

EUGENe: A Python toolkit for predictive

analyses of regulatory sequences
Adam Klie1,2, Hayden Stites3, Tobias Jores4, Joe J Solvason1,2,5, Emma K Farley1,2,5, and
Hannah Carter1,2#

1Department of Medicine, University of California San Diego, La Jolla, CA 92093
2Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA
92093
3Daniel Hand High School, Madison, CT 06443
4Department of Genome Sciences, University of Washington, Seattle, WA 98195
5Department of Biological Sciences, University of California San Diego, La Jolla, CA 92093

#Correspondence to Hannah Carter (hkcarter@ucsd.edu)

Abstract

Deep learning (DL) has become a popular tool to study cis-regulatory element function. Yet efforts

to design software for DL analyses in genomics that are Findable, Accessible, Interoperable and

Reusable (FAIR) have fallen short of fully meeting these criteria. Here we present EUGENe

(Elucidating the Utility of Genomic Elements with Neural Nets), a FAIR toolkit for the analysis of

labeled sets of nucleotide sequences with DL. EUGENe consists of a set of modules that

empower users to execute the key functionality of a DL workflow: 1) extracting, transforming and

loading sequence data from many common file formats, 2) instantiating, initializing and training

diverse model architectures, and 3) evaluating and interpreting model behavior. We designed

EUGENe to be simple; users can develop workflows on new or existing datasets with two

customizable Python objects, annotated sequence data (SeqData) and PyTorch models

(BaseModel). The modularity and simplicity of EUGENe also make it highly extensible and we

illustrate these principles through application of the toolkit to three predictive modeling tasks. First,

we train and compare a set of built-in models along with a custom architecture for the accurate

prediction of activities of plant promoters from STARR-seq data. Next, we apply EUGENe to an

RNA binding prediction task and showcase how seminal model architectures can be retrained in

EUGENe or imported from Kipoi. Finally, we train models to classify transcription factor binding

by wrapping functionality from Janngu, which can efficiently extract sequences in BED file format

from the human genome. We emphasize that the code used in each use case is simple, readable,

and well documented (https://eugene-tools.readthedocs.io/en/latest/index.html). We believe that

EUGENe represents a springboard toward a collaborative ecosystem for DL applications in

genomics research. EUGENe is available for download on GitHub

(https://github.com/cartercompbio/EUGENe) along with several introductory tutorials and for

installation on PyPi (https://pypi.org/project/eugene-tools/).

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted November 9, 2022. ; https://doi.org/10.1101/2022.10.24.513593doi: bioRxiv preprint

mailto:hkcarter@ucsd.edu
https://eugene-tools.readthedocs.io/en/latest/index.html
https://github.com/cartercompbio/EUGENe
https://pypi.org/project/eugene-tools/
https://doi.org/10.1101/2022.10.24.513593
http://creativecommons.org/licenses/by-nc-nd/4.0/

Introduction

Cracking the cis-regulatory code that governs gene expression remains one of the great

challenges in genomics research. Since the completion of The Human Genome project1, we have

witnessed efforts to annotate the human genome that have generated an immense amount of

functional genomics data2,3 and candidate regulatory elements4. This data has in turn powered

machine learning methods aimed at predicting the functional readouts of these sequences such

as histone marks5, chromatin accessibility6, 3D conformation7, and gene expression8. Deep

learning (DL) has become especially popular in this space, and has been successfully applied to

tasks such as DNA and RNA protein binding motif detection9–12, chromatin state prediction13–23,

transcriptional activity prediction16,24–27 and 3D contact prediction28,29. Recently, complementary

models have been developed to predict data from massively parallel reporter assays (MPRAs) that

directly test the gene regulatory potential of candidate elements30–32. Most encouragingly, many of

these multilayered models go beyond state of the art (SOTA) predictive performance to generate

expressive representations of the underlying sequence that can be interpreted to better

understand the cis-regulatory code18,23,32.

Despite these advances, executing a deep learning workflow in genomics remains a considerable

challenge. Though model training has been substantially simplified by the continued development

of dedicated DL libraries such as PyTorch33 and Tensorflow34, training nuances specific to

genomics data along with complex preprocessing and interpretation methods create an especially

high learning curve for performing analyses in this space. Though these libraries have built-in

support for methods and visualizations of image and text-based data, utilities to handle genomics

data are lacking. On top of this, the heterogeneity in implementations of most code associated

with publications greatly hinders extensibility and reproducibility. These conditions often make the

development of genomics DL workflows painfully slow even for experienced DL researchers and

potentially inaccessible to many others.

Accordingly, the genomics DL community has assembled several software packages35–40 that

each aim to address one or more of these challenges. However, each toolkit on its own does not

offer both comprehensive functionality and simplicity, and there remains a general lack of

interoperability between packages that is essential for sustained improvement and utility in the

fast-advancing field of DL. For instance, Kipoi37 greatly lowers the accessibility barrier to trained

models and published architectures, but does not provide a comprehensive framework for an end-

to-end DL workflow. Selene36 implements a library based in PyTorch for applying the full DL

workflow to new or existing models, but offers a limited programmatic interface and requires the

use of complex configuration files. Janggu38, one of the more comprehensive of the available

packages, provides extensive functionality for data loading and for training Keras models, but

offers limited support for PyTorch and limited functionality for model interpretation. More recently,

ENNGene39 was designed to create a simple graphical user interface (GUI) for non-computational

users, but offers limited programmatic customizability for more advanced users. Generally, there

is a need for a comprehensive toolkit in this space that follows FAIR data and software

principles41,42 and that is inherently designed to be simple and extensible.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted November 9, 2022. ; https://doi.org/10.1101/2022.10.24.513593doi: bioRxiv preprint

https://doi.org/10.1101/2022.10.24.513593
http://creativecommons.org/licenses/by-nc-nd/4.0/

Here we introduce EUGENe (Elucidating the Utility of Genomic Elements with Neural Nets), a

FAIR toolkit for the analysis of sequence-based datasets modeled after Scanpy43. In this work,

we first summarize the key functionality of the EUGENe package by describing each of the

modules it contains and their guiding principles. We then describe the two fundamental data

structures that give EUGENe its simplicity and extensibility in detail, namely SeqData and

BaseModel. Finally, we show the application of EUGENe to three separate sequence prediction

tasks: promoter activity prediction in plants, in vitro RNA binding prediction with SOTA model

architectures, and transcription factor binding classification from ChIP-seq data. In each, we

demonstrate the ability of simple and well-documented EUGENe code to achieve high predictive

performance and biological interpretability.

Results

The EUGENe workflow

A standard EUGENe workflow consists of the 3 main stages outlined in Figure 1: extracting,

transforming and loading (collectively ETL) data from common file formats (Figure 1a),

instantiating, initializing and training (collectively IIT) neural network architectures (Figure 1b),

and evaluating and interpreting (EI) learned model behavior on held-out data (Figure 1c). The

EUGENe package implements this workflow through several modules. Each module implements

functionality that is principally designed to be self-contained given the proper input data, but that

can interface with one or more other modules. We designed the workflow to be run within a

notebook interface via the EUGENe Python application programming interface (API). We discuss

the purpose and functionality of each module briefly below. For more information, see the tool’s

documentation pages (https://eugene-tools.readthedocs.io/en/latest/).

EUGENe currently supports loading DNA or RNA sequence inputs from CSV, NumPy, FASTA,

and a custom h5 file implementation we named H5SD (Figure 1a, dataload module). We also

have wrapped functionality from the Janggu package38 for reading sequences from BED, BAM

and BigWig files (external module, see JunD ChIP-seq binding classification section for

details). On top of allowing users to load their own datasets, we supply a collection of hand-

curated benchmarking datasets that are readily available for download and subsequent data

loading with a single function call (datasets module, Supplementary Table 1). All sequences and

metadata are loaded into a standardized SeqData format that EUGENe functions act on to

perform many standard per sequence preprocessing tasks (preprocess module) like reverse

complementation or one-hot encoding, as well as whole dataset functions like train and test set

splitting (e.g. by chromosome or by fraction) and target variable normalization (e.g. z-score,

clamping, etc.). EUGENe also offers functions for converting preprocessed data into training-

ready formats (e.g. PyTorch dataloaders) from SeqData and other more general Python objects

(e.g. NumPy arrays and Pandas DataFrames).

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted November 9, 2022. ; https://doi.org/10.1101/2022.10.24.513593doi: bioRxiv preprint

https://eugene-tools.readthedocs.io/en/latest
https://doi.org/10.1101/2022.10.24.513593
http://creativecommons.org/licenses/by-nc-nd/4.0/

Figure 1. EUGENe workflow for predictive analyses of regulatory sequences. The EUGENe workflow

can be broken up into three primary stages: a, data extraction, transformation and loading (ETL), b, model

instantiating, initializing and training (IIT), and c, model evaluation and interpretation (EI).

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted November 9, 2022. ; https://doi.org/10.1101/2022.10.24.513593doi: bioRxiv preprint

https://doi.org/10.1101/2022.10.24.513593
http://creativecommons.org/licenses/by-nc-nd/4.0/

EUGENe provides three classes of model architecture (models module) for users to work with:

Base, SOTA and Custom (Supplementary Table 2). As Base Models, we currently offer built-in

and customizable fully connected (FCN), convolutional (CNN), recurrent (RNN) and hybrid (a

combination of the three, Figure 1b) architectures that can be specified to incorporate information

from both the forward and reverse strand. We also offer simple functions for instantiating two

customizable architectures often used in benchmarking tasks (SOTA Models), DeepBind and

DeepSEA. Finally, we offer a route for users to design their own custom architectures (Custom

Models) that requires the implementation of only two functions (instantiation and forward

propagation) and provide a tutorial that walks through this process on EUGENe’s GitHub

(https://github.com/cartercompbio/EUGENe/blob/main/tutorials/adding_a_model_tutorial.ipynb).

To train instantiated models and handle standard tasks like optimizer configuration and metric

logging, EUGENe relies on the PyTorch Lightning (PL) framework (train module). Though

EUGENe’s PL wrappers offer valuable abstraction from many boilerplate implementation tasks,

the framework also gives users the flexibility necessary to design custom architectures and

training schemes (e.g. custom optimizers, loss functions, etc.) if desired. We also provide a set of

wrapper functions for utilizing trained PyTorch and Keras models and architectures from the Kipoi

model zoo37 (external module).

Interpretation of trained models has been crucial for deciphering aspects of the cis-regulatory

code and is a core aspect of the EUGENe workflow (interpret module, Figure 1c). There are

many strategies for model interpretation in genomics44–51, but three categories are repeatedly

used and thus implemented in EUGENe: filter visualization, feature attribution and in silico

experimentation (Supplementary Figure 1). Filter visualization is applicable to model

architectures that begin with a set of convolutional filters and involves using the set of sequences

that significantly activate a given filter (maximally activating subsequences) to generate a position

frequency matrix (PFM) (Supplementary Figure 1a). Multiple methods exist for choosing the

maximally activating subsequences and we have implemented two of them so far in EUGENe9,17.

The PFM can then be converted to a position weight matrix (PWM), visualized as a sequence

logo and annotated with tools like TomTom52 using databases of known motifs such as JASPAR53

or HOCOMOCO54. Feature attribution involves using the trained model to score every nucleotide

of the input on how it influences the downstream prediction for that sequence (Supplementary

Figure 1b). In EUGENe, we currently implement or integrate several common feature attribution

approaches, including standard in silico saturation mutagenesis (ISM), InputXGradient55,

DeepLIFT55 and GradientSHAP56. Finally, EUGENe offers a simple set of functions that use

trained models as in silico oracles to perform sequence evolution and feature implantation

experiments (Supplementary Figure 1c).

Data visualization is another key component of the EUGENe workflow (plotting module). We

provide a large suite of functions for performing exploratory data analysis, generating

performance summaries and visualizing model interpretations that all utilize the Matplotlib57 and

Seaborn58 libraries. This gives users the flexibility to customize the plots they generate with

EUGENe.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted November 9, 2022. ; https://doi.org/10.1101/2022.10.24.513593doi: bioRxiv preprint

https://github.com/cartercompbio/EUGENe/blob/main/tutorials/adding_a_model_tutorial.ipynb
https://doi.org/10.1101/2022.10.24.513593
http://creativecommons.org/licenses/by-nc-nd/4.0/

Building workflows through SeqData and BaseModel

To promote a streamlined data analysis process, we introduce SeqData (Figure 2a), a Pythonic

data structure modeled after the popular AnnData used in the single cell field59. Almost all

functionality in EUGENe is designed to act on and modify these standardized objects that act as

organized containers for DNA and RNA sequences (seqs, rev_seqs), sequence representations

(ohe_seqs, ohe_rev_seqs), and sequence annotations (seqs_annot, e.g. training targets), Data

are loaded into SeqData by pointing to files on disk or by calling for a specific dataset defined in

the datasets module (Figure 2a). Once created, an array of functions can be called directly on

these objects to perform preprocessing (Figure 2a), data visualization (Figure 2b) and data

conversion to formats ingestible by deep learning frameworks (Figure 2c). Trained models can

be used to make predictions on sequences stored in SeqData, and these predictions are stored

and automatically accessed by functions that generate performance visualizations. Filter

visualization, feature attribution and in silico experimentation can all be run through SeqData

objects, generating per sequence and per dataset features stored in the sequence metadata and

unstructured data (uns) attributes. These features can then be used to generate powerful

sequence visualizations such as sequence and motif logos (Figure 2d) or dimensionality reduced

clusterings (the latter stored in the object’s multidimensional attribute seqsm). Furthermore,

SeqData and functions that act on SeqData are intentionally implemented as simple wrappers

around widely used Python data structures (NumPy arrays, Pandas DataFrames, etc.) to enable

the user to utilize the functionality of many standard Python libraries.

The standardized way of instantiating, initializing and training neural network architectures in

EUGENe are BaseModel objects. We offer two main ways of instantiating model architectures:

single function calls or configuration files with simple structure (Figure 2e, left). Custom

architectures can also be imported from Kipoi or written from scratch with users only needing to

define the architecture (init function) and the way forward propagation is handled (forward

function) (Supplementary Figure 2a). After instantiation, models can be initialized with all the

starting parameters sampled from popular distributions, or in the special case of convolutional

filters, initialized with known motifs (Figure 2e, right). Once initialized, models can be fit to

datasets (Figure 2f) by specifying the input sequence length, the number of outputs, the strand

information to incorporate (i.e. whether to include reverse complement strand information and

how to incorporate it) and the task type (e.g. regression versus classification). At a technical level,

this is done using a PL implementation of BaseModel that handles the boilerplate aspects of

model optimization, including but not limited to: optimizer and loss function configuration, training

and validation set looping and metric logging. For many tasks, we find the built-in training scheme

to be sufficient. However, due to the inherent flexibility of PL, more advanced users can customize

almost all aspects of their model training strategy. For instance, custom training loops can be

defined for models that implement multipart loss functions or use multiple optimizers60–62 (e.g. for

variational autoencoders and generative adversarial networks respectively). (Supplementary

Figure 2b). Once trained, models can be applied to held-out data to assess performance and

generalizability (Figure 2g) or used as feature extractors for transfer learning approaches

(Supplementary Figure 2c). Trained models can then be interpreted with function calls that store

visualizable results directly in SeqData (Figure 2d, h).

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted November 9, 2022. ; https://doi.org/10.1101/2022.10.24.513593doi: bioRxiv preprint

https://doi.org/10.1101/2022.10.24.513593
http://creativecommons.org/licenses/by-nc-nd/4.0/

Figure 2. EUGENe maintains simplicity by operating on two fundamental objects: SeqData and

BaseModel. a, SeqData objects can be read into memory from files already on disk, or by calling for a

dataset available for download (datasets.csv). Once instantiated, SeqData objects containerize the

EUGENe workflow, easing the preprocessing of sequences and of sequence metadata, b, the generation

of exploratory data analysis plots, c, the creation of PL loadable datasets and objects, and d, the

visualization of sequences and positional metadata as logos. e, A model can be instantiated either from a

configuration file that specifies the hyperparameters of the model or from the API with hyperparameters

passed in as arguments. Instantiated architectures can first be initialized with a desired initialization

scheme, then f, fit to training data, g, used to predict on held-out data, and h, interpreted. Performance

metric (right) training curves are pictured in f, test set performance curves for regression (left) and

classification (right) are depicted in g, and a toy feature attribution matrix for a single sequence is depicted

in h.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted November 9, 2022. ; https://doi.org/10.1101/2022.10.24.513593doi: bioRxiv preprint

https://doi.org/10.1101/2022.10.24.513593
http://creativecommons.org/licenses/by-nc-nd/4.0/

EUGENe use cases

STARR-seq plant promoter activity prediction

To showcase the functionality of EUGENe, we applied the toolkit to three example use cases,

each of which highlights core aspects of the workflow on different data types and training tasks.

We first used EUGENe to analyze published data from a STARR-seq assay of plant promoters31

(Figure 3a). In this work, Jores et al selected promoter sequences from -165 to +5 relative to the

annotated TSS for protein-coding and mircoRNA (miRNA) genes of Arabidopsis thaliana, Zea

mays (maize) and Sorghum bicolor. A total of 79,838 170-bp promoters were used to transiently

transform two separate plant systems, tobacco leaves and maize protoplasts, and regulatory

activity was quantified using plant STARR-seq63 in each system. These assays provide two

activity scores that can serve as single task regression targets for training EUGENe models.

We first made this dataset readily loadable through the EUGENe datasets module (as jores21)

and implemented both the custom BiConv1D layer64 and CNN architecture (Jores21CNN)

described in Jores et al. We then trained separate Jores21CNN architectures for predicting

tobacco leaf activity scores (leaf models) and maize protoplast activity scores (protoplast models)

and benchmarked them against built-in CNN and Hybrid architectures with matched

hyperparameters (Supplementary Table 3). To perform training as described in Jores et al (see

Methods), we initialized 78 filters of the first convolutional layer of all models with position weight

matrices of plant transcription factor (n=72) and core promoter element (n=6) PWMs31. The rest

of the parameters of each model were randomly initialized 5 separate times and trained to assess

reproducibility. In the leaf system, we noted similar performances across architectures on held-

out test data (Figure 3b), with the Hybrids and CNNs outperforming Jores21CNNs when

evaluated by variance explained (R2). We observed the opposite trend for protoplast models,

where Jores21CNNs performed better than built-in CNNs and Hybrids (Figure 3b). In both

systems, all performance metrics for the most predictive models were comparable to those

reported in Jores et al (Supplementary Figure 3a, Supplementary Table 4). We also trained

models on activity scores from both leaves and protoplasts (combined models) and noted a

marked drop in performance (Supplementary Figure 3b), underscoring the differences in the

way the leaf and maize systems interact with the same set of promoters31.

We next applied several of EUGENe’s interpretation functions to the trained models to determine

the sequence features each used to predict plant promoter activity. First, we used a filter

visualization approach17 to generate PWM representations for each of the first convolutional

layer’s filters (Supplementary Figure 1a) and applied the TomTom tool to annotate them

(Supplementary Table 5). We queried the PWMs against the 78 motifs used to initialize the

convolutional layers, both to determine if the initialized filters retained their motifs and to see if

randomly initialized filters learned them de novo. For the leaf model, many of the learned filters

were annotated to the core promoter elements, including the TATA box binding motif that was

assigned to 32 filters (Figure 3cd). No learned filters from the protoplast model were assigned a

significant annotation by TomTom (Supplementary Figure 3c), consistent with the observed

performance drop in this system (Supplementary Figure 3a). Next, we applied the DeepLIFT

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted November 9, 2022. ; https://doi.org/10.1101/2022.10.24.513593doi: bioRxiv preprint

https://doi.org/10.1101/2022.10.24.513593
http://creativecommons.org/licenses/by-nc-nd/4.0/

Figure 3. EUGENe models identify the TATA box and several TF motifs to accurately predict

regulatory activity. a, jores21 use case schematic. We trained EUGENe models to predict the regulatory

activity of 79,838 plant promoters quantified by plant STARR-seq in tobacco and maize. b, Performance

comparison of three convolution-based architectures on predicting promoter activity in tobacco leaves (left)

and maize protoplasts (right). The boxplots show distributions of R2 values on held-out test data for each

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted November 9, 2022. ; https://doi.org/10.1101/2022.10.24.513593doi: bioRxiv preprint

https://doi.org/10.1101/2022.10.24.513593
http://creativecommons.org/licenses/by-nc-nd/4.0/

architecture across 5 random initializations. c, A hand selected set of convolutional filters visualized as

PWM logos that had significant annotations to known core promoter elements (CPE) and transcription factor

(TF) binding clusters in plants d, Histogram showing the number of learned filters assigned to CPEs and

TF binding clusters by TomTom with bolded annotations corresponding to the logos in c. e, Sequence logo

visualizations of feature importance scores calculated using the DeepLIFT algorithm on the highest

predicted test set sequence in the leaf (top) and protoplast (bottom) model. f, Model scores for 310

sequences implanted with a 16bp sequence containing a consensus TATA box motif, a shuffled version of

the same sequence, an all zeros sequence and a random sequence (all 16bp in length). The 95%

confidence interval is shown. g, Model scores for the same set of 310 promoters at different rounds of

evolution compared against baseline predictions (evolution round 0). The best leaf model was used to

generate panels c, d, f and g (protoplast model results are shown in Supplementary Figure 3). *p < 0.05,

**p<0.01, ns = not significant. Mann-Whitney U test p-values corrected by the Benjamini-Hochberg method.

method65 to determine the individual nucleotide contributions for each test set sequence

prediction (Supplementary Figure 1b). For many of the sequences with the highest observed

activity scores, the TATA box motifs were often the lone salient feature identified (Figure 3e,

Supplementary Figure 3d). In fact, when only a TATA box motif was inserted into every possible

position in each of 310 selected promoters (Supplementary Figure 1c), we observed an 142%

average increase in predicted activity across insertion positions and sequence contexts for the

leaf model (Figure 3f, Supplementary Figure 3e). We also noted that the magnitude of the

increase was dependent on position of insertion66, with the highest increases in predictions

observed directly upstream of the TSS (Figure 3f, Supplementary Figure 3e). Finally, we

performed 10 rounds of in silico evolution on the same set of 310 promoters as described in Jores

et al (Supplementary Figure 1c). Almost all starting promoters showed a significant increase in

predicted activity after just three mutations (Figure 3g, Supplementary Figure 3f). These results

showcase a representative example of the way EUGENe’s interpretation suite can be used to

identify key features of the cis-regulatory code underlying gene expression.

In vitro RNA binding prediction with DeepBind

To highlight the versatility of EUGENe to handle different inputs and prediction tasks, we next

applied the toolkit to analyze RNA binding protein (RBP) specificity data first introduced in Ray et

al67 and analyzed with DL in Alipanahi et al9. In the latter work, they trained 244 CNN models

(DeepBind models) that each predicted the binding patterns of a single RBP on a set of 241,357

RNA probes (Figure 4a). The full probe set was designed to capture all possible RNA 9-mers at

least 16 times and was split into two balanced subsets, Set A and Set B, for training and validation

respectively (see Methods)67. Each RBP was incubated with a molecular excess of probes from

each subset (in separate experiments) and subsequently recovered by affinity purification. The

RNAs associated with each RBP were then quantified by microarray and subsequent

bioinformatic analysis68. This yielded a vector of continuous binding intensity values for each RBP

across the probe set that can be used for prediction.

To prepare for training, we first added this dataset to the datasets module (as ray13) and

implemented a flexible DeepBind architecture in EUGENe (see Methods). We randomly

initialized69 and trained 244 single task models using a nearly identical training procedure to

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted November 9, 2022. ; https://doi.org/10.1101/2022.10.24.513593doi: bioRxiv preprint

https://doi.org/10.1101/2022.10.24.513593
http://creativecommons.org/licenses/by-nc-nd/4.0/

Figure 4. Prediction of RNA binding specificity with single task (ST), multitask (MT) and pretrained

models (Kipoi). a, ray13 use case schematic. A set of 241,357 RNA probes were assayed against 244

RNA binding proteins (RBPs) to generate a 241,357 x 244 dimensional matrix of normalized intensity

values. b, Pearson correlations across four different metrics with each metric calculated from comparisons

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted November 9, 2022. ; https://doi.org/10.1101/2022.10.24.513593doi: bioRxiv preprint

https://doi.org/10.1101/2022.10.24.513593
http://creativecommons.org/licenses/by-nc-nd/4.0/

between observed (Set B) and predicted binding intensities (see Methods for more details on how each

metric is calculated). Each boxplot indicates a distribution of Pearson correlations across all 244 RBPs.

Ray et al, MatrixREDUCE, DeepBind and Observed intensities refer to correlations calculated from

predicted intensities reported in Alipanahi et al. Observed intensities and SetA refer to correlations

calculated using the intensities from Set A probes as the predicted intensities (see Methods). c,

Performance comparison scatterplots for ST models against MT models (left) and against Kipoi models

(right). Each dot indicates a comparison of the Pearson correlation between predicted and observed

intensities for two models on a single RBP. d, (top) A multitask filter with a TomTom significant annotation

for HNRNPA1L2 visualized as a PWM logo. (middle) A filter for the single task HNRNPA1L2 model with a

significant TomTom annotation for HNRNPA1L2. (bottom) The relationship between multitask performance

(using the Z-scored Pearson correlations of observed and predicted intensities) on the y-axis, against the

number of filters that were annotated with the corresponding RBP for that task on the x-axis. The

Spearman’s correlation coefficient and associated p-value are shown. e, Feature attributions for the

sequence with the highest observed intensity in the test set for HNRNPA1L2. The attributions were

calculated using InputXGradient for single task (top) and multitask (bottom) models. f, The InputXGradient

attribution scores for a random (top) and evolved (bottom) sequence after evolution with the HNRNPA1L2

single task model. Red dashed lines indicate mutations made during evolution and are annotated with the

round the mutation occurred in.

Alipanahi et al. However, we used the Adam optimizer70 instead of the stochastic gradient descent

algorithm and we used 32 filters in the convolutional layer instead of 16 (Supplementary Table

6). Along with these single task models, we also randomly initialized and trained a multitask model

to predict 233 RBP specificities (i.e. a 233 dimensional vector) in a single forward pass, excluding

11 RBPs due to a high proportion of missing values across probes in the training set. Our multitask

model had the same general architecture as the single task models (Supplementary Table 6),

but with an increased number of convolutional filters (1024 as opposed to 32 for single task

models) and a larger hidden layer size in the fully connected part of the model (512 as opposed

to 32 for single task models). We also loaded 89 existing Kipoi37 models trained on a subset of

human RBPs in the ray13 dataset.

To evaluate model performance, we implemented functionality for calculating k-mer based Z-

scores, AUCs and E-scores9,67 and added them to EUGENe’s metrics library in the evaluate

module (see Methods). All models were trained on probe intensity measurements from Set A and

evaluated with these metrics on measurements from Set B. By using k-mer based metrics, we

can evaluate the concordance between Set A and Set B even though they include different

sequence probes. We noted that the performance on Set B for all deep learning models was on

par with Set B’s correlation to Set A (Figure 4b, Supplementary Figure 4a) and both single task

and multitask models trained with EUGENe showed comparable performance to Kipoi and

DeepBind models (Figure 4bc, Supplementary Figure 4ab, Supplementary Table 7). The

reason for the poor observed performance of certain Kipoi models is not immediately clear, but

could relate to differences in sequence or target preprocessing prior to evaluation. Though the

ability to load these pretrained models from Kipoi is very useful for benchmarking, implementing

and retraining models is usually necessary for fair comparisons of performance. EUGENe

supports both loading and retraining models, allowing users to more quickly design and execute

quality benchmarking experiments.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted November 9, 2022. ; https://doi.org/10.1101/2022.10.24.513593doi: bioRxiv preprint

https://doi.org/10.1101/2022.10.24.513593
http://creativecommons.org/licenses/by-nc-nd/4.0/

We also observed similar levels of performance of single and multitask models across metrics

(Figure 4bc, Supplementary Figure 4ab), consistent with the successful application of multitask

models to the prediction of chromatin state from DNA input in bulk and single cells13–23. Using a

multitask model offers much less training overhead and faster inference times than training 100s

of single task models across tasks. Overall, in both the multitask and single task frameworks, we

can train several high performing predictors of RBP specificity across more than 200 RBPs.

We next applied EUGENe’s interpretation suite to our trained models, first using the filter

visualization approach outlined in Alipanahi et al to generate PFMs for convolutional filters. We

again used TomTom to identify filters annotated with canonical RBP motifs67 in both the best

performing single task models and the multitask model (Figure 4d, Supplementary Figure 4c,

Supplementary Table 8) and found that the number of multitask filters annotated to an RBP was

correlated with predictive performance for that RBP (Figure 4d). We also calculated feature

attributions for all Set B sequences using the InputXGradient method and observed that canonical

motifs were learned by both single task and multitask models (Figure 4e, Supplementary Figure

4d). Finally, we used EUGENe’s in silico functionality to evolve 10 random sequences using the

single task HNRNPA1L2 model and visualized the feature attributions for these 10 sequences

before and after five rounds of evolution. Several of the mutations that most increased the predicted

score were those that generated canonical binding motifs for the protein (Figure 4f). We repeated

this for two other RBPs (Pcbp2 and NCU02404) and observed that each model prioritizes

mutations that create canonical binding motifs specific to the RBP they were trained on

(Supplementary Figure 4e). Altogether, these results show that EUGENe simplifies the

extraction of salient features from models trained within the same workflow.

JunD ChIP-seq binding classification

As our final use case and to further demonstrate extensibility, we applied EUGENe to the

classification of JunD binding as described in Kopp et al38. This task utilizes ChIP-seq data from

ENCODE2 to generate input sequences and binarized classification labels for each sequence

(Figure 5a). Briefly, regions of interest (ROIs) were defined by extending called peaks by

10,000bp in each direction. These ROIs were then segmented into non-overlapping 200bp bins,

with bins that overlap the original peak assigned a positive label and all others assigned a negative

label. The genomic sequences represented by each bin were then extended in each direction to

increase the context seen as input (150bp in this case for a final input length of 500bp) and used

to train neural network classifiers. To first build a DL ready dataset for this prediction task, we

wrapped data loading functions from the Janggu package38. These functions allow EUGENe

users to directly read data from BED, BAM and BigWig file formats into SeqData objects. We then

implemented the CNN architecture described in Kopp et al (Kopp21CNN) and benchmarked

classification performance against built-in FCNs, CNNs, and Hybrid models with matched

hyperparameters (Supplementary Table 9). All models were configured to incorporate

information from both the forward and reverse strand (double stranded or “ds” models).

We trained models using the same procedure described in Kopp et al (see Methods)38, again

with 5 random initializations per architecture to assess reproducibility. Due to the unbalanced

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted November 9, 2022. ; https://doi.org/10.1101/2022.10.24.513593doi: bioRxiv preprint

https://doi.org/10.1101/2022.10.24.513593
http://creativecommons.org/licenses/by-nc-nd/4.0/

Figure 5. JunD ChIP-seq binding prediction identifies JunD motifs. a, kopp21 use case schematic. We

used Janggu data loaders to load in a set of 11,086 ChIP-seq peaks for JunD and to generate positive and

negative sets for JunD binding prediction. The data loaders take in a set of regions of interest (ROIs) along

with peaks and a bin size and output a set of labeled sequences for each bin in the ROI. Bins are labeled

as positive (1) if they overlap a peak and negative (0) if they do not. Upon loading, each sequence is

extended by 150bp in each direction to provide more sequence context for prediction. b, c auPRCs on held-

out test data from chromosome 3 for JunD binding classification across four double-stranded architectures

b, A boxplot across 5 random initializations of each model. c, auPR curves for the best models from each

architecture. d, Feature attribution sequence logos for the top predicted sequence. The top row shows

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted November 9, 2022. ; https://doi.org/10.1101/2022.10.24.513593doi: bioRxiv preprint

https://doi.org/10.1101/2022.10.24.513593
http://creativecommons.org/licenses/by-nc-nd/4.0/

attributions from the forward strand and the bottom row from the reverse strand. Attributions were calculated

using GradientSHAP. e, A selected set of convolutional filters visualized as PWM logos with significant

annotations from TomTom. f, Model scores for 10 random sequences with consensus JunD motif implanted

at each possible location. 95% confidence intervals of scores are also shown. The boxplot shows the

distribution of scores for the random sequences prior to JunD motif implantation. *p < 0.05, ns = not

significant. Mann-Whitney U test p-values corrected by the Benjamini-Hochberg method.

nature of the dataset, we focused on evaluating models with the area under the precision recall

curve (auPRC). For our Kopp21CNNs, we were able to achieve comparable performances on

held out chromosome 3 sequences to those reported by Kopp et al for one-hot encoded

sequences (Figure 5bc, Supplementary Table 10). The dsFCN, the only model without any

convolutional layers, immediately overfit the data after a single training epoch and was not at all

predictive of binding (Figure 5c). The dsCNN models, however, achieved higher auPRCs than

both the dsHybrid and Kopp21CNN architectures.

We next applied EUGENe’s interpretation tools to ask whether our best models were learning

sequence features relevant to JunD binding to make predictions. We first generated feature

attribution scores for the forward and reverse complement strands of all test set sequences using

the GradientSHAP method and visualized the most highly predicted sequences as sequence

logos (Figure 5d, Supplementary Figure 5a). We observed that the most important nucleotides

often highlighted consensus or near consensus JunD motifs and that these motifs were often

attributed similarly on both the forward and reverse strands (Figure 5d, Supplementary Figure

5a). However, there were instances where a salient motif was highlighted on one strand but not

the other (Figure 5d, Supplementary Figure 5a). Figure 5d shows one such instance where a

CTCF binding site is highlighted on the reverse strand but not the forward strand, indicating the

utility of incorporating information from both strands for prediction. We next generated PFM

representations for all 10 filters of each convolutional model (excluding dsFCNs) and annotated

them using TomTom against the HOCOMOCO database54 (Figure 5e, Supplementary Figure

5b, Supplementary Table 11). Among the top hits, we found several filters annotated with motifs

such as JunD and CTCF (Figure 5e, Supplementary Figure 5b). Finally, we performed an in

silico experiment with the best dsCNN model where we slid a consensus JunD motif across each

position of a set of 10 randomly generated sequences and predicted binding (Figure 5f). We

observed that the simple inclusion of the consensus binding site led to a significant jump in

predicted output with some position specificity. These results once again showcase that

EUGENe’s interpretation methods can help explain model predictions, in this case for DNA protein

binding from a genome wide assay.

Discussion

Despite numerous recent advances and successes in the space, the progress of DL in regulatory

genomics has been hindered by the fragmented nature of the set of tools, methods and data that

exist across the field. With EUGENe, we seek to integrate many of these aspects into an

ecosystem of Python software that provides users with unprecedented functionality. We designed

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted November 9, 2022. ; https://doi.org/10.1101/2022.10.24.513593doi: bioRxiv preprint

https://doi.org/10.1101/2022.10.24.513593
http://creativecommons.org/licenses/by-nc-nd/4.0/

EUGENe to streamline the development of DL workflows in genomics by creating a simplified

interface for loading and preparing sequence datasets, instantiating and training neural networks,

and evaluating and interpreting trained models. We introduced two data structures that form the

basis of EUGENe workflows, SeqData and BaseModel, that allow for both abstraction from and

control over the technical details of the workflow. Finally, we demonstrated the versatility of the

toolkit by implementing, training and interpreting a variety of regression and classification

architectures to model three distinct tasks and datasets.

The single cell field is a particularly attractive guide for developing such an ecosystem. By creating

standards for data structures, user interfaces, documentation pages and coding principles, tools

such as Scanpy43, scVI61 and muon71 have greatly simplified single cell workflows. We mimicked

the structure of many of the tools that sit within the overall single cell software universe by making

EUGENe highly modular and wholly contained within the larger Python ecosystem (Pandas,

NumPy, scikit-learn, etc.). This gives future contributors the power to easily extend and integrate

the functionality currently available in our tool.

There are numerous opportunities for future development of EUGENe, but we see a few as high

priority. EUGENe is primarily designed to work on nucleotide sequence input (DNA and RNA),

but currently does not have dedicated functions for handling protein sequence or multi-modal

inputs. As assays move from bulk to single cell resolution, it will also be important to develop

functionality for handling single cell data that allows users to easily ask questions about cell type

specific regulatory syntax. Furthermore, we note that SeqData objects currently must be read

entirely into memory, which can be a bottleneck for training on very large datasets or with limited

compute resources. AnnData59 and Janggu38 are capable of loading views of data that are never

fully stored in memory and we anticipate updating SeqData to behave in a similar manner. We

also do not currently offer any dedicated functionality for hyperparameter optimization. Though

users familiar with libraries like RayTune72 and Optuna73 could still utilize many of the objects and

functions provided by EUGENe to generate their own hyperoptimization routines, we plan on

developing simplified wrappers for performing hyperparameter optimizations (and other training

routines) that are native to EUGENe in the future. Similarly, though any user could develop their

own methods for benchmarking EUGENe models against shallow machine learning models like

gkm-SVMs74 or random forests75, we plan on integrating functionality for automating this process.

Finally, we plan on expanding EUGENe’s dataset, model, metric and interpretation45–49,51 library

to encompass a larger portion of those available in the field.

As large consortia (such as ENCODE Phase 4 and Impact of Genomic Variation on Function) and

individual groups continue to generate functional genomics data at both the bulk and single cell

level, the need for a standardized deep learning analysis ecosystem to handle this data becomes

even more pressing. We believe that EUGENe represents a positive step in the direction of

developing such an ecosystem. Building off this work will allow computational scientists to rapidly

develop and share methods and models that answer important questions about the regulatory

sequence code.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted November 9, 2022. ; https://doi.org/10.1101/2022.10.24.513593doi: bioRxiv preprint

https://doi.org/10.1101/2022.10.24.513593
http://creativecommons.org/licenses/by-nc-nd/4.0/

Methods

Analysis of plant promoter data

Data acquisition and preprocessing

Plant promoter assay data were obtained from the GitHub repository associated with Jores et al.

These included two identical libraries for a set of 79,838 plant promoters synthesized with an

upstream viral 35S enhancer and downstream barcode tagged GFP reporter gene (Figure 3a).

The libraries were designed to include 10-20 constructs with distinct barcodes for each promoter.

These libraries were used to transiently transform both tobacco leaves and maize protoplasts and

promoter activities were assayed using plant STARR-seq63. Per barcode activity was calculated

as the ratio of RNA barcode frequency to DNA barcode frequency and the median of these ratios

was then used to aggregate across barcodes assigned to the same promoter. These aggregated

scores were then normalized by the median value for a control construct and were log transformed

to calculate a per promoter “enrichment” score. We downloaded these enrichment scores

(https://github.com/tobjores/Synthetic-Promoter-Designs-Enabled-by-a-Comprehensive-

Analysis-of-Plant-Core-Promoters/tree/main/CNN) for both libraries as separate datasets which

we could use as training targets. We used the identical 90/10 training and test split used in Jores

et al (the dataset could be downloaded with set labels). The training set was further split into 90/10

train and validation sets. All sequences were one-hot encoded using a channel for each letter of

the DNA alphabet (“ACGT”).

Model initialization and training

We implemented the Jores21CNN architecture by translating the Keras code in the associated

GitHub repository into PyTorch and integrating it into our library. We benchmarked this

architecture against built-in CNN and Hybrid architectures in EUGENe with the hyperparameters

described in Supplementary Table 3. In each convolutional layer, the Jores21CNN first applies

a set of filters to the input as is standard for convolutional models, but also applies the reverse

complements of the filters (as opposed to the reverse complement of the sequences) to each

input in an effort to capture information from both strands64. Since this still only requires a single

strand as input into the models, we opted to benchmark against only single stranded (ss) versions

of built-in CNN and Hybrid models. Following instantiation, we initialized 78 filters in the first

convolutional layer of each model using PWMs derived from core promoter elements and

transcription factor binding clusters downloaded from the GitHub repository

(https://github.com/tobjores/Synthetic-Promoter-Designs-Enabled-by-a-Comprehensive-

Analysis-of-Plant-Core-Promoters/tree/main/data/misc) associated with the publication. All other

parameters were initialized by sampling from the Kaiming normal distribution69. We trained

models for a maximum of 25 epochs with a batch size of 128 and used the Adam optimizer with

a starting learning rate of 0.001. We also included a learning rate scheduler that modified the

learning rate during training with a patience of 2 epochs. We used mean squared error as our

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted November 9, 2022. ; https://doi.org/10.1101/2022.10.24.513593doi: bioRxiv preprint

https://github.com/tobjores/Synthetic-Promoter-Designs-Enabled-by-a-Comprehensive-Analysis-of-Plant-Core-Promoters/tree/main/CNN
https://github.com/tobjores/Synthetic-Promoter-Designs-Enabled-by-a-Comprehensive-Analysis-of-Plant-Core-Promoters/tree/main/CNN
https://github.com/tobjores/Synthetic-Promoter-Designs-Enabled-by-a-Comprehensive-Analysis-of-Plant-Core-Promoters/tree/main/data/misc
https://github.com/tobjores/Synthetic-Promoter-Designs-Enabled-by-a-Comprehensive-Analysis-of-Plant-Core-Promoters/tree/main/data/misc
https://doi.org/10.1101/2022.10.24.513593
http://creativecommons.org/licenses/by-nc-nd/4.0/

objective function and stopped training early if the validation set error did not decrease after 5

epochs.

Model evaluation and interpretation

Models were primarily evaluated using the percentage of variance explained (R2) on predictions

for the test set. We repeated the above training procedure across 5 independent random

initializations and evaluated R2 scores across these trials. For PWM visualization, we used the

approach described in Minnoye et al17. Briefly, for each filter in the first convolutional layer, we

calculated activations for all subsequences (of the same length as the filter) within the test set

sequences. We then took the top 100 subsequences corresponding to the top 100 activations

(maximally activating subsequences) and generated a PFM. For visualizing filters as sequence

logos, we converted PFMs to PWMs using a uniform background nucleotide frequency. We

calculated feature attributions for all test set sequences using the DeepLIFT method. To perform

the feature implantation approach, we downloaded the 16bp PFM containing the consensus TATA

box motif from the Jores et al GitHub repository and one-hot encoded it by taking the highest

probability nucleotide at each position. We also downloaded the set of 310 promoters

(https://github.com/tobjores/Synthetic-Promoter-Designs-Enabled-by-a-Comprehensive-

Analysis-of-Plant-Core-

Promoters/blob/main/analysis/validation_sequences/promoters_for_evolution.tsv) used in Jores

et al for in silico evolution. We then implanted the TATA box containing sequence at every

possible position of each of the 310 promoter sequences and used the best performing models

(one each from leaf, protoplast and combined) to make predictions. We compared this to

predicted scores generated with the same feature implantation approach using a dinucleotide

shuffled version of the 16bp sequence containing the TATA box motif, a random 16bp one-hot

encoded sequence, and a 16bp all zeros input. We performed the in silico evolution experiments

on the same set of 310 promoter sequences31,62. In each round, we first used in silico saturation

mutagenesis to identify the mutation that increased the model score by the largest positive value

(delta score). We then introduced this mutation into the sequence and repeated this for 10

iterations.

Analysis of RNA binding data

Data acquisition and preprocessing

As described in detail in Alipanahi et al, a set of 241,357 31-41nt long RNA probes were split into

two experimental sets, Set A and Set B, with each designed to include all possible 9-mers at least

eight times, all possible 8-mers at least 33 times and all possible 7-mers 155 times (Figure 4a).

These probes were assayed against 244 RBPs using a protein binding microarray (PBM)68, and

intensities were normalized as described in Ray et al67. We downloaded the normalized RNA

probe binding intensity matrix from the Ray et al supplementary information

(http://hugheslab.ccbr.utoronto.ca/supplementary-data/RNAcompete_eukarya/norm_data.txt.gz)

and separated the Set A and Set B sequences into two distinct groups. To remove outliers, we

set all values of probe intensities to be capped at the 99.95 percentile for each prediction task

(RBP). We then Z-scored the clamped values to zero mean and unit standard deviation for each

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted November 9, 2022. ; https://doi.org/10.1101/2022.10.24.513593doi: bioRxiv preprint

https://github.com/tobjores/Synthetic-Promoter-Designs-Enabled-by-a-Comprehensive-Analysis-of-Plant-Core-Promoters/blob/main/analysis/validation_sequences/promoters_for_evolution.tsv
https://github.com/tobjores/Synthetic-Promoter-Designs-Enabled-by-a-Comprehensive-Analysis-of-Plant-Core-Promoters/blob/main/analysis/validation_sequences/promoters_for_evolution.tsv
https://github.com/tobjores/Synthetic-Promoter-Designs-Enabled-by-a-Comprehensive-Analysis-of-Plant-Core-Promoters/blob/main/analysis/validation_sequences/promoters_for_evolution.tsv
http://hugheslab.ccbr.utoronto.ca/supplementary-data/RNAcompete_eukarya/norm_data.txt.gz
https://doi.org/10.1101/2022.10.24.513593
http://creativecommons.org/licenses/by-nc-nd/4.0/

RBP. All normalizations were performed using Set A statistics (i.e. Set B values were z-scored

using means and standard deviations from Set A). For multitask prediction, we removed the 11

RBPs with ≥ 0.1% missing values across all probes in Set A, and further removed all probes in

Set A that had any missing values for any of the remaining 233 RBPs. This left 120,326 and

110,645 probes for training single task and multitask models respectively and 121,031 in Set B

for testing. Set A was then further split 80/20 into a training and validation set. All sequences were

one-hot encoded using a channel for each of the RNA alphabet (“ACGU”) for input into models.

Model initialization and training

We implemented the DeepBind architecture

(https://github.com/cartercompbio/EUGENe/blob/main/eugene/models/_sota_models.py)

described in the Supplementary Information (https://static-

content.springer.com/esm/art%3A10.1038%2Fnbt.3300/MediaObjects/41587_2015_BFnbt3300

_MOESM51_ESM.pdf) of Alipanahi et al and added it as a EUGENe SOTA model. DeepBind

architectures were initially designed to take either the forward strand (ss) or both strands (ds) as

input. However, Alipanahi et al trained their RBP models with just the single strand input due to

the single stranded nature of RNA, so we also used a single stranded (ss) implementation for our

DeepBind models. We initialized both the single task models and the multitask model with

parameters sampled from the Kaiming normal distribution69 and trained all models for a maximum

of 25 and 100 epochs respectively, using the Adam optimizer70 and a starting learning rate of

0.005. We also included a learning rate scheduler that modified the learning rate during training

with a patience of 2 epochs. The batch size for training was fixed to 64 and 1024 for single- and

multi- task models respectively and mean squared error was used as the objective function for all

models, with training halting if the validation set error did not decrease after 5 epochs. For

multitask models, we used the average mean squared error across all tasks. Hyperparameters

selected for the architectures of each model are provided in Supplementary Table 6. Finally, we

downloaded a set of 89 pretrained human RBP models

(https://kipoi.org/models/DeepBind/Homo_sapiens/RBP/) from Kipoi and wrapped functions from

the Kipoi package to make predictions using these models.

Model evaluation

We evaluated models using the Z-score, AUC and E-score metrics reported in Alipanahi et al. To

calculate these metrics, we first computed a binary n x m matrix A, where the n rows represent

all possible 7-mers from the RNA alphabet (AAAAAAA, AAAAAAC, AAAAAAG, etc.) and the m

columns represent the 121,031 probes assayed from Set B. Each entry aij in the matrix is 1 if the

ith k-mer is found in the jth probe, and 0 otherwise. Consider first working with a single RBP, in

which we have normalized binding intensity values for each of the 121,031 probes (m-dimensional

vector x). We compared the ith row (representing a k-mer) of the matrix A (an m-dimensional

vector) to the vector x of observed intensities and computed the Z-scores, AUCs and E-scores

for that k-mer as described in 9 and 67. We repeated this for all k-mers (across rows of A) to

generate an n dimensional vector for each metric meant to capture the importance of each k-mer

for binding that RBP. For Z-scores, 0 indicates an average level of binding when that k-mer is

present in the probe sequence, with more positive scores indicating higher levels of binding than

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted November 9, 2022. ; https://doi.org/10.1101/2022.10.24.513593doi: bioRxiv preprint

https://github.com/cartercompbio/EUGENe/blob/main/eugene/models/_sota_models.py
https://static-content.springer.com/esm/art%3A10.1038%2Fnbt.3300/MediaObjects/41587_2015_BFnbt3300_MOESM51_ESM.pdf
https://static-content.springer.com/esm/art%3A10.1038%2Fnbt.3300/MediaObjects/41587_2015_BFnbt3300_MOESM51_ESM.pdf
https://static-content.springer.com/esm/art%3A10.1038%2Fnbt.3300/MediaObjects/41587_2015_BFnbt3300_MOESM51_ESM.pdf
https://kipoi.org/models/DeepBind/Homo_sapiens/RBP/
https://doi.org/10.1101/2022.10.24.513593
http://creativecommons.org/licenses/by-nc-nd/4.0/

average when that k-mer is present. For AUC and E-scores (a modified AUC), the value is bound

between 0 and 1, with values closer to 1 indicating more binding when that k-mer is present. We

repeated this process for all models that predict probe intensities by substituting the predicted

intensities from a given model for the vector x of observed intensities. We generated a set of n

dimensional vectors for each model-metric pair (i.e. for a single task model, we have a vector for

Z-scores, a vector for E-scores and a vector for AUCs) then took each of these vectors and

calculated Pearson and Spearman correlations with the vector x from the observed Set B

intensities. This results in a pair of correlation values, one Pearson and one Spearman, describing

the performance of a given model on a specific RBP (these are single points in the boxplots shown

in Figure 4b and Supplementary Figure 4a). Repeating this process for all RBPs generates a

distribution of correlations for a given model.

We can use the same procedure on Set A observed intensities to generate a distribution of

correlations analogous to a biological replicate. These are the “Set A” and “Observed intensities”

columns of Figure 4b and Supplementary Figure 4a. We generated the distribution labeled “Set

A” in this way with our own implementation of these metrics and downloaded the “Observed

intensities” distribution from performance tables included in the supplement of Alipanahi et al.

Finally, we calculated Pearson and Spearman correlation coefficients for the observed and

predicted intensities on Set B for all models. Note that this is not possible to do for Set A since

the probes are different for this set, hence the omission of the “Set A” and “Observed intensities”

columns in the last boxplots of Figure 4b and Supplementary Figure 4a.

Model interpretation

For filter visualization, we used the approach described in Alipanahi et al. Briefly, for a given filter,

we calculated the activation scores for all possible subsequences (of the same length as the filter)

from Set B probes and identified the maximum value. We then used only the subsequences with

an activation at least 3/4ths of this maximum to generate a PFM for that filter. We repeated this

process for all 32 filters in each of the top 10 single task models and for all 1024 filters of the

multitask model. The top 10 single task models were chosen based on ranking of Pearson

correlations between observed and predicted intensity values. We then input all multitask PFMs

to TomTom for annotation against the Ray et al database and filtered for hits with a Bonferroni

multiple test corrected p-value ≤ 0.05. We calculated feature attributions for all Set B probes using

the InputXGradient method. For multitask models, feature attributions can be calculated on a per

task basis to determine how each nucleotide of the input sequence influenced that particular task.

We again only did this for a subset of RBPs, using the Pearson correlation of predicted and

observed intensities to choose the top 10 single task models and the top 10 predicted tasks for

the multitask model. We use the same in silico evolution method for this use case as we did for

the plant promoters. Using trained models for selected RBPs, we first performed 5 rounds of

evolution on 10 randomly generated sequences of 41nt in length (“ACGT” sampled uniformly).

We then calculated feature attributes for the initial random sequences and the evolved sequences

using the InputXGradient method and compared them.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted November 9, 2022. ; https://doi.org/10.1101/2022.10.24.513593doi: bioRxiv preprint

https://doi.org/10.1101/2022.10.24.513593
http://creativecommons.org/licenses/by-nc-nd/4.0/

Analysis of JunD binding data

Data acquisition and preprocessing

We followed the same procedure to acquire and preprocess the data for training models on the

prediction of JunD binding as reported in Kopp et al38. We started by downloading JunD peaks

from human embryonic stem cells (H1-hesc) called with the hg38 reference genome from

encodeproject.org (ENCFF446WOD, conservative IDR thresholded peaks, narrowPeak format).

We next defined regions of interest (ROIs) by extending the union of all JunD peaks by 10kb in

each direction. We removed blacklisted regions for hg38

(http://mitra.stanford.edu/kundaje/akundaje/release/blacklists/hg38-

human/hg38.blacklist.bed.gz) using bedtools76 and trimmed the ends of resulting regions to be

divisible into 200bp bins. For training and testing, we binned ROI’s into 200bp sequences and

labeled any of those that overlapped a JunD binding peak with a positive label and all non-

overlapping bins with a negative label. As input to models, we first extended each genomic bin by

150bp on each side (so that the model sees 500bp in total for each input when predicting on a

200bp site) and then one-hot encoded using a channel for each of the DNA alphabet (“ACGT”).

In total, we used 1,013,080 200bp bins for generating training, validation and test sets. We split

the sequences by chromosome so that validation sequences were from chr2 and test sequences

from chr3 (the rest were used for training).

Model initialization and training

For the JunD binding task, we first implemented the Kopp21CNN arhitecture decscribed in Kopp

et al by following the Keras code in the associated GitHub repository along with their description

of the layers in the Supplementary Information (https://static-

content.springer.com/esm/art%3A10.1038%2Fs41467-020-17155-

y/MediaObjects/41467_2020_17155_MOESM1_ESM.pdf). We then trained 5 random

initializations of dsFCNs, dsCNNs, dsHybrids and Kopp21CNNs, each with parameters sampled

from the Kaiming normal distribution. All models used both the forward and reverse strands as

input through the same architecture (ds). Following Kopp et al, we trained all models for a

maximum of 30 epochs with the AMSGrad optimizer77 and a starting learning rate of 0.001. The

batch size for training was fixed to 64 for all models and binary cross entropy was used as the

objective function, halting training if the validation set error did not decrease after 5 epochs.

Hyperparameters selected for the architectures of each model are provided in Supplementary

Table 9.

Model evaluation and interpretation

Models were primarily evaluated using the area under the precision recall curve (auPRC) as the

dataset was heavily imbalanced. We again performed model interpretation using feature

attributions, filter visualizations and in silico experimentation methods from EUGENe. We

calculated feature attributions for the forward and reverse strands of all test set sequences using

the GradientSHAP method. To visualize filters, we applied the approach from 17 and generated

PFMs. We fed these PFMs to the TomTom webserver and queried the HOCOMOCO CORE

database54. We subset filters down to those with a multiple test corrected p-value ≤ 0.05 and

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted November 9, 2022. ; https://doi.org/10.1101/2022.10.24.513593doi: bioRxiv preprint

http://mitra.stanford.edu/kundaje/akundaje/release/blacklists/hg38-human/hg38.blacklist.bed.gz
http://mitra.stanford.edu/kundaje/akundaje/release/blacklists/hg38-human/hg38.blacklist.bed.gz
https://static-content.springer.com/esm/art%3A10.1038%2Fs41467-020-17155-y/MediaObjects/41467_2020_17155_MOESM1_ESM.pdf
https://static-content.springer.com/esm/art%3A10.1038%2Fs41467-020-17155-y/MediaObjects/41467_2020_17155_MOESM1_ESM.pdf
https://static-content.springer.com/esm/art%3A10.1038%2Fs41467-020-17155-y/MediaObjects/41467_2020_17155_MOESM1_ESM.pdf
https://doi.org/10.1101/2022.10.24.513593
http://creativecommons.org/licenses/by-nc-nd/4.0/

manually inspected the top hits. These PWMs were visualized as logos using a uniform

background of nucleotide frequencies. We performed the in silico implantation experiment using

the JunD PFM downloaded from JASPAR (https://jaspar.genereg.net/matrix/MA0491.1). We

calculated model scores by generating 10 randomly generated sequences (uniformly sampled)

and implanting the consensus one-hot encoded JunD motif at every possible position. We

compared this to predicted scores from applying the same approach to a random one-hot

encoded sequence, an all zeros input and a dinucleotide shuffled JunD motif, all of the same

length as the consensus JunD motif.

Data visualization software

For most exploratory data analysis and performance evaluations, we used a combination of the

Seaborn and Matplotlib plotting libraries in Python. For sequence logo visualizations of filters and

feature attributions, we used modified functions from the viz_sequence package

(https://github.com/kundajelab/vizsequence), the seqlogo package

(https://github.com/betteridiot/seqlogo) and the logomaker package

(https://github.com/jbkinney/logomaker).

Statistical methods

Mann-Whitney U tests78 were used to compare performance distributions between architecture

types and p-values were corrected with the Benjamini-Hochberg method79. TomTom reports

significance of alignments of query motifs to a database using the methods described in 52. We

used the q-value reported by the webserver tool (https://meme-suite.org/meme/tools/tomtom) and

considered hits to be those alignments with a q-value ≤ 0.05 as significant. Figures for in silico

implantation of motifs included 95% confidence intervals.

Dataset availability

All datasets used in this study are publicly available. We have collected the specific dataset files

and trained models used in the analyses presented here at the following Zenodo link:

https://doi.org/10.5281/zenodo.7140082. These represent the raw and processed data files that

can be loaded into the EUGENe API to generate the figures in this work using the code linked

below. We also have included processed SeqData objects that can be used along with the

accompanying code to generate the figures for all use cases.

Code availability

EUGENe is freely available under the MITlicense at https://github.com/cartercompbio/EUGENe.

Documentation for the tool is available at https://eugene-

tools.readthedocs.io/en/latest/index.html. Jupyter notebooks and Python scripts used to perform

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted November 9, 2022. ; https://doi.org/10.1101/2022.10.24.513593doi: bioRxiv preprint

https://jaspar.genereg.net/matrix/MA0491.1
https://github.com/kundajelab/vizsequence
https://github.com/betteridiot/seqlogo
https://github.com/jbkinney/logomaker
https://meme-suite.org/meme/tools/tomtom
https://doi.org/10.5281/zenodo.7140082
https://github.com/cartercompbio/EUGENe
https://eugene-tools.readthedocs.io/en/latest/index.html
https://eugene-tools.readthedocs.io/en/latest/index.html
https://doi.org/10.1101/2022.10.24.513593
http://creativecommons.org/licenses/by-nc-nd/4.0/

the analyses presented in the use case section are available on GitHub at

https://github.com/adamklie/EUGENe_paper.

Acknowledgements

This work was supported by the National Institutes of Health [grant number 1U01HG012059];

infrastructure was funded by the National Institutes of Health [grant number 2P41GM103504-11];

T.J. is supported by the German Research Foundation [DFG; fellowship number 441540116].

E.K.F and J.J.S were supported by the National Institutes of Health [grant number

DP2HG010013]. H.C. is supported by the Canadian Institute for Advanced Research [award

number FL-000655]. We would like to thank the community of genomics researchers who made

their code open source so that we could utilize it for EUGENe functions. Specifically, we would

like to thank the developers of the concise package (https://github.com/gagneurlab/concise) for

functions which we modified for the preprocess module, the developers of the deeplift package

(https://github.com/kundajelab/deeplift) for functions we modified for dinucleotide shuffling, the

developers of the yuzu package (https://github.com/kundajelab/yuzu) for functions we modified

for in silico saturation mutagenesis, Travis Wrightsman for functions we modified for reading

MEME files and the developers of the ExplaiNN (https://github.com/wassermanlab/ExplaiNN)

package for functions we modified for saving to MEME.

Author information

Authors and Affiliations

Department of Medicine, University of California San Diego, La Jolla, CA, USA

Adam Klie, Joe J. Solvason, Emma K. Farley & Hannah Carter

Bioinformatics and Systems Biology Program, University of California San Diego, La

Jolla, CA, USA

Adam Klie, Joe J. Solvason, Emma K. Farley & Hannah Carter

Daniel Hand High School, Madison, CT, USA

Hayden Stites

Department of Genome Sciences, University of Washington, Seattle, WA, USA

Tobias Jores

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted November 9, 2022. ; https://doi.org/10.1101/2022.10.24.513593doi: bioRxiv preprint

https://github.com/adamklie/EUGENe_paper
https://github.com/gagneurlab/concise
https://github.com/kundajelab/deeplift
https://github.com/kundajelab/yuzu
https://github.com/wassermanlab/ExplaiNN
https://doi.org/10.1101/2022.10.24.513593
http://creativecommons.org/licenses/by-nc-nd/4.0/

Department of Biological Sciences, University of California San Diego, La Jolla, CA,

USA

Joe J. Solvason & Emma K. Farley

Contributions

A.K., J.J.S., E.K.F. and H.C. designed the study. A.K. designed the toolkit. A.K. and H.S.

implemented the code. A.K. performed the use case analyses. J.J.S. and H.S. performed

software testing. H.C. supervised the work. All authors read and corrected the final manuscript.

Corresponding authors

Correspondence to Hannah Carter.

References

1. Lander, E. S. et al. Initial sequencing and analysis of the human genome. Nature 409, 860–

921 (2001).

2. ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human

genome. Nature 489, 57–74 (2012).

3. Roadmap Epigenomics Consortium et al. Integrative analysis of 111 reference human

epigenomes. Nature 518, 317–330 (2015).

4. ENCODE Project Consortium et al. Expanded encyclopaedias of DNA elements in the

human and mouse genomes. Nature 583, 699–710 (2020).

5. Barski, A. et al. High-resolution profiling of histone methylations in the human genome. Cell

129, 823–837 (2007).

6. Buenrostro, J. D., Giresi, P. G., Zaba, L. C., Chang, H. Y. & Greenleaf, W. J. Transposition

of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-

binding proteins and nucleosome position. Nat. Methods 10, 1213–1218 (2013).

7. Lieberman-Aiden, E. et al. Comprehensive mapping of long-range interactions reveals

folding principles of the human genome. Science 326, 289–293 (2009).

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted November 9, 2022. ; https://doi.org/10.1101/2022.10.24.513593doi: bioRxiv preprint

https://doi.org/10.1101/2022.10.24.513593
http://creativecommons.org/licenses/by-nc-nd/4.0/

8. Murata, M. et al. Detecting Expressed Genes Using CAGE. in Transcription Factor

Regulatory Networks: Methods and Protocols (eds. Miyamoto-Sato, E., Ohashi, H., Sasaki,

H., Nishikawa, J.-I. & Yanagawa, H.) 67–85 (Springer New York, 2014). doi:10.1007/978-1-

4939-0805-9_7.

9. Alipanahi, B., Delong, A., Weirauch, M. T. & Frey, B. J. Predicting the sequence

specificities of DNA- and RNA-binding proteins by deep learning. Nat. Biotechnol. 33, 831–

838 (2015).

10. Wang, M., Tai, C., E, W. & Wei, L. DeFine: deep convolutional neural networks accurately

quantify intensities of transcription factor-DNA binding and facilitate evaluation of functional

non-coding variants. Nucleic Acids Res. 46, e69 (2018).

11. Pan, X., Rijnbeek, P., Yan, J. & Shen, H.-B. Prediction of RNA-protein sequence and

structure binding preferences using deep convolutional and recurrent neural networks.

BMC Genomics 19, 511 (2018).

12. Quang, D. & Xie, X. FactorNet: A deep learning framework for predicting cell type specific

transcription factor binding from nucleotide-resolution sequential data. Methods 166, 40–47

(2019).

13. Zhou, J. & Troyanskaya, O. G. Predicting effects of noncoding variants with deep learning-

based sequence model. Nat. Methods 12, 931–934 (2015).

14. Quang, D. & Xie, X. DanQ: a hybrid convolutional and recurrent deep neural network for

quantifying the function of DNA sequences. Nucleic Acids Res. 44, e107 (2016).

15. Kelley, D. R., Snoek, J. & Rinn, J. L. Basset: learning the regulatory code of the accessible

genome with deep convolutional neural networks. Genome Res 26, 990–999 (2016).

16. Kelley, D. R. et al. Sequential regulatory activity prediction across chromosomes with

convolutional neural networks. Genome Res 28, 739–750 (2018).

17. Minnoye, L. et al. Cross-species analysis of enhancer logic using deep learning. Genome

Res. (2020) doi:10.1101/gr.260844.120.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted November 9, 2022. ; https://doi.org/10.1101/2022.10.24.513593doi: bioRxiv preprint

https://doi.org/10.1101/2022.10.24.513593
http://creativecommons.org/licenses/by-nc-nd/4.0/

18. Avsec, Ž. et al. Base-resolution models of transcription-factor binding reveal soft motif

syntax. Nat. Genet. 53, 354–366 (2021).

19. Atak, Z. K. et al. Interpretation of allele-specific chromatin accessibility using cell state-

aware deep learning. Genome Res. gr.260851.120 (2021) doi:10.1101/gr.260851.120.

20. Li, J., Pu, Y., Tang, J., Zou, Q. & Guo, F. DeepATT: a hybrid category attention neural

network for identifying functional effects of DNA sequences. Brief. Bioinform. 22, (2021).

21. Yuan, H. & Kelley, D. R. scBasset: sequence-based modeling of single-cell ATAC-seq

using convolutional neural networks. Nat. Methods (2022) doi:10.1038/s41592-022-01562-

8.

22. Chen, K. M., Wong, A. K., Troyanskaya, O. G. & Zhou, J. A sequence-based global map of

regulatory activity for deciphering human genetics. Nat. Genet. 54, 940–949 (2022).

23. Janssens, J. et al. Decoding gene regulation in the fly brain. Nature 601, 630–636 (2022).

24. Zhou, J. et al. Deep learning sequence-based ab initio prediction of variant effects on

expression and disease risk. Nat. Genet. 50, 1171–1179 (2018).

25. Agarwal, V. & Shendure, J. Predicting mRNA Abundance Directly from Genomic Sequence

Using Deep Convolutional Neural Networks. Cell Rep. 31, 107663 (2020).

26. Avsec, Ž. et al. Effective gene expression prediction from sequence by integrating long-

range interactions. Nat. Methods 18, 1196–1203 (2021).

27. Karbalayghareh, A., Sahin, M. & Leslie, C. S. Chromatin interaction-aware gene regulatory

modeling with graph attention networks. Genome Res. gr.275870.121 (2022)

doi:10.1101/gr.275870.121.

28. Zhou, J. Sequence-based modeling of three-dimensional genome architecture from

kilobase to chromosome scale. Nat. Genet. 54, 725–734 (2022).

29. Fudenberg, G., Kelley, D. R. & Pollard, K. S. Predicting 3D genome folding from DNA

sequence with Akita. Nat. Methods 17, 1111–1117 (2020).

30. Movva, R. et al. Deciphering regulatory DNA sequences and noncoding genetic variants

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted November 9, 2022. ; https://doi.org/10.1101/2022.10.24.513593doi: bioRxiv preprint

https://doi.org/10.1101/2022.10.24.513593
http://creativecommons.org/licenses/by-nc-nd/4.0/

using neural network models of massively parallel reporter assays. PLoS One 14,

e0218073 (2019).

31. Jores, T. et al. Synthetic promoter designs enabled by a comprehensive analysis of plant

core promoters. Nat. Plants 7, 842–855 (2021).

32. de Almeida, B. P., Reiter, F., Pagani, M. & Stark, A. DeepSTARR predicts enhancer activity

from DNA sequence and enables the de novo design of synthetic enhancers. Nat. Genet.

54, 613–624 (2022).

33. Paszke, A. et al. PyTorch: An Imperative Style, High-Performance Deep Learning Library.

arXiv [cs.LG] (2019).

34. Abadi, M. et al. TensorFlow: A system for large-scale machine learning. arXiv [cs.DC]

(2016).

35. Budach, S. & Marsico, A. pysster: classification of biological sequences by learning

sequence and structure motifs with convolutional neural networks. Bioinformatics 34, 3035–

3037 (2018).

36. Chen, K. M., Cofer, E. M., Zhou, J. & Troyanskaya, O. G. Selene: a PyTorch-based deep

learning library for sequence data. Nat. Methods 16, 315–318 (2019).

37. Avsec, Ž. et al. The Kipoi repository accelerates community exchange and reuse of

predictive models for genomics. Nat. Biotechnol. 37, 592–600 (2019).

38. Kopp, W., Monti, R., Tamburrini, A., Ohler, U. & Akalin, A. Deep learning for genomics

using Janggu. Nat. Commun. 11, 3488 (2020).

39. Chalupová, E. et al. ENNGene: an Easy Neural Network model building tool for Genomics.

BMC Genomics 23, 248 (2022).

40. Wang, R. et al. DeepBIO is an automated and interpretable deep-learning platform for

biological sequence prediction, functional annotation, and visualization analysis. bioRxiv

2022.09.29.509859 (2022) doi:10.1101/2022.09.29.509859.

41. Wilkinson, M. D. et al. The FAIR Guiding Principles for scientific data management and

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted November 9, 2022. ; https://doi.org/10.1101/2022.10.24.513593doi: bioRxiv preprint

https://doi.org/10.1101/2022.10.24.513593
http://creativecommons.org/licenses/by-nc-nd/4.0/

stewardship. Sci Data 3, 160018 (2016).

42. Barker, M. et al. Introducing the FAIR Principles for research software. Sci Data 9, 622

(2022).

43. Wolf, F. A., Angerer, P. & Theis, F. J. SCANPY: large-scale single-cell gene expression

data analysis. Genome Biol. 19, 15 (2018).

44. Novakovsky, G., Dexter, N., Libbrecht, M. W., Wasserman, W. W. & Mostafavi, S.

Obtaining genetics insights from deep learning via explainable artificial intelligence. Nat.

Rev. Genet. 1–13 (2022) doi:10.1038/s41576-022-00532-2.

45. Koo, P. K., Majdandzic, A., Ploenzke, M., Anand, P. & Paul, S. B. Global importance

analysis: An interpretability method to quantify importance of genomic features in deep

neural networks. PLoS Comput. Biol. 17, e1008925 (2021).

46. Koo, P. K. & Ploenzke, M. Improving representations of genomic sequence motifs in

convolutional networks with exponential activations. Nat Mach Intell 3, 258–266 (2021).

47. Shrikumar, A. et al. Technical Note on Transcription Factor Motif Discovery from

Importance Scores (TF-MoDISco) version 0.5.6.5. arXiv [cs.LG] (2018).

48. Novakovsky, G., Fornes, O., Saraswat, M., Mostafavi, S. & Wasserman, W. W. ExplaiNN:

interpretable and transparent neural networks for genomics. bioRxiv 2022.05.20.492818

(2022) doi:10.1101/2022.05.20.492818.

49. Schreiber, J., Nair, S., Balsubramani, A. & Kundaje, A. Accelerating in-silico saturation

mutagenesis using compressed sensing. Bioinformatics btac385 (2022)

doi:10.1093/bioinformatics/btac385.

50. Chen, L. & Capra, J. A. Learning and interpreting the gene regulatory grammar in a deep

learning framework. PLoS Comput. Biol. 16, e1008334 (2020).

51. Hammelman, J. & Gifford, D. K. Discovering differential genome sequence activity with

interpretable and efficient deep learning. PLoS Comput. Biol. 17, e1009282 (2021).

52. Gupta, S., Stamatoyannopoulos, J. A., Bailey, T. L. & Noble, W. S. Quantifying similarity

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted November 9, 2022. ; https://doi.org/10.1101/2022.10.24.513593doi: bioRxiv preprint

https://doi.org/10.1101/2022.10.24.513593
http://creativecommons.org/licenses/by-nc-nd/4.0/

between motifs. Genome Biol. 8, R24 (2007).

53. Castro-Mondragon, J. A. et al. JASPAR 2022: the 9th release of the open-access database

of transcription factor binding profiles. Nucleic Acids Res. 50, D165–D173 (2022).

54. Kulakovskiy, I. V. et al. HOCOMOCO: towards a complete collection of transcription factor

binding models for human and mouse via large-scale ChIP-Seq analysis. Nucleic Acids

Res. 46, D252–D259 (2018).

55. Shrikumar, A., Greenside, P., Shcherbina, A. & Kundaje, A. Not Just a Black Box: Learning

Important Features Through Propagating Activation Differences. arXiv [cs.LG] (2016).

56. Lundberg, S. M. & Lee, S.-I. A Unified Approach to Interpreting Model Predictions. in

Advances in Neural Information Processing Systems 30 (eds. Guyon, I. et al.) 4765–4774

(Curran Associates, Inc., 2017).

57. Hunter, J. D. Matplotlib: A 2D Graphics Environment. Comput. Sci. Eng. 9, 90–95 (2007).

58. Waskom, M. seaborn: statistical data visualization. J. Open Source Softw. 6, 3021 (2021).

59. Virshup, I., Rybakov, S., Theis, F. J., Angerer, P. & Alexander Wolf, F. anndata: Annotated

data. bioRxiv 2021.12.16.473007 (2021) doi:10.1101/2021.12.16.473007.

60. Eraslan, G., Simon, L. M., Mircea, M., Mueller, N. S. & Theis, F. J. Single-cell RNA-seq

denoising using a deep count autoencoder. Nat. Commun. 10, 390 (2019).

61. Lopez, R., Regier, J., Cole, M. B., Jordan, M. I. & Yosef, N. Deep generative modeling for

single-cell transcriptomics. Nat. Methods 15, 1053–1058 (2018).

62. Taskiran, I. I., Spanier, K. I., Christiaens, V., Mauduit, D. & Aerts, S. Cell type directed

design of synthetic enhancers. bioRxiv 2022.07.26.501466 (2022)

doi:10.1101/2022.07.26.501466.

63. Jores, T. et al. Identification of Plant Enhancers and Their Constituent Elements by

STARR-seq in Tobacco Leaves. Plant Cell 32, 2120–2131 (2020).

64. Onimaru, K., Nishimura, O. & Kuraku, S. Predicting gene regulatory regions with a

convolutional neural network for processing double-strand genome sequence information.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted November 9, 2022. ; https://doi.org/10.1101/2022.10.24.513593doi: bioRxiv preprint

https://doi.org/10.1101/2022.10.24.513593
http://creativecommons.org/licenses/by-nc-nd/4.0/

PLoS One 15, e0235748 (2020).

65. Shrikumar, A., Greenside, P. & Kundaje, A. Learning Important Features Through

Propagating Activation Differences. arXiv [cs.CV] (2017).

66. Karollus, A., Mauermeier, T. & Gagneur, J. Current sequence-based models capture gene

expression determinants in promoters but mostly ignore distal enhancers. bioRxiv

2022.09.15.508087 (2022) doi:10.1101/2022.09.15.508087.

67. Ray, D. et al. A compendium of RNA-binding motifs for decoding gene regulation. Nature

499, 172–177 (2013).

68. Berger, M. F. & Bulyk, M. L. Universal protein-binding microarrays for the comprehensive

characterization of the DNA-binding specificities of transcription factors. Nat. Protoc. 4,

393–411 (2009).

69. He, K., Zhang, X., Ren, S. & Sun, J. Delving Deep into Rectifiers: Surpassing Human-Level

Performance on ImageNet Classification. arXiv [cs.CV] (2015).

70. Kingma, D. P. & Ba, J. Adam: A Method for Stochastic Optimization. arXiv [cs.LG] (2014).

71. Bredikhin, D., Kats, I. & Stegle, O. MUON: multimodal omics analysis framework. Genome

Biol. 23, 42 (2022).

72. Liaw, R. et al. Tune: A Research Platform for Distributed Model Selection and Training.

arXiv [cs.LG] (2018).

73. Akiba, T., Sano, S., Yanase, T., Ohta, T. & Koyama, M. Optuna: A Next-generation

Hyperparameter Optimization Framework. arXiv [cs.LG] (2019).

74. Ghandi, M., Lee, D., Mohammad-Noori, M. & Beer, M. A. Enhanced regulatory sequence

prediction using gapped k-mer features. PLoS Comput. Biol. 10, e1003711 (2014).

75. Breiman, L. RANDOM FORESTS.

https://www.stat.berkeley.edu/~breiman/randomforest2001.pdf (2001).

76. Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic

features. Bioinformatics 26, 841–842 (2010).

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted November 9, 2022. ; https://doi.org/10.1101/2022.10.24.513593doi: bioRxiv preprint

https://doi.org/10.1101/2022.10.24.513593
http://creativecommons.org/licenses/by-nc-nd/4.0/

77. Phuong, T. T. & Phong, L. T. On the Convergence Proof of AMSGrad and a New Version.

arXiv [cs.LG] (2019).

78. Mann, H. B. & Whitney, D. R. On a Test of Whether one of Two Random Variables is

Stochastically Larger than the Other. aoms 18, 50–60 (1947).

79. Benjamini, Y. & Hochberg, Y. Controlling the False Discovery Rate: A Practical and

Powerful Approach to Multiple Testing. J. R. Stat. Soc. Series B Stat. Methodol. 57, 289–

300 (1995).

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted November 9, 2022. ; https://doi.org/10.1101/2022.10.24.513593doi: bioRxiv preprint

https://doi.org/10.1101/2022.10.24.513593
http://creativecommons.org/licenses/by-nc-nd/4.0/

Supplementary information

Supplementary Figure 1. Interpretation methods implemented and visualized in EUGENe.
The starting point for most of the interpretation methods in EUGENe are a set of sequences. a,
For PWM visualization, each filter in the first convolutional layer of a given model is used to
scan this set of input sequences to search for filter length subsequences that highly activate the
filter. These “maximally activating subsequences” are then used to generate a position
frequency matrix that can be transformed to a position weight matrix and visualized as a logo. b,
We implement several gradient based feature attribution approaches in which sequences are
first passed through the model to generate an output. This output signal is then backpropogated
through the model parameters back to the input to generate a per nucleotide score that can also
be visualized as a sequence logo. c, We also provide users functions for running in silico
experiments using the model as an oracle. Random or synthetically designed sequences that
have been mutated or have had motifs implanted in them can be scored using a trained model.
The difference in scores between the original sequence or a reference sequence can also be
calculated to prioritize functional mutations or feature dependencies that can be experimentally
validated. d, The methods illustrated in a, b, and c generate results that can be visualized by
function calls on SeqData objects. Toy examples of these visualizations are shown in d.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted November 9, 2022. ; https://doi.org/10.1101/2022.10.24.513593doi: bioRxiv preprint

https://doi.org/10.1101/2022.10.24.513593
http://creativecommons.org/licenses/by-nc-nd/4.0/

Supplementary Figure 2. Extending EUGENe’s BaseModel to implement custom
architectures. a, Creating custom models that are compatible with EUGENe’s basic training
protocol involves first inheriting from the BaseModel class (not shown), then defining the
model’s architecture (__init__) and the forward propagation (forward) method. b, The
BaseModel class can also be extended to create variational autoencoders (VAEs) or generative
adversarial networks (GANs). A VAE (in its most basic form) requires creating two functions for
calculating different parts of the loss and implementing how the functions are integrated into the
training function. We have omitted the changes needed to define an encoder and decoder
structure and how that is handled in forward. A GAN requires implementing a multipart loss
function and configuring multiple optimizers to handle the training of the generator and
discriminator. c, Transfer learning from pretrained models can be accomplished with simple
changes to the initialization and forward functions. Namely, a pretrained PyTorch Lightning
model needs to be loaded in the __init__ method and then utilized in the forward method.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted November 9, 2022. ; https://doi.org/10.1101/2022.10.24.513593doi: bioRxiv preprint

https://doi.org/10.1101/2022.10.24.513593
http://creativecommons.org/licenses/by-nc-nd/4.0/

Supplementary Figure 3. STARR-seq plant promoter activity prediction. a, Performance
scatterplots colored by species of origin for the best leaf (left), protoplast (middle) and combined
(right) models. b, Predictive performance of all trained combined models. The boxplots show
distributions of R2 values on held-out test data for each architecture across 5 random
initializations. c, PWMs for a hand-selected set of learned protoplast model filters (not initialized
with known PWMs). d, Feature attribution scores calculated using the DeepLIFT method for the
sequence with the highest predicted value in the best combined model e, Best protoplast (top)
and combined (bottom) model scores for 310 sequences with an implanted consensus TATA
box motif, shuffled consensus TATA box motif, all zeros motif, and random motif at every
possible position. The 95% confidence interval is shown. f, Model scores for the same set of
310 promoters at different rounds of evolution compared against baseline (0) for the best
protoplast (top) and combined (bottom) model.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted November 9, 2022. ; https://doi.org/10.1101/2022.10.24.513593doi: bioRxiv preprint

https://doi.org/10.1101/2022.10.24.513593
http://creativecommons.org/licenses/by-nc-nd/4.0/

Supplementary Figure 4. RNA binding protein (RBP) specificity prediction. a, Spearman
correlations across four different metrics with each metric calculated from comparisons between
observed (Set B) and predicted binding intensities (see Methods for more details on how each
metric is calculated). Each boxplot indicates a distribution of Spearman correlations across all
244 RBPs. Ray et al, MatrixREDUCE, DeepBind and Observed intensities refer to correlations
calculated from predicted intensities reported in Alipanahi et al. Observed intensities and SetA
refer to correlations calculated using the intensities from Set A probes as the predicted
intensities (see Methods). b, Performance comparison scatterplots for the indicated models and
metrics. Each dot indicates a comparison of the Pearson correlation between two models on a
single RBP. c, Multitask and single task filters with TomTom significant annotations for Pcbp2
(top) and NCU02404 (bottom). d, Feature attributions calculated using the InputXGradient
method for single task and multitask models using the sequence with the highest observed
intensity in the test set for Pcbp2 (top) and NCU02404 (bottom). e, Two more examples of
InputXGradient attribution scores for random (top row) and evolved (bottom row) sequences
after evolution with the Pcbp2 (left) and NCU02404 (right) single task models. Red dashed lines
indicate mutations made during evolution annotated with the round the mutation occurred in.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted November 9, 2022. ; https://doi.org/10.1101/2022.10.24.513593doi: bioRxiv preprint

https://doi.org/10.1101/2022.10.24.513593
http://creativecommons.org/licenses/by-nc-nd/4.0/

Supplementary Figure 5. JunD binding classifier interpretation. a, Feature attribution
scores calculated using GradientSHAP for the forward and reverse complement of the
sequence with the highest predictions in each of the dsHybrid and Kopp21CNN models. b,
PWM visualizations of the 10 filters for the three convolutional architectures trained for JunD
binding classification.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted November 9, 2022. ; https://doi.org/10.1101/2022.10.24.513593doi: bioRxiv preprint

https://doi.org/10.1101/2022.10.24.513593
http://creativecommons.org/licenses/by-nc-nd/4.0/

All supplementary tables can be found in supplementary_tables.xlsx.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted November 9, 2022. ; https://doi.org/10.1101/2022.10.24.513593doi: bioRxiv preprint

https://doi.org/10.1101/2022.10.24.513593
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Abstract
	Introduction
	Results
	The EUGENe workflow
	Building workflows through SeqData and BaseModel
	EUGENe use cases
	STARR-seq plant promoter activity prediction
	In vitro RNA binding prediction with DeepBind
	JunD ChIP-seq binding classification

	Discussion
	Methods
	Analysis of plant promoter data
	Data acquisition and preprocessing
	Model initialization and training
	Model evaluation and interpretation

	Analysis of RNA binding data
	Data acquisition and preprocessing
	Model initialization and training
	Model evaluation
	Model interpretation

	Analysis of JunD binding data
	Data acquisition and preprocessing
	Model initialization and training
	Model evaluation and interpretation

	Data visualization software

	Statistical methods
	Dataset availability
	Code availability
	Acknowledgements
	Author information
	Authors and Affiliations
	Department of Medicine, University of California San Diego, La Jolla, CA, USA
	Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA, USA
	Daniel Hand High School, Madison, CT, USA
	Department of Genome Sciences, University of Washington, Seattle, WA, USA
	Department of Biological Sciences, University of California San Diego, La Jolla, CA, USA

	Contributions
	Corresponding authors

	References
	Supplementary information

