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Abstract: Neurons in the inferotemporal (IT) cortex respond selectively to complex visual 
features, implying their role in object perception. However, perception is subjective and cannot 
be read out from neural responses; thus, bridging the causal gap between neural activity and 
perception demands independent characterization of perception. Historically though, the 
complexity of the perceptual alterations induced by artificial stimulation of IT cortex has 
rendered them impossible to quantify. Here we addressed this old problem by combining 
machine learning with high-throughput behavioral optogenetics in macaque monkeys. In closed-
loop experiments, we generated complex and highly specific images that the animal could not 
discriminate from the state of being cortically stimulated. These images, named “perceptograms” 
for the first time, reveal and depict the contents of the complex hallucinatory percepts induced by 
local neural perturbation in IT cortex. Furthermore, we found that the nature and magnitude of 
these hallucinations highly depend on concurrent visual input, stimulation location, and intensity. 
Objective characterization of stimulation-induced perceptual events opens the door to developing 
a mechanistic theory of visual perception. Further, it enables us to make better visual prosthetic 
devices and gain a greater understanding of visual hallucinations in mental disorders. 
 

One-Sentence Summary: 
Combining state-of-the-art AI with high-throughput closed-loop brain stimulation experiments, 
for the first time, we took “pictures” of the complex and subjective visual hallucinations induced 
by local stimulation in the inferior temporal cortex, a cortical area associated with object 
recognition.  
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Artificial stimulation of neurons in high-level visual cortical areas induces complex hallucinatory 
visual percepts (3–6).  Scientific characterization of these visual percepts poses a serious 
methodological challenge due to their complex and subjective nature, yet it has inspired a 
multigenerational effort in systems neuroscience as it bridges the causal gap between patterns 
of neuronal activity in the brain and elements of visual perception (1, 7, 8).  From a translational 
point of view, understanding the causal underpinnings of visual hallucinations induced by local 
brain stimulation is necessary to develop prosthetic devices that restore vision by direct brain 
stimulation (9, 10). This knowledge also shapes the building blocks for understanding visual 
hallucinations in mental disorders and altered states of consciousness (11–13).   
 
Perceptography: concept and methodology 
 

In this study, we created a machine learning structure and used it in combination with 
high-throughput behavioral optogenetics in macaque monkeys in order to, for the first time, 
produce pictorial descriptions of the perceptual events induced by brain stimulation in the high-
level visual cortex. These pictorial descriptions, called perceptograms, provide unbiased and 
parametric yet rich accounts of the visual perceptual events following optogenetic activation of 
~1mm3 neural subpopulations in the inferior temporal (IT) cortex. The basic idea behind our 
quest was simple: guided by the animals’ behavior, is it possible to evolve specific image 
perturbations that resemble the sense of being stimulated in a given cortical locus in the 
absence of physical stimulation?  
 

We performed viral injections in the central IT cortex of two macaque monkeys (Macaca 
mulatta) in order to express the excitatory opsin C1V1 under the CaMKIIa promoter in a 
~5x5mm area of the cortex. We then implanted arrays of LEDs (Opto-Array) on the virally 
transduced cortical area as well as the corresponding position in the opposite hemisphere 
where no viral injection was performed.  The Opto-Array allows safe, rapidly reversible, and 
high-throughput optical stimulation of ~1mm3 subregions of the targeted cortex, although it 
doesn’t allow neural recordings.  Technical details about the Opto-Array and relevant surgical 
protocols can be found in our earlier reports (2, 6). 
 

The two monkeys were trained to detect and report a brief optogenetic stimulation 
impulse delivered to their IT cortex while fixating on a short video (1 second) created by a 
generative adversarial neural network (GAN) (Fig 1.a). It has been previously shown that 
monkeys can easily learn this simple task (14, 15), which remained the sole task expected from 
the animals throughout the study.  Our earlier results suggest that the animals perform this task 
(in the IT cortex) using the visual events induced by cortical stimulation (6).  The animals 
initiated each trial by holding fixation on a central target for 500ms.  Then, a natural-looking 
GAN-generated image was shown for 400ms (seed image) on a gray background. The image 
subtended 8ox8o of visual angle, and the animals were required to hold fixation at its center 
throughout the trial. Next and in all trials, the seed image would turn into a randomly perturbed 
version of itself for 150ms, then turn back into the original image and stay changeless for 
450ms. In half of the trials, randomly selected, at the time of image perturbation, an LED was 
activated on the animals’ IT cortex for 150ms, typically at 3mW photometric power. After the 
video clip (seed-perturbed-seed), the screen was cleared, and two response targets appeared 
on the vertical midline (white, 0.4° diameter, 5° above and below the center). The animals then 
made a saccade to one of the two targets in order to indicate if the trial included a brain 
stimulation impulse (chance level 50%). The response targets then disappeared, and the 
animals received a liquid reward for correct responses and a 3.5s timeout for incorrect 
responses. Trials with broken fixation or latency greater than 3s for making a response were 
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aborted and discarded.  These trials were injected into the future stream of trials in a 
pseudorandom order.   
 

As reported in our earlier work, the animals learned to perform the cortical perturbation 
detection (CPD) task quickly while fixating on static images (without any image perturbation), 
and they were not able to detect cortical illumination over the intact cortical area where no viral 
injection was performed (6).  On the first day, when the dynamic image perturbation in the 
middle of the trial was introduced, both animals mistakenly mixed the image perturbations with 
cortical stimulation, and as a result, their false alarm (FA) rate dramatically increased from 8 and 
5.2 percent to 39.2 and 37.6 percent, respectively for monkeys Sp and Ph.  This strongly 
suggests that optogenetic stimulation of the IT cortex induces a “visual” perturbation that can be 
mixed up with an image perturbation on the screen.  Note that the FAs are the trials in which no 
cortical stimulation was delivered, yet the animal reported the trial as “stimulated.”  Also, note 
that a FA is considered a behavioral mistake and is never rewarded together with the Miss trials 
when a stimulated trial is reported as non-stimulated.  Within a single day, both animals learned 
to discriminate IT stimulation from the image perturbations on the screen and performed the 
task with high performance at 90.2 and 89 percent correct and only 8.3 and 6.2 FA rates 
(respectively for Sp and Ph).  This remarkable observation is documented in Fig 1.b.  
 
Results 
 
The state of brain stimulation can be mimicked by images 
 

After the training phase and once stable high-performance levels (above 80% for both 
animals) were achieved, the animals entered the first phase of behavioral data collection. While 
the monkeys performed the simple CPD task for tens of thousands of trials, under the hood, two 
learning systems controlled the experiment with the goal of evolving specific image 
perturbations that increase the chance of behavioral false alarms.  We refer to these two 
systems as DaVinci and Ahab (see Fig 1.c).  DaVinci is our image illustrator engine, a structure 
powered by BigGAN trained on the ImageNet dataset (6, 16).  DaVinci was tasked with creating 
multiple random image mutations for each seed image (see Methods).  Ahab is our feature 
optimizer (see Methods) tasked with tracking the animals’ behavioral responses to DaVinci’s 
random image perturbations.  Ahab learned from the animals’ behavioral mistakes and gave 
DaVinci feedback to produce image perturbations that would increase the FA rate. An increase 
in the FA rate (trials without stimulation reported as stimulated) could result from a general 
increase in task difficulty, which would also increase the Miss rate (trials with stimulation 
reported as non-stimulated). To avoid this, Ahab was set to aim at specifically increasing the FA 
rate without changing the Miss rate (see Methods).   
 

The image evolution process started with 5-6 image seeds, for each of which DaVinci 
created 400-1000 randomly perturbed images. Each of these image perturbations was 
presented to the animal at least five times in the course of multiple days (a total of 10K-30K 
behavioral trials). While image perturbations are done randomly over a nearly infinite feature 
space (see Methods), the amplitude of these perturbations can vary: small perturbations 
randomly but subtly change the image, while large perturbations induce random yet massive 
pictorial alterations. Fig 1.d. plots the behavioral FA rate as a function of image perturbation 
magnitude. We found this result encouraging as it shows that the behavioral false alarm rate in 
the CPD task can be systematically manipulated by altering the image. It also shows that 
increasing the magnitude of image perturbation does not monotonously increase the chances of 
a non-stimulated trial being taken as stimulated (FA). The distribution of behavioral false alarms 
over image alterations of various sizes reflects the magnitude of the perceptual perturbations 
induced by cortical illumination for the stimulation intensity used in this experiment (3mW).  
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Fig-1 

 
Artificial intelligence learns from the brain how to trick it  
 

Next, Ahab scored each image perturbation and selected the ones that induced a higher 
FA rate without increasing the Miss rate (see Methods).  Ahab guided DaVinci to create an 
image family for each surviving image, including the original image and 2-6 mutated 
children.  These image families were then presented to the animals in the context of the next 
round of behavioral testing, and the images that were scored high by Ahab received the chance 
to mutate again and make their own children.  This process was repeated until at least one of 
the image families passed the threshold of 60% FA over at least 12 presentations.  This typically 
took five iterations of the entire process, involving 1-5K Ahab-optimized image 
presentations.  The image that scored highest within a winning family was named a 
perceptogram, as viewing it was hard for the animal to distinguish from the perceptual state 
induced by brain stimulation. The entire process was accordingly coined: Perceptography. 
Throughout the course of each round of perceptography, a single LED of the Opto-Array was 
selected and used. The intensity of the LED was adjusted at each new cortical position in order 
to keep the behavioral output under ceiling performance.  
 

The process of Perceptography, if successful, would increase the FA rate across 
generations of images. This could untrain the animals over the course of time because we only 
reward objectively correct choices.  To avoid untraining the animals by this procedure, we 
heavily diluted Ahab-optimized image families with non-optimized DaVinci images as the 
evolution progressed (50 to 80 percent non-optimized).   While the optimized images were 
heavily diluted by DaVinci images, the animal's FA rate kept increasing specifically for those 
images as the evolution progressed.  Fig 2.a shows the monkeys’ FA rate as a function of 
session number for DaVinci and Ahab optimized image families.  As shown in the figure, the FA 
rate remained at a constant level of 2.8-4.1% and 4.1-6.1% (respectively for Sp and Ph) for 
DaVinci images, but Ahab optimized image families induced more FAs increasingly as the 
process unfolded.  Fig 2.b and 2.c show the evolution process for a typical perceptogram 
starting from a large variety of image perturbations and converging to a specific one.  
 

Fig-2 
 
Robustness of the results  
 

Is it possible that some image perturbations survive through the pipeline by chance 
without being meaningful to the animals?  We bootstrapped the data, but instead of letting the 
animals determine the distribution of FAs for each trial, we distributed them randomly.  Fig 3.a 
shows the results. If the false alarms were randomly distributed across image presentations, the 
best image family would have a cumulative false alarm rate significantly lower than the image 
families selected by the perceptography process.  More interestingly, data shows that the 
contents of these behaviorally selected images are related.  In fact, as Fig 3.b shows, the 
images selected independently by the animals’ behavior across families share increasingly 
more features as the process continues.  These analyses show that using the image evolution 
process presented here, it is extremely unlikely to get an image tagged as a perceptogram just 
by chance.  They also show that the image evolution process is not a random stray trajectory; 
instead, it is systematically guided by the animals’ choices and converges on specific answers. 
Despite these statistical encouragements and in order to fully cross-validate these findings with 
a fresh set of data, we performed the entire perceptography procedure on the same image 
seed, cortical position, and stimulation intensity once again for each animal.  Fig 3.c shows how 
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two independent perceptography procedures converged on similar answers. These procedures, 
each lasting ~17 work days, were performed 24 and 10 days apart from each other in monkeys 
Sp and Ph, suggesting that the perceptual effects of repeated optogenetic stimulation in a given 
cortical position remain stable at least over the course of ~ one month. 
 

Fig-3 
 

A design feature of the experiments reported here is that we use the same image 
perturbations in both stimulated and non-stimulated trials. This balancing feature is crucial in 
order to take away all potential image cues and forces the animals to read out only the cortical 
stimulation for performing the task. This feature, however, introduces a measurement 
uncertainty to the process.  As a result of stimulus balancing, all stimulated trials include two 
perturbation components, one is on the screen, and the other comes from the brain 
stimulation.  The screen component is not informative and varies at every trial, and the monkey 
is incentivized to ignore it and detect the cortical component.  Now, when the presentation of a 
perceptogram in a non-stimulated trial elicits a behavioral FA, the animal matches the 
perceptogram to the net perceptual effect of cortical stimulation (constant across stimulated 
trials) plus a baseline random non-informative component (variable across trials). While this 
introduces an inherent uncertainty in the procedure, in that the measurement process affects 
the measure of interest, since the image perturbations are mostly small and random, their net 
effect is not expected to drift far from the original seed image.  From the point of view of an 
incentivized observer, most image perturbations are expected to be perceived as irrelevant, 
except the ones that warp the seed image in the same direction as induced by the brain 
stimulation. If true, this would increase the chance of reporting the trial as stimulated in both 
stimulated and non-stimulated conditions.  Fig 4.a shows that the hit rate is higher than baseline 
when the cortex is stimulated while looking at perceptograms.  Although, given the high baseline 
hit rate, the reward that the monkey gains at stimulated trials (grand average 7.9% and 6.5% for 
Sp and Ph) are far less than the reward loss at non-stimulated trials when perceptograms are 
presented (grand average 60.0% and 64.3% for Sp and Ph). Moreover, it seems that the 
animals psychophysically rely on contrasting stimulation with the solid seed images presented 
before and after the stimulation more than the perturbed image. In an experiment, we showed 
image perturbations of one seed image (150ms) temporally sandwiched between images of 
another seed. This was done for two seed images in each monkey.  The FA rate dramatically 
decreased in all cases, indicating that the perceptual effect of stimulation is perceived and 
matched by the animals mainly in temporal contrast to the seed image.  Specifically, the false 
alarm rate dropped to 0% and 2% (out of 50 presentations) in Sp and Ph, respectively.  
 

Effects of stimulation intensity  
 
Fig 4.b shows examples of perceptograms obtained from the two animals.  As an 

independent sanity check, we hypothesized that if a perceptogram truly reflects the perceptual 
changes induced by cortical stimulation, the magnitude of image perturbation in the winning 
perceptograms should increase if we increase the cortical stimulation intensity.  To test this, we 
performed independent perceptography procedures on similar cortical positions, each at two 
different cortical illumination powers. Fig 5.a and 5.b demonstrate that the amount of feature 
warping in the winning perceptograms was remarkably higher when higher cortical illumination 
was applied. Examples of perceptograms at each level of cortical illumination are shown in Fig 
5.c. Consistently, the baseline miss rate of both animals was slightly but significantly lower in 
the high illumination condition, as shown in Fig 5.d. 
 

Fig-4 
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Perceptograms and natural image manifolds 
 

 Overall, the development of each perceptogram cost ~30-50K behavioral trials collected 
in the course of 14-20 work days.  We performed a total of 32 complete rounds of 
perceptography over seven cortical locations (3 and 4 for monkeys Sp and Ph), 15 seed 
images, and six stimulation intensity levels.  These results provide pictorial evidence of the 
visual perceptual hallucinations induced by stimulation of the high-level visual cortex.  Examples 
of a few perceptograms are shown in Fig 4.b. These results show that it is possible to 
behaviorally exchange the state of local brain stimulation in IT cortex with the state of viewing 
an image.  The similarity of the two states is close enough to make the animals choose to tag 
non-stimulated perceptogram trials as stimulated, even at the cost of losing reward.  While an 
“ideal perceptogram” is expected to induce a 100% FA rate, the ones found in this study (mean 
FA rate 70.2%, Median=71% , StD=12) are surprisingly close, given the very low baseline FA 
rates.  The residual from 100% can be due to the imperfection of our image generation engine 
and/or potential effects of stimulation that are impossible to mimic on a 2D screen (e.g., 3D 
hallucinations, nonvisual feelings, etc.).  Such effects, even if existing, must be very subtle in 
amplitude because the animals are incentivized to use any clue to receive a reward.   
 

Fig-5 
 
A feature that is expected to emerge from the examination of perceptograms is a 

common visual element in perceptograms obtained from the same channel.  IT cortex is known 
for its strong object selectivity at the single cell (17, 18) as well as ~1mm3 tissue scale (19–21). 
While the current OptoArray technology doesn’t allow neural recording, rendering us blind with 
respect to the object selectivity profile of the stimulated neurons, it is reasonable to assume 
heterogeneity of selectivity at the spatial scale perturbed by a single LED(6, 19) in that the 
perturbed neural population conserves visual selectivity for “a” part of the shape 
space.  Assuming this, one might expect that stimulation of a given site in IT cortex induces the 
perception of the preferred features of the targeted neurons independent of what is on the 
screen.  The results, though, show a completely different picture. Fig 5.c depicts examples of 
perceptograms obtained from one cortical position in each of the two monkeys along with their 
corresponding seed images (more examples are provided in the supplementary materials, Fig 
S1).  The first observation that is apparent in these perceptograms is that their structure strongly 
depends on the seed image. Perceptograms that come from stimulation of a single point in the 
IT cortex are typically very different from each other, lacking at least an obvious explicit common 
visual element.  This is consistent with the recent findings about the vast activity landscape of IT 
neurons(22) and the idea that the activity of a neural unit is interpreted by the rest of the brain 
only in the context of the state of other similar neural units (8). These findings strongly 
encourage recording the neural activity together with perceptography, a point that is further 
dissected in the conclusion.  

 
What do perceptograms reveal about the perceptual effects of brain stimulation in area 

IT? Inspecting the set of perceptograms produced in our experiments (Fig S1), one first notices 
that most of the perceptograms show image changes that are off the manifold of natural 
objects.  However, a few seem suspiciously natural; for example, a dog seed image (Fig 4.b 
bottom block) has turned into exactly the same dog sticking out its tongue, or a monkey (Fig 4.b 
top block) has turned into a very similar monkey with long light-colored hair and the head turned 
a few degrees.  Consistent with this observation, a scoring algorithm based on Yolov3, a real-
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time object detection system(23) scored 15% (3 out of 20) of the perceptograms as “natural 
images” (defined as less than 10% change in the main label confidence compared to the seed 
without introducing any new label with confidence more than 20%).  This shows that perturbing 
the neural activity in ~1mm3  of the IT cortex pushes the neural state off its natural manifold on 
most occasions; however, in some cases, the pattern of activity induced by the external stimulus 
is so that the same neural perturbation creates a naturally meaningful change. Determining 
when a perturbation lands on the natural manifold of neural activity is a critical step for breaking 
the code that maps the neuronal activity to perception(8).   

 
Effect of cortical position  

 
Another point that pops out while comparing the perceptograms coming from different 

LED channels is that anterior channels seem to have induced more holistic changes in the 
image.  While perceptograms express significant pixel deviations from their seed images all 
along the posterior-anterior axis, the quality of these changes varies systematically.  Inspecting 
the examples presented in Fig 6.a, one would notice that stimulation in the posterior channels of 
the array distorts the perceived image by adding irrelevant visual features to the contents of 
perception.  However, the anterior channels induce perceptual changes that are identity-
preserving and stay on the manifold of natural images.  These subjective evaluations can be 
tested by state-of-the-art object classification tools.  Analysis of images shows that 
perceptograms of the anterior channels of the array tend to retain general features of the seed 
image as shown by the high confidence in image classification and a low FID distance to the 
seed (measuring Frechet Inception Distance score, calculates feature vector distance between 
generated and real images, or any two sets of generated images, Fig 6.b, 6.c. and 6.d.).  In 
contrast, perceptograms of the posterior LEDs express the opposite effect, where additional 
features are introduced, thus lowering the confidence in image classification and increasing the 
FID to the seed. Consistent with numerous studies of IT cortex that show a tendency for neural 
responses to more holistic features along the posterior-anterior axis of the cortex (8, 19, 24–27) 
this finding supports the causality of the relationship.   
 

Fig-6 
 

Conclusion 
 

Constructing a mechanistic theory of visual perception requires the establishment of 
causal homeomorphism between the neural state, a system measured in units of spikes per 
second, and the perceptual state, a system measured in psychophysical units (1, 8).  Making 
the bridge between the two requires parametric characterization of both.  Simultaneous 
measurement of both in large primate brains poses a serious technical challenge.  In this study, 
we decided to focus on characterizing the perceptual events induced by neural stimulation as it 
has been a historical and methodological bottleneck.  The challenge had two faces, one 
required reliable high-throughput stimulation in a large brain, and the other demanded custom-
tailored artificial intelligence in order to develop effective perceptograms.  As for the first one, we 
chose optogenetics over traditional electrical stimulation as it provides more accurate and more 
interpretable stimulation capacity given that it does not target axons of passage (28, 29), and it 
is less invasive by being a surface implant (2).  Furthermore, electrical stimulation is not reliable 
for the high number of stimulation trials required here (30). The second face of the challenge 
demanded not only searching a very large image space but also mimicking the effect of 
stimulation well enough to deceive the animals against reward.  Ahab controlled the search 
function (see methods), and DaVinci mastered mimicking images by combining two GAN-
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generated images to achieve an accurate reconstruction of images outside its original training 
set (see methods). 
 

Facing this two-faced challenge, perceptography provides pictures that are behaviorally 
exchangeable with the state of being cortically stimulated. Given the parametric nature of these 
pictures, we can now provide objective and quantitative evidence of the nature and quality of 
stimulation-driven visual perceptual effects.  This allows measurement of what has long been 
theoretically defined as the “projective field” of neurons (31), here operationally defined as “the 
causal contribution of a given neural group onto the perceptual space.”  Characterization of 
neural projective fields in the visual system, once combined with descriptions of neural sensory 
response fields (22), establishes the missing link between neural activity and perception.  This 
can be done in the context of quantitative modeling that links the two; while existing theoretical 
models of visual hallucinations yield surprisingly similar results to our observations (32, 33), 
further research is needed in order to complete the picture completion of these steps will 
provide access to the building blocks of a potential unifying mechanistic theory of perception 
and consequently provides a deeper understanding of visual hallucinations in mental disorders. 
It also allows the development of better visual prosthetic devices that, in light of these results, 
may consider stimulation of the high-level visual cortex in addition to the traditional primary 
visual cortex. 
 

Altogether, given that the amount of work left to be done in this important area is 
practically beyond the working bandwidth of a single lab, we find this adventure incomplete yet 
mature enough to be shared with the scientific community.  We hope this work sparks interest in 
those interested in underlying mechanisms of visual perception and encourages technique 
developers to invest in platforms that allow easy high-throughput simultaneous recording and 
stimulation of the cortex in large brains. 
 

Methods 
 

The optical array 
Using a custom-made injection array (34), we performed multiple injections of AAV5-

CamKII-(C1V1)-eYFP in a ~5x5mm region, covering the lateral bank of the central IT cortex. 
10uLit of the virus was injected at each track.  We later implanted OptoArrays (Blackrock 
Neurotech) on the virally transduced area as well as the same anatomical region in the opposite 
hemisphere not injected with the virus. The 3D models of the animals’ brains and skulls were 
reconstructed with the FLoRIN method to facilitate the surgery and LED placement (35, 36).  At 
each “stimulated” trial, one LED on the array was activated. The LED illumination levels used 
varied depending on the experiment and location on the cortex, but it was kept between 1.5 and 
11 mW of total photometric output, adjusted to keep the animal’s performance below the 
behavioral ceiling.  The choice of LED and illumination power was kept constant at each 
perceptography cycle. More technical details about the array, as well as more behavioral 
results, can be found in Azadi et al. (6)  
 

Psychophysics 
The experiments were performed in a well-lit test chamber in order to avoid retinal dark 
adaptation that could potentially help the animals detect the cortically delivered light through 
their skull (see Azadi et al. for more). The animals sat 57cm away from a calibrated screen (32", 
120Hz, 1920x1080 IPS LCD, Cambridge Research System Ltd).  The data was collected using 
a custom MWorks script (37) and a Mac Pro 2020.  Eye tracking was performed using an 
Eyelink 1000 Plus (SR Research). All of the behavioral and surgical procedures used in this 
study were in accordance with the NIH guidelines. 
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DaVinci 
DaVinci, our illustrator engine, was built based on BigGAN 18(Brock et al. 2019).  In order 

to construct stimuli, DaVinci superimposed a random image over the seed image (both 
generated in BigGAN), then randomly perturbed the image parameters as well as the 
transparency of the top layer.  The altered image parameters included image class involvement 
(out of 1000 classes of ImageNet), truncation factor, and the z vector. Given our preliminary 
results (see fig 1.d), we figured that most of the image search would happen not too far from the 
seed image; the two-layered image structure was considered to ease this. Nevertheless, we 
wanted DaVinci to be capable of venturing far and creating virtually any image by varying image 
parameters as well as layer transparency.  To test this, we created seven target images that 
were not included in DaVinci’s training set (ImageNet) and forced DaVinci to start from a 
random image seed and recreate the target image in an iterative process using a pixel 
dissimilarity loss function. The target images ranged from the picture of the dinner plate of one 
of the authors to modern art pieces warped in photoshop. In all cases, DaVinci recreated the 
target image with high fidelity (mean pixel similarity= 17.44%, StD=4.28)(See supplementary Fig 
S2).  
 

Ahab 
Ahab was the optimizer that logged the behavioral responses and navigated DaVinci in 

order to find the perceptogram.  The Ahab algorithm included a VGG-16 (38)convolutional 
neural network (pretrained on ImageNet) as a feature extractor that kept track of the features of 
the images that satisfy the following criteria: FA rate > 50% and Miss rate < 5%.  By extracting 
and putting together the most common features from the selected images, Ahab created an 
image prototype called average-feature-prototype (AFP).  Then Ahab created a pool of images 
sprayed around the AFP in the image space to achieve the range of image parameters in the 
vicinity of the AFP. Based on these parameters, Ahab guided DaVinci to make 2-6 mutants for 
each image.  
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Fig 1. Perceptography paradigm and pipeline. a) Cortical perturbation detection (CPD) task. After fixation, a 
short movie consisting of a 400ms presentation of a seed image followed by 150ms of a perturbed image, and then 
450ms of the original seed image was played. In 50% of trials at random, an ~1mm3 locus in the IT cortex was 
optogenetically stimulated for 150ms at the same time as the perturbed image presentation. The animals were 
rewarded for correctly identifying if trials contained brain stimulation or not. b) The first training day with dynamic 
stimuli. The abscissa shows trials, and the ordinate represents the false alarm rate. The shaded region indicates trials 
performed while fixating on a solid static image (initial training for the task). The rest of the plot shows the FA rate 
after the 150ms image perturbation was first introduced to the training regime. Both animals first took the image 
alterations as “stimulated trials” at very high rates but learned within a few hundred trials to ignore most of the 
image perturbations and veridically detect the cortical stimulation. Blue: Monkey Sp, Orange: Monkey Ph. c) 
Perceptography pipeline. The illustrator engine, DaVinci, generated a pool of randomly perturbed images. The 
optimizer engine, Ahab, analyzed the monkeys' performance in the CPD task to extract the image features that 
increased the likelihood of behavioral false alarms. Ahab sent the optimized parameters to DaVinci to generate new 
pseudo-random image perturbations. These Ahab-optimized images were heavily diluted with random DaVinci 
images and injected back into the image pool for the next cycle of perceptography. d) Proportion of behavioral false 
alarms as a function of the magnitude of image perturbation. The abscissa shows the normalized feature distance of 
each randomly perturbed image from its seed image. The ordinate represents the behavioral FA rate for the first pool 
of DaVinci images.  Images above the chart are examples of the visual change corresponding to the distances of 0, 
0.5, and 1 from the seed class, respectively, from left to right. 
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Fig 2. Evolution of perceptograms. a) The false alarm rate for non-optimized (Davinci, double lines) and 
optimized (Ahab, solid lines) perturbed images. The abscissa indicates the progress of perceptography across 
sessions. The ordinate shows the FA rate. Blue: Sp, Orange: Ph. Ahab optimized images induced a significantly 
higher false alarm rate (df = 74 and 76, p = 0.025 and 0.002 for Sp and Ph, respectively, Welch’s t-test). Error bars 
indicate ±1 standard error of mean  b) Evolution dendrogram. Each colored line represents a single image family. To 
survive the iterations of Ahab optimization, image families had to maintain a cumulative false alarm rate of over 
50%. The ordinate shows the Fréchet Inception Distance (FID) between each perturbed image and its corresponding 
seed image. The abscissa shows iterations of the perceptography procedure. c) Example of a perceptogram image 
family tree. The abscissa and ordinate are the same as in subplot b. The legend on the bottom right shows how the 
thickness of each branch corresponds to its false alarm rate.  5 examples of image mutations from the initial DaVinci 
pool are shown together with the winning image family tree. The asterisk indicates the seed image. 
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Fig 3. Evolution trajectory of perceptograms; random or guided? a) High FA rates cannot be achieved by 
random selection of image families across iterations. Left: the distribution of maximum false alarm rates achievable 
in bootstrapped data where FA scores are randomly assigned to images at each iteration of perceptography. 
Perceptograms, images that evolved  guided by the animals’ behavior, had significantly higher FA rates compared to 
the best images produced by the bootstrapping procedure (df = 13 and 17 for Sp and Ph, respectively, p<0.0001 for 
both, Welch’s t-test). Right: the distribution of perceptogram false alarm rates. Blue: Sp, Orange: Ph. Error bars 
indicate the minimum and maximum rates b) Convergence to similar images across Ahab iterations. The abscissa 
represents Ahab's iterations of optimization. The ordinate shows the FID feature distance.  The solid lines represent 
the FID distance of the final perceptogram from images in each optimization iteration, excluding the perceptogram 
family. Independently optimized images get more similar to each other, and the final perceptogram as the process 
unfolds.  Double lines represent the same for the bootstrapped data where family survival is randomly chosen.  As 
the image pool was optimized by Ahab, the distance (FID) between the optimized pool and the to-be-discovered 
perceptogram decreased. Note that the images were not selected for similarity but based on the behavioral FA rate 
they evoke (Blue: Sp, Orange: Ph). Error bars indicate ±1 standard error of mean c) Independent evolution of similar 
perceptograms. Two independent rounds of perceptography were performed for each monkey (Blue: Sp, Orange: 
Ph). The axes are similar to the subplot b. The line plot shows the FID distance of the optimized images of the 
second round of perceptography with the perceptogram obtained from the first round.  
  

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 9, 2023. ; https://doi.org/10.1101/2022.10.24.513337doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.24.513337
http://creativecommons.org/licenses/by-nd/4.0/


Submitted Manuscript: Confidential 
Template revised February 2021 

16 
 

 

 
Fig 4. The effect on hit rate and some examples of perceptograms. a) Perceptograms increase the hits as well as 
FAs. The false alarm rate evoked by the perceptograms (light gray) is significantly higher than that of the non-
optimized DaVinci image pool (dark gray) (df = 30, p <0.001). The hit rate is also significantly higher in 
perceptograms even though the effect is smaller due to a ceiling effect (df = 30, p < 0.001). Error bars indicate ±1 
standard error of mean b) Examples. Three examples are shown from each monkey (Blue shades: Sp, Orange 
shades: Ph); in each block, the top row indicates the seed images, and the bottom row shows their corresponding 
perceptograms. 
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Fig 5. Effects of stimulation intensity. a) Examples of heat maps depicting the image changes between the 
perceptograms and their corresponding seeds. In each block of heatmaps (left Sp, right Ph), the left column includes 
the perceptograms obtained from low illumination perceptography. In contrast, the right column depicts the high 
illumination perceptograms in the same LED channel and monkey. b) More intense cortical illumination warps the 
resulting perceptograms further away from their seed images. In both animals, the perceptograms obtained with 
higher intensity of stimulation had significantly higher distances from their image seeds compared to the 
perceptograms resulting from low-intensity cortical illumination (Root Mean Squared Error (RMSE): df = 8 and 13, 
p = 0.025 and 0.026 for Sp and Ph respectively, Welch’s t-test). Blue: Sp, Orange: Ph. Error bars indicate ±1 
standard error of mean c) Examples of perceptograms obtained with low and high stimulation intensities. Top: seed 
images. Middle: perceptograms obtained with low cortical illumination. Bottom: perceptograms obtained with 
higher illumination power. The brackets under the subplot indicate the perceptograms obtained from the same 
channel d) The effect on the behavioral miss rate. Increasing the illumination intensity of the LEDs significantly 
decreased the behavioral miss rate in both monkeys (df = 13 and 8, p = 0.026 and 0.023 for Sp and Ph, respectively, 
Welch’s t-test). Blue: Sp, Orange: Ph. Error bars indicate ±1 standard error of mean. 
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Fig 6. Effects of cortical position on perceptograms. a) Examples of perceptograms obtained along the posterior-
anterior axis of the central IT cortex. b) Pixel distance of seed to the perceptogram. The abscissa represents the 
position of an LED relative to the posterior-anterior anatomical axis of the central IT cortex. The ordinate shows the 
pixel distance of the perceptograms resulting from each AP position from one seed image. Blue: Sp, Orange: Ph. 
While all perceptograms show pixel distance from their seed images, the effect does not change across cortical AP 
positions on this measure, and the line graph is statistically flat (df = 8 and 11, p = 0.202 and 0.197 for Sp and Ph, 
respectively, ANOVA). c) Classification confidence of a Yolo (real-time object detection system) fed by 
perceptograms obtained from different cortical positions on the posterior-anterior axis. The abscissa is the same as in 
b, and the ordinate shows classification confidence. Blue: Sp, Orange: Ph. Classification confidence significantly 
increases for the perceptograms obtained from anterior cortical positions (df = 8 and 11, p = 0.026 and 0.005 for Sp 
and Ph, respectively, ANOVA). d) FID distance from the seed. The abscissa is the same as in b and c. The ordinate 
shows the FID of the perceptograms obtained from each LED to its seed image. Blue: Sp, Orange: Ph. FID, 
normalized to mean, is significantly different across cortical positions (df = 8 and 11, p = 0.009 and 0.011 for Sp and 
Ph, respectively, ANOVA). Error bars indicate ±1 standard error of mean for all subplots.  
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Supplementary Fig 1. Perceptograms. The rectangular boxes surrounding groups of images indicate the 
perceptograms obtained from the same cortical position using different seed images for the high intensity 
stimulation condition. For 3 seed images, in monkey Ph, we tried even higher stimulation intensity. The 
“⇌” sign shows the blocks from the same cortical position but different stimulation intensities. Please note 
that subtle changes from the seed image are sometimes hard to see in these small static images, but 
they are far more visible when the seed image and the perceptogram are viewed in temporal sequences, 
such as in the experiment. Blue: Sp, Orange: Ph 
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Supplementary Fig 2: Recreating random images with Ahab and Davinci.  To test the quality of Ahab 
optimization and Davinci image illustration, seven random images (three shown here) \ that were not in the 
ImageNet (BigGAN and Davinci pretrained sets) dataset were selected. Ahab was then used to optimize a random 
Davinci image to be as close to the target as possible.  The abscissa shows the loss function (pixel distance), and the 
ordinate represents Ahab iteration cycles. The shaded green shows ±1 standard error of the mean. Examples of 
images are shown; natural images in the left column and Ahab-optimized images in the right column.  
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