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Abstract  35 

Kidneys have one of the most complex three-dimensional cellular organizations in the body, but 36 

the spatial molecular principles of kidney health and disease are poorly understood. Here we 37 

generate high-quality single cell (sc), single nuclear (sn), spatial (sp) RNA expression and sn open 38 

chromatin datasets for 73 samples, capturing half a million cells from healthy, diabetic, and 39 

hypertensive diseased human kidneys. Combining the sn/sc and sp RNA information, we identify 40 

> 100 cell types and states and successfully map them back to their spatial locations. 41 

Computational deconvolution of spRNA-seq identifies glomerular/vascular, tubular, immune, and 42 

fibrotic spatial microenvironments (FMEs). Although injured proximal tubule cells appear to be 43 

the nidus of fibrosis, we reveal the complex, heterogenous cellular and spatial organization of 44 

human FMEs, including the highly intricate and organized immune environment. We demonstrate 45 

the clinical utility of the FME spatial gene signature for the classification of a large number of 46 

human kidneys for disease severity and prognosis. We provide a comprehensive spatially-resolved 47 

molecular roadmap for the human kidney and the fibrotic process and demonstrate the clinical 48 

utility of spatial transcriptomics. 49 

  50 
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Introduction 51 

Human kidneys filter over 140 liters of plasma, reabsorb all important nutrients, excrete water, and 52 

electrolytes and eliminate toxins to maintain the internal milieu(1, 2). Kidney disease is defined 53 

by a decline in glomerular filtration. Chronic kidney disease (CKD) is the 9th leading cause of 54 

death(3, 4) in the United States, affecting 14% of the population. Diabetes and hypertension are 55 

responsible for more than 75% of all CKD(5).  56 

More than 30 specialized cell types including epithelial, endothelial, interstitial and immune cells 57 

have been identified in the kidney(6, 7). The development of novel single cell and single nuclear 58 

RNA-sequencing (scRNA-seq, snRNA-seq, respectively) as well as single nuclei Assay for 59 

Transposase-Accessible Chromatin sequencing (snATAC-seq) have provided an unprecedented 60 

insight into the molecular and cellular composition of healthy mouse and human kidneys as well 61 

as changes during development and disease(8-12). These methods use dissociated cells or nuclei 62 

isolated from kidney tissue samples. Despite the significant cellular diversity of the kidney, cell 63 

types could be identified even after cell dissociation as specialized cellular function matches with 64 

gene expression signatures, allowing investigators to estimate the location of cells  (13).  65 

The kidney is an architectural masterpiece. A critical limitation of dissociated single cell datasets 66 

has been the lack of information on the spatial cellular context(14). Without spatial information, it 67 

has been difficult to map known cell types that are only described by their anatomical location, for 68 

example, cells that mostly provide structural support. The spatial context is also critical for 69 

mapping cell types and cell states identified by novel single cell tools. We observe important 70 

regional differences in disease severity, the dissociated single cell data is unable to interrogate 71 

local gene expression changes and cell-cell communication, which plays a critical role in 72 

maintaining cellular health and dysregulated in disease. Spatial omics analysis is a rapidly evolving 73 
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field. Currently available spatial datasets either lack single cell resolution information, are unable 74 

to provide genome-scale gene expression data, or only evaluate a small spatial area (13, 15, 16). 75 

There is a clear need for large-scale spatial omics datasets to better understand kidney health and 76 

disease.  77 

Chronic kidney disease (CKD), regardless of disease etiology, is associated with a complex change 78 

in the kidney’s cellular architecture(17). Some of the histological changes are specific for disease 79 

type, such as thickening of glomerular basement membrane in diabetic kidney disease (DKD)(18). 80 

Architectural changes, collectively called fibrosis, are present in all kidneys with advanced CKD. 81 

The narrow definition of fibrosis focuses on accumulation extracellular matrix (19, 20). Most prior 82 

studies, therefore, concentrated on understanding matrix accumulation in diseased organs. Matrix 83 

accumulation can cause organ stiffness, which is likely responsible for organ failure in pulmonary 84 

and heart fibrosis(21-23). As the role of tissue elasticity in kidney function regulation is not 85 

immediately obvious(24), the mechanism by which matrix accumulation (or fibrosis) affects 86 

kidney function has been controversial(25, 26). Kidney function only modestly correlate with 87 

fibrosis (r = 0.4)(18, 27).  88 

Here, we generated spRNA-seq data for healthy and diseased human kidneys in conjunction with 89 

sn/scRNA-seq, snATAC-seq. By combining spatial gene expression with high quality single cell 90 

expression and open chromatin information, we resolve the identity of cells previously only known 91 

by their spatial localization and perform a detailed two-dimensional characterization of tissue 92 

fibrosis. We demonstrate the cellular heterogeneity of the fibrotic stroma, which includes not only 93 

immune and matrix-producing fibroblasts but also endothelial cells and immune cells that follow 94 

the organization of a lymphoid organ that are anatomically close to injured proximal tubule cells. 95 

We define tissue microenvironments, including the fibrotic microenvironment (FME) and show 96 
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that the FME gene signature can classify kidney samples and predict future kidney function 97 

decline.  98 

 99 

Results 100 

Spatially resolved multi-omics single cell survey of the healthy and diseased human kidneys 101 

defines expression, gene regulation and spatial location of >100 cell types and states. 102 

 103 

We generated a comprehensive human kidney single cell and spatial resolution atlas by analyzing 104 

73 human kidney tissue samples from 49 subjects (59.2% male and age of 63.75 ± 12.44 years). 105 

Samples were divided into two groups: (i) healthy control (N=35) determined by estimated 106 

glomerular filtration rate (eGFR) > 60 ml/min/1.73 𝑚𝑚2 and fibrosis < 5 % (ii) chronic kidney 107 

disease (CKD) (N=38) determined by (eGFR) < 60 ml/min/1.73 𝑚𝑚2 or kidney fibrosis > 10% 108 

including 18 with diabetic kidney disease (DKD) and 20 with hypertensive kidney disease (HKD). 109 

Supplementary Table 1 shows the detailed demographic, clinical, and histological characteristics 110 

of the included samples. 111 

We performed droplet-based single cell analysis using 10X Chromium Next GEM (sc/snRNA-seq 112 

(N=46) and snATAC-seq (N=20)) and used the Visium formalin-fixed paraffin embedded (FFPE) 113 

tissue (N=7) platform for spRNA-seq. After standard processing and meticulous quality control 114 

(QC), removing low-quality cells, we included 453,782 cells/nuclei into our final atlas. 115 

Supplementary Fig. 1 and Supplementary Table 2 contains QC metrices of the included 116 

samples. Overall, we could identify six cell super families, including endothelial cells, stromal 117 

cells, tubule epithelial cells, immune cell types, glomerular cells, and neural cells. Clustering 118 

identified 37 main and 111 distinct cell sub-types or states in healthy and diseased human kidneys 119 
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(Fig. 1, and Supplementary Fig. 2,3). Key cluster-specific gene markers are shown in Fig. 1, 120 

Supplementary Fig. 3 and Supplementary tables 3 to 6.  Our sc and sn human kidney atlas 121 

captured all kidney cell types in healthy and disease status in all anatomical regions. The main 122 

identified cell types were: podocytes, different types of proximal tubules segments 1-3 (PT_S1, 123 

S2, S3, and injured), descending loop of Henle (DLOH), cortical and medullary thick ascending 124 

loop of Henle (C_TAL and M_TAL), distal convoluted tubule (DCT), connecting tubule (CNT), 125 

principal cells of collecting duct (PC), intercalated cells type alpha and beta (IC_A and IC_B), 126 

stromal, and different types of immune cells.  127 

The combination of single cell and single nuclear methods, the large number of analyzed cells, the 128 

high-quality dataset, and inclusion of samples with different degrees of kidney disease severity in 129 

our kidney atlas enabled the capture of rare and novel cell types. We could identify different 130 

stromal cell types we called fibroblast_1 (COL1A1+, COL1A2+), fibroblast_2 (VIM+, IGFBP7+, 131 

B2M+), and cells specifically present in sclerosed glomeruli (CDH12+, CDH13+) we called 132 

GS_stromal cells (Fig. 1C, D, and Supplementary Fig 2,3). We could capture 19 different types 133 

of endothelial cells and erythropoietin producing cells (Endo_peritubular_RAMP3+) 134 

(Supplementary Fig. 3). We captured proximal tubule (PT) cells expressing high levels of 135 

SLC47A2, specific for toxin excretion (Supplementary Fig. 2, 3 and Supplementary Table 6) 136 

and tubule epithelial subtypes mostly seen in diseased kidneys that were positive for CTSD, 137 

CALB1, SPP1, CXCL14.  138 

Our atlas provides a comprehensive reference for human kidney immune cells. We could capture 139 

all lymphoid (CD4T, CD8T, natural killer cells, T_regulatory, B_Naiive, B_memory, 140 

plasma_cells) and myeloid cells (neutrophil, basophil/mast cells, CD14_monocyte, 141 

CD16_monocyte, macrophage, classical and plasmacytoid dendritic cells). In summary, we were 142 
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not only able to generate the most comprehensive analysis of human kidney cells, including 143 

multiple novel cell types, but these cell types were present in multiple analyzed samples and 144 

captured by multiple analytical methods (sn/scRNA and snATAC analysis) (Supplementary Fig. 145 

4). 146 

In addition to the gene expression data, the snATAC-seq of 80,845 human kidney nuclei provided 147 

us opportunities to identify transcription factors (TF) and enriched TF motifs in each cell type. 148 

Cell gene-expression markers and a comprehensive list of cell types’ differentially accessible 149 

regions and transcription factors can be found in Supplementary Fig 5, Supplementary Table 5, 150 

7 and include WT1 for podocyte and parietal epithelial cells (PEC), HNF4A for PT cell types, 151 

FOSL2 for injured_PT (iPT), and TFAP2A for C_TAL.  152 

A key limitation to cell type identification has been the lack of high-resolution spatially resolved 153 

cell transcriptomics information. To overcome this limitation, we used the new Visium FFPE 154 

platform and generated seven spRNA-seq data sets, including two control (healthy) and five 155 

diseased samples (3 DKD, 2 HKD) (Supplementary Fig. 6). We captured 2,043 ± 374 spots per 156 

sample and detected 3,471 ± 1,390 genes per spot, providing an extremely rich dataset and 157 

information (Supplementary Fig. 6 and Supplementary Table 2); enabling the identification of 158 

all key kidney cell types (24 clusters) now at spatial level (Supplementary Fig. 7).  159 

As a next step, we co-embedded the dissociated sc/snRNA-seq and snATAC-seq with the spRNA-160 

seq data, and generated an augmented high-resolution spatial dataset (94,696 datapoints) using 161 

CellTrek(28). The high-resolution data enabled the projection of all identified cell types from the 162 

dissociated datasets to its spatial location. Given differences in efficiencies of the cell capturing of 163 

the scRNA and snRNA datasets, we generated three cellular resolution spatially resolved atlases 164 

using our snRNA-seq (Fig. 2), scRNA-seq (Supplementary Fig. 8), and snATAC-seq 165 
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(Supplementary Fig. 9). Via this method, we could successfully match the dissociated cell type 166 

expression data to their anatomical, cellular locations including all types of tubules, different 167 

interstitial cell types and endothelial cells. Furthermore, we could verify and highlight cell types, 168 

such as iPT, previously observed in dissociated datasets without anatomical location. We could 169 

identify markers for cell types previously only known by their anatomical location for instance, 170 

PEC cells express CFH, VCAN, and VCAM1 as well as mesangial cells express ITGA8 and POSTN. 171 

The different types of omics information (scRNA/snRNA/snATAC) provided a critical validation 172 

for our datasets. Our computational kidney spatial map was consistent with the reading of our renal 173 

pathologist as well as the Human Protein Atlas data (Supplementary Fig. 10). 174 

Overall, we constructed a high-quality spatially resolved human kidney multiome atlas, which 175 

allowed the spatial mapping of high-resolution cellular and gene expression, gene regulatory 176 

information in health and disease states. The entire dataset is now available for the community on 177 

our easy-to-search website www.susztaklab.com. 178 

 179 

The presence and spatial proximity of injured proximal tubule cells to stromal cells indicates 180 

their critical role in human kidney fibrosis  181 

 182 

To identify key cell types and mechanisms of fibrosis in DKD and HKD, we applied a variety of 183 

unbiased computational tools. Differential gene expression (DEG) and accessible region (DAR) 184 

analysis between healthy and CKD samples highlighted PT, stroma, and immune cell types with 185 

the highest numbers of DEGs and DARs (Supplementary Fig. 4). As fibrosis is patchy, it has 186 

been difficult to understand driver pathways purely based on dissociated scRNAseq 187 

information(29). To understand the proximity of cells, we performed an in silico cellular 188 
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deconvolution of the analyzed spots using our snRNA-seq dataset as a reference. We determined 189 

the frequency when cells were captured together in the spatial data by running a correlation 190 

analysis. We found that the coexistence correlation of cell types frequency follows the anatomical 191 

regions in the kidney for example glomerular cells;  glomerular endothelial cells, podocyte, PEC, 192 

mesangial were mostly captured together. We observed a similar pattern for PT, iPT, LOH, and 193 

distal tubes (Fig. 3A, Supplementary Fig. 11A, 12, 13). We found a strong correlation between 194 

stromal, immune cells, and iPT cells, indicating their co-existence/proximity in the measured spots 195 

(Fig. 3A, Supplementary Fig. 11 A). Healthy and diseased samples showed similar patterns. 196 

However, the colocalization of stromal, immune, and iPT cell types was more robust in diseased 197 

samples (Supplementary Fig. 11B).  198 

Next, we generated an unbiased cell-cell distance matrix (measuring physical cell-cell distance) in 199 

the Cell-Trek imputed spRNA-seq dataset (Fig. 3B). Similarly, to the spot deconvolution method, 200 

we observed the proximity of glomerular cells and also the different types of fibroblast clusters 201 

(Fig. 3C, Supplementary Fig. 11C). In this analysis, we found that PT cells, specifically injured 202 

proximal tubules (iPT), were the most common scattered cells in the kidney, indicating that iPT 203 

cells had the most diverse set of neighboring cells. We found that almost every kidney cell type; 204 

especially stromal and immune cells, colocalized with iPT cells. In summary, differential 205 

expression analysis indicated the high plasticity of PT cells and the close proximity of injured PT 206 

cells to other cell types (Supplementary Fig. 11-13). 207 

The spatial proximity and plasticity of PT cells made us focus on these cells. We found that the 208 

fraction of iPT cells was markedly higher in diseased kidneys (Fig. 3C). However, we also 209 

observed iPT cells in healthy kidneys. Using the single cell co-expression (SCoexp) module of 210 

CellTrek(28) we identified two different iPT modules, corresponding to two iPT subtypes in 211 
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diseased samples (Fig. 3D) and one iPT type in healthy samples (Supplementary Fig. 14). 212 

Moving back to the rich snRNA-seq data, we found that one iPT cluster was enriched for the 213 

expression of VCAM1, ACSL1, ASS1, and ASPA, genes playing roles in cellular metabolism. We 214 

called them iPT_VCAM1+. This cluster was more frequent in healthy samples. The second iPT 215 

cluster expressed HAVCR1 (or KIM1), NFKBIZ, IL18, SPP1, ITGA3, and ITGB1 and was enriched 216 

for genes associated with cell adhesion and matrix (iPT-HAVCR1+) (Fig. 3E, Supplementary 217 

Fig. 15). Most iPT-HAVCR1+ cells were in the fibrotic samples. Trajectory analysis indicated that 218 

iPT_HAVCR1+ were located at the end of pseudotime, suggesting that they have accrued greater 219 

damage (Fig. 3F). Gene expression changes along the trajectory are listed in Supplementary 220 

Table 8. Our snATAC-seq recapitulated our results (Supplementary Fig. 16). We identified 221 

TFEC and BACH2 as specific TFs for iPT_VCAM1+ and iPT_HAVCR1+, respectively (Fig. 3G). 222 

Our results are consistent with prior snRNAseq results identifying VCAM1+ cells and prior 223 

mechanistic studies recognizing HAVCR1+ as an injured PT marker (10). 224 

iPTs were often captured together with stromal cells and were the closest to stromal fibroblasts 225 

(Supplementary Fig. 17). Our trajectory analysis indicated a continuous transition between iPT 226 

and fibroblasts similar to the previously described epithelial-mesenchymal transition (EMT)(30, 227 

31) including the expression of ZEB1, ZEB2, SNAI2, and ACTA2 (Supplementary Fig. 17, 18). 228 

Module analysis of the spRNA-seq dataset highlighted fibroblast_1 and fibroblast_2 subtypes with 229 

different characteristics; fibroblast_1 was enriched for matrix protein expression and fibroblast_2 230 

for inflammatory genes (Supplementary Fig. 17, 19).  231 

In summary, differential expression analysis indicated highly plastic PT cells and the close 232 

proximity of injured PT cells to the fibrotic stroma. Using spatial profiling, we could identify two 233 
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types of injured PT cells (VCAM1+ and HAVCR1+) in healthy and diseased samples and show 234 

their close proximity to fibroblasts.  235 

 236 

Fibroblast heterogeneity in human kidney disease  237 

To further examine fibroblast heterogeneity and its relationship to the development of fibrosis, we 238 

created an extracellular matrix (ECM) score by calculating the expression of collagen, 239 

glycoprotein, and proteoglycan specific genes in different cell types(32, 33). Fig. 4A shows that 240 

fibroblast_1, 2, MyoFib/VSMC, and mesangial cells had the highest ECM score. Consistently, 241 

fibroblast_1, and VSMC/myofibroblast fractions were higher in diseased samples (Fig. 4B). The 242 

ECM score was consistent with the presence of fibroblasts in the spRNA-seq data, which was 243 

compatible with the presence of these cells (Fig. 4C).  244 

Sub-clustering analysis of stromal cells identified 10 different cell types, including 6 different 245 

fibroblasts; SERPINE1+, FAP+, COL1A1+, CR2+, B2M+, and CXCL14+ fibroblasts. The sub-246 

clustering also indicated REN-expressing juxtaglomerular cells and ITGA8 and POSTN-expressing 247 

mesangial cells. We could discriminate VSMC expressing MYH11, RSG6, and myofibroblast 248 

expressing ACTA2 and SYNPO2 (Fig 4. D). While several snRNA-seq studies proposed stromal 249 

cell subtypes, our spRNA-seq dataset provides an unbiased verification and spatial localization for 250 

these cells (Fig 4. E). Our spRNA-seq data was consistent with protein expression in the Human 251 

Protein Atlas (Supplementary Fig. 20) and by snATAC-seq analysis (Supplementary Fig. 21). 252 

Within the stromal cells, SEPRINE1+, COL1A1+, FAP+ cells, and myofibroblast had the highest 253 

ECM score. Consistently, this cell type was enriched in diseased kidneys compared to controls 254 

(Fig. 4F). Cell trajectory analysis indicated that myofibroblasts are located at the end of pseudo 255 

time originating from pericytes, as previously shown(32) (Supplementary Fig. 22, 256 
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Supplementary Table 9). Using the snATAC-seq data, we could identify TCF12 for SERPINE1+ 257 

and E2F1 transcription factor motifs in myofibroblast (Fig. 4G, Supplementary Fig. 21). 258 

 259 

The interaction of stromal, immune, endothelial and injured epithelial establishes the kidney 260 

fibrotic microenvironment  261 

Our newly generated spRNA-seq dataset is uniquely suited to defining microenvironments (ME) 262 

in the human kidney. We ran nonnegative matrix factorization (NMF) on the spRNA-seq datasets. 263 

We found four major MEs in the human kidney, including glomerular/vascular MEs, tubule MEs, 264 

fibrotic MEs (FMEs), and immune MEs. The gene ontology enrichment analysis of genes detected 265 

in each microenvironment was consistent with their anatomical annotation (Supplementary Fig. 266 

23). It is important to note that the method identified patchy areas in the kidneys that were labelled 267 

as fibrotic microenvironments. The computationally defined FME strongly correlated with kidney 268 

ECM scores (Fig. 5A, Supplementary Fig. 24) and our pathologist’s assessment of fibrosis. Cell 269 

type enrichment analysis indicated iPT, fibroblast_1, fibroblast_2, and different immune cell types 270 

around the endothelial cells in FMEs (Fig. 5B, Supplementary Fig. 24, 25).  271 

We also identified a specific immune ME. These immune MEs were located within the FME, but 272 

again with patchy distribution. The immune ME consisted of follicular dendritic cells, plasma 273 

cells, B-cell and T lymphocytes (Supplementary Fig. 26). The immune ME organizations 274 

resembled early tertiary lymphoid structures(34). Immunostaining studies with cell type specific 275 

antibodies validated the presence of these specific immune cells and immune cell aggregates 276 

(Supplementary Fig. 27).  277 

To further understand cell interactions in FMEs, we implemented CellChat(35) on sn/scRNA-seq 278 

and spRNA-seq datasets. We found enrichment for C3, IL7, SPP1, IL17A, CXCL12, CXCL13, 279 
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CCL19, CCL21, PDGFB, TGFB1 and their receptors in FME regions (Fig. 5C, D, Supplementary 280 

Fig. 28). We observed that iPT_HAVCR1+ expressed IL7, C3, and SPP1 while their receptors 281 

were present on CD4T, CD8T, macrophages, and stromal cells, respectively, indicating that iPT 282 

cells might be responsible for the influx of these cells (Supplementary Fig. 28, 29). The stromal 283 

cells in FME were enriched for chemotactic factors including CXCL12, CXCL13, CCL19, CCL21 284 

and while their receptors where expressed in different immune cell, suggesting that stromal cells 285 

might signal to immune cell. We observed expression of PDGFB and TGFB1, known mediators 286 

of fibrosis, in FME associated immune aggregates (Fig. 5 C, D). CellChat analysis of sn/scRNA-287 

seq and spRNA-seq indicated FME stromal cells with the highest secretory score (Supplementary 288 

Fig. 28, 29). 289 

Overall, using unbiased NMF we identified spatial kidney regions, including well established 290 

glomerular and tubular regions, but also fibrotic and immune regions. Most importantly, FMEs 291 

were not only characterized by matrix-producing fibroblasts but we identified an intricate cell-cell 292 

interaction, indicating a complex cellular architecture (Fig. 5E).  293 

   294 

Fibrotic microenvironment gene signature successfully predicts disease prognosis in a large 295 

cohort of human kidney samples.  296 

Next, to understand whether our spatially resolved human kidney atlas information can be used 297 

for disease classification and prognosis evaluation, we analyzed a large cohort of human kidney 298 

samples. We first generated an FME gene signature (FME-GS) (Supplementary Table 10) and 299 

analyzed our large external kidney cohorts’ gene expression data from 298 human kidney samples 300 

(Fig. 6A), including healthy samples and samples with varying severity of DKD and HKD. 301 
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Our FME-GS was able to successfully cluster 298 human kidney samples into 3 separate groups 302 

(Fig. 6B). These 3 groups corresponded to samples with varying degrees of disease severity as 303 

indicated by differences in clinical parameters such as eGFR and fibrosis (Fig. 6B) (despite the 304 

fact that these parameters were not included in the clustering algorithm).  305 

Next, we wanted to know whether FME-GS could be used as a disease prognostic marker. Here 306 

we used a different set of large external human kidney gene expression datasets (N = 218), with a 307 

mean follow-up time of 2.49 (SD: 1.96) years. Our FME-GS successfully clustered samples based 308 

on disease severity (Fig. 6C). The top FME genes showing the greatest difference between clusters 309 

were mostly stromal and immune cell specific genes, including PDGFB, MYH9, NFKB1, and 310 

STAT3 (Fig. 6D). Next, we analyzed the relationship between cell types and kidney disease 311 

progression. We found that genes correlated with eGFR slope were enriched in PT, stromal and 312 

immune cells (Fig. 6E).  Finally, we performed a Kaplan-Meier analysis to predict the probability 313 

of reaching to end stage kidney disease (eGFR < 15 ml/min/1.73 𝑚𝑚2) or 40% eGFR decline/year. 314 

These are hard outcomes identified by the FDA for drug effectiveness(36). Our data indicated that 315 

cluster 1, with the highest FME-GS score, had the highest hazard ratio to reach the end-point (HR 316 

= 3.61, 95%CI: 1.25 – 10.4). We found that FME-GS has the strongest predictive value when 317 

compared to other microenvironments (Supplementary Fig. 30).  318 

In summary our spatially derived FME-GS can identify subjects with progressive kidney function 319 

decline in a large cohort. 320 

 321 

Discussion 322 

Here we present the spatial molecular principles of kidney health and disease via generating a 323 

comprehensive and spatially resolved human kidney atlas by combining single cell omics data and 324 
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a large number of human kidney tissue samples with varying degrees of disease severity. Our work 325 

fills a critical knowledge gap by characterizing cell types previously only defined by their spatial 326 

location, showing the anatomical location of cells only observed in dissociated single cell 327 

expression data and defining cell-type specific gene expression changes in diseased areas. We 328 

define the cellular complexity of the fibrotic microenvironment as the intricate interaction of a 329 

large number of cell types. We demonstrate the clinical prognostic value of spatial transcriptomics.  330 

 331 

Previous single cell analyses, focusing on dissociated human and mouse kidney datasets, have 332 

generated gene expression and regulatory matrices for a variety of kidney cell types(8-12, 37). As 333 

kidney cell types have been functionally well characterized, most identified cell types have been 334 

matched back to a more than half-century old functional cell type definition(6). A key limitation 335 

of these analyses has been the identification and molecular characterization of anatomically 336 

defined cell types, such as mesangial cells, PEC cells, and fibroblasts. Here we demonstrate that a 337 

joint approach that includes large single cells, single nuclear expression, open chromatin, and 338 

spRNA-seq combined with large and diverse samples and large cell numbers is critical to achieve 339 

this goal. The orthogonal analytical tools provide unique opportunities for validation, as each 340 

method suffers from specific technological biases. Here, we have not only been able to resolve and 341 

validate previously anatomically-known cell types but also identify novel cell types such as 342 

specific stromal cells for glomerulosclerosis (expressing CDH13)(38). 343 

 344 

Fibrotic diseases are responsible for close to 40% of all deaths(39). Kidney fibrosis is the final 345 

common pathway to end stage kidney failure(40). Fibrosis, however, is an anatomically defined 346 

lesion and most emphasis has been placed on matrix accumulation and characterization of matrix 347 
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producing cells. Here, we demonstrate the cellular and architectural complexity of kidney fibrosis. 348 

We propose the use of the fibrotic microenvironment to characterize these lesions, to not only 349 

focus on matrix accumulation but on the elaborate cellular complexity of these lesions. We show 350 

that they are anatomically localized close to injured PT, indicating that iPT is likely to be an 351 

important nidus of fibrosis. We identify spatially defined iPT subtypes. These iPT subtypes are 352 

consistent with previous mechanistic studies and animal model single cell data (10). Furthermore, 353 

our data suggest that some iPT cells can directly convert into fibroblasts, consistent with the 354 

previously proposed EMT hypothesis(30, 31).  355 

 356 

Combining snRNA and spatial information, we not only define the stromal cell subtypes but also 357 

the cellular and architectural heterogeneity of fibrosis. We could conclusively discriminate VSMC 358 

and mesangial cells from myofibroblasts that are anatomically distinct but share gene expression 359 

signatures in sc/snRNAseq data(41-43). We identify two key fibroblast modules; matrix secreting 360 

and immune fibroblast and show 10 different stromal cell types. We identify the key cell types that 361 

contribute to ECM production. Our data indicates that fibroblasts are the precursors of 362 

myofibroblasts in the kidney, but tubule cells could also become fibroblasts(32). We could identify 363 

novel markers and, ultimately, new fibroblast types and determine their spatial location. This 364 

information could be important in the field of finding therapeutic candidates for renal fibrosis. We 365 

noted a large cluster of FAP-positive fibroblasts in diseased human kidneys(44-46). FAP targeted 366 

cellular and RNA therapies have been developed and shown to have efficacy animal models of 367 

cardiac fibrosis(44-46). Our data suggests that these therapeutics may be helpful for treating 368 

kidney fibrosis.  369 

 370 
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Most importantly, we demonstrated that human kidney fibrosis is an established 371 

microenvironment, not just a simple collagen accumulation problem. The interaction of a large 372 

number of cell types, including iPT, immune, stromal, and endothelial cells, establishes the FME. 373 

While we did not perform side-by-side comparison, the cell heterogeneity and cell interaction 374 

network of human kidney fibrosis appear far more complex than what has been published for 375 

mouse models(47, 48). For example, in mice, we identified a large number of secreted cytokines 376 

from iPT cells responsible for the influx of immune and stromal cells(48). In patient samples, there 377 

is a strong interaction between stromal and immune cells and also signaling by immune and 378 

stromal cells to iPT, which might play a role maintaining their injured PT state.  379 

 380 

Immune cell clusters have long been observed in fibrotic kidney samples, even in patients with 381 

non-immune-mediated kidney disease, such as diabetes and hypertension(40, 49). Here we resolve 382 

these regions both spatially and at a cell type level. Our kidney scRNA-seq data was enriched for 383 

immune cells and enabled us to spatially resolve immune cell types and determine the distributions 384 

of immune cells in the kidney. We show that immune cell clusters (the immune microenvironment) 385 

are localized mostly within some FMEs. While we did not perform a systematic comparison of 386 

human and mouse kidney fibrosis, our data indicate lymphocyte prominence compared to myeloid 387 

cells in human fibrosis, while mouse fibrosis models are strongly enriched for macrophages(48). 388 

The fibrosis-associated immune aggregates show a resemblance to the tertiary lymphoid structures 389 

(TLS). TLS are organized aggregates of immune cells that form postnatally in nonlymphoid 390 

tissues, usually as a persistent antigen production(50) and generate autoreactive effector cells. TLS 391 

have been earlier described in mouse kidney tissue samples(51-54). Future studies will be needed 392 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 26, 2022. ; https://doi.org/10.1101/2022.10.24.513598doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.24.513598


18 
 

to define TLSs in CKD and kidney fibrosis; however, they could have tremendous therapeutic 393 

potential.  394 

 395 

One of the most devastating complications of CKD is its progression to ESRD, which requires 396 

life-sustaining dialysis or transplantation (55). At present, we cannot predict which patients will 397 

progress to ESRD, representing an important clinical problem. Our data indicate that FME-GS 398 

can identify subjects at risk of ESRD in a large external dataset of human kidney tissue samples. 399 

These results establish FME-GS as a key biomarker and potentially as a causal mechanism of 400 

progression.  401 

In summary, we develop a spatially defined molecular human kidney cellular atlas, characterize 402 

the fibrotic microenvironment, and indicate their role as a clinically meaningful prognostic disease 403 

biomarker, demonstrating the utility of spRNA-seq for the investigation complex diseases. 404 

. 405 

  406 

 407 

 408 

 409 

 410 

 411 

  412 
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Methods: 413 

Single nuclei RNA sequencing  414 

Nuclei were isolated using lysis buffer (Tris-HC, NaCl, MgCl2, NP40 10%, and RNAse inhibitor 415 

(40 U/ul)). 10-30 mg of frozen kidney tissues were minced with razor blade into 1-2 mm pieces in 416 

1 ml of lysis buffer. The chopped tissue was transferred into a gentleMACS C tube and tissue was 417 

homogenized in 2 ml of lysis buffer using gentleMACS homogenizer with programs of 418 

Multi_E_01 and Multi_E_02 for 45 seconds. The homogenized tissue was filtered through a 40 419 

µm strainer (08-771-1, Fisher Scientific) and the strainer was washed with 4 ml wash buffer. 420 

Nuclei were centrifuged at 500xg for 5 minutes at 4°C.  The pellet was resuspended in wash buffer 421 

(PBS 1X + BSA 10% (50 mg/ml), + RNAse inhibitor (40 U/ul)), filtered through a 40 µm Flowmi 422 

cell strainer (BAH136800040-50EA, Sigma Aldrich). Nuclear quality was checked, and nuclei 423 

were counted. In accordance with the manufacturer's instructions, 30,000 cells were loaded into 424 

the Chromium Controller (10X Genomics, PN-120223) on a Chromium Next GEM chip G Single 425 

Cell Kit (10X Genomics, PN-1000120) generate single cell gel beads in the emulsion (10X 426 

Genomics, PN-1000121). The Chromium Next GEM Single Cell 3′ GEM Kit v3.1 (10X 427 

Genomics, PN-1000121) and Single Index Kit T Set A (10X Genomics, PN-120262) were used in 428 

accordance with manufacturer's instructions to create the cDNA and library. Libraries were 429 

subjected to quality control using the Agilent Bioanalyzer High Sensitivity DNA kit (Agilent 430 

Technologies, 5067-4626). The following demultiplexing was used to sequence libraries using the 431 

Illumina Novaseq 6000 system with 2 × 150 paired-end kits: 28 bp Read1 for cell barcode and 432 

UMI, 8 bp I7 index for sample index, and 91 bp Read2 for transcript.   433 

 434 
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Single nuclei ATAC sequencing 435 

The procedure described above was used to isolate the nuclei. The resuspension was performed in 436 

diluted Nuclei Buffer (10X GEM). Nuclei quality and concentration were measured with Countess 437 

AutoCounter (Invitrogen, C10227). The diluted nuclei were loaded and incubated in chromium 438 

single cell ATAC library & gel bead kit's transposition mix (10X Genomics, PN-1000110). 439 

Chromium Chip E (10X Genomics, PN-1000082) in the Chromium Controller was utilized to 440 

capture the GEMs. The Chromium Single Cell ATAC Library & Gel Bead Kit and Chromium i7 441 

Multiplex Kit N Set A (10X Genomics, PN-1000084) were then used to create snATAC libraries 442 

in accordance with the manufacturer's instructions. Library quality was examined using an Agilent 443 

Bioanalyzer High Sensitivity DNA kit. Libraries were demultiplexed, as follows, after sequencing 444 

on an Illumina Novaseq system using two 50-paired-end kits: 50 bp Read1 for DNA fragments, 8 445 

bp i7 index for sample index, 16 bp i5 index for cell barcodes, and 50 bp Read2 for DNA 446 

fragments.   447 

Single Cell RNA-seq 448 

Fresh human Kidneys (up to 0.5 gr) collected in RPMI were minced into approximately 2-4 mm 449 

cubes using a razor blade and then transferred to a gentlMACS C tube contains Multi Tissue 450 

dissociation kit 1 (Miltenyi, #130-110-201). The tissue was homogenized using Multi-B program 451 

of gentleMACS dissociator with Multi_B program in the tube contains 100ul of Enzyme D, 50ul 452 

of Enzyme R and 12.5ul of Enzyme A in 2.35 ml of RPMI and incubated for 30mins at 37 degrees. 453 

Second homogenization were performed using Multi_B program on gentleMACS dissociator. The 454 

solution was then passed through a 70um cell strainer. After centrifugation at 1,200 RPM for 455 

7mins, cell pellet was incubated with 1ml of RBC lysis buffer on ice for 3mins. The reaction was 456 
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stopped by adding 10 ml PBS. Next the solution centrifuged at 1,000 RPM for 5 minutes. Finally, 457 

after removing the supernatant, the pellet was resuspended in PBS. Cell number and viability were 458 

analyzed using Countess AutoCounter (Invitrogen, C10227). This method generated single cell 459 

suspension with greater than 80% viability. Next, 30,000 cells were loaded into the Chromium 460 

Controller (10X Genomics, PN-120223) on a Chromium Next GEM chip G Single Cell Kit (10X 461 

Genomics, PN-1000120) to generate single cell gel beads in the emulsion (GEM) according to the 462 

manufacturer’s protocol (10X Genomics, PN-1000121). The cDNA and library were made using 463 

the Chromium Next GEM Single Cell 3′ GEM Kit v3.1 (10X Genomics, PN-1000121) and Single 464 

Index Kit T Set A (10X Genomics, PN-120262) according to the manufacturer’s protocol. Quality 465 

control for the libraries were performed using Agilent Bioanalyzer High Sensitivity DNA kit 466 

(Agilent Technologies, 5067-4626). Libraries were sequenced on Illumina Novaseq 6000 system 467 

with 2 × 150 paired-end kits using the following demultiplexing: 28 bp Read1 for cell barcode and 468 

UMI, 8 bp I7 index for sample index and 91 bp Read2 for transcript. 469 

Visium FFPE for SpRNA-seq 470 

RNA quality of human kidney FFPE sample was checked by extracting RNA using RNeasy FFPE 471 

kit (Qiagen-Cat #73504) according to the manufacturer’s protocol. RNA quality was examined 472 

using Agilent bioanalyzer and samples with DV200>50% were selected. Then a 5 µm tissue 473 

samples was cut onto the Visium Spatial gene Expression Slide. After deparaffinization, H & E 474 

staining was performed. We used Keyence 1266 BZ-X810 microscope for whole slide imaging. 475 

After scanning, de-crosslinking, probe hybridization, probe release and extension, library 476 

preparation was performed by single Index Kit TS Set A (10X Genomics, PN-3000511) according 477 

to manufacturer’s protocol. Quality control for the libraries were performed using Agilent 478 
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Bioanalyzer High Sensitivity DNA kit (Agilent Technologies, 5067-4626). Libraries were 479 

sequenced on Illumina Novaseq 6000 system with 2 × 150 paired-end kits using the following 480 

demultiplexing: 28 bp Read1 for cell barcode and UMI, 10 bp I7 index, 10bp i5 index and 50 bp 481 

Read2 for transcript.  482 

Microdissection and Bulk RNA sequencing 483 

Under a dissecting microscope, human kidney tissues were microdissected in RNA-later solution 484 

using a microdissection forceps. After removing glomeruli, the remaining tissue was treated as a 485 

tubule. Total RNA was extracted using the Qiagen RNeasy kit (catalog #74106). Agilent 486 

Bioanalyzer RNA 6000 Pico kit (Agilent Technologies, 5067-1513) was used to assess the quality 487 

of the RNA. All samples with an RNA integrity number (RIN) of at least 6 were utilized. Following 488 

the manufacturer's instructions, strand-specific RNA-seq libraries were created using the 489 

NEBNext® UltraTM RNA Library Prep Kit for Illumina (catalog #E7530L). RNA-seq libraries 490 

were then sequenced to a depth of 20 million 2x150 pair end reads. 491 

Human Sample Acquisition 492 

 493 

Left-over kidney samples were irreversibly deidentified, and no personal identifiers were 494 

gathered, therefore they were exempt from IRB review (category 4). We engaged an external 495 

honest broker who was responsible clinical data collection without disclosing personal 496 

identifiable information. The University of Pennsylvania institutional review board (IRB) gave 497 

its approval for the collection of human kidney tissue. 498 
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A portion of the tissue were formalin-fixed, paraffin-embedded, and stained with periodic acid-499 

Schiff. A local renal pathologist performed objective pathological scoring of the abnormal 500 

parameters. 501 

Immunostaining 502 

Paraffin blocks were sectioned. After deparaffinization, 1% bovine serum albumin was used for 503 

blocking. Diluted primary antibodies on slides were incubated overnight (CD4 CST (Catalogue 504 

#48374), IGKC: Biolegend (Catalogue #392702), and CD79A Abcam (Catalogue #ab79414). After 505 

washing the sections with PBS, three times, secondary antibodies were used for 1h at room 506 

temperature. The stains were imaged with OLYMPUS BX43 Microscope. Positive cells in ten 507 

randomly selected fields were counted on each slide. 508 

Bioinformatic analysis  509 

Primary single nuclei and cell RNA-seq data processing 510 

Using Cell Ranger v6.0.1, FASTQ files from each 10X single nuclei run were processed (10X 511 

Genomics). Gene expression matrices for each cell were produced using the human genome 512 

reference GRCh38.  513 

Data Processing and Computational Analyses 514 

After ambient RNA correction using “SoupX”(56) and doublet removal by “DoubletFinder”(57) 515 

using default parameters, Seurat objects from the aligned outputs (from multiple samples) were 516 

created where genes expressed in more than 3 cells and cells with at least 300 genes were retained. 517 

Further, a merged Seurat object was obtained using “merge” function of Seurat v (4.0.3)(58). The 518 

following QC filtering were used: (a) cells having n_feature counts of more than 3000 and less 519 
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than 200 as well as (b) more than 15% mitochondrial counts (for snRNA-seq data) and more than 520 

50% mitochondrial counts (for scRNA-seq data) were filtered.  521 

 522 

Data Normalization and Cell Population Identification 523 

First, highly variable genes were identified using the method “vst”. The data was natural log 524 

transformed and scaled. The scaled values were then subjected to principle component analysis 525 

(PCA) for linear dimension reduction. We used the “harmony”(59) package by “RunHarmony” 526 

function for batch effect correction. A shared nearest neighbor network was created based on 527 

Euclidean distances between cells in a multidimensional PC space (the first 50 and 30 PCs were 528 

used for snRNA-seq and scRNA-seq, respectively) and a fixed number of neighbors per cell, which 529 

was used to generate a 2-dimensional Uniform Manifold Approximation and Projection (UMAP) 530 

for visualization.   531 

In order to identify cell-type markers, we used Seurat’s “FindAllMarkers” function of “Seurat”. 532 

This method calculates log fold changes, percentages of expression within and outside a group, 533 

and p-values of Wilcoxon-Rank Sum test comparing a group to all cells outside that specific group 534 

including adjustment for multiple testing. A log-fold-change threshold of 0.25 and FDR<0.05 was 535 

considered significant. These steps were performed on the snRNA-seq and scRNA-seq datasets, 536 

separately. Clusters expressing multiple cell types specific marker genes were excluded as 537 

potential doublets. 538 

 539 

 540 

 541 
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DEGs between diseased and healthy groups 542 

To identify DGEs between experimental groups, we utilized the "FindMarkers" tool for each cell 543 

type and condition, a log-fold-change threshold of 0.25, and an FDR 0.05. 544 

Single nuclei RNA-seq trajectory analysis 545 

PT, Injured PT cells and different types of fibroblasts were subclustered for the trajectory analysis. 546 

The trajectory analysis was done in two steps. Different sub-types of iPT and stromal cells with 547 

equal numbers were randomly subsampled and cell dataset object (CDS) was generated using 548 

Monocle3(60, 61). After preprocessing, batch effects correction, the dataset was embedded for 549 

dimension reduction and pseudotemporal ordering. We used the “order_cell” function and 550 

indicated the PT as start point for “pseudotime” analysis. The "track genes" algorithm was used to 551 

identify the DGEs along the trajectories, and genes with q values of 0.05 or higher were considered 552 

significant.  553 

Ligand–receptor interactions 554 

CellChat(35) repository was used to assess cellular interactions between different cell types and to 555 

infer cell–cell communication networks from snRNA-seq data. Package CellChat v1.4.0 was used 556 

to predict cell type-specific ligand–receptor interactions (1939 interactions). Only receptors and 557 

ligands expressed in more than 10 cells in each cluster were considered. Probability and P values 558 

were measured for each interaction. 559 

 560 

 561 

 562 
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Single nuclei ATAC-seq analysis 563 

Raw FASTQ files were aligned to the GRCh38 reference genome and quantified using Cell Ranger ATAC 564 

(v. 1.1.0). The cell ranger outputs of four snATAC-seq datasets were embedded using Signac 565 

(v.1.3.0)(62) to generate Signac object. Low-quality cells were removed from each snATAC object 566 

using the following criteria: peak_region_fragments < 3000 & peak_region_fragments > 20000 & 567 

pct_reads_in_peaks < 15 & nucleosome_signal > 4 & TSS.enrichment < 2). The filtered cells in 568 

twenty objects were merged together using “merge” function in Seurat. Dimensional reduction 569 

was done by singular value decomposition (SVD) of the TFIDF matrix and UMAP. Batch effect 570 

was corrected using Harmony(59) via the “RunHarmony” function in Seurat. A KNN graph was 571 

made to cluster cells using the Louvain algorithm. 572 

Cluster annotation of snATAC-seq 573 

With the Signac "FindMarkers" function, peaks observed in at least 20% of cells were evaluated 574 

for differentially accessible chromatin regions (DARs) between different cell types using a 575 

likelihood ratio test, a log-fold-change threshold of 0.25, and an FDR of 0.05. 576 

To annotate the genomic regions harboring snATAC-seq peaks, ChIPSeeker (v1.24.0)(63)  was 577 

used.  578 

Motif Enrichment Analysis and Motif Activities 579 

The "AddMotifs" function of Signac was used to run a motif enrichment analysis after creating a 580 

matrix of positional weights for motif candidates from JASPAR2020. The related function of 581 

"RunChromVAR" and chromVAR (v.1.6.0)(64) were used to determine transcription factor 582 

activity. The "FindMarkers" program was used to calculate the differences in motif activity 583 
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between clusters, and an FDR of 0.05 was deemed significant. The "FindMotif" tool was used to 584 

carry out motif enrichment analysis on the differentially accessible regions. 585 

DARs between groups 586 

We used the “FindMarkers” function after selecting “DefaultAssay” as “peaks” to identify DARs 587 

in each cell type and diseased and healthy conditions, with a log-fold-change threshold of 0.25 and 588 

FDR<0.05. Peaks translated to related genes using ChIPSeeker (v1.21.1)(63). 589 

 590 

 591 

Annotation based on snRNA-seq and Integration snATAC-seq and snRNA-seq 592 

The "GeneActivity" tool in Signac was used to create a gene activity matrix following clustering 593 

of the twenty integrated snATAC-seq datasets. Using protein-coding genes annotated in the 594 

Ensembl database, this technique counts the ATAC peaks inside the gene body and 2 kb upstream 595 

of the transcriptional start point. Next, log normalization was applied to the gene activity matrix. 596 

The snRNA-seq dataset was utilized as a reference, and the "FindTransferAnchors" function was 597 

used to discover matching genes between the snRNA-seq and snATAC-seq datasets by using 598 

shared correlation patterns in the gene activity matrix and snRNA-seq dataset. Next, the predicted 599 

labels within two datasets were identified using the "TransferData" method. 600 

 601 

Integration of snRNA-seq, scRNA-seq and snATAC-seq datasets 602 

In order to create a single snRNA-seq, scRNA-seq, and snATAC-seq dataset we used a step-by-603 

step integration method. First, we used our snRNA-seq dataset as a reference and the snATAC-604 

seq data (which gene activity was already calculated) to project to the snRNA-seq dataset using 605 
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“FindTransferAnchors”, and “TransferData” functions. Then the imputed snATAC-seq dataset 606 

was merged with snRNA-seq dataset and after scaling, the data dimensions were reduced using 607 

PCA and UMAP. After creating a single data matrix of snRNA-seq and snATAC-seq, the scRNA-608 

seq was projected to this dataset by finding the shared anchors. Then the imputed scRNA-seq 609 

dataset was merged with integrated snRNA-seq, snATAC-seq datasets and after scaling, the data 610 

dimensions were reduced using PCA and UMAP. 611 

 612 

 613 

 614 

SpRNA-seq data analysis 615 

The data was aligned using Space Ranger (v1.0.0) with reference genome GRCh38 and human 616 

probe dataset (Visium_Human_Transcriptome_Probe_Set_v1.0_GRCh38). The data then was 617 

loaded to make the Seurat object and normalized using SCT. This step was done for all seven 618 

samples. The samples were merged together, using “merge” function of Seurat.  Next, the data was 619 

subjected to principle component analysis (PCA) for linear dimension reduction and Harmony was 620 

used to integrate the datasets. A shared nearest neighbor network was created based on Euclidean 621 

distances between cells in a multidimensional PC space (30 PCs were used) and a fixed number 622 

of neighbors per cell, which was used to generate a 2-dimensional Uniform Manifold 623 

Approximation and Projection (UMAP) for visualization.   624 

In order to identify spot specific markers, Seurat’s “FindAllMarkers” function was used. In this 625 

method log fold changes, percentages of expression within and outside a group, and p-values of 626 

Wilcoxon-Rank Sum test comparing a group to all cells outside that specific group including 627 
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adjustment for multiple testing was calculated. A log-fold-change threshold of 0.25 and FDR<0.05 628 

was considered as significant. Basic functions of Seurat were used for visualization. 629 

 630 

Deconvolution of SpRNA-seq Dataset 631 

Two different methods were used to deconvolute the spRNAseq data; the RCTD(65) method using 632 

the default parameters and the CCA(66) method using Seurat.  The “FindAnchors” function in 633 

Seurat, the shared genes between two datasets was determined and cell type prediction was 634 

performed using “TransferData” function and the prediction score of each cell type in each spot 635 

was considered as the frequency of each cell type in the spot. The distribution score was calculated 636 

as the number of spots with more than 10% probability of one cell type. 637 

In order to determine the colocalization of the identified cells in each spot, Pearson correlation test 638 

was performed which indicate the probability of co-existing of different cell types.  639 

 640 

Mapping sn/scRNA-seq to Spatial Location 641 

In order to map back the cell types identified in the dissociated data (sn/scRNA-seq datasets), 642 

Celltrek(28) package was used. Firstly, the sn and scRNA-seq data were down sampled to 20,000 643 

cells. Then, by using “traint” function, sn/scRNA-seq datasets were co-embedded with spRNAseq 644 

datasets. Next, using the random forest model, single cells were mapped to their spatial locations.  645 

This analysis was performed by merging snRNA-seq and immune cell types to enrich the dataset 646 

for immune cells.  Regarding colocalization, the “sColoc” function of the CellTrek was used. 647 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 26, 2022. ; https://doi.org/10.1101/2022.10.24.513598doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.24.513598


30 
 

In order to find the different cell type modules in the spRNAseq, spatial-weighted gene co-648 

expression analysis was performed. 649 

 650 

 651 

Finding microenvironments in spRNA-seq 652 

In order to identify microenvironments on the merged dataset the NMF reduction was performed 653 

then, the clustering by default parameters using NMF reduction was done. In order to identify MEs 654 

specific markers, Seurat’s “FindAllMarkers” function was used. 655 

 656 

 657 

ECM production score 658 

In order to calculate the extracellular matrix production (ECM), the proportion of the expressions 659 

of the collagen, proteoglycan and glycoprotein(33) genes in each cells were calculated. 660 

Bulk RNA-seq Analysis 661 

FASTQC was used to check the QC of the sequencing results. Next, the adapters and low-quality 662 

bases were trimmed using TrimGalore (v0.4.5). The trimmed FASTQ files were aligned to the to 663 

the human genome (hg19/GRCh37) using STAR (v2.7.3a)(67, 68) based on GENCODE v19 664 

annotations(67, 68). The expression of different genes was measured using RSEM by calculating 665 

uniquely mapped reads as transcripts per million (TPM).  666 

Hierarchical clustering analysis 667 
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Clustering of microdissected human kidney tubule samples based on FME-gene signature 668 

Hierarchical clustering was performed on the scaled TPM matrix of microdissected human tubules 669 

datasets based on the FME-GS list. Ward's method with Euclidean distances was used to cluster the 670 

datasets. The optimal number of clusters was determined by average silhouette method. After 671 

clustering, the data was presented as a cluster dendrogram.  672 

Statistics 673 

The data were expressed as means ± SEM. Independent sample t test was used to compare the 674 

continuous variable in two groups and One-way ANOVA was used to compare the continuous 675 

parameters between more than two groups followed by Bonferroni post hoc test for subgroup 676 

comparisons. P < 0.05 was considered as a significance.  677 

 678 

Data Availability 679 

Raw data, processed data, and metadata from the snRNA-seq, scRNA-seq, snATAC-seq, and 680 

spRNA-seq have been deposited in Gene Expression Omnibus (GEO) and the accession number 681 

will be provided when it will be available. The human bulk kidney RNA-seq data are available 682 

under following accession numbers: GSE115098 and GSE173343. The single cell and nuclear 683 

expression and open chromatin and spatial data is also available at www.susztaklab.com. 684 

Code Availability 685 

All the codes used for the analysis were deposited on GitHub 686 

(https://github.com/amin69upenn/Human_Kidney_Multiomics_and_Spatial_Atlas). 687 
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Fig 1. Single cell resolution comprehensive human kidney multi-omics atlas. (A) Study overview. (B) Combined UMAP
representation of 453,718 integrated human kidney sn/sc-RNA-seq and sn-ATAC-seq data. (C) UMAP of 223,438 human kidney
snRNA-seq data and bubble dot plots of cluster specific marker genes. The size of the dot indicates the percent positive cells and
the darkness of the color indicates average expression. (D) UMAP of 149,498 human kidney scRNA-seq data and bubble dot plots
of cluster specific marker genes. The size of the dot indicates the percent positive cells and the darkness of the color indicates
average expression. (E) UMAP of 80,845 human kidney snATAC-seq data and bubble dot plots of cluster specific marker genes
using gene activity score. The size of the dot indicates the percent positive cells and the darkness of the color indicates average
expression. Endo_GC; endothelial cells of glomerular capillary tuft, Endo_peritubular; endothelial cells of peritubular vessels,
Endo_lymphatic; endothelial cells of lymphatic vessels, Mes; meseangial cells, GS_Stromal; glomerulosclerois-specific stromal
cells, VSMC/Myofib; vascular smooth muscle cells/myofibroblast, PEC; parietal epithelial cells, Podo; podocyte, PT_S1; proximal
tubule segment 1, PT_S2; proximal tubule segment 2, PT_S3; proximal tubule segment 3, Injured_PT; injured proximal tubule
cells, DLOH; thin descending loop of Henle, C_TAL; cortical thick ascending loop of Henle, M_TAL; medullary thick ascending
loop of Henle, DCT; distal convoluted tubule, CNT; connecting tubule cells, PC; principal cells of collecting duct, IC_A; Type
alpha intercalated cells, IC_B; Type beta intercalated cells, NK; natural killer cells, CD4T; T lymphocytes CD4+, CD8T; T
lymphocytes CD8+, B_Naiive; Naiive B lymphocyte, B_memory; memory B lymphocyte, RBC; red blood cells, Baso/Mast;
basophil or mast cells, pDC; plasmacytoid dendritic cells, cDC; classical dendritic cells, Mac; macrophage, CD14_Mono; monocyte
CD14+, CD16_Mono; monocyte CD16+.
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Fig 2. Spatially resolved human kidney gene expression atlas. (A) Overview of the data generation and analysis of spRNA-
seq. The spRNASeq data was integrated with snRNA-seq information and spots were imputed to obtain near single cell level
information using “CellTrek”. (B) Spatial location and specific marker genes expression of identified cell types in snRNA-seq.
The dots show cells mapped back to their spatial location in the human kidney tissue. For each spatial location the original
(H&E) image of the slide shown. The color indicates the gene expression level of specific marker genes, from blue to red
indicates higher expression. Endo_GC; endothelial cells of glomerular capillary tuft, Endo_peritubular; endothelial cells of
peritubular vessels, Endo_lymphatic; endothelial cells of lymphatic vessels, Mes; mesangial cells, GS_Stromal;
glomerulosclerois-specific stromal cells, VSMC/Myofib; vascular smooth muscle cells/myofibroblast, PEC; parietal epithelial
cells, Podo; podocyte, PT_S1; proximal tubule segment 1, PT_S2; proximal tubule segment 2, PT_S3; proximal tubule segment
3, Injured_PT; injured proximal tubule cells, DLOH; thin descending loop of Henle, C_TAL; cortical thick ascending loop of
Henle, M_TAL; medullary thick ascending loop of Henle, DCT; distal convoluted tubule, CNT; connecting tubule cells, PC;
principal cells of collecting duct, IC_A; Type alpha intercalated cells, IC_B; Type beta intercalated cells, CD4T; T lymphocytes
CD4+, B_Naiive; Naiive B lymphocyte, Mac; macrophage.
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Fig 3. Spatial analysis highlights the proximity of the injured PT cells to the fibrotic niche. (A) The co-occurrence (Pearson correlation) of
different kidney cells in the spatial transcriptome data after spot deconvolution using RCTD method using snRNA-seq as reference. The color
indicates the degree of correlation. Higher correlation indicates the higher probability of co-occurrence of the cells. Different kidney
compartments were encircled on the heatmap. (B) The spatial distance of kidney cells in the spRNAseq data using sColoc of CellTrek. The
circles indicate each cell type and the distance from the center indicates the lower frequency and distribution of cell types. The distance of the
circles correlates with the distance of those cell types. (C). Bar graphs indicated the mean fractions of proximal tubule and injured proximal
tubule cells in healthy control and diseased samples in snRNA-seq data. Bars indicate SEM. P values were calculated using independent t test.
(D) The gene co-expression network indicates two types of injured_PT in diseased human kidneys, left panel shows the heatmap of co-
expressed genes. The right panels indicate the spatial location of the identified injured PT cells. The color scheme of the heatmap indicate the
expressions of the genes in each iPT modules. (E) Two types of injured PT cells in snRNA-seq dataset. The bar graph shows the frequency of
the different iPT types in healthy control and diseased samples. Violin plots show the different gene markers in PT and iPT cells. The heatmap
indicates the enriched pathways for iPT-VCAM1+ and iPT-HAVCR1+ (lower panel). (F) UMAP representation of PT and iPT cell sub-
clustering trajectory from PT to iPT-VCAM1+ and iPT- HAVCR1+ in snRNA-seq (Upper panels). Cells are colored by pseudotime and the
arrow indicates the direction of the pseudotime. The heatmap shows the differentially expressed genes along the trajectory. The color scheme
indicates the z scores of expression along the trajectory. (G) Representative feature plot of motif activity of specific transcription factors in iPT-
VCAM1+ and iPT-HAVCR1+ using snATAC-seq data. Endo_GC; endothelial cells of glomerular capillary tuft, Endo_peritubular; endothelial
cells of peritubular vessels, Endo_lymphatic; endothelial cells of lymphatic vessels, Mes; mesangial cells, GS_Stromal; glomerulosclerois-
specific stromal cells, VSMC/Myofib; vascular smooth muscle cells/myofibroblast, PEC; parietal epithelial cells, Podo; podocyte, PT_S1;
proximal tubule segment 1, PT_S2; proximal tubule segment 2, PT_S3; proximal tubule segment 3, Injured_PT; injured proximal tubule cells,
DLOH; thin descending loop of Henle, C_TAL; cortical thick ascending loop of Henle, M_TAL; medullary thick ascending loop of Henle,
DCT; distal convoluted tubule, CNT; connecting tubule cells, PC; principal cells of collecting duct, IC_A; Type alpha intercalated cells, IC_B;
Type beta intercalated cells, CD4T; T lymphocytes CD4+, B_Naiive; Naiive B lymphocyte, Mac; macrophage.

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 26, 2022. ; https://doi.org/10.1101/2022.10.24.513598doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.24.513598


6.8

6.4

29.8

11.3

0.9

1.5

3.5

15.7

8.2

13.0

2.7

4.5

3.0

42.1

14.5

4.1

1.1

1.3

10.9

6.9

7.4

4.2

Contro
l

Dise
as

e

Mes

JGC

SERPINE1+

FAP+

COL1A1+

CR2+

CXCL14+

B2M+

Pericyte

VSMC

MyoFib

10

20

30

40

ECM Score

Mes

JGC

SERPINE1+

FAP+

COL1A1+

CR2+

CXCL14+

B2M+

Pericyte

VSMC

MyoFib 0.01

0.02

0.03

Fibroblast_1

Fibroblast_2

MyoFib/VSMC

C Disease Control

D

E

Mes – ITGA8+

JGC – REN+

VSMC – MYH11+

MyoFib – SYNPO2+

Pericyte – NOTCH3+

COL1A1+ – COL1A1+

SERPINE1+ – SERPINE1+

CXCL14+ – CXCL14+

FAP+ – FAP+

CR2+ – CR2+

B2M+ – B2M+

F

A
P = 0.002

0

5

10

15

ac
to

Control

Disease
Fr

ac
tio

n
Fr

ac
tio

n

Cell Fractions

ECM Score

Fibroblast_1

ECM ScoreSpatially Resolved Stromal Atlas

Mes

ECM Score

Endo_GC
Endo_Peritubular
Endo_Lymphatic

Fibroblast_1
Fibroblast_2

MyoFib/VSMC
GS_Stromal

Mes
PEC

Podo
PT_S1
PT_S2
PT_S3

Injured_PT
DLOH

C_TAL
M_TAL

Macula_Densa
DCT
CNT

PC
IC_A
IC_B

B_Naiive
B_memory

Plasma_Cells
CD4T
CD8T

NK
cDC
pDC

CD14_Mono
CD16_Mono

Mac
Neutrophil
Baso/Mast

RBC

0

0

0

0

0.0

0.5

1.0

1.5

MyoFib/VSMC

P = 0.05

G
TFs in different stromal cell types

FAP+

B

Low Med High

Gene Expression +
+

+ +
+

+

Fig 4. Spatially and transcriptionally resolved fibroblasts heterogeneity in human kidney fibrosis. (A) Extracellular matrix
production score in different kidney cells in the sn/sc-RNA-seq. The color scheme indicates the ECM score in each cell type,
calculated by the expression of the collagen, proteoglycan and glycoprotein genes. (B) The comparison between fractions of
fibroblast_1 and VSMC/myofibroblast cells with the highest ECM score in healthy control and diseased samples. The bars
indicate SEM. Independent t test was used to compare the fractions between two groups. (C) The ECM score in spRNA-seq data
of healthy and diseased samples (upper panel). The color scheme indicates the z score. The spatial location of the cells in the
regions with high ECM in spRNAseq data (lower panel). (D) UMAP representation of sub-clustering of stomal cell in snRNA-
seq dataset (left panel). The bubble dot plots of cluster specific marker genes in the snRNA-seq. The size of the dot indicates the
percent positive cells and the darkness of the color indicates average expression (right panel). (E) The spatial location and
specific marker genes expression of identified stromal cell types in snRNA-seq. The dots show the cells mapped back to their
spatial location in the human kidney. The original (H&E) image of the slide is shown side by side. The colors indicate the gene
expression level of specific marker genes. (F) The heatmap of ECM score in the sub-clustered stromal cells (left panel). The
heatmap of the fractions of different types of stromal cells in healthy control and diseased samples (right panel). (G)
Transcription factor enrichment motifs in each stromal cell sub-cluster. The heatmap shows the z score of motif activity in each
cell type using chromvar. Mes; mesangial cells, JGC; juxta glomerular cells, SERPINE1+; SERPINE1 positive fibroblast, FAP+;
FAP positive fibroblast, COL1A1+; collagen 1 producing fibroblasts, CR2+; CR2 positive fibroblast, CXCL14+; CXCL14
positive fibroblast, B2M+: B2M positive fibroblast, VSMC; vascular smooth muscle cells, MyoFib; myofibroblast.
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Fig 5. The kidney fibrotic microenvironment relies on complex and organized epithelial, stromal, endothelial and immune
cell interaction. (A) Different human kidney microenvironments in the (left panel) spRNA-seq dataset and the calculated ECM
score (right panel). The color indicates ECM gene expression score in the kidney. (B) Key cell types located in the fibrotic
microenvironment (upper panel). Fibrosis-associated immune cell aggregation in FMEs showing lymphocytes, plasma cells and
macrophages (lower panel). The dots indicate cells mapped back to their spatial location using the merged spRNAseq, snRNA-seq
and scRNA-seq datasets. (C) The bubble plot of expression of ligands and receptors in regions of FME in integrated sn/scRNA-seq
data. The size of the dot indicates the percent positive cells and the darkness of the color indicates average expression (right panel).
The gray indicates control and red indicates diseased group. (D) Ligands and receptor expression in specific cell types in FME
regions (in spRNA-seq data). The color intensity indicates gene expression level and the dot indicates the location of the
expressions. (E) Summary of the putative mechanism of the human kidney fibrosis. iPT; Injured_PT, MyoFib; Myofibroblast,
CD4T; T lymphocytes CD4+, CD8T; T lymphocytes CD8+, B_Naiive; Naiive B lymphocyte, B_memory; memory B lymphocyte,
Baso/Mast; basophil or mast cells, pDC; plasmacytoid dendritic cells, cDC; classical dendritic cells, Mac; macrophage,
CD14_Mono; monocyte CD14+, CD16_Mono; monocyte CD16+.
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Kidneys
Subjects (n) N=298

eGFR (ml/min/1.73 m2) 66.41 (27.29)
Gender (%Male) 180 (60.4%)

Age 61.16 (13.61)
Race

Asian, n (%) 1 (0.3%)
Caucasian, n (%) 140 (46.97%)

African American, n (%) 99 (33.2%)
Hispanic, n (%) 10 (3.35%)

Multi-racial/Unknown, n (%) 28 (9.4%)
Diabetes Mellitus, n (%) 87 (29.2%)

Hypertension, n (%) 196 (65.77%)
BMI (kg/m2) 30.7 (7.68)

Serum glucose (mg/dl) 127.45 (51.64)
SBP (mmHg) 136.81 (19.15)
DBP (mmHg) 77.15 (12.17)

Interstitial Fibrosis (%) 15.82 (25.44)

A

C

Tubule 
Microdissection

Clinical Data Histology

B

Variables N = 82 N =  88 N = 128 P

Age 61.29 ± 14.49 60.97 ± 12.4 61.21 ± 13.92 0.98

Male (%) 54.9 % 55.7 % 67.18 % 0.11

AA (%) 40.24 % 34.1 % 28.12 % 0.28

HTN (%) 70.4% 66.7% 63.7% 0.22

DM (%) 36.6 % 25 % 27.4 % 0.16

eGFR 
(ml/min/1.73 𝒎𝒎𝟐𝟐)

55.76 ± 30.36 70.23 ± 24.92 70.59 ± 25.06 0.0001

Fibrosis (%) 37.32 ± 37.46 6.75 ± 9.27 8.53 ± 12.96 0.0001

N=298

Bulk RNA-seq

D

FME Gene Signature
 Clinical outcome

Variables N = 54 N = 79 N = 85 P
Age 64.31 ± 11.88 63.48 ± 11.1 62.16 ± 13.22 0.94

Male (%) 68.5 % 58.2 % 51.8 % 0.16
AA (%) 11.11 % 17.72 % 25.9 % 0.05
HTN (%) 70.4 % 69.6 % 78.8 % 0.75
DM (%) 55.5 % 44.3 % 35.3 % 0.06

eGFR Baseline
(ml/min/1.73 𝒎𝒎𝟐𝟐)

67.32 ± 21.17 67.86 ± 23.37 66.09 ± 21 0.87

eGFR Follow Up 
(ml/min/1.73 𝒎𝒎𝟐𝟐)

48.28 ± 18.86 49.37 ± 22.9 53.42 ± 20.15 0.29

eGFR Slope 
(ml/min/1.73 𝒎𝒎𝟐𝟐)

-17.39 ± 19.54 -10.77 ± 11.42 -10.3 ± 11.92 0.009

eGFR Percentage 
Change (%)

-18.37 ± 32.44 -10.42 ± 29.74 -4.59 ± 12.75 0.008

Fibrosis (%) 11.61 ± 12.56 8.65 ± 13.77 7.32 ± 10.68 0.0001

FME Gene Signature
298 human kidney samples

Bulk prognosis signature
 single cell enrichment

4.69

53.13

4.69

0

6.25

9.38

0

1.56

0

0

1.56

1.56

1.56

15.63

5.88

19.61

3.92

3.92

9.80

9.80

3.92

5.88

1.96

1.96

3.92

3.92

0

25.49

RNA-se
q

ATA
C-se

q

Endo

Stroma

PEC

Podo

PT

DLOH

LOH

Macula_Densa

DCT

CNT

PC

IC_A

IC_B

Immune
0

20

40

P = 0.01

Cluster 1

Cluster 2
Cluster 3

0 5 10 15
0

50

100

Time (Years)

Pe
rc

en
t s

ur
vi

va
l

 
 
 

Cluster 1 HR = 3.61 (P = 0.01)
Renal Function Decline 

E

To
p 

G
en

es
 in

 C
lu

st
er

s o
f C

ro
ss

-S
ec

tio
na

l S
am

pl
es

 

To
p 

G
en

es
 in

 C
lu

st
er

s o
f L

on
gi

tu
di

na
l S

am
pl

es
 

N=218 Follow Up Bulk RNA-seq

Fig 6. Fibrotic microenvironment gene signature successfully predict disease prognosis in a large cohort of human kidney
samples. (A) Clinical characteristics of 298 human kidney tubule RNA-seq samples. (B) Unbiased cluster dendrogram of 298
human kidney tubule bulk RNA-seq samples based on expression of FME genes. Clinical characteristics of each cluster. Chi-
square test for categorical variables and one-way ANOVA for continuous variables were used to compare groups. (C) Unbiased
cluster dendrograms of 218 human kidney tubule bulk RNA-seq samples with follow up eGFR based on expression of FME
genes. The characteristics of each cluster were shown in the table. Chi-square test was used for categorical variables and one-way
ANOVA for continuous variables was used to compare groups. The lower panel shows the Kaplan-Meier analysis of comparison
of 3 the groups for renal survival. Renal survival was defined as cases reaching end stage renal disease or greater than 40% eGFR
decline. (D) Heatmap of mean expression of top 30 genes cluster driving genes in 298 cross-sectional human kidney bulk RNA-
seq (left panel) and 218 longitudinal human kidney bulk RNA (right panel). Top genes were defined based on the highest
variation between groups using ANOVA. The heatmap shows the z score of mean gene expression in each cluster. (E)
Enrichments of eGFR decline associated genes in sn/scRNA-seq and snATAC-seq clusters. The heatmap shows the percentage of
the eGFR decline associated genes in each cluster with highest expression. HR; hazard ration, Endo; endothelial cells, Stroma;
stromal cells, PEC; parietal epithelial cells, Podo; podocyte, PT; proximal tubule cells, DLOH; thin descending loop of Henle,
LOH; loop of Henle, DCT; distal convoluted tubule, CNT; connecting tubule, PC; principal cells of collecting duct, IC_A; Type
alpha intercalated cells,.
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