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Abstract 
 

Deep learning (DL) has become a popular tool to study cis-regulatory element function. Yet efforts 

to design software for DL analyses in genomics that are Findable, Accessible, Interoperable and 

Reusable (FAIR) have fallen short of fully meeting these criteria. Here we present EUGENe 

(Elucidating the Utility of Genomic Elements with Neural Nets), a FAIR toolkit for the analysis of 

labeled sets of nucleotide sequences with DL. EUGENe consists of a set of modules that 

empower users to execute the key functionality of a DL workflow: 1) extracting, transforming and 

loading sequence data from many common file formats, 2) instantiating, initializing and training 

diverse model architectures, and 3) evaluating and interpreting model behavior. We designed 

EUGENe to be simple; users can develop workflows on new or existing datasets with two 

customizable Python objects, annotated sequence data (SeqData) and PyTorch models 

(BaseModel). The modularity and simplicity of EUGENe also make it highly extensible and we 

illustrate these principles through application of the toolkit to three predictive modeling tasks. First, 

we train and compare a set of built-in models along with a custom architecture for the accurate 

prediction of activities of plant promoters from STARR-seq data. Next, we apply EUGENe to an 

RNA binding prediction task and showcase how seminal model architectures can be retrained in 

EUGENe or imported from Kipoi. Finally, we train models to classify transcription factor binding 

by wrapping functionality from Janngu, which can efficiently extract sequences in BED file format 

from the human genome. We emphasize that the code used in each use case is simple, readable, 

and well documented (https://eugene-tools.readthedocs.io/en/latest/index.html). We believe that 

EUGENe represents a springboard toward a collaborative ecosystem for DL applications in 

genomics research. EUGENe is available for download on GitHub 

(https://github.com/cartercompbio/EUGENe) along with several introductory tutorials and for 

installation on PyPi (https://pypi.org/project/eugene-tools/).  
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Introduction 
 

Cracking the cis-regulatory code that governs gene expression remains one of the great 

challenges in genomics research. Since the completion of The Human Genome project1, we have 

witnessed efforts to annotate the human genome that have generated an immense amount of 

functional genomics data2,3 and candidate regulatory elements4. This data has in turn powered 

machine learning methods aimed at predicting the functional readouts of these sequences such 

as histone marks5, chromatin accessibility6, 3D conformation7, and gene expression8. Deep 

learning (DL) has become especially popular in this space, and has been successfully applied to 

tasks such as DNA and RNA protein binding motif detection9–12, chromatin state prediction13–23, 

transcriptional activity prediction16,24–27 and 3D contact prediction28,29. Recently, complementary 

models have been developed to predict data from massively parallel reporter assays (MPRAs) that 

directly test the gene regulatory potential of candidate elements30–32. Most encouragingly, many of 

these multilayered models go beyond state of the art (SOTA) predictive performance to generate 

expressive representations of the underlying sequence that can be interpreted to better 

understand the cis-regulatory code18,23,32. 

 

Despite these advances, executing a deep learning workflow in genomics remains a considerable 

challenge. Though model training has been substantially simplified by the continued development 

of dedicated DL libraries such as PyTorch33 and Tensorflow34, training nuances specific to 

genomics data along with complex preprocessing and interpretation methods create an especially 

high learning curve for performing analyses in this space. Though these libraries have built-in 

support for methods and visualizations of image and text-based data, utilities to handle genomics 

data are lacking. On top of this, the heterogeneity in implementations of most code associated 

with publications greatly hinders extensibility and reproducibility. These conditions often make the 

development of genomics DL workflows painfully slow even for experienced DL researchers and 

potentially inaccessible to many others. 

 

Accordingly, the genomics DL community has assembled several software packages35–40 that 

each aim to address one or more of these challenges. However, each toolkit on its own does not 

offer both comprehensive functionality and simplicity, and there remains a general lack of 

interoperability between packages that is essential for sustained improvement and utility in the 

fast-advancing field of DL. For instance, Kipoi37 greatly lowers the accessibility barrier to trained 

models and published architectures, but does not provide a comprehensive framework for an end-

to-end DL workflow. Selene36 implements a library based in PyTorch for applying the full DL 

workflow to new or existing models, but offers a limited programmatic interface and requires the 

use of complex configuration files. Janggu38, one of the more comprehensive of the available 

packages, provides extensive functionality for data loading and for training Keras models, but 

offers limited support for PyTorch and limited functionality for model interpretation. More recently, 

ENNGene39 was designed to create a simple graphical user interface (GUI) for non-computational 

users, but offers limited programmatic customizability for more advanced users. Generally, there 

is a need for a comprehensive toolkit in this space that follows FAIR data and software 

principles41,42 and that is inherently designed to be simple and extensible. 
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Here we introduce EUGENe (Elucidating the Utility of Genomic Elements with Neural Nets), a 

FAIR toolkit for the analysis of sequence-based datasets modeled after Scanpy43. In this work, 

we first summarize the key functionality of the EUGENe package by describing each of the 

modules it contains and their guiding principles. We then describe the two fundamental data 

structures that give EUGENe its simplicity and extensibility in detail, namely SeqData and 

BaseModel. Finally, we show the application of EUGENe to three separate sequence prediction 

tasks: promoter activity prediction in plants, in vitro RNA binding prediction with SOTA model 

architectures, and transcription factor binding classification from ChIP-seq data. In each, we 

demonstrate the ability of simple and well-documented EUGENe code to achieve high predictive 

performance and biological interpretability. 

Results 
 

The EUGENe workflow 

A standard EUGENe workflow consists of the 3 main stages outlined in Figure 1: extracting, 

transforming and loading (collectively ETL) data from common file formats (Figure 1a), 

instantiating, initializing and training (collectively IIT) neural network architectures (Figure 1b), 

and evaluating and interpreting (EI) learned model behavior on held-out data (Figure 1c). The 

EUGENe package implements this workflow through several modules. Each module implements 

functionality that is principally designed to be self-contained given the proper input data, but that 

can interface with one or more other modules. We designed the workflow to be run within a 

notebook interface via the EUGENe Python application programming interface (API). We discuss 

the purpose and functionality of each module briefly below. For more information, see the tool’s 

documentation pages (https://eugene-tools.readthedocs.io/en/latest/). 

 

EUGENe currently supports loading DNA or RNA sequence inputs from CSV, NumPy, FASTA, 

and a custom h5 file implementation we named H5SD (Figure 1a, dataload module). We also 

have wrapped functionality from the Janggu package38 for reading sequences from BED, BAM 

and BigWig files (external module, see JunD ChIP-seq binding classification section for 

details). On top of allowing users to load their own datasets, we supply a collection of hand-

curated benchmarking datasets that are readily available for download and subsequent data 

loading with a single function call (datasets module, Supplementary Table 1). All sequences and 

metadata are loaded into a standardized SeqData format that EUGENe functions act on to 

perform many standard per sequence preprocessing tasks (preprocess module) like reverse 

complementation or one-hot encoding, as well as whole dataset functions like train and test set 

splitting (e.g. by chromosome or by fraction) and target variable normalization (e.g. z-score, 

clamping, etc.). EUGENe also offers functions for converting preprocessed data into training-

ready formats (e.g. PyTorch dataloaders) from SeqData and other more general Python objects 

(e.g. NumPy arrays and Pandas DataFrames). 
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Figure 1. EUGENe workflow for predictive analyses of regulatory sequences. The EUGENe workflow 

can be broken up into three primary stages: a, data extraction, transformation and loading (ETL), b, model 

instantiating, initializing and training (IIT), and c, model evaluation and interpretation (EI). 
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EUGENe provides three classes of model architecture (models module) for users to work with: 

Base, SOTA and Custom (Supplementary Table 2). As Base Models, we currently offer built-in 

and customizable fully connected (FCN), convolutional (CNN), recurrent (RNN) and hybrid (a 

combination of the three, Figure 1b) architectures that can be specified to incorporate information 

from both the forward and reverse strand. We also offer simple functions for instantiating two 

customizable architectures often used in benchmarking tasks (SOTA Models), DeepBind and 

DeepSEA. Finally, we offer a route for users to design their own custom architectures (Custom 

Models) that requires the implementation of only two functions (instantiation and forward 

propagation) and provide a tutorial that walks through this process on EUGENe’s GitHub  

(https://github.com/cartercompbio/EUGENe/blob/main/tutorials/adding_a_model_tutorial.ipynb). 

To train instantiated models and handle standard tasks like optimizer configuration and metric 

logging, EUGENe relies on the PyTorch Lightning (PL) framework (train module). Though 

EUGENe’s PL wrappers offer valuable abstraction from many boilerplate implementation tasks, 

the framework also gives users the flexibility necessary to design custom architectures and 

training schemes (e.g. custom optimizers, loss functions, etc.) if desired. We also provide a set of 

wrapper functions for utilizing trained PyTorch and Keras models and architectures from the Kipoi 

model zoo37 (external module).  

 

Interpretation of trained models has been crucial for deciphering aspects of the cis-regulatory 

code and is a core aspect of the EUGENe workflow (interpret module, Figure 1c). There are 

many strategies for model interpretation in genomics44–51, but three categories are repeatedly 

used and thus implemented in EUGENe: filter visualization, feature attribution and in silico 

experimentation (Supplementary Figure 1). Filter visualization is applicable to model 

architectures that begin with a set of convolutional filters and involves using the set of sequences 

that significantly activate a given filter (maximally activating subsequences)  to generate a position 

frequency matrix (PFM) (Supplementary Figure 1a). Multiple methods exist for choosing the 

maximally activating subsequences  and we have implemented two of them so far in EUGENe9,17. 

The PFM can then be converted to a position weight matrix (PWM), visualized as a sequence 

logo and annotated with tools like TomTom52 using databases of known motifs such as JASPAR53 

or HOCOMOCO54. Feature attribution involves using the trained model to score every nucleotide 

of the input on how it influences the downstream prediction for that sequence (Supplementary 

Figure 1b). In EUGENe, we currently implement or integrate several common feature attribution 

approaches, including standard in silico saturation mutagenesis (ISM), InputXGradient55, 

DeepLIFT55 and GradientSHAP56. Finally, EUGENe offers a simple set of functions that use 

trained models as in silico oracles to perform sequence evolution and feature implantation 

experiments (Supplementary Figure 1c).  

 

Data visualization is another key component of the EUGENe workflow (plotting module). We 

provide a large suite of functions for performing exploratory data analysis, generating 

performance summaries and visualizing model interpretations that all utilize the Matplotlib57 and 

Seaborn58 libraries. This gives users the flexibility to customize the plots they generate with 

EUGENe. 
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Building workflows through SeqData and BaseModel 

To promote a streamlined data analysis process, we introduce SeqData (Figure 2a), a Pythonic 

data structure modeled after the popular AnnData used in the single cell field59. Almost all 

functionality in EUGENe is designed to act on and modify these standardized objects that act as 

organized containers for DNA and RNA sequences (seqs, rev_seqs), sequence representations 

(ohe_seqs, ohe_rev_seqs), and sequence annotations (seqs_annot, e.g. training targets), Data 

are loaded into SeqData by pointing to files on disk or by calling for a specific dataset defined in 

the datasets module (Figure 2a). Once created, an array of functions can be called directly on 

these objects to perform preprocessing (Figure 2a), data visualization (Figure 2b) and data 

conversion to formats ingestible by deep learning frameworks (Figure 2c). Trained models can 

be used to make predictions on sequences stored in SeqData, and these predictions are stored 

and automatically accessed by functions that generate performance visualizations. Filter 

visualization, feature attribution and in silico experimentation can all be run through SeqData 

objects, generating per sequence and per dataset features stored in the sequence metadata and 

unstructured data (uns) attributes. These features can then be used to generate powerful 

sequence visualizations such as sequence and motif logos (Figure 2d) or dimensionality reduced 

clusterings (the latter stored in the object’s multidimensional attribute seqsm). Furthermore, 

SeqData and functions that act on SeqData are intentionally implemented as simple wrappers 

around widely used Python data structures (NumPy arrays, Pandas DataFrames, etc.) to enable 

the user to utilize the functionality of many standard Python libraries. 

 

The standardized way of instantiating, initializing and training neural network architectures in 

EUGENe are BaseModel objects. We offer two main ways of instantiating model architectures: 

single function calls or configuration files with simple structure (Figure 2e, left). Custom 

architectures can also be imported from Kipoi or written from scratch with users only needing to 

define the architecture (init function) and the way forward propagation is handled (forward 

function) (Supplementary Figure 2a). After instantiation, models can be initialized with all the 

starting parameters sampled from popular distributions, or in the special case of convolutional 

filters, initialized with known motifs (Figure 2e, right). Once initialized, models can be fit to 

datasets (Figure 2f) by specifying the input sequence length, the number of outputs, the strand 

information to incorporate (i.e. whether to include reverse complement strand information and 

how to incorporate it) and the task type (e.g. regression versus classification). At a technical level, 

this is done using a PL implementation of BaseModel that handles the boilerplate aspects of 

model optimization, including but not limited to: optimizer and loss function configuration, training 

and validation set looping and metric logging. For many tasks, we find the built-in training scheme 

to be sufficient. However, due to the inherent flexibility of PL, more advanced users can customize 

almost all aspects of their model training strategy. For instance, custom training loops can be 

defined for models that implement multipart loss functions or use multiple optimizers60–62 (e.g. for 

variational autoencoders and generative adversarial networks respectively). (Supplementary 

Figure 2b). Once trained, models can be applied to held-out data to assess performance and 

generalizability (Figure 2g) or used as feature extractors for transfer learning approaches 

(Supplementary Figure 2c). Trained models can then be interpreted with function calls that store 

visualizable results directly in SeqData (Figure 2d, h). 
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Figure 2. EUGENe maintains simplicity by operating on two fundamental objects: SeqData and 

BaseModel. a, SeqData objects can be read into memory from files already on disk, or by calling for a 

dataset available for download (datasets.csv). Once instantiated, SeqData objects containerize the 

EUGENe workflow, easing the preprocessing of sequences and of sequence metadata, b, the generation 

of exploratory data analysis plots, c, the creation of PL loadable datasets and objects, and d, the 

visualization of sequences and positional metadata as logos. e, A model can be instantiated either from a 

configuration file that specifies the hyperparameters of the model or from the API with hyperparameters 

passed in as arguments. Instantiated architectures can first be initialized with a desired initialization 

scheme, then f, fit to training data, g, used to predict on held-out data, and h, interpreted. Performance 

metric (right) training curves are pictured in f, test set performance curves for regression (left) and 

classification (right) are depicted in g, and a toy feature attribution matrix for a single sequence is depicted 

in h. 
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EUGENe use cases 

STARR-seq plant promoter activity prediction 

To showcase the functionality of EUGENe, we applied the toolkit to three example use cases, 

each of which highlights core aspects of the workflow on different data types and training tasks. 

We first used EUGENe to analyze published data from a STARR-seq assay of plant promoters31 

(Figure 3a). In this work, Jores et al selected promoter sequences from -165 to +5 relative to the 

annotated TSS for protein-coding and mircoRNA (miRNA) genes of Arabidopsis thaliana, Zea 

mays (maize) and Sorghum bicolor. A total of 79,838 170-bp promoters were used to transiently 

transform two separate plant systems, tobacco leaves and maize protoplasts, and regulatory 

activity was quantified using plant STARR-seq63 in each system. These assays provide two 

activity scores that can serve as single task regression targets for training EUGENe models. 

 

We first made this dataset readily loadable through the EUGENe datasets module (as jores21) 

and implemented both the custom BiConv1D layer64 and CNN architecture (Jores21CNN) 

described in Jores et al. We then trained separate Jores21CNN architectures for predicting 

tobacco leaf activity scores (leaf models) and maize protoplast activity scores (protoplast models) 

and benchmarked them against built-in CNN and Hybrid architectures with matched 

hyperparameters (Supplementary Table 3). To perform training as described in Jores et al (see 

Methods), we initialized 78 filters of the first convolutional layer of all models with position weight 

matrices of plant transcription factor (n=72) and core promoter element (n=6) PWMs31. The rest 

of the parameters of each model were randomly initialized 5 separate times and trained to assess 

reproducibility. In the leaf system, we noted similar performances across architectures on held-

out test data (Figure 3b), with the Hybrids and CNNs outperforming Jores21CNNs when 

evaluated by variance explained (R2). We observed the opposite trend for protoplast models, 

where Jores21CNNs performed better than built-in CNNs and Hybrids (Figure 3b). In both 

systems, all performance metrics for the most predictive models were comparable to those 

reported in Jores et al (Supplementary Figure 3a, Supplementary Table 4). We also trained 

models on activity scores from both leaves and protoplasts (combined models) and noted a 

marked drop in performance (Supplementary Figure 3b), underscoring the differences in the 

way the leaf and maize systems interact with the same set of promoters31. 

 

We next applied several of EUGENe’s interpretation functions to the trained models to determine 

the sequence features each used to predict plant promoter activity. First, we used a filter 

visualization approach17 to generate PWM representations for each of the first convolutional 

layer’s filters (Supplementary Figure 1a) and applied the TomTom tool to annotate them 

(Supplementary Table 5). We queried the PWMs against the 78 motifs used to initialize the 

convolutional layers, both to determine if the initialized filters retained their motifs and to see if 

randomly initialized filters learned them de novo. For the leaf model, many of the learned filters 

were annotated to the core promoter elements, including the TATA box binding motif that was 

assigned to 32 filters (Figure 3cd). No learned filters from the protoplast model were assigned a 

significant annotation by TomTom (Supplementary Figure 3c), consistent with the observed 

performance drop in this system (Supplementary Figure 3a). Next, we applied the DeepLIFT 
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Figure 3. EUGENe models identify the TATA box and several TF motifs to accurately predict 

regulatory activity. a, jores21 use case schematic. We trained EUGENe models to predict the regulatory 

activity of 79,838 plant promoters quantified by plant STARR-seq in tobacco and maize. b, Performance 

comparison of three convolution-based architectures on predicting promoter activity in tobacco leaves (left) 

and maize protoplasts (right). The boxplots show distributions of R2 values on held-out test data for each 
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architecture across 5 random initializations. c, A hand selected set of convolutional filters visualized as 

PWM logos that had significant annotations to known core promoter elements (CPE) and transcription factor 

(TF) binding clusters in plants d, Histogram showing the number of learned filters assigned to CPEs and 

TF binding clusters by TomTom with bolded annotations corresponding to the logos in c. e, Sequence logo 

visualizations of feature importance scores calculated using the DeepLIFT algorithm on the highest 

predicted test set sequence in the leaf (top) and protoplast (bottom) model. f, Model scores for 310 

sequences implanted with a 16bp sequence containing a consensus TATA box motif, a shuffled version of 

the same sequence, an all zeros sequence and a random sequence (all 16bp in length). The 95% 

confidence interval is shown. g, Model scores for the same set of 310 promoters at different rounds of 

evolution compared against baseline predictions (evolution round 0). The best leaf model was used to 

generate panels c, d, f and g (protoplast model results are shown in Supplementary Figure 3). *p < 0.05, 

**p<0.01, ns = not significant. Mann-Whitney U test p-values corrected by the Benjamini-Hochberg method. 

 

method65 to determine the individual nucleotide contributions for each test set sequence 

prediction (Supplementary Figure 1b). For many of the sequences with the highest observed 

activity scores, the TATA box motifs were often the lone salient feature identified (Figure 3e, 

Supplementary Figure 3d). In fact, when only a TATA box motif was inserted into every possible 

position in each of 310 selected promoters (Supplementary Figure 1c), we observed an 142% 

average increase in predicted activity across insertion positions and sequence contexts for the 

leaf model (Figure 3f, Supplementary Figure 3e). We also noted that the magnitude of the 

increase was dependent on position of insertion66, with the highest increases in predictions 

observed directly upstream of the TSS (Figure 3f, Supplementary Figure 3e). Finally, we 

performed 10 rounds of in silico evolution on the same set of 310 promoters as described in Jores 

et al (Supplementary Figure 1c). Almost all starting promoters showed a significant increase in 

predicted activity after just three mutations (Figure 3g, Supplementary Figure 3f). These results 

showcase a representative example of the way EUGENe’s interpretation suite can be used to 

identify key features of the cis-regulatory code underlying gene expression. 

In vitro RNA binding prediction with DeepBind 

To highlight the versatility of EUGENe to handle different inputs and prediction tasks, we next 

applied the toolkit to analyze RNA binding protein (RBP) specificity data first introduced in Ray et 

al67 and analyzed with DL in Alipanahi et al9. In the latter work, they trained 244 CNN models 

(DeepBind models) that each predicted the binding patterns of a single RBP on a set of 241,357 

RNA probes (Figure 4a). The full probe set was designed to capture all possible RNA 9-mers at 

least 16 times and was split into two balanced subsets, Set A and Set B, for training and validation 

respectively (see Methods)67. Each RBP was incubated with a molecular excess of probes from 

each subset (in separate experiments) and subsequently recovered by affinity purification. The 

RNAs associated with each RBP were then quantified by microarray  and subsequent 

bioinformatic analysis68. This yielded a vector of continuous binding intensity values for each RBP 

across the probe set that can be used for prediction. 

 

To prepare for training, we first added this dataset to the datasets module (as ray13)  and 

implemented a flexible DeepBind architecture in EUGENe (see Methods). We randomly 

initialized69 and trained 244 single task models using a nearly identical training procedure to  
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Figure 4. Prediction of RNA binding specificity with single task (ST), multitask (MT) and pretrained 

models (Kipoi). a, ray13 use case schematic. A set of 241,357 RNA probes were assayed against 244 

RNA binding proteins (RBPs) to generate a 241,357 x 244 dimensional matrix of normalized intensity 

values. b, Pearson correlations across four different metrics with each metric calculated from comparisons 
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between observed (Set B) and predicted binding intensities (see Methods for more details on how each 

metric is calculated). Each boxplot indicates a distribution of Pearson correlations across all 244 RBPs. 

Ray et al, MatrixREDUCE, DeepBind and Observed intensities refer to correlations calculated from 

predicted intensities reported in Alipanahi et al. Observed intensities and SetA refer to correlations 

calculated using the intensities from Set A probes as the predicted intensities (see Methods). c, 

Performance comparison scatterplots for ST models against MT models (left) and against Kipoi models 

(right). Each dot indicates a comparison of the Pearson correlation between predicted and observed 

intensities for two models on a single RBP. d, (top) A multitask filter with a TomTom significant annotation 

for HNRNPA1L2 visualized as a PWM logo. (middle) A filter for the single task HNRNPA1L2 model with a 

significant TomTom annotation for HNRNPA1L2. (bottom) The relationship between multitask performance 

(using the Z-scored Pearson correlations of observed and predicted intensities) on the y-axis, against the 

number of filters that were annotated with the corresponding RBP for that task on the x-axis. The 

Spearman’s correlation coefficient and associated p-value are shown. e, Feature attributions for the 

sequence with the highest observed intensity in the test set for HNRNPA1L2. The attributions were 

calculated using InputXGradient for single task (top) and multitask (bottom) models. f, The InputXGradient 

attribution scores for a random (top) and evolved (bottom) sequence after evolution with the HNRNPA1L2 

single task model. Red dashed lines indicate mutations made during evolution and are annotated with the 

round the mutation occurred in. 

 

Alipanahi et al. However, we used the Adam optimizer70 instead of the stochastic gradient descent 

algorithm and we used 32 filters in the convolutional layer instead of 16 (Supplementary Table 

6). Along with these single task models, we also randomly initialized and trained a multitask model 

to predict 233 RBP specificities (i.e. a 233 dimensional vector) in a single forward pass, excluding 

11 RBPs due to a high proportion of missing values across probes in the training set. Our multitask 

model had the same general architecture as the single task models (Supplementary Table 6), 

but with an increased number of convolutional filters (1024 as opposed to 32 for single task 

models) and a larger hidden layer size in the fully connected part of the model (512 as opposed 

to 32 for single task models). We also loaded 89 existing Kipoi37 models trained on a subset of 

human RBPs in the ray13 dataset. 

 

To evaluate model performance, we implemented functionality for calculating k-mer based Z-

scores, AUCs and E-scores9,67 and added them to EUGENe’s metrics library in the evaluate 

module (see Methods). All models were trained on probe intensity measurements from Set A and 

evaluated with these metrics on measurements from Set B. By using k-mer based metrics, we 

can evaluate the concordance between Set A and Set B even though they include different 

sequence probes. We noted that the performance on Set B for all deep learning models was on 

par with Set B’s correlation to Set A (Figure 4b, Supplementary Figure 4a) and both single task 

and multitask models trained with EUGENe showed comparable performance to Kipoi and 

DeepBind models (Figure 4bc, Supplementary Figure 4ab, Supplementary Table 7). The 

reason for the poor observed performance of certain Kipoi models is not immediately clear, but 

could relate to differences in sequence or target preprocessing prior to evaluation. Though the 

ability to load these pretrained models from Kipoi is very useful for benchmarking, implementing 

and retraining models is usually necessary for fair comparisons of performance. EUGENe 

supports both loading and retraining models, allowing users to more quickly design and execute 

quality benchmarking experiments. 
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We also observed similar levels of performance of single and multitask models across metrics 

(Figure 4bc, Supplementary Figure 4ab), consistent with the successful application of multitask 

models to the prediction of chromatin state from DNA input in bulk and single cells13–23. Using a 

multitask model offers much less training overhead and faster inference times than training 100s 

of single task models across tasks. Overall, in both the multitask and single task frameworks, we 

can train several high performing predictors of RBP specificity across more than 200 RBPs. 

 

We next applied EUGENe’s interpretation suite to our trained models, first using the filter 

visualization approach outlined in Alipanahi et al to generate PFMs for convolutional filters. We 

again used TomTom to identify filters annotated with canonical RBP motifs67 in both the best 

performing single task models and the multitask model (Figure 4d, Supplementary Figure 4c, 

Supplementary Table 8) and found that the number of multitask filters annotated to an RBP was 

correlated with predictive performance for that RBP (Figure 4d). We also calculated feature 

attributions for all Set B sequences using the InputXGradient method and observed that canonical 

motifs were learned by both single task and multitask models (Figure 4e, Supplementary Figure 

4d). Finally, we used EUGENe’s in silico functionality to evolve 10 random sequences using the 

single task HNRNPA1L2 model and visualized the feature attributions for these 10 sequences 

before and after five rounds of evolution. Several of the mutations that most increased the predicted 

score were those that generated canonical binding motifs for the protein (Figure 4f). We repeated 

this for two other RBPs (Pcbp2 and NCU02404) and observed that each model prioritizes 

mutations that create canonical binding motifs specific to the RBP they were trained on 

(Supplementary Figure 4e). Altogether, these results show that EUGENe simplifies the 

extraction of salient features from models trained within the same workflow. 

JunD ChIP-seq binding classification 

As our final use case and to further demonstrate extensibility, we applied EUGENe to the 

classification of JunD binding as described in Kopp et al38. This task utilizes ChIP-seq data from 

ENCODE2 to generate input sequences and binarized classification labels for each sequence 

(Figure 5a). Briefly, regions of interest (ROIs) were defined by extending called peaks by 

10,000bp in each direction. These ROIs were then segmented into non-overlapping 200bp bins, 

with bins that overlap the original peak assigned a positive label and all others assigned a negative 

label. The genomic sequences represented by each bin were then extended in each direction to 

increase the context seen as input (150bp in this case for a final input length of 500bp) and used 

to train neural network classifiers. To first build a DL ready dataset for this prediction task, we 

wrapped data loading functions from the Janggu package38. These functions allow EUGENe 

users to directly read data from BED, BAM and BigWig file formats into SeqData objects. We then 

implemented the CNN architecture described in Kopp et al (Kopp21CNN) and benchmarked 

classification performance against built-in FCNs, CNNs, and Hybrid models with matched 

hyperparameters (Supplementary Table 9). All models were configured to incorporate 

information from both the forward and reverse strand (double stranded or “ds” models).  

 

We trained models using the same procedure described in Kopp et al (see Methods)38, again 

with 5 random initializations per architecture to assess reproducibility. Due to the unbalanced  
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Figure 5. JunD ChIP-seq binding prediction identifies JunD motifs. a, kopp21 use case schematic. We 

used Janggu data loaders to load in a set of 11,086 ChIP-seq peaks for JunD and to generate positive and 

negative sets for JunD binding prediction. The data loaders take in a set of regions of interest (ROIs) along 

with peaks and a bin size and output a set of labeled sequences for each bin in the ROI. Bins are labeled 

as positive (1) if they overlap a peak and negative (0) if they do not. Upon loading, each sequence is 

extended by 150bp in each direction to provide more sequence context for prediction. b, c auPRCs on held-

out test data from chromosome 3 for JunD binding classification across four double-stranded architectures 

b, A boxplot across 5 random initializations of each model. c, auPR curves for the best models from each 

architecture. d, Feature attribution sequence logos for the top predicted sequence. The top row shows 
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attributions from the forward strand and the bottom row from the reverse strand. Attributions were calculated 

using GradientSHAP. e, A selected set of convolutional filters visualized as PWM logos with significant 

annotations from TomTom. f, Model scores for 10 random sequences with consensus JunD motif implanted 

at each possible location. 95% confidence intervals of scores are also shown. The boxplot shows the 

distribution of scores for the random sequences prior to JunD motif implantation. *p < 0.05, ns = not 

significant. Mann-Whitney U test p-values corrected by the Benjamini-Hochberg method. 

 

nature of the dataset, we focused on evaluating models with the area under the precision recall 

curve (auPRC). For our Kopp21CNNs, we were able to achieve comparable performances on 

held out chromosome 3 sequences to those reported by Kopp et al for one-hot encoded 

sequences (Figure 5bc, Supplementary Table 10). The dsFCN, the only model without any 

convolutional layers, immediately overfit the data after a single training epoch and was not at all 

predictive of binding (Figure 5c). The dsCNN models, however, achieved higher auPRCs than 

both the dsHybrid and Kopp21CNN architectures. 

 

We next applied EUGENe’s interpretation tools to ask whether our best models were learning 

sequence features relevant to JunD binding to make predictions. We first generated feature 

attribution scores for the forward and reverse complement strands of all test set sequences using 

the GradientSHAP method and visualized the most highly predicted sequences as sequence 

logos (Figure 5d, Supplementary Figure 5a). We observed that the most important nucleotides 

often highlighted consensus or near consensus JunD motifs and that these motifs were often 

attributed similarly on both the forward and reverse strands (Figure 5d, Supplementary Figure 

5a). However, there were instances where a salient motif was highlighted on one strand but not 

the other (Figure 5d, Supplementary Figure 5a). Figure 5d shows one such instance where a 

CTCF binding site is highlighted on the reverse strand but not the forward strand, indicating the 

utility of incorporating information from both strands for prediction. We next generated PFM 

representations for all 10 filters of each convolutional model (excluding dsFCNs) and annotated 

them using TomTom against the HOCOMOCO database54 (Figure 5e, Supplementary Figure 

5b, Supplementary Table 11). Among the top hits, we found several filters annotated with motifs 

such as JunD and CTCF (Figure 5e, Supplementary Figure 5b). Finally, we performed an in 

silico experiment with the best dsCNN model where we slid a consensus JunD motif across each 

position of a set of 10 randomly generated sequences and predicted binding (Figure 5f). We 

observed that the simple inclusion of the consensus binding site led to a significant jump in 

predicted output with some position specificity. These results once again showcase that 

EUGENe’s interpretation methods can help explain model predictions, in this case for DNA protein 

binding from a genome wide assay. 

Discussion 
 

Despite numerous recent advances and successes in the space, the progress of DL in regulatory 

genomics has been hindered by the fragmented nature of the set of tools, methods and data that 

exist across the field. With EUGENe, we seek to integrate many of these aspects into an 

ecosystem of Python software that provides users with unprecedented functionality. We designed 
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EUGENe to streamline the development of DL workflows in genomics by creating a simplified 

interface for loading and preparing sequence datasets, instantiating and training neural networks, 

and evaluating and interpreting trained models. We introduced two data structures that form the 

basis of EUGENe workflows, SeqData and BaseModel, that allow for both abstraction from and 

control over the technical details of the workflow. Finally, we demonstrated the versatility of the 

toolkit by implementing, training and interpreting a variety of regression and classification 

architectures to model three distinct tasks and datasets. 

 

The single cell field is a particularly attractive guide for developing such an ecosystem. By creating 

standards for data structures, user interfaces, documentation pages and coding principles, tools 

such as Scanpy43, scVI61 and muon71 have greatly simplified single cell workflows. We mimicked 

the structure of many of the tools that sit within the overall single cell software universe by making 

EUGENe highly modular and wholly contained within the larger Python ecosystem (Pandas, 

NumPy, scikit-learn, etc.). This gives future contributors the power to easily extend and integrate 

the functionality currently available in our tool. 

 

There are numerous opportunities for future development of EUGENe, but we see a few as high 

priority. EUGENe is primarily designed to work on nucleotide sequence input (DNA and RNA), 

but currently does not have dedicated functions for handling protein sequence or multi-modal 

inputs. As assays move from bulk to single cell resolution, it will also be important to develop 

functionality for handling single cell data that allows users to easily ask questions about cell type 

specific regulatory syntax. Furthermore, we note that SeqData objects currently must be read 

entirely into memory, which can be a bottleneck for training on very large datasets or with limited 

compute resources. AnnData59 and Janggu38 are capable of loading views of data that are never 

fully stored in memory and we anticipate updating SeqData to behave in a similar manner. We 

also do not currently offer any dedicated functionality for hyperparameter optimization. Though 

users familiar with libraries like RayTune72 and Optuna73  could still utilize many of the objects and 

functions provided by EUGENe to generate their own hyperoptimization routines, we plan on 

developing simplified wrappers for performing hyperparameter optimizations (and other training 

routines) that are native to EUGENe in the future. Similarly, though any user could develop their 

own methods for benchmarking EUGENe models against shallow machine learning models like 

gkm-SVMs74 or random forests75, we plan on integrating functionality for automating this process. 

Finally, we plan on expanding EUGENe’s dataset, model, metric and interpretation45–49,51 library 

to encompass a larger portion of those available in the field. 

 

As large consortia (such as ENCODE Phase 4 and Impact of Genomic Variation on Function) and 

individual groups continue to generate functional genomics data at both the bulk and single cell 

level, the need for a standardized deep learning analysis ecosystem to handle this data becomes 

even more pressing. We believe that EUGENe represents a positive step in the direction of 

developing such an ecosystem. Building off this work will allow computational scientists to rapidly 

develop and share methods and models that answer important questions about the regulatory 

sequence code. 
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Methods 
 

Analysis of plant promoter data 

Data acquisition and preprocessing 

Plant promoter assay data were obtained from the GitHub repository associated with Jores et al. 

These included two identical libraries for a set of 79,838 plant promoters synthesized with an 

upstream viral 35S enhancer and downstream barcode tagged GFP reporter gene (Figure 3a). 

The libraries were designed to include 10-20 constructs with distinct barcodes for each promoter. 

These libraries were used to transiently transform both tobacco leaves and maize protoplasts and 

promoter activities were assayed using plant STARR-seq63. Per barcode activity was calculated 

as the ratio of RNA barcode frequency to DNA barcode frequency and the median of these ratios 

was then used to aggregate across barcodes assigned to the same promoter. These aggregated 

scores were then normalized by the median value for a control construct and were log transformed 

to calculate a per promoter “enrichment” score. We downloaded these enrichment scores 

(https://github.com/tobjores/Synthetic-Promoter-Designs-Enabled-by-a-Comprehensive-

Analysis-of-Plant-Core-Promoters/tree/main/CNN) for both libraries as separate datasets which 

we could use as training targets. We used the identical 90/10 training and test split used in Jores 

et al (the dataset could be downloaded with set labels). The training set was further split into 90/10 

train and validation sets. All sequences were one-hot encoded using a channel for each letter of 

the DNA alphabet (“ACGT”). 

Model initialization and training 

We implemented the Jores21CNN architecture by translating the Keras code in the associated 

GitHub repository into PyTorch and integrating it into our library. We benchmarked this 

architecture against built-in CNN and Hybrid architectures in EUGENe with the hyperparameters 

described in Supplementary Table 3. In each convolutional layer, the Jores21CNN first applies 

a set of filters to the input as is standard for convolutional models, but also applies the reverse 

complements of the filters (as opposed to the reverse complement of the sequences) to each 

input in an effort to capture information from both strands64. Since this still only requires a single 

strand as input into the models, we opted to benchmark against only single stranded (ss) versions 

of built-in CNN and Hybrid models. Following instantiation, we initialized 78 filters in the first 

convolutional layer of each model using PWMs derived from core promoter elements and 

transcription factor binding clusters downloaded from the GitHub repository 

(https://github.com/tobjores/Synthetic-Promoter-Designs-Enabled-by-a-Comprehensive-

Analysis-of-Plant-Core-Promoters/tree/main/data/misc) associated with the publication. All other 

parameters were initialized by sampling from the Kaiming normal distribution69. We trained 

models for a maximum of 25 epochs with a batch size of 128 and used the Adam optimizer with 

a starting learning rate of 0.001. We also included a learning rate scheduler that modified the 

learning rate during training with a patience of 2 epochs. We used mean squared error as our 
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objective function and stopped training early if the validation set error did not decrease after 5 

epochs. 

Model evaluation and interpretation 

Models were primarily evaluated using the percentage of variance explained (R2) on predictions 

for the test set. We repeated the above training procedure across 5 independent random 

initializations and evaluated R2 scores across these trials. For PWM visualization, we used the 

approach described in Minnoye et al17. Briefly, for each filter in the first convolutional layer, we 

calculated activations for all subsequences (of the same length as the filter) within the test set 

sequences. We then took the top 100 subsequences corresponding to the top 100 activations 

(maximally activating subsequences) and generated a PFM. For visualizing filters as sequence 

logos, we converted PFMs to PWMs using a uniform background nucleotide frequency. We 

calculated feature attributions for all test set sequences using the DeepLIFT method. To perform 

the feature implantation approach, we downloaded the 16bp PFM containing the consensus TATA 

box motif from the Jores et al GitHub repository and one-hot encoded it by taking the highest 

probability nucleotide at each position. We also downloaded the set of 310 promoters 

(https://github.com/tobjores/Synthetic-Promoter-Designs-Enabled-by-a-Comprehensive-

Analysis-of-Plant-Core-

Promoters/blob/main/analysis/validation_sequences/promoters_for_evolution.tsv) used in Jores 

et al for in silico evolution. We then implanted the TATA box containing sequence at every 

possible position of each of the 310 promoter sequences and used the best performing models 

(one each from leaf, protoplast and combined) to make predictions. We compared this to 

predicted scores generated with the same feature implantation approach using a dinucleotide 

shuffled version of the 16bp sequence containing the TATA box motif, a random 16bp one-hot 

encoded sequence, and a 16bp all zeros input. We performed the in silico evolution experiments 

on the same set of 310 promoter sequences31,62. In each round, we first used in silico saturation 

mutagenesis to identify the mutation that increased the model score by the largest positive value 

(delta score). We then introduced this mutation into the sequence and repeated this for 10 

iterations. 

Analysis of RNA binding data 

Data acquisition and preprocessing 

As described in detail in Alipanahi et al, a set of 241,357 31-41nt long RNA probes were split into 

two experimental sets, Set A and Set B, with each designed to include all possible 9-mers at least 

eight times, all possible 8-mers at least 33 times and all possible 7-mers 155 times (Figure 4a). 

These probes were assayed against 244 RBPs using a protein binding microarray (PBM)68, and 

intensities were normalized as described in Ray et al67. We downloaded the normalized RNA 

probe binding intensity matrix from the Ray et al supplementary information 

(http://hugheslab.ccbr.utoronto.ca/supplementary-data/RNAcompete_eukarya/norm_data.txt.gz) 

and separated the Set A and Set B sequences into two distinct groups. To remove outliers, we 

set all values of probe intensities to be capped at the 99.95 percentile for each prediction task 

(RBP). We then Z-scored the clamped values to zero mean and unit standard deviation for each 
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RBP. All normalizations were performed using Set A statistics (i.e. Set B values were z-scored 

using means and standard deviations from Set A). For multitask prediction, we removed the 11 

RBPs with ≥ 0.1% missing values across all probes in Set A, and further removed all probes in 

Set A that had any missing values for any of the remaining 233 RBPs. This left 120,326 and 

110,645 probes for training single task and multitask models respectively and 121,031 in Set B 

for testing. Set A was then further split 80/20 into a training and validation set. All sequences were 

one-hot encoded using a channel for each of the RNA alphabet (“ACGU”) for input into models. 

Model initialization and training 

We implemented the DeepBind architecture 

(https://github.com/cartercompbio/EUGENe/blob/main/eugene/models/_sota_models.py) 

described in the Supplementary Information (https://static-

content.springer.com/esm/art%3A10.1038%2Fnbt.3300/MediaObjects/41587_2015_BFnbt3300

_MOESM51_ESM.pdf) of Alipanahi et al and added it as a EUGENe SOTA model. DeepBind 

architectures were initially designed to take either the forward strand (ss) or both strands (ds) as 

input. However, Alipanahi et al trained their RBP models with just the single strand input due to 

the single stranded nature of RNA, so we also used a single stranded (ss) implementation for our 

DeepBind models. We initialized both the single task models and the multitask model with 

parameters sampled from the Kaiming normal distribution69  and trained all models for a maximum 

of 25 and 100 epochs respectively, using the Adam optimizer70 and a starting learning rate of 

0.005. We also included a learning rate scheduler that modified the learning rate during training 

with a patience of 2 epochs. The batch size for training was fixed to 64 and 1024 for single- and 

multi- task models respectively and mean squared error was used as the objective function for all 

models, with training halting if the validation set error did not decrease after 5 epochs. For 

multitask models, we used the average mean squared error across all tasks. Hyperparameters 

selected for the architectures of each model are provided in Supplementary Table 6. Finally, we 

downloaded a set of 89 pretrained human RBP models 

(https://kipoi.org/models/DeepBind/Homo_sapiens/RBP/) from Kipoi and wrapped functions from 

the Kipoi package to make predictions using these models. 

Model evaluation 

We evaluated models using the Z-score, AUC and E-score metrics reported in Alipanahi et al. To 

calculate these metrics, we first computed a binary n x m matrix A, where the n rows represent 

all possible 7-mers from the RNA alphabet (AAAAAAA, AAAAAAC, AAAAAAG, etc.) and the m 

columns represent the 121,031 probes assayed from Set B. Each entry aij in the matrix is 1 if the 

ith k-mer is found in the jth probe, and 0 otherwise. Consider first working with a single RBP, in 

which we have normalized binding intensity values for each of the 121,031 probes (m-dimensional 

vector x). We compared the ith row (representing a k-mer) of the matrix A (an m-dimensional 

vector) to the vector x of observed intensities and computed the Z-scores, AUCs and E-scores 

for that k-mer as described in 9 and 67. We repeated this for all k-mers (across rows of A) to 

generate an n dimensional vector for each metric meant to capture the importance of each k-mer 

for binding that RBP. For Z-scores, 0 indicates an average level of binding when that k-mer is 

present in the probe sequence, with more positive scores indicating higher levels of binding than 
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average when that k-mer is present. For AUC and E-scores (a modified AUC), the value is bound 

between 0 and 1, with values closer to 1 indicating more binding when that k-mer is present. We 

repeated this process for all models that predict probe intensities by substituting the predicted 

intensities from a given model for the vector x of observed intensities. We generated a set of n 

dimensional vectors for each model-metric pair (i.e. for a single task model, we have a vector for 

Z-scores, a vector for E-scores and a vector for AUCs) then took each of these vectors and 

calculated Pearson and Spearman correlations with the vector x from the observed Set B 

intensities. This results in a pair of correlation values, one Pearson and one Spearman, describing 

the performance of a given model on a specific RBP (these are single points in the boxplots shown 

in Figure 4b and Supplementary Figure 4a). Repeating this process for all RBPs generates a 

distribution of correlations for a given model.  

 

We can use the same procedure on Set A observed intensities to generate a distribution of 

correlations analogous to a biological replicate. These are the “Set A” and “Observed intensities” 

columns of Figure 4b and Supplementary Figure 4a. We generated the distribution labeled “Set 

A” in this way with our own implementation of these metrics and downloaded the “Observed 

intensities” distribution from performance tables included in the supplement of Alipanahi et al. 

Finally, we calculated Pearson and Spearman correlation coefficients for the observed and 

predicted intensities on Set B for all models. Note that this is not possible to do for Set A since 

the probes are different for this set, hence the omission of the “Set A” and “Observed intensities” 

columns in the last boxplots of Figure 4b and Supplementary Figure 4a. 

Model interpretation 

For filter visualization, we used the approach described in Alipanahi et al. Briefly, for a given filter, 

we calculated the activation scores for all possible subsequences (of the same length as the filter) 

from Set B probes and identified the maximum value. We then used only the subsequences with 

an activation at least 3/4ths of this maximum to generate a PFM for that filter. We repeated this 

process for all 32 filters in each of the top 10 single task models and for all 1024 filters of the 

multitask model. The top 10 single task models were chosen based on ranking of Pearson 

correlations between observed and predicted intensity values. We then input all multitask PFMs 

to TomTom for annotation against the Ray et al database and filtered for hits with a Bonferroni 

multiple test corrected p-value ≤ 0.05. We calculated feature attributions for all Set B probes using 

the InputXGradient method. For multitask models, feature attributions can be calculated on a per 

task basis to determine how each nucleotide of the input sequence influenced that particular task. 

We again only did this for a subset of RBPs, using the Pearson correlation of predicted and 

observed intensities to choose the top 10 single task models and the top 10 predicted tasks for 

the multitask model. We use the same in silico evolution method for this use case as we did for 

the plant promoters. Using trained models for selected RBPs, we first performed 5 rounds of 

evolution on 10 randomly generated sequences of 41nt in length (“ACGT” sampled uniformly). 

We then calculated feature attributes for the initial random sequences and the evolved sequences 

using the InputXGradient method and compared them. 
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Analysis of JunD binding data 

Data acquisition and preprocessing 

We followed the same procedure to acquire and preprocess the data for training models on the 

prediction of JunD binding as reported in Kopp et al38. We started by downloading JunD peaks 

from human embryonic stem cells (H1-hesc) called with the hg38 reference genome from 

encodeproject.org (ENCFF446WOD, conservative IDR thresholded peaks, narrowPeak format). 

We next defined regions of interest (ROIs) by extending the union of all JunD peaks by 10kb in 

each direction. We removed blacklisted regions for hg38 

(http://mitra.stanford.edu/kundaje/akundaje/release/blacklists/hg38-

human/hg38.blacklist.bed.gz) using bedtools76 and trimmed the ends of resulting regions to be 

divisible into 200bp bins. For training and testing, we binned ROI’s into 200bp sequences and 

labeled any of those that overlapped a JunD binding peak with a positive label and all non-

overlapping bins with a negative label. As input to models, we first extended each genomic bin by 

150bp on each side (so that the model sees 500bp in total for each input when predicting on a 

200bp site) and then one-hot encoded using a channel for each of the DNA alphabet (“ACGT”). 

In total, we used 1,013,080 200bp bins for generating training, validation and test sets. We split 

the sequences by chromosome so that validation sequences were from chr2 and test sequences 

from chr3 (the rest were used for training). 

Model initialization and training 

For the JunD binding task, we first implemented the Kopp21CNN arhitecture decscribed in Kopp 

et al by following the Keras code in the associated GitHub repository along with their description 

of the layers in the Supplementary Information (https://static-

content.springer.com/esm/art%3A10.1038%2Fs41467-020-17155-

y/MediaObjects/41467_2020_17155_MOESM1_ESM.pdf). We then trained 5 random 

initializations of dsFCNs, dsCNNs, dsHybrids and Kopp21CNNs, each with parameters sampled 

from the Kaiming normal distribution. All models used both the forward and reverse strands as 

input through the same architecture (ds). Following Kopp et al, we trained all models for a 

maximum of 30 epochs with the AMSGrad optimizer77 and a starting learning rate of 0.001. The 

batch size for training was fixed to 64 for all models and binary cross entropy was used as the 

objective function, halting training if the validation set error did not decrease after 5 epochs. 

Hyperparameters selected for the architectures of each model are provided in Supplementary 

Table 9. 

Model evaluation and interpretation 

Models were primarily evaluated using the area under the precision recall curve (auPRC) as the 

dataset was heavily imbalanced. We again performed model interpretation using feature 

attributions, filter visualizations and in silico experimentation methods from EUGENe. We 

calculated feature attributions for the forward and reverse strands of all test set sequences using 

the GradientSHAP method. To visualize filters, we applied the approach from 17 and generated 

PFMs. We fed these PFMs to the TomTom webserver and queried the HOCOMOCO CORE 

database54. We subset filters down to those with a multiple test corrected p-value ≤ 0.05 and 
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manually inspected the top hits. These PWMs were visualized as logos using a uniform 

background of nucleotide frequencies. We performed the in silico implantation experiment using 

the JunD PFM downloaded from JASPAR (https://jaspar.genereg.net/matrix/MA0491.1). We 

calculated model scores by generating 10 randomly generated sequences (uniformly sampled) 

and implanting the consensus one-hot encoded JunD motif at every possible position. We 

compared this to predicted scores from applying the same approach to a random one-hot 

encoded sequence, an all zeros input and a dinucleotide shuffled JunD motif, all of the same 

length as the consensus JunD motif. 

Data visualization software 

For most exploratory data analysis and performance evaluations, we used a combination of the 

Seaborn and Matplotlib plotting libraries in Python. For sequence logo visualizations of filters and 

feature attributions, we used modified functions from the viz_sequence package 

(https://github.com/kundajelab/vizsequence), the seqlogo package 

(https://github.com/betteridiot/seqlogo) and the logomaker package 

(https://github.com/jbkinney/logomaker). 

Statistical methods 
 

Mann-Whitney U tests78 were used to compare performance distributions between architecture 

types and p-values were corrected with the Benjamini-Hochberg method79. TomTom reports 

significance of alignments of query motifs to a database using the methods described in 52. We 

used the q-value reported by the webserver tool (https://meme-suite.org/meme/tools/tomtom) and 

considered hits to be those alignments with a q-value ≤ 0.05 as significant. Figures for in silico 

implantation of motifs included 95% confidence intervals. 

Dataset availability 
 

All datasets used in this study are publicly available. We have collected the specific dataset files 

and trained models used in the analyses presented here at the following Zenodo link: 

https://doi.org/10.5281/zenodo.7140082. These represent the raw and processed data files that 

can be loaded into the EUGENe API to generate the figures in this work using the code linked 

below. We also have included processed SeqData objects that can be used along with the 

accompanying code to generate the figures for all use cases. 

Code availability 
 

EUGENe is freely available under the MITlicense at https://github.com/cartercompbio/EUGENe. 

Documentation for the tool is available at https://eugene-

tools.readthedocs.io/en/latest/index.html. Jupyter notebooks and Python scripts used to perform 
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the analyses presented in the use case section are available on GitHub at 

https://github.com/adamklie/EUGENe_paper.  
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Supplementary information 
 

 
Supplementary Figure 1. Interpretation methods implemented and visualized in EUGENe. 
The starting point for most of the interpretation methods in EUGENe are a set of sequences. a, 
For PWM visualization, each filter in the first convolutional layer of a given model is used to 
scan this set of input sequences to search for filter length subsequences that highly activate the 
filter. These “maximally activating subsequences” are then used to generate a position 
frequency matrix that can be transformed to a position weight matrix and visualized as a logo. b, 
We implement several gradient based feature attribution approaches in which sequences are 
first passed through the model to generate an output. This output signal is then backpropogated 
through the model parameters back to the input to generate a per nucleotide score that can also 
be visualized as a sequence logo. c, We also provide users functions for running in silico 
experiments using the model as an oracle. Random or synthetically designed sequences that 
have been mutated or have had motifs implanted in them can be scored using a trained model. 
The difference in scores between the original sequence or a reference sequence can also be 
calculated to prioritize functional mutations or feature dependencies that can be experimentally 
validated. d, The methods illustrated in a, b, and c generate results that can be visualized by 
function calls on SeqData objects. Toy examples of these visualizations are shown in d.  
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Supplementary Figure 2. Extending EUGENe’s BaseModel to implement custom 
architectures. a, Creating custom models that are compatible with EUGENe’s basic training 
protocol involves first inheriting from the BaseModel class (not shown), then defining the 
model’s architecture (__init__) and the forward propagation (forward) method. b, The 
BaseModel class can also be extended to create variational autoencoders (VAEs) or generative 
adversarial networks (GANs). A VAE (in its most basic form) requires creating two functions for 
calculating different parts of the loss and implementing how the functions are integrated into the 
training function. We have omitted the changes needed to define an encoder and decoder 
structure and how that is handled in forward. A GAN requires implementing a multipart loss 
function and configuring multiple optimizers to handle the training of the generator and 
discriminator. c, Transfer learning from pretrained models can be accomplished with simple 
changes to the initialization and forward functions. Namely, a pretrained PyTorch Lightning 
model needs to be loaded in the __init__ method and then utilized in the forward method. 
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Supplementary Figure 3. STARR-seq plant promoter activity prediction. a, Performance 
scatterplots colored by species of origin for the best leaf (left), protoplast (middle) and combined 
(right) models. b, Predictive performance of all trained combined models. The boxplots show 
distributions of R2 values on held-out test data for each architecture across 5 random 
initializations. c, PWMs for a hand-selected set of learned protoplast model filters (not initialized 
with known PWMs). d, Feature attribution scores calculated using the DeepLIFT method for the 
sequence with the highest predicted value in the best combined model e, Best protoplast (top) 
and combined (bottom) model scores for 310 sequences with an implanted consensus TATA 
box motif, shuffled consensus TATA box motif, all zeros motif, and random motif at every 
possible position. The 95% confidence interval is shown. f, Model scores for the same set of 
310 promoters at different rounds of evolution compared against baseline (0) for the best 
protoplast (top) and combined (bottom) model.  
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Supplementary Figure 4. RNA binding protein (RBP) specificity prediction. a, Spearman 
correlations across four different metrics with each metric calculated from comparisons between 
observed (Set B) and predicted binding intensities (see Methods for more details on how each 
metric is calculated). Each boxplot indicates a distribution of Spearman correlations across all 
244 RBPs. Ray et al, MatrixREDUCE, DeepBind and Observed intensities refer to correlations 
calculated from predicted intensities reported in Alipanahi et al. Observed intensities and SetA 
refer to correlations calculated using the intensities from Set A probes as the predicted 
intensities (see Methods). b, Performance comparison scatterplots for the indicated models and 
metrics. Each dot indicates a comparison of the Pearson correlation between two models on a 
single RBP. c, Multitask and single task filters with TomTom significant annotations for Pcbp2 
(top) and NCU02404 (bottom). d, Feature attributions calculated using the InputXGradient 
method for single task and multitask models using the sequence with the highest observed 
intensity in the test set for Pcbp2 (top) and NCU02404 (bottom). e, Two more examples of 
InputXGradient attribution scores for random (top row) and evolved (bottom row) sequences 
after evolution with the Pcbp2 (left) and NCU02404 (right) single task models. Red dashed lines 
indicate mutations made during evolution annotated with the round the mutation occurred in. 
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Supplementary Figure 5. JunD binding classifier interpretation. a, Feature attribution 
scores calculated using GradientSHAP for the forward and reverse complement of the 
sequence with the highest predictions in each of the dsHybrid and Kopp21CNN models. b, 
PWM visualizations of the 10 filters for the three convolutional architectures trained for JunD 
binding classification.  
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All supplementary tables can be found in supplementary_tables.xlsx. 
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