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Abstract

Protein language models (pLMs) transform their input into a sequence of hidden
representations whose geometric behavior changes across layers. Looking at fun-
damental geometric properties such as the intrinsic dimension and the neighbor
composition of these representations, we observe that these changes highlight a
pattern characterized by three distinct phases. This phenomenon emerges across
many models trained on diverse datasets, thus revealing a general computational
strategy learned by pLMs to reconstruct missing parts of the data. These analyses
show the existence of low-dimensional maps that encode evolutionary and biologi-
cal properties such as remote homology and structural information. Our geometric
approach sets the foundations for future systematic attempts to understand the
space of protein sequences with representation learning techniques.

1 Introduction

In the last years, deep learning models drastically changed the landscape of protein research, particu-
larly for the prediction of structural and functional properties, giving a new impulse to technical and
scientific advancements in this field. A particular class of deep learning models, which are referred
to as protein language models (pLMs) [8, 20, 19, 16, 14], combine high predictive performance
and architectural simplicity, making them an ideal candidate for evaluating hypotheses about com-
putational strategies underlying their operations. pLM architectures have been heavily inspired by
transformer-like models that emerged in the context of natural language processing: they consist of a
stack of identical self-attention blocks trained in a self-supervised fashion by minimizing a masked
language model (MLM) objective [24, 5]. It has been shown that the features learned by pLMs, after
suitable fine-tuning, can be used to solve a wide range of supervised biological tasks [18, 26]; in this
sense, these features possess some degree of universality. In these models, each module maps the
data into a representation; it has already been observed that the organization of representations in
the last hidden layer reflects biological and evolutionary information [8, 20], and the insurgence of
similar properties in the attention matrices of the various blocks has been methodically investigated
[25, 15]. In addition, analysis of other types of architectures highlighted that data representations in
deep learning models undergo profound changes across the layers [2, 6]. Studying these behaviors
is crucial for fully exploiting and understanding low-dimensional encoding of the data produced
by the models. In this paper, we systematically investigate fundamental geometric properties of
pLMs representations, such as their intrinsic dimension (ID) and neighbor composition, and find
shared behaviors across many single-sequence language models trained by self-supervision on various
protein datasets. Our main results are:
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• Representations in single-sequence pLMs show a three-phased behavior revealed by global
(ID) and local (neighborhood composition) measures

• The three phases, referring to the ID, consist of 1) a peak, in which the ID grows, reaches
a maximum, and then contracts 2) a plateau, in which the ID is stationary across layers at
low values and 3) a final ascent, in which the ID grows to return to values close to the one
measured after the positional embedding

• Language models trained on multiple-sequence alignments (MSA) show a qualitatively
different behavior. The ID stays approximately constant after a very feeble expansion at the
first self-attention block

• In single-sequence pLMs, the neighbor composition of adjacent layers changes with a
three-phased behavior tightly related to the ID one. After profound rearrangements in the
peak phase, we find a plateau phase in which the neighbors’ relationships are approximately
preserved followed by substantial changes again in the last phase

• The neighbor composition shows that evolutionary and structural information, such as
remote homology and fold type, emerge gradually and then stabilizes across the layers in a
way that is strictly consistent with the three-phased behavior.

Our findings shed light on the strategies employed by pLMs to solve the MLM task and can be a
guide for effectively decoding the biological information distilled by their hidden representations,
possibly also suggesting strategies to design more efficient, lightweight models.

2 Methods

The single-sequence pLMs we analyze are essentially characterized by the same architecture: after a
learned positional encoding of the data, a stack of identical self-attention blocks transforms the input
creating successive representations. These models are trained in a self-supervised way to perform
a partial input reconstruction task by minimizing a masked language model loss. As a byproduct,
the learned representations are rich in biological information. More in detail, the input data points,
corresponding to proteins, are variable-length sequences of l letters s = a1, a2, . . . al, chosen from an
alphabet of na(≃ 20) tokens corresponding to amino acids. Each token is encoded by an embedding
layer into a vector of size d, so that the generic protein s is represented as a matrix x := f0(x) of size
l × d. A model with B blocks transforms a data point x ∈ Rl×d into a sequence of representations:
f0(x) → f1(x) → f2(x) . . . fB(x) → fout(x), where fi, i = 1, . . . , B stands for the self-attention
module at the i− th block, and the final LM-head fout is a learned projection onto dimension l× na.
The size of each hidden layer does not change across the model and is equal to l × d; therefore, the
action of the model is a sequence of mappings Rl×d → Rl×d. The representation of a protein across
the network consists of a collection of l vectors that change across the layers, and several strategies
for comparing variable length sequences have been investigated [4]. For each layer i we choose
to perform global average pooling across the row dimension fi(x) → 1

l

∑l
j=1(fi(x))j , since this

reduction retrieves sufficient biological information to solve, directly or possibly after fine-tuning,
homology, structural and evolutionary tasks [8, 20]. For a given pLM, the action of the network on a
dataset of N proteins can thus be described by B + 1 collections of N vectors in Rd: these will be
the data representations that we will investigate. In our applications we will focus on representations
obtained starting from ProteinNet [1] and SCOPe [10, 3], two biologically relevant benchmark protein
datasets described in A.4. We will consider a selection of models from the ProtTrans and ESM
families pre-trained on large protein databases, whose main properties are detailed in A.3. We also
describe representations extracted from MSA-based pLMs in A.5.1.

2.1 Intrinsic dimension

The manifold hypothesis is based on the observation that many datasets embedded in high dimensions,
resulting from the observations of natural phenomena (images, sounds, etc.), lie close to low-
dimensional manifolds. The intrinsic dimension (ID) of a dataset is the dimensionality of the
embedded manifold approximating the data; in other words, the ID is the minimum number of
coordinates that allow specifying a data point approximately without information loss. We adopt
the global estimator “TwoNN” of the ID developed in [9], which requires only local information on
the distance to the first (r1) and second (r2) nearest neighbors of each data point, and that works
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under the mild assumption of approximately locally constant density. In such a case, the theoretical
cumulative distribution F of the ratio µ = r2/r1 can be explicitly derived from the ground truth ID
without information on the density; after approximating F with the empirical cumulate calculated
on the dataset, one can estimate the intrinsic dimension. We refer to [9] for further details on the
algorithm, and to A.5 for a description of the implementation adopted in our analysis of the ID in
the hidden layers of pLMs. The “TwoNN” algorithm is robust to change of curvature and density,
and it is asymptotically correct in the range in which the ground truth ID is ≈ 20. This estimator has
already been employed to analyze representations in deep convolutional networks in [2].

2.2 Neighborhood overlap

The changes in data representation across the model can be traced in the rearrangement of the
neighbor structure of the data space under the transformation induced by a block: points that are
close in one layer may not be so in the following layer, and viceversa. The neighborhood overlap [6]
measures the degree of similarity of two data representations by computing the common fraction of
points that are k-nearest neighbors in both representations. Explicitly, consider the k points nearest to
an element xi of the dataset at a given layer l , and let Al be the adjacency matrix with entries Al

ij = 1

if xj is a neighbor of xi and 0 otherwise. The neighbor overlap between layers l and m is defined
as χl,m

k = 1
N

∑
i
1
k

∑
j A

l
ijA

m
ij , and it is easily seen to lie in [0, 1]. The neighborhood overlap can

be generalized in the following way. Let us consider a function f that associates a characteristic of
interest to each data point. We can use f to define a neighborhood through the adjacency matrix
Af

ij = 1 if f(xi) = f(xj) and 0 otherwise. In this case χl,f
k = 1

N

∑
i
1
k

∑
j A

l
ijA

f
ij is the average

fraction of neighbors of a given point in l that have the same property f as the central point. In [6]
the authors consider the particular case in which f is a ground truth classification label. We focus
on ground truth classes of biological interest such as protein fold, super-family, and family of the
SCOPe dataset in 3.2.2 and A.6.4. In the case when k = 1, our measure collapses to the accuracy of
first hit retrieval recently considered in [21].

3 Results

3.1 The intrinsic dimension has a characteristic shape for single-sequence language models

After each self-attention block, we extracted representations for proteins in ProteinNet, and plotted
the ID against the block number, normalizing with respect to the total number of blocks (relative
depth).

3.1.1 The characteristic shape

The typical shape of the ID curve, that we found across diverse models trained on different datasets,
has three distinct phases: a peak (PE) phase, a plateau (PL) phase and a final ascent (FA) phase
(see Fig. 1, A). The peak develops early and occupies approximately the first third of the curve. In
this phase, the ID rapidly expands, and after reaching a maximum in an ID range of a few tenths, it
rapidly contracts. After achieving its maximum, the ID is compressed to remarkably low values that
characterize the plateau, where the ID remains approximately stationary, reaching values of ≈ 6− 7
at the elbow before the FA. In the FA, the ID grows again, going back progressively to values close
to the ID computed on the representation after the positional embedding. The ID undergoes major
changes across hidden layers: a ratio of ≈ 4−5 of the ID values can be observed between the minima
at the PL phase and maxima at the PE phase. These changes are even more remarkable since the
embedding dimension d remains unchanged across all the layers, depending only on the specifics of
the single architectures reported in column “Emb. Dim.” of Table 1 in A.3.

3.1.2 Characteristic shape and model scale

We analyzed the effect of models size on the three-phased behavior described in 3.1.1 by computing
the ID curve for the single-sequence model ESM-2 [14] in a range of size spanning more than
three orders of magnitude, from 8M to 15B parameters. The three-phased behavior is preserved
when changing the scale of the model (see Fig. 1, B), assuming that one considers sufficiently
expressive architectures of size ≳ 35M. The maximum reached by the ID during the PE phase
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Figure 1: (A) ID in different models trained on different datasets show a three-phased behavior that
consist in a peak (PE), plateau (PL) and a final ascent (FA). (B) The characteristic three phases in a
sequence of models with common architecture and increasing size. (C) The ID in single-sequence
(red line) and MSA-based pLMs (green line) are qualitatively different.

tends to increase accordingly to the scale of the models. In the plateau phase, we find a remarkable
quantitative consensus on ID values which are approximately identical in models spanning two orders
of magnitude in size, with number of parameters ranging from 35M to 3B, and with different values
of extrinsic dimensionality d, ranging in values 480 − 5120. Increasing the size from 8M to 3B
parameters, we progressively see the emergence of the typical shape. The largest model with 15B
parameters stands out for the delayed peak location and the slightly higher ID value at the PL phase.
Besides the size of the pLM, this may be related to the fact that ESM-2(15B) has been trained for
roughly half the iterations with respect to the other models (see [14], Table S1, row “Training steps”).

3.1.3 MSA Transformer has a different ID characteristic shape

MSA-based pLMs held a prominent role in the field [19]: they are the first deep learning model
that largely outperformed direct coupling analysis [17] in unsupervised contact prediction, and they
constitute a fundamental component in the Evoformer block of Alphafold2 [13] that revolutionized
protein structure prediction. Despite the similar structure, MSA Transformer radically differs
from single-sequence pLMs since the model is directly exposed to data containing rich homology
information, and the self-attention block intertwines tight row attention and column attention layers,
focusing on the co-evolution content of the MSA. These dissimilarities are reflected in the different
behavior of the ID curve (see Fig. 1, C). The three-phased behavior disappears, replaced by a
slight increase of the ID after the first self-attention block, followed by a slight decrease and a
large plateau that extends for all the remaining layers. After the initial adjustment, the ID value of
MSA Transformer representations (≈ 6− 7) closely resembles the one observed at the PL phase in
single-sequence models.
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Figure 2: (A) The neighborhood overlap computed for consecutive layers shows a major restructuring
of neighbor relationships in the PE and FA phase and minor changes in the PL phase, thus confirming
the three-phased scenario inferred from the ID analysis.(B) Remote homology information is gradually
acquired during the PE phase, it remains stationary in the PL phase, and is then partially lost in the
FA phase.

3.2 The neighborhood rearrangements mirror ID changes and provide evolutionary and
structural information

3.2.1 Neighborhood rearrangements are tightly related to the ID

We computed the neighborhood overlap (NO) of adjacent layers χl,l+1
k on the representations of

ProteinNet considered in Fig. 1, B, where we analyze the ESM-2 model at different scales. The
neighbor composition changes coherently with the three-phased behavior of the ID observed in
Section 3.1.1, underlying an ID-NO relation not observed in the context of convolutional architectures
[6]. The neighbors are subject to major rearrangements in the PE and FA phases, while they remain
consistent in the plateau phase. In particular, for large enough models, size ≳ 150M, in the PL phase
the neighborhood composition remains essentially unchanged, with ≈ 90% of shared neighbors
across consecutive layers. The smallest model, characterized by low expressivity and high perplexity
(see Table 2), constitutes an exception: major rearrangements can be observed throughout the layers,
particularly in the plateau phase. We delegate further analysis on the NO of ESM-2 pLMs to Appendix
A.6.2 and some considerations on the neighborhood composition of MSA Transformer to A.6.3.

3.2.2 Neighborhood structure and emergence of biological features: remote homology

Two proteins are said to be remote homologs if they correspond to highly dissimilar amino acid
sequences while presenting a similar structure induced by common ancestry. It has been observed
in [20] that Euclidean distances among representations in the last hidden layer of pLMs encode
remote homology information. We study how this biological feature emerges in pLMs: considering
representations of the SCOPe dataset, for every layer l we compute the neighborhood overlap χl,f

k
where f is the classification by super-family, excluding neighbors in the same family to focus on
remote homology. Structural homology information is absent in the positional embedding layer; it
grows smoothly in the PE phase reaching a stationary maximum χl,f

k ≈ 0.8 in the PL phase, and it
suddenly decreases in the FA phase. We observe similar behavior for other biological tasks where f
describes other types of homology relations in A.6.4, and we discuss in A.6.5 how this analysis could
be beneficial for improving homology searches based on pLM representations [21].

4 Discussion and conclusions

In this work, we begin a systematic investigation of the geometric properties of representations in
SOTA pLM with a twofold aim: 1) understand the computational strategies developed by the models
to solve the MLM task and 2) monitor how evolutionary and structural information develops across
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layers. We observe a three-phased behavior shared across diverse single-sequence pLM models.
These phases are clearly outlined by the variation of ID that shows a peak, a plateau, and a final
ascent (see Fig. 1). The ID changes but remains orders of magnitude smaller than the size of the
hidden layers, and the constant size of the layers rules out the potential confounding factor of variable
layer size in the pLMs we consider. We conjecture that the initial ID expansion favors the creation of
linearly separable features that can be more easily combined and processed downstream, mimicking
the dimensionality expansion characteristic of kernel methods [11]. In this phase, the neighbors
rearrangements reflect the progressive emergence of evolutionary and structural information (Fig.
2, B). The plateau is characterized by the presence of low-dimensional representations ID ≈ 6− 7
in which evolutionary and structural information is maximal (Fig. 2, B). In the final ascent, the
ID grows probably because the representation has to be enriched with less abstract features that
better support the complex decision-making necessary to perform well on the reconstruction task.
Accordingly, the neighbor structure reflects less explicitly the evolutionary and structural information.
This picture is consistent across models spanning orders of magnitude in complexity and size or
representations (Fig. 1, B). The bigger the model, the higher the ID peak, hinting at a larger diversity
and a better separability of the features extracted, which goes along with the lower perplexity. The
low ID values that characterize the plateau phase are largely independent of the scale. MSA-based
pLMs present an approximately constant ID after a very feeble expansion at the first self-attention
block. The visible difference between single-sequence and MSA-based pLM is possibly due to the
fact that single-sequence models are in charge of discovering homology relationships that in MSA
Transformer are provided as an input. As a final remark, we observe that, while the ID estimator we
adopted is a global measure of dimensionality, the neighbor structure is inherently local. Remarkably,
these properties change together in perfect unison, and we left a more careful investigation of this
phenomenon as an open question for future research, as well as a deeper dive into the probabilistic
structure of these representations [7].
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A Appendix

A.1 Experimental setup

Hardware All experiments were performed on a machine with 2 Intel(R) Xeon(R) Gold 6226 with
a total of 48 threads, 256GB RAM equipped with 2 Nvidia V100 GPUs with 32GB memory, hosted
on the ORFEO supercomputing platform at AREA Science Park. The GPUs were used to generate
embeddings and to compute nearest neighbors.

A.2 GPU kNN search

The nearest neighbor searches for the calculation of the neighborhood overlap were carried out by
means of the python interface of the Facebook AI Similarity Search library [12], version 1.7.2. The
library is particularly suited for large datasets embedded in high dimensions, since it is based on a
reliable approximate and extremely fast similarity search procedure.

A.3 Models

We consider two sets of transformer-based protein language models: ProtTrans [8] and Evolutionary
Scale Modeling (ESM) [20, 19, 16, 14]. In our analysis, we consider all the models listed in Table
1, where we report the number of self-attention blocks, the embedding dimension, the number of
attention heads, the total number of parameters, and the dataset used for pre-training the model. For
further details on the architectures of the pLMs and the self-supervised training procedure, we refer
to the original reference reported in the last column of Table 1.

Model #Blocks Emb. dim. #Heads #Params Dataset Reference
ProtBert 30 1024 16 420M UR100 [8]

ProtT5-XL-U50 24 1024 32 3B UR50 | BFD [8]
ESM-1b 33 1280 20 650M UR50/D [20]
ESM-1v 33 1280 20 650M UR90 [16]

ESM-MSA-1b 12 768 12 100M UR50∗ [19]
ESM-2(8M) 6 320 20 8M UR50/D [14]

ESM-2(35M) 12 480 20 35M UR50/D [14]
ESM-2(150M) 30 640 20 150M UR50/D [14]
ESM-2(650M) 33 1280 20 650M UR50/D [14]

ESM-2(3B) 36 2560 40 3B UR50/D [14]
ESM-2(15B) 48 5120 40 15B UR50/D [14]

Table 1: Characteristics of the pLMs employed for extracting representations.

A.4 Datasets

A.4.1 The ProteinNet dataset

ProteinNet [1] is a standardized dataset for evaluating protein sequence-structure relationships
recommended in [18] for assessing the contact prediction task. We use the ProteinNet training
set, composed of 25299 sequences, as a reference for extracting the pLM representations used to
analyze the characteristic ID curves in Fig. 1. The same representations were used to compute the
neighborhood overlap of consecutive layers in Fig. 2, A and for the analysis of Fig. 4.

A.4.2 The ProteinNet-MSA dataset

For each sequence in the ProteinNet training set, we obtain an MSA by following the procedure
reported in [19, Section A.2], which is based on a search of the UniClust30 dataset with HHblits
[23]. The MSA obtained following this recipe are then filtered using HHfilter [23], setting -n 256.
This procedure, introduced in [19], maximizes sequence diversity while ensuring that the MSA size
satisfies the dimensional constraints, allowing ESM-MSA-1b inference to take place in GPU. Thus,
we obtain the MSA-ProteinNet dataset of 25299 MSAs with a maximum depth of 256. Each dataset
element contains a protein in the ProteinNet as the first sequence in the alignment.
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A.4.3 The SCOPe dataset

For our analyses of neighborhood overlap devoted to understanding the identification of remote
homology relations in hidden layers, we consider the Astral SCOPe v2.08 dataset [3], containing
genetic domain sequence subsets filtered to obtain < 40% pairwise sequence identity. Each domain
is hierarchically classified into fold, super-family, and family. We impose an initial filter by excluding
the Rossman-like folds (c.2–c.5, c.27 and 28, c.30 and 31) and the four- to eight-bladed b-propellers
(b.66–b.70), as recommended in [22]. As a result, we obtained a dataset composed of 14535
sequences. For each specific task, we define an ad hoc dataset, which we will describe in detail in the
corresponding sections A.5.2 and A.6.4, essentially to ensure sufficient population in the classes.

A.5 Experiments

A.5.1 Intrinsic Dimension characteristic curve

Two Nearest Neighbors ID estimator To estimate the intrinsic dimension of hidden representations,
we use the Two-Nearest Neighbors-Based (“Two-NN”) ID estimator [9]. The algorithm is based on a
simple analytical result: under the hypothesis of a uniform density of points in Rd, the cumulative
probability distribution of the random variable µ = r2

r1
, where r1, r2 are respectively the distance to

the first and the second neighbor of a given point, is given by F (µ) = 1 − µ−d. Therefore, for a
given dataset whose points are indexed by i = 1, . . . , N in RD (with D >> d in interesting cases),
we compute for each point the ratios µi, sort them in ascending order with a permutation σ, and,
by defining the empirical cumulative distribution F emp(µσ(i) :=

i
N , we can obtain an estimate of

d as the slope given by a linear regression (passing through the origin) of the following variables:
(log(µi),− log(1− F emp(µi)))|i = 1, ..., N . The Two-NN algorithm requires minimal information:
the distances to each point’s first and second nearest neighbor; therefore, the strong hypothesis of a
uniform density used to obtain the main result can be relaxed to a weak assumption of local uniformity.
We use the code in [2] https://github.com/ansuini/IntrinsicDimDeep to estimate the ID
and its reliability through a progressive, random decimation process that allows testing the stability of
the result with respect to a change in spatial scale. Since the estimate is approximately scale-invariant,
we take the ID estimate as the mean over the values collected during the decimation.

Single-sequence representations For extracting representations from single-sequence protein
language models, we follow the recommendations reported in the repository of ESM (https://
github.com/facebookresearch/esm) and ProtTrans (https://github.com/agemagician/
ProtTrans). After extracting the representations, we apply global average pooling along the row
dimension (that keeps track of the position in the sequence) as described in Section 2.

MSA Transformer representations We describe the procedure for extracting representations from
an MSA-based pLM in more detail since it differs from the one described in Section 2. An element
q in the MSA-ProteinNet dataset A.4.2 consists of a matrix of m × l tokens corresponding to an
amino acid identity or a gap introduced aligning to the query sequence s, which is placed in the top
row of q. We perform inference via ESM-MSA-1b, collecting hidden representations corresponding
to the positional embedding x := f0(x) and to the result of the B = 12 transformations fi(x) of
self-attention blocks, which intertwines row and column attention layers. Each representation is a
tensor of dimension m× l × d, where m is the depth of the MSA, l is the length of the ProteinNet
query sequence on top of the MSA, and d = 768 is the embedding dimension. Following the main
practice in the literature, we contract the first two indices of the tensor obtaining a d dimensional
vector 1

m·l
∑m

j=1

∑l
h=1 fi(x)jh. Thus, to each sequence in ProteinNet, we associate B + 1 vectors

of dimension d and, repeating the operation on all N = 25299 proteins, we obtain the B + 1
representations of ProteinNet whose geometric structure is the focus of our ID estimation and analysis
in Section 3.1.3.

A.5.2 Neighborhood overlap

Remote homology detection in hidden layers: super-family belonging and neighborhood overlap
In our study on the overlap of the neighborhood structure of layer representations and the classification
with respect to a remote homology task, we select proteins in the SCOPe dataset belonging to super-
families with at least ten elements. Furthermore, we ensure that each super-family is composed
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of at least two families. We thus obtain a dataset composed of 10256 sequences grouped in 288
super-families. At evaluation time, when computing the k-NN of a given protein domain we remove
elements in the same family to ensure we are considering only sufficiently remote homologs. We set
k = 10 throughout our experiments, but it can be shown that the neighborhood overlap behavior is
qualitatively conserved varying the number of neighbors k.

We repeat the same experiment on super-family neighborhood overlap for representations of MSA
Transformer and compare it to the single-sequence model ESM-1b in Fig. 3. The behavior of
the MSA Transformer neighborhood overlap curve (green curve) is qualitatively and quantitatively
different from the single-sequence one (red curve): 1) part of the remote homology information is
already present in the positional embedding layer; 2) the neighborhood overlap increases steeply in
the first three blocks; 3) the level of agreement of neighborhood structure and super-family belonging
saturates and remains approximately constant after the fourth block.

Figure 3: Remote homology information, given by SCOPe super-family classification, is present in
the positional embedding layer of MSA Transformer (green curve), and it rapidly saturates to a value
of ≈ 0.6.

A.6 Other experiments

A.6.1 Final ID expansion is related to perplexity

Perplexity is a measure of uncertainty of a language model in predicting masked elements of a
sequence [14, Supplementary 1.1.2]. In particular, in [14] the authors show that the perplexity of
an ESM-2 model, calculated on a validation set, is highly correlated with its structure prediction
performance on CASP14 and CAMEO test sets. We focus instead on the “reconstruction factor” of
an ESM-2 model, measured as the difference of ID measured at the “last” and at the “first” hidden
layer. Validation perplexity and “reconstruction factor” are anti-correlated, with a Pearson correlation
coefficient of −0.841 at p-value 0.036 computed from the corresponding columns in Table 2.

ESM-2 #Params Validation Perplexity IDlast − IDfirst

15B 6.37 3.7
3B 6.49 0.5

650M 6.95 1.1
150M 7.75 0.3
35M 8.95 -2.5
8M 10.33 -1.9

Table 2: Validation perplexity [14, Table 1] and “reconstruction factor” calculated for ESM-2 at
different scale.

A.6.2 Neighborhood rearrangement in first and last hidden layer

In analogy with Section 3.2.1, we study the evolution of the neighborhood structure along a pLM
measuring the neighborhood overlap between representations of the layer after positional embedding
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Figure 4: (A) Neighborhood overlap computed with the positional embedding layer (“first”) shows
that similarity with the embedded input is lost after the PE phase. (B) Neighborhood overlap with the
last hidden layer (“last”) shows that similarity with the representation used for solving the MLM task
emerges feebly during the PL phase and increases rapidly during the FA phase.

(“first”) and a generic layer l (see Fig. 4, A). The local structure of representations after the embedding
of the input is entirely rearranged once the PL phase is reached.
Similarly, we calculate the neighborhood overlap between representations of the layer after the last
self-attention block (“last”) and a generic layer l (see Fig. 4, B). The neighborhood organization of
the representations at the “last” layer emerges gradually reaching a value of ≈ 0.3 at the PL phase.
The neighborhood overlap increases steeply during the FA phase.

A.6.3 Neighborhood rearrangement in MSA Transformer

We study the neighbor rearrangement in the different layers of MSA Transformer and compare
it to ESM-1b to investigate the impact of exposure to evolutionary data on the local geometry of
representations. Results in Fig. 5, panel A, show that MSA Transformer retains some of the initial
neighborhood structure in all layers. In contrast, the information of the embedding layer is entirely
rearranged in ESM-1b representations. Neighborhood overlap of MSA Transformer and ESM-1b
representations with the respective “last” hidden representations have similar qualitative behavior
(see Fig. 5, B). However, the consensus with the “last” hidden representation is reached faster in
MSA Transformer that present a high neighborhood overlap of ≈ 0.6 already at the PL phase. After
the first self-attention block, MSA Transformer successive layers share most of the neighborhood
structure (see Fig. 5, C). In particular, with respect to ESM-1b representations, we observe a lower
level of rearrangement in the PE phase and an area with a high neighborhood overlap of successive
layers that extends longer than the PL of single-sequence models.

A.6.4 Homology task: emergence of fold, super-family and family relations in hidden layers

We study the emergence of homology relations in the geometric organization of hidden layers
representations of single-sequence pLMs of the ESM family, studying neighborhood overlap with
fold, super-family, and family classes of the SCOPe dataset. We select only proteins in fold, super-
family, and family classes of SCOPe containing at least 20 sequences, and we set the number of
neighborhoods k = 10. We obtain three datasets, one for each class: the fold dataset contains
10926 domain sequences classified in 165 folds, the super-family has 8580 entries classified in 167
super-families, and the family dataset is made of 3610 sequences belonging to 91 families.
The results reported in Fig. 6 point out a general trend similar to that observed for the remote
homology task of Section 3.2.2. After a gradual increase in the PE phase, the neighborhood structure
aligns well with separation in classes in the PL phase and decreases suddenly in the FA phase. The
maximum neighborhood overlap is reached at the PL phase for all the homology tasks, and it exceeds
0.7 for models with more than 35M parameters, showing that various types of homology relations
are best encoded in the low-dimensional representations at the plateau.
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Figure 5: Neighborhood overlap with respect to the layer after positional embedding (“first”, panel
A), to the layer after the last self-attention block (“last”, panel B) and χl,l+1 values (panel C), for
ESM-MSA-1b (green) and the ESM-1b model (red).

A.6.5 Nearest neighbor search in PL layers improves identification of protein relations

It was recently shown in [21] that first nearest neighbor searches for remote homologous protein
domains based on the last hidden layer representations of large pLMs outperforms SOTA methods
based on sequence similarity. Adapting the approach in 3.2.2, we mimic the experiment performed in
[21, Section 2] by 1) considering protein domains in SCOPe belonging to a super-family with at least
2 sequences, 2) setting the number of neighbors to k = 1.
From the results in Fig. 7 it emerges that, for the ESM-1b and the ProtT5-XL-U50 models, considering
representations in the PL layer improves the accuracy of the 1-kNN homology search. In particular,
for ProtT5-XL-U50 we have an improvement of ≈ 6% performing the search on a PL layer instead
of in the last layer before the output. It will be interesting to assess if an analogous behavior is
confirmed in experiments reproducing the exact conditions in [21, Section 2].
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Figure 6: Neighborhood overlap with respect to fold (A), super-family (B), and family (C) ground
truth classes for ESM single-sequence models.

Figure 7: First nearest neighbor SCOPe super-family retrieval accuracy of ESM-1b and Prot-T5-XL-
U50 is higher in PL layers.
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