New Results
Double emulsions as a high-throughput enrichment and isolation platform for slower-growing microbes
Alexandra L. McCully, McKenna Loop Yao, Kara K. Brower, Polly M. Fordyce, Alfred M. Spormann
doi: https://doi.org/10.1101/2022.10.23.513397
Alexandra L. McCully
1Department of Civil and Environmental Engineering, Stanford University, CA
McKenna Loop Yao
2Department of Chemical Engineering, Stanford University, CA
3Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA
Kara K. Brower
4Department of Bioengineering, Stanford University, Stanford, CA
Polly M. Fordyce
4Department of Bioengineering, Stanford University, Stanford, CA
5Department of Genetics, Stanford University, Stanford, CA
6ChEM-H Institute, Stanford University, Stanford, CA
7Chan Zuckerberg Biohub, San Francisco, CA
Alfred M. Spormann
1Department of Civil and Environmental Engineering, Stanford University, CA
2Department of Chemical Engineering, Stanford University, CA

- Supporting Information[supplements/513397_file02.pdf]
Posted October 23, 2022.
Double emulsions as a high-throughput enrichment and isolation platform for slower-growing microbes
Alexandra L. McCully, McKenna Loop Yao, Kara K. Brower, Polly M. Fordyce, Alfred M. Spormann
bioRxiv 2022.10.23.513397; doi: https://doi.org/10.1101/2022.10.23.513397
Subject Area
Subject Areas
- Biochemistry (10798)
- Bioengineering (8045)
- Bioinformatics (27310)
- Biophysics (13987)
- Cancer Biology (11127)
- Cell Biology (16062)
- Clinical Trials (138)
- Developmental Biology (8788)
- Ecology (13294)
- Epidemiology (2067)
- Evolutionary Biology (17364)
- Genetics (11689)
- Genomics (15925)
- Immunology (11034)
- Microbiology (26093)
- Molecular Biology (10654)
- Neuroscience (56590)
- Paleontology (418)
- Pathology (1732)
- Pharmacology and Toxicology (3005)
- Physiology (4547)
- Plant Biology (9633)
- Synthetic Biology (2689)
- Systems Biology (6979)
- Zoology (1510)