability would allow for flexible and efficient encoding of a WT 289 

animal’s current environment for spatial memory.  290 

In NEXMIF KO animals, however, a larger number of cell pairs are significantly correlated in both 291 

behavioral conditions, and cell pairs that are correlated over the entire session are dominated by strong 292 

correlations during running. Additionally, a larger fraction of locomotion-relevant cells are highly 293 

correlated, and closeness centrality of the CA1 network does not decrease during movement. Taken 294 

together, these observations illustrate that NEXMIF knockout creates exaggerated network synchrony and 295 

thus reduces information encoding capacity, particularly during locomotion. Although a larger population 296 

of cells responds during movement in KO animals, the abnormal synchrony amongst these cells and others 297 

prohibits the heterogeneity of CA1 network response, illustrated by closeness centrality, that is seen in 298 

WT mice during locomotion. The increased synaptic E/I ratio of NEXMIF KO neurons and our finding of 299 

overexcitation upon movement in the CA1 circuit of KO mice could account for the similarity we observe 300 

in population activity. The higher percentage of movement-modulated cells observed in KO mice could 301 

also reflect a compensatory mechanism in the CA1, to homeostatically increase information encoding 302 

capability throughout development. Alternatively, this higher percentage could be due to the increased 303 

number of correlated cells, as these correlations could arise from common inputs to these cell pairs that 304 

are activated upon movement. Overall, our observations of increased connectivity indicate a reduced 305 

ability to process spatial information and spatial encoding that could lead to the impaired spatial memory 306 

and contextual fear memory observed in NEXMIF KO mice37.  307 
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 308 

Materials and Methods 309 

Animal Surgery and Recovery 310 

All animal procedures were approved by the Boston University Institutional Animal Care and Use 311 

Committee.  8 homozygous KIAA2022 knockout (maintained on a C57Bl/6 genetic background) male mice 312 

and 7 wild-type (WT) male littermates were used in this study37. Mice were 7-34 weeks old at the start of 313 

experiments. Animals first underwent stereotaxic viral injection surgery, targeting the hippocampus 314 

(anterior/posterior: -2.0mm, medial/lateral: +1.4mm, dorsal/ventral: -1.6mm from bregma). Mice were 315 

injected with 500-750nL of AAV9-synapsin-GCaMP6f.WPRE.SV40 virus, obtained from the University of 316 

Pennsylvania Vector Core (titer ~6e12 GC/mL). Injections were performed with a blunt 33-gauge stainless 317 

steel needle (NF33BL-2, World Precision Instruments) and a 10 µL microinjection syringe (Nanofil, World 318 

Precision Instruments), using a microinjector pump (UMP3 UltraMicroPump, World Precision 319 

Instruments). The needle was lowered over 1 min and remained in place for 1 min before infusion. The 320 

rate of infusion was 50 nL/min. After infusion, the needle remained in place for 7-10 min before being 321 

withdrawn over 1 min. The skin was then sutured closed with a tissue adhesive (Vetbond, 3M). After 322 

complete recovery (7+ days after virus injection), animals underwent a second surgery to implant a 323 

sterilized custom imaging cannula (outer diameter: 3.17mm, inner diameter: 2.36mm, height: 2mm). The 324 

imaging cannula was fitted with a circular coverslip (size 0, outer diameter: 3 mm, Deckgläser Cover 325 

Glasses, Warner Instruments), adhered to the bottom using a UV-curable optical adhesive (Norland 326 

Optical Adhesive 60, P/N 6001, Norland Products). During surgery, an approximately 3.2mm craniotomy 327 

was created (centered at anterior/posterior: -2.0mm, medial/lateral: +1.7mm) and the cortical tissue 328 

overlaying the hippocampus was aspirated away to expose the corpus callosum. The corpus callosum was 329 

then thinned until the underlying CA1 became visible. The imaging cannula was then tightly fit over the 330 
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hippocampus and sealed in place using a surgical silicone adhesive (Kwik-Sil, World Precision Instruments). 331 

The imaging window was secured in place using bone adhesive (C&B Metabond, Parkell) and dental 332 

cement (Stoelting). A custom aluminum head-plate was also affixed to the skull anterior to the imaging 333 

window. Analgesic was provided for at least 48 hours after each surgery, and mice were single-housed 334 

after window implantation surgery to prevent damage to the head-plate and imaging window.  335 

Animal Habituation, Calcium Imaging, and Movement Data Acquisition 336 

After complete recovery from window implantation surgery (7+ days), animals were habituated to 337 

experimenter handling and head fixation on the spherical treadmill. Each animal was habituated to 338 

running on the spherical treadmill while head-fixed for at least 3 days prior to the first recording day. 339 

During each recording session, animals were positioned under a custom wide-field microscope and 340 

allowed to run freely on the spherical treadmill. The spherical treadmills consisted of a three-dimensional 341 

printed plastic housing and a Styrofoam ball supported by air64. The imaging microscope was equipped 342 

with a scientific complementary metal oxide semiconductor (sCMOS) camera (ORCA-Flash4.0 LT Digital 343 

CMOS camera C11440-42U, Hamamatsu) and a 10× 0.28 M Plan Apo objective (Mitutoyo). GCaMP6f 344 

excitation was accomplished with a 5 W light emitting diode (M470L4, ThorLabs). The microscope included 345 

an excitation filter (No. FF01-468/553-25, Semrock), a dichroic mirror (No. FF493/574-Di01-25×36, 346 

Semrock), and an emission filter (No. FF01-512/630-25, Semrock). The imaging field of view was 1.343 x 347 

1.343mm (1024 x 1024 pixels). Image acquisition was performed using HC Image Live (Hamamatsu), and 348 

images were stored offline as multi-page tagged image files (TIFs) for further analysis.  349 

Each animal underwent three 10-minute recording sessions, one per day, every other day over 5 days 350 

(Figure 1B). A total of 21 recording sessions were collected from 8 KO mice and 16 sessions were collected 351 

from 7 WT mice. In 24 recording sessions (from 4 WT mice and 8 KO mice), a custom MATLAB script was 352 

used to trigger image frame capture at 20 Hz and to synchronize image acquisition with movement 353 
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tracking. Digital transistor-transistor logic (TTL) pulses were delivered to the camera via a common 354 

input/output interface (No. USB-6259, National Instruments), and TTL pulses were also recorded using a 355 

commercial system (RZ5D, Tucker Davis Technologies). Motion data was collected using a modified 356 

ViRMEn system65. Movement was tracked using two computer universal serial bus mouse sensors affixed 357 

to the plastic housing at the equator of the Styrofoam ball, 78° apart. The mouse sensors’ x- and y-surface 358 

displacement data were acquired at 100 Hz on a separate computer, and a multi-threaded Python script 359 

was used to send packaged <dx,dy> data to the image acquisition computer via a RS232 serial link. 360 

Packaged motion data was recorded on the image acquisition computer using a modified ViRMEn MATLAB 361 

script and synchronized to each acquired imaging frame.  362 

In the remaining 13 sessions (from 4 WT mice and 2 KO mice), image acquisition was triggered using a 363 

Teensy microcontroller system66, and experiments were performed using an identical spherical treadmill. 364 

Digital pulses were sent from a Teensy 3.2 (TEENSY32, PJRC) to the sCMOS camera via SMA connectors 365 

and coaxial cables to trigger frame capture at 20 Hz. TTL pulses were recorded using the same TDT 366 

commercial system. Movement was tracked using two computer mouse sensors (ADNS-9800 laser motion 367 

sensors, Tindie) affixed to the plastic housing at the equator of the Styrofoam ball, about 75 degrees apart. 368 

The x- and y- surface displacement was collected by the Teensy at 20Hz and sent to the image acquisition 369 

computer via a standard USB-microUSB cable.  370 

Movement Analysis 371 

As both movement data acquisition systems collect the same numerical data, linear velocity can be 372 

calculated the same way for all sessions. Linear velocity in perpendicular X and Y directions was calculated 373 

as: 374 

𝑋𝑋 =  
𝐿𝐿 − 𝑅𝑅 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

cos (𝜋𝜋2 − 𝜃𝜃)
 375 
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𝑌𝑌 = 𝑅𝑅 376 

where L is the vertical reading from the left sensor, R is the vertical reading from the right sensor, and θ 377 

is the angle between the sensors. Linear velocity V was then calculated as: 378 

𝑉𝑉 =  �𝑋𝑋2 + 𝑌𝑌2 379 

Linear velocity values were then interpolated at 20 Hz.  380 

To identify sustained periods of movement with high linear velocity (running bouts), we used a Fuzzy logic-381 

based thresholding algorithm. We first assigned each velocity data point a Fuzzy membership value using 382 

a sigmoidal membership function F: 383 

𝐹𝐹(𝑉𝑉,𝑎𝑎, 𝑐𝑐) =
1

1 + 𝑒𝑒−𝑎𝑎(𝑉𝑉−𝑐𝑐) 384 

where the threshold c is the 20th percentile of the velocity of that session or 5 cm/sec, whichever is higher. 385 

a is set at 0.8. The resulting velocity trace was then smoothed using a moving average filter of 1.5 seconds. 386 

Next, the smoothed trace was thresholded at 10% of its maximum value. Time periods with velocity higher 387 

than this threshold that were at least 2 sec long were considered high velocity periods (“running”).  Time 388 

periods with velocity lower than this threshold that were at least 2 sec long were considered low velocity 389 

periods (“resting”). Periods that do not satisfy either of these requirements were not considered for 390 

locomotion analysis (Figure 1F, G). Recording sessions in which the mouse spent less than 60 seconds 391 

(10% of the session) in one behavioral state and sessions with less than 5 running bouts were not included 392 

for locomotion-related analysis (4 sessions from 2 WT mice and 1 session from 1 KO mouse).  393 

Calcium Imaging Video Motion Correction  394 

Videos were first motion corrected using a custom Python script as described previously67. For each 395 

imaging session, we first generated a reference image by calculating the mean value of each pixel across 396 
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the first 2,047 frames. We then performed a series of contrast-enhancing procedures to highlight image 397 

features as follows. We used a Gaussian filter (python scipy package, ndimage.Gaussian_filter, sigma=50) 398 

to remove the low-frequency component, which represents the potential non-uniform background. We 399 

then captured the edges of the high-intensity area by calculating the differences between two Gaussian 400 

filtered images (sigma=2 and 1). To obtain the edge-enhanced image, the edges were multiplied by 100 401 

and added back to the first filtered image (sigma=2). Finally, to prevent a potential overall intensity shift 402 

caused by photobleaching, we normalized the intensity of each image by subtracting the mean intensity 403 

of the image from each pixel and dividing by the standard deviation of the intensity. We then calculated 404 

the cross-correlations between the processed reference image and each processed image frame, and 405 

obtained the displacement between the peak of the coefficient and the center of the image.  We then 406 

applied a horizontal shift, opposite to the displacement, to the original frame to finalize the motion 407 

correction. 408 

Cell Segmentation 409 

From the motion corrected video, a projection image was generated across all frames by subtracting the 410 

minimum fluorescence from the maximum fluorescence of each pixel (max-min projection image), and 411 

regions of interest (ROIs) corresponding to fluorescent cell bodies were automatically identified in the 412 

max-min projection image using a deep-learning algorithm based on U-Net68–70. We first trained the deep-413 

learning algorithm with manually curated data, containing the datasets reported in our previous 414 

studies49,50. For each training dataset, a max-min projection image was calculated as described above. We 415 

then divided the projection images and their corresponding ROI masks into small patches of 32x32 pixels 416 

as our training dataset. We also normalized each patch by shifting its mean intensity to zero and dividing 417 

the intensity of each pixel by the standard deviation of the patch intensity. During training, each pixel was 418 

further augmented by randomly flipping vertically and/or horizontally, and rotating 90, 180, or 270 419 

degrees.  420 
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To segment ROIs for the datasets in this study, the max-min projection image for each dataset was divided 421 

into 32x32 patches with 50% of each patch overlapping with its neighboring patches. Each patch was 422 

normalized as described above. As a result, each pixel was inferred four times, and we averaged the results 423 

from four inferences as the prediction score. The connected pixels with a predication score >0.5 were 424 

segmented as a potential ROI, and the set of segmentations was further refined with watershed 425 

transformation to obtain the ROIs representing single neurons. ROIs were then overlaid on the max-min 426 

projection image and manually inspected. ROIs that were identified by the machine learning algorithm 427 

but were not identified as a cell by the observer were manually removed. ROIs were then manually added 428 

to select cells that the machine learning algorithm did not properly identify. ROIs were added as a circle 429 

with a radius of 6 pixels (7.8 µm) based on morphology present in the max-min projection image, using 430 

the previously-reported semi-automated custom MATLAB software called SemiSeg 431 

(github.com/HanLabBU/SemiSeg)71.   432 

GCaMP6f Fluorescence Trace Extraction and Normalization 433 

We obtained the GCaMP6f fluorescence for each cell as the average fluorescence intensity across all pixels 434 

in that ROI. We then subtracted background fluorescence from each ROI, where the background 435 

fluorescence is the average pixel intensity across the pixels located within a ring centered at the 436 

corresponding cell ROI with an outer radius of 50 pixels and an inner radius of 15 pixels. The areas 437 

corresponding to other cell ROIs were excluded from this background ROI. Because the motion correction 438 

procedure introduces strips with high pixel intensities along the edges of the max-min projection image, 439 

25 pixels along each edge of the image were also excluded from the calculation of background 440 

fluorescence. The resulting fluorescence trace for each cell was then interpolated at 20 Hz, linearly 441 

detrended (MATLAB function detrend), and normalized between 0 and 1. All traces were then manually 442 

inspected. Traces with large artifacts were removed.  443 
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Calcium Event Detection 444 

Onsets of calcium events were identified in each fluorescence trace similarly to previous descriptions50,71. 445 

Briefly, we first applied a moving average filter of 1s to smoothen each trace and calculated the 446 

spectrogram (MATLAB chronux, mtspecgramc with tapers = [2, 3] and window = [1, 0.05]), and averaged 447 

the power below 2 Hz. We then calculated the change in power at each time point (powerdiff) and 448 

identified outliers (3 median absolute deviations away from the median power) in powerdiff (MATLAB 449 

function isoutlier) to detect all significant changes in trace power. When multiple outliers occurred at 450 

consecutive time points, they were classified as a potential calcium event. We then calculated the rise 451 

time and amplitude (the difference in fluorescence value between the peak and the event onset) for each 452 

potential event and used an iterative process to include only true events and exclude incorrect potential 453 

events. Within each iteration, an amplitude threshold was calculated for each potential event (iteration 454 

1: 7 standard deviations of the trace in the 10 seconds (200 data points) prior to calcium event onset). 455 

Potential events with a rise time greater than 150 ms (3 data points) and an amplitude above the 456 

calculated threshold were marked as correctly identified events for analysis. All the data points 457 

corresponding to these events (from beginning of event rise to end of event fall) were removed prior to 458 

the next iteration. We then repeated this process by re-calculating the amplitude threshold for the 459 

remaining potential events and again marking correctly identified events for analysis using the same 460 

criterion for rise time and the new amplitude threshold. For each successive iteration, the amplitude 461 

threshold was decreased by 40% and the duration to inspect prior to calcium event onset was increased 462 

by 75%.  The iterative process stops once no events are marked as correctly identified events. This iterative 463 

method is more robust in capturing events that occur close together, while only minimally increasing 464 

identification of false positives. The preceding event in a sequence will incorrectly bias the standard 465 

deviation of the trace in the window prior to a following event in the sequence, and this bias is removed 466 
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when the preceding event is not included in the window prior to the event onset. All traces were then 467 

manually inspected to confirm event detection accuracy.  468 

Calcium Event Parameter and Event Rate Analysis 469 

For each detected calcium event, the rise time is defined as the duration from the calcium event onset, 470 

ton, to its peak tpeak. The full width at half-maximum amplitude (FWHM) was identified as the duration 471 

between two points ta and  tb such that: 472 

𝑥𝑥(𝑡𝑡𝑎𝑎) = 𝑥𝑥(𝑡𝑡𝑏𝑏) = 𝑥𝑥(𝑡𝑡𝑜𝑜𝑜𝑜) + 0.5 × �𝑥𝑥�𝑡𝑡𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝� − 𝑥𝑥(𝑡𝑡𝑜𝑜𝑜𝑜)� 473 

𝑡𝑡𝑜𝑜𝑜𝑜 < 𝑡𝑡𝑎𝑎 < 𝑡𝑡𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  474 

𝑡𝑡𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 < 𝑡𝑡𝑏𝑏 475 

where 𝑥𝑥(𝑡𝑡) is the fluorescence trace. Total event rate was calculated across the entirety of each trace, 476 

counting each identified calcium event as one event. Event rate during either running or resting was 477 

calculated by counting the number of calcium events in all bouts of the relevant behavioral condition and 478 

dividing by the total time that the mouse spent in that behavioral condition.  479 

Determination of Movement-Modulated Cells 480 

To determine movement-modulated cells, we binarized each fluorescence trace by assigning ones to the 481 

entire rising phase (ton to tpeak) of each calcium event and zeros to the rest of the trace. We then 482 

concatenated all of the resting or running bouts separately, and summated the binarized trace among 483 

each concatenated period (“total activity”). We then subtracted the total activity during resting from the 484 

total activity during running to create an activity metric A. The calculation can be summarized as:  485 

𝐴𝐴 =  �
∑ 𝑥𝑥𝑟𝑟𝑟𝑟𝑟𝑟
∑ 𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟

 −  
∑ 𝑥𝑥𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
∑ 𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

� × 100% 486 
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Next, we created a shuffled distribution of the activity metric for each cell by randomly circularly shifting 487 

the binarized trace relative to the movement trace 1000 times and calculating 𝐴𝐴 for each shuffle. If the 488 

true (non-shifted) 𝐴𝐴 for a neuron was greater than the 97.5th percentile of the shuffled distribution, the 489 

cell was considered movement-modulated. Cells that do not meet this criterion were considered non-490 

movement-modulated.  491 

Pairwise Pearson Correlation Analysis 492 

For pairwise correlation analysis, we calculated the Pearson’s correlation coefficient between the 493 

binarized traces for each pair of neurons. Only neuron pairs that were at least 20 pixels (26.2 µm) apart 494 

were included in all correlation analysis to eliminate potential fluorescence cross-contamination. We 495 

calculated pairwise correlation during resting alone, during running alone or during the entire duration of 496 

the session. To calculate pairwise correlation during resting alone or running alone, we concatenated the 497 

calcium activity during all resting or running periods. To calculate pairwise correlation during the entire 498 

duration of the session, we used the full length of the calcium traces for each cell pair.  499 

To determine whether the correlation coefficient for each cell pair was above chance level for each 500 

behavioral condition, we created a shuffled distribution of correlation by randomly circularly shifting one 501 

trace relative to the other trace 2000 times and calculating the Pearson’s correlation coefficient for each 502 

shuffle. If the true (non-shifted) Pearson’s correlation for a pair of neurons was greater than the 95th 503 

percentile of the shuffled distribution, the cell pair was considered correlated.  Positive correlation 504 

coefficients between neuron pairs that were not greater than the 95th percentile were considered 505 

random. Negative correlations were not included in any analyses due to the sparseness of GCaMP6f 506 

events.  507 

To characterize the identity of significantly correlated cells across each behavior state, we first selected 508 

cell pairs that are significantly correlated during resting and computed the average correlation of the same 509 
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cell pairs during running. Similarly, for cell pairs that are significantly correlated during running, we 510 

computed the average correlation of these cells during resting. Finally, we calculated the average 511 

correlation of the cell pairs that were significantly correlated during both running and resting regardless 512 

of the behavior state.  513 

To estimate connectivity among modulated cells, we calculated the number of correlated movement-514 

modulated cell pairs as a fraction of all movement-modulated cell pairs. Similarly, we also calculated the 515 

number of correlated non-movement-modulated cell pairs as a fraction of all non-movement-modulated 516 

cell pairs.  517 

Network Analysis 518 

To quantify network connectivity patterns, we calculate closeness centrality similarly to the description in 519 

Wuchty and Stadler, 200372. Specifically, for each session, we created an undirected graph using 520 

correlated cell pairs during running and an undirected graph using correlated cell pairs during resting. 521 

Each cell was considered as a node and each correlated cell pair was connected by an edge. Edge weight 522 

is the Pearson correlation coefficient (calculated in the appropriate state, resting or running) between the 523 

binarized calcium traces of the cell pair. For each node 𝑖𝑖, closeness centrality 𝑐𝑐(𝑖𝑖) is defined as: 524 

𝑐𝑐(𝑖𝑖) = �
𝐴𝐴𝑖𝑖

𝑁𝑁 − 1
�
2 1
𝐶𝐶𝑖𝑖

 525 

where 𝐴𝐴𝑖𝑖 is the number of nodes reachable to node 𝑖𝑖 and 𝐶𝐶𝑖𝑖 is the is the sum of distances from node 𝑖𝑖 to 526 

all reachable nodes. The distance 𝑑𝑑(𝑖𝑖, 𝑗𝑗) between nodes 𝑖𝑖 and 𝑗𝑗 is defined as:  527 

𝑑𝑑(𝑖𝑖, 𝑗𝑗) =  �log�
1
𝑤𝑤𝑖𝑖,𝑗𝑗

� 528 
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where 𝑤𝑤𝑖𝑖,𝑗𝑗  is the edge weight. Closeness centralities of all the nodes were averaged within each network 529 

and multiplied by the number of nodes for normalization across networks with different numbers of 530 

nodes. Force-directed networks were created using a MATLAB implementation of a force-directed node 531 

placement algorithm that spatially clusters nodes proportional to 𝑑𝑑(𝑖𝑖, 𝑗𝑗)73. 532 
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 546 

Figure Legends: 547 

Figure 1. Experimental set-up and movement behavior. (A) Camera, microscope, and spherical 548 

treadmill set-up. (B) Experimental timeline. (C) Maximum-minus-minimum projection image across the 549 
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entire video for one representative session. All selected ROIs are outlined in pink, with highlighted cells 550 

in D and E shown in green. (D) Heat map of GCaMP6f dF/F traces for the included ROIs shown in C 551 

during an example session (top) and animal’s movement speed from the same session (bottom). (E) 552 

Zoom-ins of the heat map regions outlined in green in D, showing the fluorescence traces for 20 553 

representative cells from the beginning and the end of the imaging session. (F,G) Resting and running 554 

bouts identified in a representative (F) WT animal and (G) KO animal, overlaid on the movement speed 555 

from each animal. (H) Average number of movement bouts per session. p= 0.441, unpaired t-test. (I) 556 

Average movement bouts duration. p= 0.736, unpaired t-test. (J) Average speed during movement 557 

bouts. p= 0.188, unpaired t-test. (K) Average speed over the entire imaging session. p= 0.428, unpaired 558 

t-test. In H-K, each dot corresponds to an individual session. Box plots show median (middle line in box) 559 

and upper and lower quartiles (top and bottom edges of box, respectively). Whiskers show maximum 560 

and minimum values that are not outliers. 561 

 562 

Figure 2. NEXMIF knockout does not change calcium event shape. (A) Example fluorescence traces 563 

from a WT animal (top) and a KO animal (bottom). 15 cells are shown from each mouse. Each detected 564 

calcium event is marked with a black line. (B) Average calcium event shape from all WT sessions (dark 565 

blue) and all KO sessions (dark red). Events were first averaged within each trace, then averaged across 566 

all cells in a session. Each session average is shown as a light line, and the population average is shown 567 

as the solid line. (C) Average calcium event rise time. Unpaired t-test, p= 0.60. (D) Average calcium event 568 

full width at half-maximum amplitude. Unpaired t-test, p= 0.66. In C and D, each dot corresponds to an 569 

individual session. Box plots show median (middle line in box) and upper and lower quartiles (top and 570 

bottom edges of box, respectively). Whiskers show maximum and minimum values that are not outliers. 571 

 572 
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Figure 3. NEXMIF knockout increases percentage of movement-modulated cells. (A) Calcium event rate 573 

in WT mice during rest (light blue) versus run (dark blue), and in KO during rest (light red) versus run 574 

(dark red). Paired t-test with Bonferroni correction, WT rest vs WT run p= 7.76e-5; KO rest vs KO run: p= 575 

5.08e-8. Unpaired t- test with Bonferroni correction, WT rest vs KO rest: p= 0.32; WT run vs KO run: p= 576 

0.62. Each dot corresponds to an individual session. Box plots show median (middle line in box) and 577 

upper and lower quartiles (top and bottom edges of box, respectively). Whiskers show maximum and 578 

minimum values that are not outliers. ***p<0.00025. (B) Fraction of neurons that are movement 579 

modulated in WT (blue) versus KO (red) mice. Fisher’s exact test, p= 1.66e-4. Error bars represent 95% 580 

confidence intervals calculated using the standard error of proportions. ***p<0.001. (C-J) Example 581 

sessions from a (C-F) WT animal and (G-J) KO animal. Binarized calcium traces for all movement-582 

modulated cells (C,G)  and all non-movement-modulated cells (D,H) in the example sessions. (E,I) 583 

Summed normalized dF/F for movement-modulated cells (blue for WT and red for KO) and non-584 

movement-modulated cells (black) in the session. (F,J) Corresponding movement speed (orange) for the 585 

session. All plots are overlaid with movement bouts in gray. 586 

  587 

Figure 4. Pairwise correlation increases during running in NEXMIF KO mice. (A) Correlation matrices of 588 

average pairwise Pearson correlation coefficient during resting (left) and running (right) periods for all 589 

neurons from an example WT animal. Within each matrix, neurons are sorted such that correlated cell 590 

pairs are shown in the top left corner. (B) Same as in A, for an example KO animal. (C) Fraction of neuron 591 

pairs that are correlated in WT mice during rest (light blue) and run (dark blue), and in KO during rest 592 

(light red) and run (dark red). Fisher’s exact test, WT rest vs KO rest: p= 7.7e-32, WT run vs KO run: p= 593 

3.4e-127, WT rest vs WT run: p= 2.1e-121, KO rest vs KO run: p= 1.8e-37. Error bars represent 95% 594 

confidence intervals calculated using the standard error of proportions. ***p<0.001 (D) Average Pearson 595 

correlation coefficients during resting or running for cell pairs correlated in that behavioral condition. 596 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 24, 2022. ; https://doi.org/10.1101/2022.10.21.513282doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.21.513282


Paired t-test with Bonferroni correction, WT rest vs WT run: p = 0.12; KO rest vs KO run p= 0.50, 597 

unpaired t-test with Bonferroni correction, WT rest vs KO rest: p= 0.70, WT run vs KO run: p= 0.22. (E) 598 

Same as D, for random cell pairs. Paired t-test with Bonferroni correction, WT rest vs WT run: p= 0.12, 599 

KO rest vs KO run: p= 0.53; unpaired t-test with Bonferroni correction, WT rest vs KO rest: p=062, WT 600 

run vs KO run: p= 0.26. (F) Fraction of movement-modulated or non-modulated cell pairs that are 601 

significantly correlated for all sessions. Paired t-test with Bonferroni correction, WT modulated vs WT 602 

non-modulated: p= 0.09, KO modulated vs KO non-modulated: p= 6.5e-4, unpaired t-test with 603 

Bonferroni correction, WT modulated vs KO modulated: p= 0.06, WT non-modulated vs KO non-604 

modulated: p= 0.30. (G) Average Pearson correlation coefficients during resting or running of cell pairs 605 

correlated over entire session. Paired t-test with Bonferroni correction, WT rest vs WT run: p=0.18; KO 606 

rest vs KO run p= 1.2e-5, unpaired t-test with Bonferroni correction, WT rest vs KO rest: p= 0.09, WT run 607 

vs KO run: p= 0.29. **p<0.00125, ***p<0.000125. In D-G, each dot corresponds to an individual session. 608 

Box plots show median (middle line in box) and upper and lower quartiles (top and bottom edges of box, 609 

respectively). Whiskers show maximum and minimum values that are not outliers. 610 

 611 

Figure 5. NEXMIF knockout increases functional connectivity of the CA1 network. (A) Anatomical 612 

network maps during resting and running from example WT and KO animals. Each cell is color coded 613 

based on its closeness centrality measure. Correlated cell pairs (identified in each behavioral condition 614 

separately) are connected by an edge. Edge width represents normalized correlation coefficient. (B) 615 

Same as A, shown as a force-directed graph. (C) Average closeness centrality in WT mice during rest 616 

(light blue) versus run (dark blue), and in KO during rest (light red) versus run (dark red). Paired t-test 617 

with Bonferroni correction, WT rest vs WT run: p= 0.01; KO rest vs KO run p= 0.76, unpaired t-test with 618 

Bonferroni correction, WT rest vs KO rest: p= 0.1, WT run vs KO run: p= 0.56. Each dot corresponds to an 619 

individual session. Box plots show median (middle line in box) and upper and lower quartiles (top and 620 
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bottom edges of box, respectively). Whiskers show maximum and minimum values that are not outliers. 621 

*p<0.0125 622 

 623 

 624 
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