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Abstract 51 

Multiomics profiling is a powerful tool to characterize the same samples with 52 

complementary features orchestrating the genome, epigenome, transcriptome, 53 

proteome, and metabolome. However, the lack of ground truth hampers the 54 

objective assessment of and subsequent choice from a plethora of 55 

measurement and computational methods aiming to integrate diverse and often 56 

enigmatically incomparable omics datasets. Here we establish and 57 

characterize the first suites of publicly available multiomics reference materials 58 

of matched DNA, RNA, proteins, and metabolites derived from immortalized 59 

cell lines from a family quartet of parents and monozygotic twin daughters, 60 

providing built-in truth defined by family relationship and the central dogma. We 61 

demonstrate that the “ratio”-based omics profiling data, i.e., by scaling the 62 

absolute feature values of a study sample relative to those of a concurrently 63 

measured universal reference sample, were inherently much more reproducible 64 

and comparable across batches, labs, platforms, and omics types, thus 65 

empower the horizontal (within-omics) and vertical (cross-omics) data 66 

integration in multiomics studies. Our study identifies “absolute” feature 67 

quantitation as the root cause of irreproducibility in multiomics measurement 68 

and data integration, and urges a paradigm shift from “absolute” to “ratio"-based 69 

multiomics profiling with universal reference materials. 70 

Keywords: Ratio, reference materials, multiomics, central dogma, data 71 

integration, performance metrics, Quartet Project, between-sample differences, 72 

paradigm shift, MAQC  73 
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Multiomics profiling is a new approach where biomolecules across multiple 74 

omics layers including genomics, epigenomics, transcriptomics, proteomics, 75 

and metabolomics are fully measured, analyzed, and integrated from the same 76 

set of samples on a genome scale in terms of the number of measured 77 

features1-3. Multiomics profiling quantifies biologically different signals across 78 

complementary omics layers, therefore promises to demonstrate significant 79 

advantages over any single omics type to explore the intricacies of 80 

interconnections between multiple layers of biological molecules and to identify 81 

system-level biomarkers4-8. Technology innovations and cost reduction have 82 

empowered increasingly large-scale multiomics studies for data collection on 83 

the same group of individuals, providing a revolutionary opportunity to fully 84 

understand and yield high-level insights into human diseases in a holistic 85 

fashion9-14.  86 

Multiomics data integration can be classified into two categories depending 87 

on their objectives15. When the objective is on samples, the common multiomics 88 

integration strategy is data-driven clustering or classification of biological 89 

samples by combining complementary information contained in the multiomics 90 

data, followed by extracting system-level biologically differentiated networks for 91 

the endpoints such as wellness or disease subtyping16-19, or longitudinal 92 

trajectories20-22. When the objective is on the measured features, the data 93 

integration strategy is to identify significant multilayered molecular networks, so 94 

as to reveal the perturbed signatures and potential actionable targets for 95 

disease prevention and treatment23-31. Given the complexity of tying together 96 

multiomics data with unprecedented dimensionality and diversity, assigning 97 

accurate sample groups, and extracting true biological networks are 98 

challengeing15, 32, 33. Moreover, large-scale consortia based multiomics data are 99 

often generated across platforms, labs, and batches, creating unwanted 100 

variations and multiplying the complexities. Therefore, efficient data integration 101 

is essential for reliable multiomics studies32. 102 

The data integration tasks in large-scale multiomics studies usually fall into 103 

two categories of application scenarios34. Horizontal (within-omics) integration, 104 

i.e., integration of diverse datasets from a single omics type, aims to combining 105 

multiple datasets across multiple batches, technologies, and labs from the 106 
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same omics type for downstream analysis. Unwanted variations can result in 107 

systematic deviations (knowns as batch effects) confounded with critical study 108 

factors35, 36. Currently, various horizontal integration methods for bulk and 109 

single-cell omics data are available37-39. However, the selection of horizontal 110 

integration methods based on arbitrary visualizations of integrated datasets is 111 

challenging due to the lack of ground truth and objective quality control (QC) 112 

metrics for method selection. Vertical (cross-omics) integration, i.e., integration 113 

of diverse datasets from multiomics types, aims to combining multiple omics 114 

datasets with different modalities from the same set of samples, followed by 115 

designing appropriate downstream analysis to identify accurate sample groups, 116 

or multilayered and interconnected networks of biomolecular features6, 34, 40, 41. 117 

Devising proper vertical integration strategies for sample clustering or 118 

feature identification is challenging in multiomics profiling. First, different 119 

technologies result in varying numbers of features and statistical properties, 120 

which can have a strong influence on the integration step to appropriately select 121 

and weigh different modalities. Secondly, each omics dataset has its intrinsic 122 

technological limits and noise structure. Combining multiomics datasets also 123 

multiply all the technical noises across different technologies, making it more 124 

challenging to integrate multiple datasets. Thirdly, many multiomics data 125 

integration algorithms and software are developed based on different statistical 126 

principles and assumptions42-44. Each multiomics integration method can report 127 

a solution, but assessing its reliability is difficult due to the lack of multiomics 128 

“ground truth” and QC methods for these complex processes. 129 

Multiomics reference materials and relevant QC metrics are required for 130 

quality assessment of each omics measurement and its horizontal integration 131 

before successful multiomics-level vertical data integration45-48. Unrelated 132 

reference materials have been widely used as “ground truth” for performance 133 

evaluation of technologies for the same omics type, such as the genomic DNA49, 134 
50, tumor-normal paired DNA51-53, RNA, protein, or metabolite reference 135 

materials54-57. However, multiomics profiling requires measuring multiple types 136 

of omics data from the same set of interconnected reference samples, thus 137 

allowing for assessment of the ability to distinguish different reference samples 138 

with integrated datasets. Moreover, DNA, RNA, protein, and metabolite 139 
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reference materials should be prepared simultaneously, which can provide 140 

“built-in truth” (the central dogma) for validating the hierarchical relationship 141 

among identified features. Therefore, publicly accessible and well-142 

characterized multiomics reference materials at the genome scale are urgently 143 

needed47. Importantly, QC metrics relevant to research purposes are also 144 

critically important for assessing the quality of multiomics profiling. Precision 145 

and recall are widely used QC metrics for qualitative genomic variant calling58-146 
60, whereas correlation coefficient is widely used for quantitative omics 147 

profling55, 56, 61-64. However, multiomics profiling is an integrated process, 148 

therefore the QC process should be performed based on the entire sample-to-149 

result pipelines. Integrating multiomics information for more robust sample 150 

classifiers and multilayered interconnected molecular signatures are the major 151 

goals for multiomics profiling. Therefore, QC metrics should be related to these 152 

two research objectives, and should be suitable for evaluating the performance 153 

of each omics type ranging from data generation to multiomics data integration. 154 

We launched the Quartet Project (chinese-quartet.org) to provide 155 

multiomics “ground truth” as well as best practices for the QC and data 156 

integration of multiomics profiling. The Quartet multiomics reference material 157 

suites, i.e., DNA, RNA, proteins, and metabolites developed from the B-158 

lymphoblastoid cell lines derived from a quartet family of parents and 159 

monozygotic twin daughters, were designed for objectively evaluating the wet-160 

lab proficiency in data generation and reliability of computational methods for 161 

horizontal data integration of the same omics type and for vertical data 162 

integration of multiomics types. A broad collection of the Quartet multiomics 163 

data generated from key technologies provides resources for evaluating the 164 

performance of new labs, platforms, protocols, and analytical tools. Based on 165 

the pedigree information of the Quartet samples, the horizontal and vertical data 166 

integration performance can be objectively evaluated, which provides unique 167 

insights into the commonly used multiomics integration strategies. We also 168 

developed a user-friendly data portal for the community to conveniently utilize 169 

and improve the Quartet resources (chinese-quartet.org). Most importantly, our 170 

study identifies “absolute” feature quantitation as the root cause of 171 

irreproducibility in multiomics measurement and data integration, and urges a 172 

paradigm shift from “absolute” to “ratio"-based quantitative multiomics profiling.  173 
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Results 174 

Overview of the Quartet Project. The Quartet Project provides the community 175 

with multiomics reference materials and reference datasets for objectively 176 

assessing quality in data generation and integrated analysis in increasingly 177 

large-scale multiomics studies (Fig. 1a). Large quantities of multiomics 178 

reference materials suites (DNA, RNA, protein, and metabolite) were 179 

established simultaneously from the same immortalized B-lymphoblastoid cell 180 

lines (LCLs) of a Chinese Quartet family from the Fudan Taizhou Cohort65 181 

(Extended Data Fig. 1), including father (F7), mother (M8), and monozygotic 182 

twin daughters (D5 and D6). As summarized in Table 1, each reference 183 

material was stocked in more than 1000 vials. They are suitable for a wide 184 

range of multiomics technologies, including DNA sequencing, DNA methylation, 185 

RNAseq, miRNAseq, LC-MS/MS based proteomics and metabolomics. 186 

Importantly, the DNA and RNA reference material suites have been approved 187 

by China's State Administration for Market Regulation as the First Class of 188 

National Reference Materials and are extensively being utilized for proficiency 189 

testing and method validation. The Quartet multiomics design provides two 190 

types of “built-in truth” for quality assessment of multiomics profiling. One is the 191 

ability to correctly classify Quartet multiple samples, which is related to the 192 

multiomics research purpose of sample clustering. The metrics that measure 193 

the ability to correctly classify different Quartet samples are suitable for quality 194 

assessment of data generation and data analysis for each omics type. The 195 

other type of metric measures the ability to correctly identify the hierarchical 196 

relationships across multiomics features according to the rule of the central 197 

dogma, which can be used for assessing the reliability of correlation-based 198 

multiomics network integration.  199 

The Quartet multiomics reference material suites were profiled across the 200 

commonly used multiomics platforms for comprehensive performance 201 

evaluation (Fig. 1b), including seven DNA sequencing platforms, one DNA 202 

methylation platform, two RNAseq platforms, two miRNAseq platforms, nine 203 

LC-MS/MS based proteomics platforms, and five LC-MS/MS based 204 

metabolomics platforms (Extended Data Table 1). Three technical replicates 205 

for each reference material were measured in each lab for performance 206 

evaluation, except for the long-reads DNA sequencing platforms where only 207 
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one replicate was sequenced for each platform. Extended Data Table 1 208 

summarized the Quartet multiomics datasets for the real-world assessment of 209 

commonly used multiomics technologies. All the data can be accessed from the 210 

Quartet Data Portal (chinese-quartet.org), which provides a landscape of data 211 

quality for each type of omics profiling. 212 

QC of multiomics profiling can be achieved using the Quartet multiomics 213 

reference materials. For data generation of each omics profiling, the Quartet 214 

built-in QC metrics, i.e., Mendelian concordance rate for genomic variant call 215 

and Signal-to-Noise Ratio (SNR) for quantitative omics profiling, enable 216 

proficiency testing on a whole-genome scale, which is essential for multiomics 217 

discovery studies (Fig. 1c). We proposed the ratio-based scaling using 218 

reference materials to empower horizontal and vertical omics data integration. 219 

The ratio-based data were derived by scaling the absolute feature values of 220 

study samples (D5, F7, and M8) relative to those of a concurrently measured 221 

reference sample (D6) on a feature-by-feature basis (Fig. 1d). In addition, the 222 

Quartet Project design provides two types of QC metrics to evaluate the 223 

reliability of vertical data integration for sample clustering. One QC metric is the 224 

cross-omics feature relationships that follow the rule of the central dogma. 225 

Another QC metric is to classify the Quartet samples correctly for both four 226 

different individuals (daughter1-daughter2-father-mother) and genetically 227 

driven three clusters (daughters-father-mother) (Fig. 1d). A reliable vertical 228 

integration method needs to be able to discover the intricate biological 229 

differences under these scenarios. 230 

In this article, we described the overview of the Quartet Project, including 231 

the performance of multiomics technologies and data integration strategies, 232 

and the best practice guidelines for process control of large-scale multiomics 233 

studies using the Quartet reference materials (Extended Data Fig. 2). Four 234 

accompanying papers detailed the establishment of the DNA66, RNA67, 235 

protein68, and metabolite69 reference materials, reference datasets, and QC 236 

methods for each type of omics profiling (genomics, transcriptomics, 237 

proteomics, and metabolomics, respectively) and their applications. Another 238 

paper70 was dedicated to addressing the widespread problem of batch effects 239 

present in each and every type of omics data. We also developed the Quartet 240 
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Data Portal (chinese-quartet.org)71 for the community to conveniently access 241 

and share the Quartet multiomics resources according to the regulation of the 242 

Human Genetic Resources Administration of China (HGRAC). 243 

 244 

Wet-lab proficiency in data generation varies substantially within every 245 

omics type. The performance of each omics platform in different labs was 246 

assessed using the Quartet multiomics reference materials. Except for the long-247 

reads sequencing platforms, the reference materials were profiled within a 248 

batch in a lab (4 samples × 3 replicates). For long-reads sequencing, one 249 

replicate for each reference material was sequenced, and the resulting data 250 

were analyzed using 11 pipelines, therefore the performance evaluation was 251 

conducted only at the analytical procedure level. Details on data generation and 252 

analysis were given in the Methods section. 253 

QC metrics for objective performance evaluation are critically important. 254 

The number of measured features, coefficient of variation (CV), and technical 255 

reproducibility are widely used QC metrics across different omics platforms, and 256 

were used in our study for cross-omics performance comparisons. As shown in 257 

Fig. 2, the number of features measured by each omics type varied by several 258 

orders of magnitude, from 60 metabolites to 4.8 million DNA small variants 259 

(SNVs and Indels) (Fig. 2a) per sample. Within each omics type, the number 260 

of features detected varied among batches and labs. There were no obvious 261 

differences in the numbers of detected small variants between Illumina and BGI 262 

platforms, with each platform detecting approximately 4.8 million small variants. 263 

However, the numbers of detected proteins among different LC-MS/MS based 264 

proteomics platforms were more profound. The reproducibility of detected 265 

features in each omics profiling was evaluated using the number of replicates 266 

supporting a variant call for genomics and the coefficient of variation (CV) in 267 

quantitative omics profiling among technical replicates within a batch (Fig. 2b). 268 

Most SNVs were supported by all the three library replicates within the batch 269 

(Jaccard index of ~0.94 for SNVs), whereas the number of analytical repeats 270 

supporting a structural variant (SV) call greatly varied (Jaccard index of ~0.70 271 

for SVs), indicating large differences in SV calling among analytical pipelines.  272 
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For quantitative omics profiling, the CVs of most quantified features were 273 

below 30%. In addition, the reproducibility of technical replicates was also 274 

evaluated at individual sample level (Fig. 2c). Reproducibility was calculated 275 

as the Jaccard index from three library repeats within a batch. For the short-276 

reads sequencing platforms, all Jaccard index values were above 93%. 277 

Moreover, the reproducibility of SV from 11 call sets using different analytical 278 

pipelines was between 80% and 90%. Nanopore was found to be more 279 

reproducible than PacBio among the long-read sequencing platforms. The 280 

reproducibility of quantitative omics profiling was calculated as the Pearson 281 

correlation coefficient (Pearson r) of technical replicates within a batch. The r 282 

values from all labs and metabolomic platforms were above 95%, indicating 283 

high reproducible in metabolomic profiling for the same sample. However, the 284 

r values for repeated measurements of the same sample were between 88.42% 285 

and 97.62% for transcriptomics, or from 82.37% to 99.34% for proteomics (Fig. 286 

2c). 287 

Based on the Quartet multi-sample design, we defined two QC metrics to 288 

measure the ability to identify intrinsic biological differences among various 289 

groups of samples, a key objective of omics profiling. The Quartet based Signal-290 

to-Noise Ratio (SNR) is the ratio of inter-sample differences (i.e., “signal”) to 291 

intra-sample differences among technical replicates (i.e., “noise”). It is 292 

calculated as the ratio of the average distance between the Quartet samples to 293 

the average distance between technical replicates of the same sample (see 294 

Methods for details). For a measurement method with high resolution in 295 

differentiating biologically different groups of samples, the inter-sample 296 

differences of Quartet samples should be much larger than the variation among 297 

technical replicates of the same sample. Principal component analysis (PCA) 298 

showed clear separation among the Quartet samples (D5, D6, F7, and M8) for 299 

high-quality profiling experiments (Extended Data Fig. 3a) but not for low-300 

quality profiling experiments (Extended Data Fig. 3b). Strikingly, high 301 

variabilities in intra-batch data quality were observed in each omics platform 302 

(Fig. 2d), especially for the quantitative omics platforms, such as 303 

transcriptomics (SNR range 8.7 – 31.0, SD=7.1), miRNA profiling (SNR range 304 

1.9 – 20.5, SD=6.8), proteomics (SNR range 0.9 – 30.5, SD=7.5), and 305 

metabolomics (SNR range 4.6 – 27.1, SD=5.1). Moreover, variabilities within 306 
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the same technology platform were higher compared to those between different 307 

platforms of the same omics type. For example, both high and low SNRs were 308 

observed in RNAseq for the Illumina and BGI platforms, but the average SNRs 309 

of the two sequencing platforms were very close (20.39 vs. 19.54, p=0.84). 310 

Similarly, high variabilities in SNR were observed within each MS platform for 311 

proteomics or metabolomics profiling. These results implied that proficiency of 312 

an individual wet-lab, instead of a specific platform itself, was a more important 313 

factor affecting the reliability of data generation for each omics type.  314 

In addition, we constructed high-confidence reference datasets of 315 

differentially expressed features (DEFs) in terms of the level of differential 316 

expression between a pair of samples (D5/F7, D5/M8, and F7/M8) for each 317 

quantitative omics profiling using a consensus-based integration strategy 318 

(Extended Data Fig. 4). Therefore, the Root Mean Square Error (RMSE) was 319 

used for quantitatively evaluating the consistency between a test dataset with 320 

the high-confidence reference dataset (Fig. 2e). One major goal of each omics 321 

profiling is to identify molecular features that are intrinsically different between 322 

distinct sample groups such as disease versus normal, or responders versus 323 

non-responders to a drug treatment. Thus, the ability to accurately differentiate 324 

biologically different groups of samples is a critical metric for measuring the 325 

performance of a technology, procedure, or lab. 326 

We explored the relationships between SNR and the number of detected 327 

features, the reproducibility of features, the reproducibility of technical 328 

replicates, and the RMSE of DEFs for identifying quality issues in quantitative 329 

omics profiling (Extended Data Fig. 5). These data suggested that high 330 

correlation coefficients between repeated measures of the same sample did not 331 

guarantee high resolution (SNR) in identifying inherent differences (i.e., 332 

biological signals) among various biological sample groups. Therefore, multi-333 

sample-based QC metrics are needed in identifying labs with low proficiency in 334 

detecting intrinsic biological differences among sample groups. 335 

 336 

Ratio-based scaling enables horizontal integration of data across 337 

platforms, labs, and batches for the same omics type. In large-scale omics 338 

studies, reliability of horizontal integration of omics datasets across different 339 
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platforms, labs, or batches for the same omics type is even more challenging 340 

compared to within-batch proficiency mentioned above. If the Quartet reference 341 

materials were profiled per-batch along with study samples in each lab, the 342 

reliability of horizontal integration could be assessed by the Quartet multi-343 

sample based SNR. Horizontally integrated datasets should have the ability to 344 

differentiate the Quartet samples. In order to evaluate the reliability of horizontal 345 

integration of each omics profiling in differentiating the four sample groups in 346 

the Quartet design, we integrated datasets for all batches of the same omics 347 

type separately, including methylation array data (M value), miRNAseq 348 

(log2CPM), RNAseq (log2FPKM), proteomics (log2FOT), and metabolomics 349 

(log2Intensity) (Fig. 3). 350 

Horizontal integration of the aforementioned five types of quantitative 351 

omics data all showed obvious batch-dominant clustering at absolute 352 

expression levels (Fig. 3a top). However, after converting the absolute omics 353 

data to a ratio scale relative to the same reference material (D6) within a batch 354 

on a feature-by-feature basis, PCA plots showed clear separation of the four 355 

types of reference samples (D5, D6, F7, and M8) and the drastic batch effects 356 

seen at the absolute scale largely disappeared (Fig. 3a bottom). We further 357 

quantitatively measured the quality of horizontal data integration using the 358 

Quartet multi-sample based SNR as the metric. A method of good quality for 359 

horizontal data integration at each omics level would clearly separate the four 360 

Quartet sample groups, i.e., the inter-sample differences of the Quartet 361 

samples should be much larger than the variation among technical replicates. 362 

As shown in Fig. 3a, the SNR after horizontal integration of datasets for each 363 

omics type at the absolute level was all close to zero except for methylation 364 

data (Fig. 3a top), whereas the SNR of the integrated datasets dramatically 365 

increased at the ratio level (Fig. 3a bottom). Importantly, these conclusions 366 

remain the same if one chooses D5, F7, or M8 instead of D6 as the reference 367 

sample (Extended Data Fig. 6), indicating the universal applicability of the 368 

ratio-based scaling approach. 369 

In addition, we characterized the impact of the level of batch effect on 370 

horizontal-integration SNR by randomly selecting samples from different 371 

batches and using the average of the Jaccard index of the batches from the 372 
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four sample groups as a measure of group-batch balance. As shown in Fig. 3b, 373 

regardless of the level of balance of sample classes across batches, horizontal 374 

integration at the ratio level resulted in much better discrimination between 375 

sample classes, i.e., much higher SNR. However, the corresponding SNR at 376 

the absolute level was all close to zero except for methylation data, whether 377 

there was a group-batch balance or not. These results clearly demonstrated 378 

that quantitative omics profiling at the ratio level was much more comparable 379 

and suitable for horizontal integration than at the absolute level. 380 

Ratio-based profiling allows for more accurate determination of the subtle 381 

differences between two Quartet samples on a feature-by-feature basis. For all 382 

three comparisons (D5/F7, D5/M8, and F7/M8), compared to the log2 fold 383 

differences of the absolute-based integration data, those of the ratio-based 384 

integration data showed a higher level of agreement (and lower RMSE) with the 385 

corresponding reference dataset for each omics type (Figs. 3c and 3d). 386 

Furthermore, the level of balance of sample groups between batches was 387 

helpful for the accurate detection of DEFs. This was reflected in the negative 388 

correlation between RMSE and the level of group-batch balance (Fig. 3d). It 389 

was also clear that the lack of group-batch balance affected absolute-based 390 

data integration much more severely than ratio-based data integration, where 391 

the former showed a much larger slope than the latter (Fig. 3d). 392 

The pervasiveness of batch effects in quantitative analysis techniques at 393 

the absolute expression level presents a real challenge for horizontal 394 

integration. Our results demonstrated that the conversion of quantitative omics 395 

data to a ratio scale relative to a common reference sample (e.g., the Quartet 396 

D6 sample) can effectively mitigate the detrimental impact of batch effects on 397 

sample classification, differential feature identification, etc. 398 

 399 

Ratio-based scaling facilitates vertical integration of data from different 400 

omics types. In large multiomics studies, the multiomics datasets are usually 401 

generated in multiple batches, platforms, and labs. Vertical integration of 402 

multiomics datasets from various omics types is typically performed after 403 

horizontal integration at the same omics type, thus the final integration 404 

performance is influenced by both horizontal and vertical dimensions. 405 
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Therefore, we evaluated the reliability of vertical integration of horizontally 406 

integrated ratio-based data under different scenarios. 407 

One advantage of multiomics studies is to systematically discover the 408 

cross-omics relationships from multiple interconnected biological layers. The 409 

Quartet multiomics design can provide the “built-in truth” from the hierarchical 410 

relationships across omics features. Since the Quartet multiomics reference 411 

materials were derived from the same batch of cultured cells, the generated 412 

multiomics data can be used to evaluate their compliance with the central 413 

dogma principle, i.e., how the genetic information is transcribed from DNA to 414 

RNA, and then translated to protein. The central dogma-regulated relationships 415 

between cross-omics features can be measured using the correlation 416 

coefficient, which is one of the simplest ways to estimate the pairwise relevance 417 

between two types of omics features, forming the basis of multiomics 418 

integration for network analysis. 419 

Cross-omics feature relationships calculated based on multiple batches of 420 

data integrated at the ratio level (Inter-batch) showed stronger correlations with 421 

the cross-omics single batches (Intra-batch) than that at the absolute level (Fig. 422 

4a). These cross-feature correlations of methylation-miRNA, methylation-RNA, 423 

miRNA-RNA, RNA-protein, and protein-metabolite were derived from features 424 

of both omics types associated with the same genes, which may more closely 425 

follow the principle of the central dogma. In particular, for the relationships 426 

between proteins and metabolites, direct integration of multi-batch data at the 427 

absolute level could not easily identify the true correlations between cross-428 

omics feature pairs. 429 

To more accurately measure the effect of integration based on ratio 430 

profiling, we constructed the Quartet reference datasets of the Pearson 431 

correlation coefficients between the expression levels of two different types of 432 

omics features in order to evaluate the performance of vertical integration at the 433 

feature relationship levels (Extended Data Fig. 7). The central dogma was 434 

reflected in the Quartet multiomics data as the abundance of RNAs was almost 435 

exclusively positively correlated with that of proteins in the reference dataset 436 

(224 RNA-protein pairs were positively correlated and no RNA-protein pair was 437 

negatively correlated). In agreement with Fig. 4a, the concordance of 438 
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correlation coefficients of cross-omics features with the reference Pearson r 439 

was higher (as indicated by lower RMSEs) in the horizontally integrated data 440 

based on the ratio level compared to absolute level (Fig. 4b). 441 

Another advantage of vertical integration of multiomics data is to be able 442 

to distinguish subtypes of clinical samples with subtle differences that cannot 443 

be identified based on a single type of omics data. Therefore, the ability to 444 

discover the true biological differences between sample groups is a key metric 445 

to measure the performance of multiomics integration tools and procedures. 446 

The multi-sample and multiomics design of the Quartet Project provides unique 447 

“ground truth” for assessing the reliability of vertical integration. Here we 448 

included six horizontal integration methods for evaluation, i.e., ratio-based 449 

scaling (Ratio), ComBat72, Harmony73, RUVg74, Z-score, and direct integration 450 

of the normalized values (Absolute). Five widely accepted vertical-integration 451 

tools were subsequently used, i.e., SNF5, iClusterBayes75, MOFA+76, MCIA77, 452 

and intNMF78, generating 30 combinations of horizontal and vertical integration 453 

for performance assessment. 454 

The Adjusted Rand Index (ARI)79 is a widely used QC metric to compare 455 

clustering results against external criteria. To quantitatively evaluate the 456 

reliability of vertical data integration at the multiomics level, we used ground 457 

truth-based ARI (daughter1-daughter2-father-mother, i.e., D5-D6-F7-M8 as 458 

four independent sample groups or clusters) as the metric.  459 

Ratio-based scaling data largely outperformed other horizontal-integration 460 

methods with a much higher ARI when the same vertical-integration algorithm 461 

was used (Fig. 4c). The final performance of integration was influenced by both 462 

horizontal-integration methods and vertical-integration algorithms. For example, 463 

regardless of which horizontal integration method was used, SNF performed 464 

better overall than intNMF in subsequent vertical integration. Furthermore, the 465 

multiomics-based sample similarity networks constructed based on the SNF 466 

clearly demonstrated the different power of correctly clustering the four Quartet 467 

sample groups by the six horizontal-integration methods (Fig. 4d). Integration 468 

using ratio-based profiling data showed tighter connections between objects 469 

with the same sample group (same color) and looser connections between 470 

objects from different groups. These results implicated that ratio-based scaling 471 
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improved the vertical integration of sample clusters through reliable cross-472 

sectional integration. 473 

 474 

Quartet multiomics design provides genetics-driven ground truth for 475 

vertical data integration. In addition to the relatively simple task of 476 

differentiating the four different individuals (daughter1-daughter2-father-mother, 477 

D5-D6-F7-M8), the Quartet monozygotic twin family design also provided a 478 

more challenging task of classifying these samples into the Quartet family-479 

based and genetically distinct three groups (daughters-father-mother, D-F-M). 480 

Here we integrated the multiomics data of moderate quality (SNR in the range 481 

of top 20% to 80%) including DNA, methylation, miRNA, RNA, protein, and 482 

metabolite. For each vertical integration method, only one batch of data was 483 

selected for each omics type to prevent the influence of batch effect in 484 

horizontal integration. In addition, we conducted the Partitioning Around 485 

Medoids (PAM) clustering80 for each type of single omics data and calculated 486 

ARI as a control to assist in assessing the performance of the vertical 487 

integration. 488 

The inter-sample similarity networks built using data from a single omics 489 

(top) and integrated multiomics data using SNF, iClusterBayes, MOFA+, MCIA, 490 

and intNMF (bottom) were visualized in Fig. 5a. At the DNA level, identical twin 491 

samples (D5 and D6) were tightly clustered together due to their near-identical 492 

DNA sequences. On the other hand, they showed no clear tendency of 493 

clustering together for all five types of quantitative omics data (methylation, 494 

miRNA, RNA, protein, and metabolite), and may even look relatively far apart 495 

(e.g., D6 and F7 appeared closer in miRNA, RNA, or protein data). This 496 

distinction in clustering tendency between DNA variants and quantitative omics 497 

data implied that the classification task (D-F-M) can be used to assess whether 498 

a vertical integration approach can reveal the intrinsic built-in genetic truth in 499 

the Quartet identical twin family. 500 

Vertical integration reduced technical noise and improved the ability of 501 

sample clustering, indicated by the fact that the ARIs of both three clusters (D-502 

F-M) and four clusters (D5-D6-F7-M8) of multiomics integration were higher 503 

than the direct clustering of single-omics data (Fig. 5b). Nevertheless, there 504 
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were still differences in performance between the integration algorithms when 505 

distinguishing the three sample categories (D-F-M). SNF, iClusterBayes, 506 

MOFA+, and intNMF correctly classified these samples into three Quartet 507 

family-based groups (D-F-M), whereas MCIA did not perform well (Fig. 5c). 508 

This demonstrated that the integration algorithms could be prioritized by 509 

whether they found potential genetic truth (identical twins) behind the four 510 

individuals with distinct differences in molecular phenotypic data. 511 

The similarity between identical twins (D5 and D6) during the vertical 512 

integration can be quantified to illustrate the impact of adding different layers of 513 

omics information on the clustering of Quartet samples (Methods for the details). 514 

As shown in Fig. 5d, the similarity between D5 and D6 decreased both when 515 

gradually adding downstream omics data starting from genomics, and when 516 

integrating upstream omics data starting from metabolomics (except for the 517 

eventual addition of DNA). This phenomenon again demonstrated that the 518 

genetic relationships between the Quartet identical twins were only reflected at 519 

the DNA level, and it also specified the need to incorporate genomic data when 520 

using the three clusters (D-F-M) as a QC metric for vertical integration. 521 

 522 

Best practice guidelines for QC and data integration of multiomics 523 

profiling using the Quartet reference materials. QC is comprised of 524 

procedures to ensure the reliability of multiomics profiling using defined QC 525 

metrics and thresholds to meet the requirements of different research purposes. 526 

Large-scale multiomics studies involve multi-center and long-term 527 

measurements where unified QC metrics and universal integration strategies 528 

are needed to ensure quality during data generation and integration. We 529 

recommend including the Quartet reference materials (e.g., four samples × 530 

three replicates) when profiling each batch of study samples, and propose the 531 

best practice guidelines for QC and data integration in the three aspects 532 

including intra-batch data generation, horizontal integration, and vertical 533 

integration (Table 2). 534 

We provided both reference dataset-free and reference dataset-based QC 535 

metrics to assess wet-lab proficiency of data generation for the same omics 536 

type in terms of the capability of identifying the subtle differences between 537 
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sample groups. Without relying on the reference datasets, the Quartet-based 538 

SNR (D5-D6-F7-M8) can be calculated for quality assessment for all types of 539 

omics data. The SNR calculated based on the four Quartet sample groups was 540 

more sensitive for assessing wet-lab proficiency than generic QC metrics based 541 

on multiple technical replicates of a single sample (Fig. 1). We also recommend 542 

the use of Mendelian concordance rate (MCR) based on the pedigree of the 543 

Quartet as a QC metric for assessing the quality of genomic data66. With the 544 

reference datasets, the wet-lab proficiency was assessed by the concordance 545 

between the evaluated batch of data and the reference datasets. Precision, 546 

recall, and F1-score were recommended for qualitative omics (small variants 547 

and structural variants), and RMSE at the ratio level (scaling to D6) of the 548 

feature expressions and the differential expressions between groups (D5/F7, 549 

F7/M8, and M8/D5) were recommended for quantitative omics (DNA 550 

methylation, transcriptomics, proteomics, and metabolomics). In addition, more 551 

comprehensive proficiency tests or inter-lab comparisons can be performed by 552 

obtaining the relative quality ranking among the cumulative datasets within the 553 

Quartet Data Portal71. 554 

For horizontal integration of multi-batch data, a paradigm shift from 555 

“absolute” to “ratio"-based profiling by incorporating universal reference 556 

materials is essential and improves the reproducibility and batch-effect 557 

resistance. QC metrics used in intra-batch data generation can still be used in 558 

the quality assessment of horizontal integration. The reliability of further 559 

exploratory studies can be ensured as long as the horizontally integrated 560 

dataset can still distinguish different Quartet samples. 561 

Vertical integration can be enhanced by ratio scaling the data based on 562 

reference materials. The Quartet multiomics and multi-sample reference 563 

materials provide two types of “built-in truth” for QC of vertical integration. The 564 

first type of “built-in truth” is based on the clustering of Quartet samples through 565 

the combined use of ARID-F-M and ARID6-D6-F7-M8 to synthetically characterize the 566 

quality of vertical integration. In addition, the ability to correctly distinguish 567 

samples into four clusters (D5, D6, F7, and M8), as measured by ARID6-D6-F7-M8, 568 

indicates that the integrated multiomics data must have the basic ability to 569 

differentiate the four different biological samples from technical replicates. On 570 
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the other hand, the integration algorithm must be able to identify the multiomics 571 

features driven by the built-in genetic truth of the Quartet identical twin, thus 572 

separating samples into three clusters (daughters D, father F, and mother M) 573 

by identifying true cross-omics associations. The second type of “built-in truth” 574 

is the hierarchical relationship across omics features following the principle of 575 

the central dogma. RMSE of cross-omics feature relationships calculated 576 

based on the reference datasets can be used to evaluate the accuracy of the 577 

cross-omics feature correlations.  578 
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Discussion 579 

We developed the first suites of publicly available multiomics reference 580 

materials, including matched DNA, RNA, protein, and metabolite from 581 

immortalized B-lymphoblastoid cell lines of four individuals of a Chinese quartet 582 

family. We then extensively profiled these reference materials using diverse 583 

multiomics technology platforms in multiple labs across batches with repeated 584 

measurements. The reference datasets of measurands characterizing these 585 

reference materials at the genome scales were established based on a 586 

consensus approach using multiple bioinformatics pipelines and data 587 

integration approaches. The reference materials and the reference datasets 588 

can facilitate objective quality assessment of multiomics profiling (Table 1) by 589 

providing two types of “built-in truth” for QC of multiomics data generation and 590 

data integration. One is about the clustering of the Quartet samples based on 591 

their intrinsic biological differences, and the other is about the inherent 592 

relationships across omics features following the central dogma’s rule (DNA to 593 

RNA to protein). The resulting wealth of multiomics resources were made 594 

publicly available via the Quartet Data Portal (chinese-quartet.org).  595 

Wet-lab proficiency was consistently found to be a more important factor 596 

affecting the quality of data generated for each omics type than the choice of a 597 

specific technology platform (Fig. 2). Our findings are consistent with what have 598 

been reported previously on gene-expression profiling with microarrays in 599 

MAQC-I55 and with RNAseq in MAQC-III (SEQC)54 when the same pair of 600 

MAQC reference RNA samples A (a mixture RNA of ten cancer cell lines) and 601 

B (a mixture RNA from brain tissues of 23 donors) were analyzed by a given 602 

platform in multiple labs. This observation seems intuitive; however, no 603 

adequate solution has been validated or adopted by the scientific community, 604 

hence has likely contributed to the lack of reproducibility of biomedical 605 

research81. Our observation highlights the urgency of highly sensitive 606 

proficiency testing to improve internal lab proficiency before profiling precious 607 

research and clinical samples. To this end, we established appropriate 608 

reference materials and proposed sensitive metrics for performance 609 

assessment. 610 
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The ability to correctly identify molecular phenotypic differences between 611 

various groups of samples or clinical subtypes of a disease is a fundamental 612 

requirement for any omics technology-based research. Thus, an appropriate 613 

performance metric should be taken into account and multiple groups of 614 

samples must be included to meet this vital requirement. For each omics type, 615 

the Quartet study design included four groups of samples (D5-D6-F7-M8), 616 

allowing us to define the universal Signal-to-Noise Ratio (SNR) metric for 617 

measuring the performance of any multiomics technologies. We found that the 618 

SNR metric was sensitive in identifying low-quality datasets that may otherwise 619 

be considered as of high quality. For example, reproducibility of repeated 620 

measurements (or technical replicates) of the same sample, usually expressed 621 

as coefficient of variation, Pearson correlation coefficient, or Jaccard index, is 622 

a widely used metric for identifying quality issues in transcriptomics, proteomics, 623 

and metabolomics data57, 62, 82. However, our study demonstrated the 624 

limitations of such single-sample based metrics. In particular, a high Pearson 625 

correlation coefficient between technical replicates from one single sample did 626 

not assure high quality in detecting the intrinsic biological differences between 627 

different groups of samples (Extended Data Fig. 5). Under such scenarios, 628 

unfortunately, the inter-sample differences between different groups of samples 629 

(i.e., “signal”) and the intra-sample differences of technical replicates of the 630 

same sample (i.e., “noise”) are at the same level, indicating that the 631 

measurement system does not have any differentiating ability. The Quartet 632 

multi-sample based reference materials suites and the SNR metric offer 633 

indispensable advantages for reliability assessment for each type of omics 634 

profiling. 635 

Our results urge a paradigm shift from “absolute” to “ratio"-based profiling 636 

by incorporating universal reference materials in designing and executing a 637 

multiomics study. A striking finding of our study is that the multiomics profiling 638 

data at the “absolute” level, such as FPKM in transcriptomics, FOT (fraction of 639 

total) in MS-based proteomics, and relative peak areas in metabolomics from a 640 

single sample, is inherently irreproducible across platforms, labs, or batches, 641 

leading to the notorious “batch effects”. Such batch effects, usually confounded 642 

with study factors of interests, hinder the discovery of reliable biomarkers either 643 

by mistaking batch differences as biological signals or by attenuating biological 644 
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signals with the incorrect use of “batch-effect correction” methods (see details 645 

in an accompanying paper70). The presence of batch effects makes the 646 

horizontal integration of diverse datasets from the same omics type impossible, 647 

as can be seen from the lack of capability of correctly clustering the Quartet 648 

samples (Fig. 3a top). Convincingly, by converting absolute profiling data of 649 

study samples to ratio scales relative to those of the same reference material 650 

(such as D6), the resulting ratio-based profiling data (such as D5/D6) were 651 

comparable across different protocols, instruments, labs, or batches (Fig. 3a 652 

bottom), and therefore were defined as the quantitative reference datasets 653 

(Extended Data Fig. 4).  654 

The large differences in reproducibility between absolute- and ratio-based 655 

profiling data can be explained, at least partially, by the fundamental principles 656 

and assumptions behind data representation of omics measurements. The 657 

concentration or abundance of an analyte (C) in a sample is important to 658 

biomedical research and what a measurement technology intends to provide. 659 

In quantitative omics profiling, the “absolute” instrument readout or intensity (I, 660 

e.g., FPKM, FOT, or peak area, whether per sample scaling or normalization is 661 

applied or not) is usually used as a surrogate of C by assuming that there is a 662 

linear and fixed relationship (f, or sensitivity) between I and C under any 663 

experimental conditions83, I=f(C). In reality, however, the relationship f can vary 664 

due to the differences in platform details, reagent lots, lab conditions, or 665 

operator biases, among other experimental factors, making I inherently 666 

irreproducible between batches. On the contrary, when a common reference 667 

sample (r) is analyzed in parallel with study samples in the same experiment 668 

(batch) as a control, the resulting ratio of Is / Ir from each batch will remain 669 

reproducible and accurately reflect the ratio of Cs / Cr. It is because the intensity 670 

I for the reference and study samples can be represented as Ir1=f1(Cr) and 671 

Is1=f1(Cs) for batch 1 and Ir2=f2(Cr) and Is2=f2(Cs) for batch 2, respectively. Note 672 

that f remains fixed or comparable for both the reference and study samples 673 

being analyzed under the same experiment (batch). Thus, when we divide the 674 

intensity I of the study sample by that of the reference sample in the same batch, 675 

the resulting ratio, Is1 / Ir1 for batch 1 and Is2 / Ir2 for batch 2, will remain the same 676 

and equal to Cs / Cr, a constant of biological significance. In fact, the lack of 677 

reproducibility of absolute gene-expression data in microarray55, 84, RNAseq54, 678 
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or miRNAseq82 across batches or platforms have been widely documented, as 679 

is the increased reproducibility at the ratio scale54, 55, 83. Ironically, mainstream 680 

practices still represent omics profiling data in absolute scale, presumably due 681 

to the lack of readily accessible reference materials as controls, leading to 682 

numerous challenges in integrating diverse datasets generated under various 683 

experimental conditions. It is gratifying to note that the Olink proteomics 684 

platform reports profiling data in ratio scales relative to its control samples 685 

(www.olink.com/).  686 

Multiomics profiling is an integrated process, and performance validation 687 

should be conducted in the entire sample-to-result process. We observed that 688 

each component of the data generation and data integration procedures can 689 

affect the final results of multiomics profiling. For each type of omics data 690 

generation, a full performance validation and proficiency testing should be 691 

conducted to assess whether the measurement can identify the inherent 692 

biological differences between various sample groups, a fundamental goal of 693 

multiomics profiling. Previous studies mainly focused on performance validation 694 

of new technologies52, 60, but our study revealed that horizontal and vertical data 695 

integration across technologies should also be assessed using ground-truth 696 

based objective QC metrics. The multiomics design of the Quartet Project 697 

allowed us to demonstrate the advantages of multiomics profiling over any 698 

single omics type and to objectively evaluate the pros and cons of various data 699 

integration methods in terms of clustering samples according to built-in 700 

between-group differences and identifying reliable features with cross-omics 701 

relationships obeying the central dogma rule. The Quartet Project established 702 

a novel framework for developing multiomics reference materials, reference 703 

datasets, and QC methods for multiomics studies along with the best practice 704 

guidelines for QC and data integration of multiomics profiling (Table 2). 705 

Several limitations and caveats of our study should be pointed out. First, 706 

the number of analytes (e.g., mRNAs or proteins) expressed in the Quartet 707 

reference materials is limited. Each Quartet reference material was derived 708 

from a single B-lymphoblastoid cell line, thus genes or proteins not expressed 709 

in the B-lymphoblastoid cell line are not expected to be detectable in the Quartet 710 

reference materials. This is not a serious problem when the purpose is to use 711 
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the Quartet reference materials for proficiency testing or internal optimization 712 

of technology platforms or training of lab technicians. However, this could 713 

become a limitation when the Quartet reference materials are to be used as 714 

controls and profiled along with study samples for reporting ratio-based profiling 715 

data, because the denominator for the non-detectable features would become 716 

zeros. In this case, a fudge factor or flooring value can be added to make the 717 

division possible. Secondly, the number of analytes with well-defined reference 718 

values of differential expression (ratio) between sample pairs is also limited, 719 

because only ratio values large enough are reproducibly detectable. Thirdly, 720 

although the stability of DNA is commonly accepted and the stability of MAQC 721 

reference RNA samples has demonstrated for at least 17 years (unpublished 722 

data), the long-term stability of the Quartet protein and metabolite reference 723 

materials needs to be monitored in terms of both the stability of individual 724 

analytes and the stability of the ratio-based reference values. Finally, as is true 725 

for any reference materials, the replication of the Quartet multiomics reference 726 

materials will require the recalibration of the reference datasets, and batch-to-727 

batch differences in the production and characterization of the reference 728 

materials need to be carefully recorded and reported, such as potential genetic 729 

drifts and variability in quantitative omics features at the RNA, protein, and 730 

metabolite levels due to cell culturing. 731 

In summary, the Chinese Quartet Project provides the international 732 

community with rich multiomics resources, which can serve as a reference for 733 

the research community to evaluate new technologies, labs, assays, products, 734 

lab operators, and computational algorithms. Large-scale multiomics studies 735 

usually involve complex multi-center and long-term measurements. To ensure 736 

the reliability of scientific research results, we highly recommend the use of 737 

unified Quartet reference materials or equivalents during generation, analysis, 738 

and integration of heterogeneous datasets. In particular, the ratio-based 739 

paradigm-shift approach using common references as side-by-side controls, 740 

when widely adopted, can fundamentally advance the integration of diverse 741 

multiomics datasets from research and the clinic by making them inherently 742 

reproducible and batch-effect resistant, hence increasing the chance of 743 

discovering reliable biomarkers for realizing precision medicine.  744 
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Figures 938 

 939 

Fig. 1 | Overview of the Quartet Project. 940 

a, Design and production of Quartet family-based multiomics reference material 941 

suites. b, Data generation across multiple platforms, labs, batches, and omics 942 

types. c, Wet-lab proficiency test for the generation of each type of omic data 943 

using Quartet multi-sample-based reference materials. d, Ratio-based scaling 944 
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using universal reference materials empower within- (horizontal) and cross-945 

omics (vertical) data integration. Two types of QC metrics for multiomics data 946 

integration are developed: the cross-omics feature relationships that follow the 947 

central dogma, and the ability to classify samples into either four phenotypically 948 

different groups (D5-D6-F7-M8) or genetically driven three clusters (Daughters-949 

Father-Mother).  950 
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 951 

Fig. 2 | Wet-lab proficiency diverges in multiomics data generation. 952 

a, The number of features detected from each dataset generated in different 953 

labs using different platforms. b, Distribution of the number of experiments 954 

supporting genomic variant calling, or coefficient of variation (CV) in quantitative 955 

omic profiling from technical replicates (analytical repeats in SV calling, and 956 

library repeats for the others) within a batch. c, Technical reproducibility from 957 

three replicates within a batch, calculated as the Jaccard index for genomic 958 

variant calling and Pearson correlation coefficient (r) for quantitative omic 959 

profiling. d, Signal-to-Noise Ratio (SNR) based on Quartet multi-sample design 960 

(4 samples × 3 replicates per batch). e, Root Mean Square Error (RMSE) of 961 

high confidence differentially expressed features (DEFs).  962 
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 963 

Fig. 3 | Ratio-based scaling enables horizontal integration of datasets 964 

across batches, labs, and platforms. 965 

a, PCA plots of horizontal integration of all batches of methylation, miRNAseq, 966 

RNAseq, proteomics, and metabolomics datasets at absolute level (raw data, 967 

top row) and ratio level (ratio scaling to D6 sample, bottom row). b, Scatter plots 968 

between SNR and degree of sample class-batch balance. Blue: absolute level; 969 

Red: ratio level. c, Boxplots of RMSE of the DEFs of horizontal integration data 970 
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at absolute level (Blue) and ratio level (Red) based on the reference datasets. 971 

d, Scatter plots between RMSE when integrating at absolute (Blue) and ratio 972 

(Red) levels and the degrees of sample class-batch balance.  973 
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 974 

Fig. 4 | Ratio-based scaling facilitates vertical integration of datasets from 975 

different omics types. 976 

a, Scatter plots between cross-omics feature relationships of intra- and inter-977 

batch (horizontally integrated) data at absolute level (Blue) and ratio level (Red). 978 

The solid lines represent fitted curves from linear regression along with the 979 

Pearson correlation coefficients. b, Violin plots of RMSE of cross-omics feature 980 

relationships of horizontal integration data at absolute level (Blue) and ratio 981 

level (Red) based on the reference datasets. c, Bar plots of the Adjusted Rand 982 

Index (ARI) of vertically integrated multiomics datasets of multiple batches 983 

using different algorithms including SNF, iClusterBayes, MOFA+, MCIA, and 984 

intNMF. Data of each omics type were preprocessed by Ratio, ComBat, 985 

Harmony, RUVg, Z-score, or Absolute (no further processing on the normalized 986 
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datasets) for horizontal integration. d, Sample similarity networks for SNF 987 

integration with different data preprocessing methods in c.  988 
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 989 

Fig. 5 | Quartet multiomics design provides genetics-driven ground truth 990 

for vertical integration. 991 

a, Networks of six types of omics based on the similarity between 12 samples 992 

within one batch (top row), and sample similarity networks obtained by SNF, 993 

iClusterBayes, MOFA+, MCIA, and intNMF (bottom row) that integrated the six 994 

types of multiomics data. b, Bar plots of the ARIs when clustering samples into 995 

three (D-F-M) or four groups (D5-D6-F7-M8) by single-omic (Light yellow) 996 

versus multiomics integration (Dark yellow) using PAM clustering algorithms. c, 997 

Bar plots of the ARIs of multiomics data integration using SNF, iClusterBayes, 998 

MOFA+, MCIA, and intNMF. Light green represents data when the true labels 999 

of the samples were set to three clusters (D-F-M), and dark green represents 1000 
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four clusters (D5-D6-F7-M8). d, Box plots of the ARIs for integration of different 1001 

types of omic data. The multiomics data were integrated started from DNA 1002 

(Red), and metabolite (Grey) by using SNF.1003 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 26, 2022. ; https://doi.org/10.1101/2022.10.24.513612doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.24.513612
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

39 
 

Tables 1004 

Table 1 | Summary of Quartet multiomics reference materials 
Type Reference Material ID Certified Reference 

Material ID Amount Cell 
Collection 

Material 
Extraction Description User Scenarios Quantity 

(Vials) 

D
N

A
 

FDU_Quartet_DNA_D5_20160806 GBW09900 

10 µg 20160806 20160819 

220 ng/μL, 50 μL/tube in TE 
solution. DNA integrity number 
(DIN) > 8.5, with the peak 
size > 60,000 bp. 

Short-read and 
long-read 
sequencing, 
microarray, PCR. 

1000 each 
FDU_Quartet_DNA_D6_20160806 GBW09901 

FDU_Quartet_DNA_F7_20160806 GBW09902 

FDU_Quartet_DNA_M8_20160806 GBW09903 

FDU_Quartet_DNA_D5_20171028 / 

10 µg 20171028 20171207 

220 ng/μL, 50 μL/tube in TE 
solution. DNA integrity number 
(DIN) > 8.5, with the peak 
size > 60,000 bp. 

Short-read and 
long-read 
sequencing, 
microarray, PCR. 

1000 each 
FDU_Quartet_DNA_D6_20171028 / 

FDU_Quartet_DNA_F7_20171028 / 

FDU_Quartet_DNA_M8_20171028 / 

R
N

A
 

FDU_Quartet_RNA_D5_20171028 GBW09904 

5 µg 20171028 20180725 

520 ng/μL, 10 μL/tube in water 
solution. RNA integrity number 
(RIN) > 8.5. miRNA and other 
small RNA are retained. 

RNA profiling, 
small RNA 
profiling. 

1000 each 
FDU_Quartet_RNA_D6_20171028 GBW09905 

FDU_Quartet_RNA_F7_20171028 GBW09906 

FDU_Quartet_RNA_M8_20171028 GBW09907 

Protein 

FDU_Quartet_Pipetide_D5_20171028 / 

10 µg 20171028 20171106 Dried, tryptic peptide mixtures. 
Label-free LC-
MS/MS-based 
proteomics. 

1000 each 
FDU_Quartet_Pipetide_D6_20171028 / 

FDU_Quartet_Pipetide_F7_20171028 / 

FDU_Quartet_Pipetide_M8_20171028 / 

FDU_Quartet_Pipetide_D5_20171028 / 

10 µg 20171028 20200616 

Dried, tryptic peptide mixtures. 
Four labeled peptides are 
spiked in at different weight 
ratios as external controls. 

Label-free LC-
MS/MS-based 
proteomics. 

1000 each 
FDU_Quartet_Pipetide_D6_20171028 / 

FDU_Quartet_Pipetide_F7_20171028 / 

FDU_Quartet_Pipetide_M8_20171028 / 

M
etabolite 

FDU_Quartet_Metabolite_D5_20171028 / 

106 cells 20171028 20200108 

Dried cell extracts from 
1,000,000 cells using menthol: 
water solution.  
Ten external controls are 
spiked in at known amount. 

LC-MS/MS-based 
metabolomics. 1000 each 

FDU_Quartet_Metabolite_D6_20171028 / 

FDU_Quartet_Metabolite_F7_20171028 / 

FDU_Quartet_Metabolite_M8_20171028 / 
 

The Quartet multiomics reference materials were from monozygotic twin family, including father (F7), mother (M8), and monozygotic twin daughters (D5 and D6).1005 
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Table 2 | Best practice guidelines for quality control and data integration of 
multiomics profiling using the Quartet reference materials 
Procedures Recommendations 

Data 
generation 

QC metrics 
• Reference-free: Signal-to-Noise Ratio (SNR) for measuring the ability to 
differentiate biologically different Quartet samples; Mendelian concordance 
rate (MCR) for genomic data. 
• Reference-based: precision, recall and F1-score for qualitative values; 
Root Mean Square Error (RMSE) for quantitative values. 
Thresholds 
• Minimum requirement for a reliable measurement is to differentiate the 
inherent differences between different sample groups. 
• Relative quality ranking among accumulating datasets can be obtained 
through the Quartet Data Portal. 
Implementation 
• Perform a full performance validation for new labs, platforms, tests, or 
analytical pipelines. 
• Participate in proficiency tests for independent assessment of test 
performance through inter-lab comparison. 

Horizontal 
(Within-
omics) 
integration 

QC metrics 
• Reference-free: Signal-to-Noise Ratio (SNR) for measuring the ability to 
differentiate biologically different Quartet samples; Mendelian concordance 
rate (MCR) for genomic data. 
• Reference-based: precision, recall and F1-score for qualitative values; 
Root Mean Square Error (RMSE) for quantitative values. 
Thresholds 
• As long as the horizontally integrated datasets still have the ability to 
differentiate the different Quartet sample groups, the reliability of the follow-
up exploratory studies is assured. 
Implementation 
• Profile the universal Quartet samples each batch along with study 
samples. 
• Paradigm shift from “absolute” to “ratio"-based scaling by incorporating 
universal reference materials, which is inherently reproducible and batch-
effect resistant. 

Vertical     
(Cross-
omics) 
integration 

QC metrics 
• Quartet family based: Adjusted Rand Index to classify samples into four 
clusters (D5-D6-F7-M8) and three clusters (Daughters-Father-Mother). 
Vertical integration should have the ability to discover Quartet family-based 
sample clustering (Daughters-Father-Mother). 
• Central dogma based: built-in interconnection across omics features. 
Root Mean Square Error (RMSE) based on reference datasets. 
Thresholds 
• ARI ranges from 0 to 1, the larger the better. 
Implementation 
• Profile Quartet samples for each omic type along with study samples. 
• Paradigm shift from “absolute” to “ratio"-based scaling by incorporating 
universal reference materials, which empowers vertical data integration. 

1006 
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Methods 1007 

Human subjects 1008 

This study was approved by the Institutional Review Board (IRB) of the School 1009 

of Life Sciences, Fudan University (BE2050). It was conducted under the 1010 

principles of the Declaration of Helsinki. Four healthy volunteers from a family 1011 

Quartet, as part of the Taizhou Longitudinal Study in Taizhou, Jiangsu, China 1012 

were enrolled and their peripheral blood was collected to establish the human 1013 

immortalized B-lymphoblastoid cell lines. All four donors signed informed 1014 

consent forms. 1015 

Establishment of the Quartet B-lymphoblastoid cell lines 1016 

We adopted the widely used protocol of using Epstein-Barr virus (EBV) to 1017 

establish immortalized lymphoblastoid cell lines (LCLs) (Wheeler and Dolan, 1018 

2012). Peripheral blood mononuclear cells (PBMCs) were isolated using a 1019 

lymphocyte separation solution (Ficoll). Naïve B cells were sorted by EasySep 1020 

Human naïve B Cell Enrichment Kit (STEMCELL, Catalog#19254), and 1021 

infected by Epstein-Barr virus (EBV) by centrifugation at 2000 rpm for 1 hour. 1022 

After incubation, the successfully infected and immortalized cells were 1023 

propagated in culture medium. 1024 

Cell culture 1025 

The Quartet LCLs were cultured in RPMI 1640 with 2 mM L-glutamine, 10% 1026 

heat-inactivated FBS (fetal bovine serum), and 1% PS (penicillin/streptomycin) 1027 

at 37 °C with 5% CO2. The cells were passaged every 72 hours at a 1:4 split 1028 

ratio. 1029 

Preparation of the first batch of DNA reference materials  1030 

To obtain the first batch of DNA reference materials (Lot NO 20160806), 2 × 1031 

109 cells were harvested simultaneously for each cell line. Specifically, the cells 1032 

grew in suspension and were centrifuged at 300 g for 5 mins to obtain cell 1033 

pellets. The cell pellets were then washed twice with cold PBS.  1034 

The DNA reference materials were purified using the DNA with Blood & 1035 

Cell Culture DNA Maxi Kit (Qiagen, Germany) according to the manufacturer’s 1036 

instructions, divided into 1000 aliquots for each of the Quartet members, and 1037 

then labeled as Quartet_DNA_D5_20160806, Quartet_DNA_D6_20160806, 1038 
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Quartet_DNA_F7_20160806, and Quartet_DNA_M8_20160806. A single vial 1039 

contains approximate 10 μg of genomic DNA (220 ng/µL, 50 µL) in TE buffer 1040 

(10 mM TRIS, pH 8.0, 1 mM EDTA, pH 8.0). 1041 

The DNA integrity and long-term stability were evaluated by Agilent 2200 1042 

TapeStation system (Agilent Technologies, USA). Concentrations were 1043 

determined by NanoDrop ND-2000 spectrophotometer (Thermo Fisher 1044 

Scientific, USA). 1045 

Preparation of multiomics reference materials 1046 

To obtain the second batch of multiomics reference materials (Lot NO 1047 

20171028), 1 × 1010 cells were harvested for each cell line.  1048 

2 × 109 cells were used for preparing the second batch of DNA reference 1049 

materials (Lot NO 20171028) with the same method mentioned above for the 1050 

first batch of DNA. The second batch of DNA reference materials were stocked 1051 

in 1000 vials (220 ng/µL, 50 µL), and labeled with Quartet_DNA_D5_20171028, 1052 

Quartet_DNA_D6_20171028, Quartet_DNA_F7_20171028, and 1053 

Quartet_DNA_M8_20171028. The DNA QC and monitoring of stability were 1054 

conducted using the same methods mentioned above. 1055 

2 × 109 cells pretreated with TRIzol reagent were used for preparing RNA 1056 

reference materials using RNeasy Maxi kit (Qiagen, Germany) according to the 1057 

manufacturer’s instructions. The extracted RNA was divided into 1000 aliquots 1058 

for the quartet members and labeled as Quartet_RNA_D5_20171028, 1059 

Quartet_RNA_D6_20171028, Quartet_RNA_F7_20171028, and 1060 

Quartet_RNA_M8_20171028. A single vial contains approximately 5 μg of RNA 1061 

in water (520 ng/µL, 10 µL). The RNA integrity and long-term stability were 1062 

assessed by a 2100 Bioanalyzer using RNA 6000 Nano chips (Agilent 1063 

Technologies, USA) and a Qsep 100 system (BiOptic Inc., Taiwan, China). 1064 

Concentrations were determined by NanoDrop ND-2000 spectrophotometer 1065 

(Thermo Fisher Scientific, USA). 1066 

2 × 109 cell pellets were used for preparing protein reference materials. 1067 

Two batches of peptides were prepared separately at Fudan University (on Nov 1068 

6th, 2017) and Novogene (on Jun 16th, 2020), China. Briefly, cells were lysed in 1069 

8 M urea lysis buffer supplemented with protease inhibitors. The extracted 1070 
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proteins were then digested using trypsin overnight at 37 °C. The peptides were 1071 

divided into 1000 aliquots and dried under vacuum for each batch of peptide 1072 

reference materials. Four chemically synthesized peptides with C13 and N15 1073 

labeled in valine at fixed weight ratios were spiked in the second batch of the 1074 

reference protein materials (Lot NO 20200616) as external controls. The spiked 1075 

peptides are YILAGVENSK (1:1,000), ADVTPADFSEWSK (1:3,000), 1076 

DGLDAASYYAPVR (1:9,000), and DSPSAPVNVTVR (1:27,000). 1077 

1 × 109 cell pellets were used for preparing metabolite reference materials. 1078 

Briefly, cells were extracted using methanol:water = 6:1 solution. Ten 1079 

xenobiotics were spiked in at known amount in each vial as external controls. 1080 

They are Indoleacetic acid (25 pmol), Taurocholic acid (1 pmol), Glycocholic 1081 

acid (5 pmol), Cholic acid (25 pmol), Tauroursodeoxycholic acid (2.5 pmol), 1082 

Taurodeoxycholic acid (7.5 pmol), Glycoursodeoxycholic acid (1 pmol), 1083 

Glycodeoxycholic acid (0.5 pmol), Ursodeoxycholic acid (25 pmol), Deoxycholic 1084 

acid (50 pmol), and Sulfadimethoxine (5 pmol). The cell exacts were divided in 1085 

to 1000 vials and then dried under vacuum (Labconco, USA) to obtain the cell 1086 

extracts as metabolomics reference materials. Therefore, each vial contains 1087 

dried cell extracts from approximately 106 cells. The stability was monitored by 1088 

a P300 targeted metabolomics using a UPLC-MS/MS system in Human 1089 

Metabolomics Institute, Inc. (Shenzhen, China). 1090 

Whole-genome short-read sequencing data 1091 

Data generation. In order to evaluate the intra-lab performance of whole-1092 

genome short-read sequencing, three replicates for each of the Quartet DNA 1093 

samples were sequenced in a fixed order (D5_1, D6_1, F7_1, M8_1, D5_2, 1094 

D6_2, F7_2, M8_2, D5_3, D6_3, F7_3, and M8_3). A total of 108 libraries from 1095 

six labs with either PCR or PCR-free protocol were used in this study. The 1096 

libraries were sequenced on short-read platforms, including Illumina HiSeq 1097 

XTen, Illumina NovaSeq, MGI MGISEQ-2000, and MGI DNBSEQ-T7. In 1098 

paired-end mode, the sequencing depth was at least 30×. More information 1099 

was detailed in the DNA accompanying paper (Ren et al., 2022). 1100 

Short-read sequencing read mapping and small variants calling. The read 1101 

sequences were mapped to GRCh38 (https://gdc.cancer.gov/about-data/gdc-1102 

data-processing/gdc-reference-files). Sentieon v2018.08.01 1103 
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(https://www.sentieon.com/) was used to analyze raw fastq files to GVCF files. 1104 

The workflow includes reads mapping by BWA-MEM, duplicates removing, 1105 

indel realignments, base quality score recalibration (BQSR), and variants 1106 

calling by HaplotyperCaller in GVCF mode. We used default settings for all the 1107 

processes. 1108 

Feature encoding for small variants. To perform the calculation of SNR 1109 

values and vertical integration with other quantitative omics, we used the 1110 

encoding scheme for the genotypes of single nucleotide variants (SNVs). For 1111 

each genomic locus, we counted all alleles occurring in a total of 108 samples 1112 

from nine batches and then encoded them. Heterozygotes that were consistent 1113 

with the reference genome were encoded as 0, and the others were encoded 1114 

as 1. Furthermore, we used chromosome 1 to represent the whole genome for 1115 

the analysis. 1116 

Whole-genome long-read sequencing data 1117 

Data generation. We evaluated the performance of structural variant detection 1118 

using different data analysis pipelines, without considering the technical 1119 

variation from library preparation. A total of 12 libraries from three long-read 1120 

sequencing platforms were generated for the Quartet DNA reference materials 1121 

(one replicate for each sample). The long-read sequencing platforms used are 1122 

Oxford NanoPore PromethION (~100x), PacBio Sequel (~100x), and PacBio 1123 

Sequel II (~30x).  1124 

Long-read sequencing read mapping and structural variants calling. 1125 

Reads were mapped to GRCh38 (GCA 000001405.15) from UCSC Genome 1126 

Brower (http://hgdownload.soe.ucsc.edu/goldenPath/hg38/chromosomes/). 1127 

Three mappers (NGMLR, minimap2 and pbmm2) and five callers (cuteSV, 1128 

NanoSV, Sniffles, pbsv and SVIM) were used to call SVs.  1129 

DNA methylation data 1130 

Data generation. In order to evaluate the intra-lab performance of DNA 1131 

methylation, three replicates for each of the Quartet sample groups were 1132 

assayed in a fixed order (D5_1, D6_1, F7_1, M8_1, D5_2, D6_2, F7_2, M8_2, 1133 

D5_3, D6_3, F7_3, and M8_3). A total of 72 libraries from three labs with two 1134 

different protocols and Illumina EPIC Human Methylation microarray were used 1135 
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in this study. More information was detailed in the Quartet Data Portal 1136 

(http://chinese-quartet.org/). 1137 

Preprocessing of methylation data. Raw idat files were processed using R 1138 

package ChAMP v2.20.185 and minfi v 1.36.086. The single-sample Noob 1139 

(ssNoob) method87, 88 was used to correct for background fluorescence and 1140 

dye-bias. Next, samples with a proportion of failed probes (probe detection p-1141 

value > 0.01) above 0.1 were discarded. Probes that failed in more than 10% 1142 

of the remaining samples were removed. Probes with <3 beads in at least 5% 1143 

of samples per probe were also removed. All non-CpG probes, SNP-related 1144 

probes, multi-hit probes, probes located in chromosomes X and Y were filtered 1145 

out. After preprocessing, the methylation dataset contained 735,296 probes. 1146 

Finally, the corrected Meth and Unmeth signals were used to calculate M values 1147 

and β values. In this process, the offset was set to 100 and the beta threshold 1148 

to 0.001. 1149 

Whole transcriptome sequencing data 1150 

Data generation. In order to evaluate the intra-lab performance of whole 1151 

transcriptome sequencing, three replicates for each of the Quartet sample 1152 

groups were sequenced in a fixed order (D5_1, D6_1, F7_1, M8_1, D5_2, D6_2, 1153 

F7_2, M8_2, D5_3, D6_3, F7_3, and M8_3). A total of 252 libraries from eight 1154 

labs with either poly-A selection or rRNA-removal protocol were used in this 1155 

study. On average, 100 million read-pairs per replicate were sequenced on 1156 

Illumina NovaSeq or MGI DNBSEQ-T7. More information was detailed in the 1157 

RNA accompanying paper (Yu et al., 2022). 1158 

Alignment and RNA quantification. HISAT2 v2.1 was used for read alignment 1159 

to the GRCh38 (version: GRCh38_snp_tran, https://genome-1160 

idx.s3.amazonaws.com/hisat/grch38_snptran.tar.gz)89. SAMtools v1.3.1 was 1161 

used to sort and convert SAM to BAM format90. StringTie v1.3.4 was used for 1162 

gene quantification using Ensembl reference annotation 1163 

(Homo_sapiens.GRCh38.93.gtf)91. Ballgown v2.14.1 and prepDE.py 1164 

(https://ccb.jhu.edu/software/stringtie/dl/prepDE.py) were used to produce 1165 

gene expression matrix in Fragments Per Kilobase of transcript per Million 1166 

mapped reads (FPKM) for downstream analysis. 1167 
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miRNA sequencing data 1168 

Data generation. In order to evaluate the intra-lab performance of miRNA 1169 

sequencing, three replicates for each of the Quartet sample groups were 1170 

sequenced in a fixed order (D5_1, D6_1, F7_1, M8_1, D5_2, D6_2, F7_2, M8_2, 1171 

D5_3, D6_3, F7_3, and M8_3). A total of 72 libraries from three labs with six 1172 

different protocols were used in this study. Illumina NovaSeq or HiSeq 2500 1173 

was used to generate the miRNAseq data. More information was detailed in the 1174 

Quartet Data Portal (http://chinese-quartet.org/). 1175 

Alignment and miRNA quantification. The extra-cellular RNA processing 1176 

toolkit (exceRpt) was used to pre-process miRNAseq92 data. The raw reads 1177 

were aligned to the hg38 genome and transcriptome of exceRptDB. Counts per 1178 

million mapped reads (CPM) quantifications of miRNA were extracted for the 1179 

downstream analysis.  1180 

Mass spectrometry (MS)-based proteomics data 1181 

Data generation. With the first batch of peptide reference materials, 312 1182 

libraries based on the LC-MS system were generated under a data-dependent 1183 

acquisition mode (DDA). Samples were analyzed in a random order for each 1184 

dataset, which contains three technical replicates for each of the four biological 1185 

samples (D5, D6, F7, and M8). Mass spectrometers from three platforms were 1186 

used: 1) Q Exactive hybrid quadrupole-Orbitrap series (Q Exactive, Q Exactive 1187 

Plus, Q Exactive HF and Q Exactive HF-X), Orbitrap Fusion Tribrid series 1188 

(Fusion and Fusion Lumos), Orbitrap Exploris 480 (all from Thermo Fisher 1189 

Scientific, Waltham, MA, USA); 2) Triple-TOF 6600 (from SCIEX, Foster City, 1190 

CA, USA), and 3) timsTOF Pro (from Bruker Daltonics, Bremen, Germany).  1191 

The second batch of peptide reference materials were all analyzed in a fixed 1192 

order (D5_1, D6_1, F7_1, M8_1, D5_2, D6_2, F7_2, M8_2, D5_3, D6_3, F7_3, 1193 

and M8_3) on Q Exactive, Q Exactive HF, Q Exactive HF-X, and Orbitrap 1194 

Fusion Lumos, generating 36 libraries based on DDA mode and 36 libraries 1195 

based on data independent acquisition (DIA) mode. All parameters were set 1196 

according to the requirements from the manufacturers. 1197 

Peptide identification and protein quantification. MS raw files generated by 1198 

the first batch of peptide reference materials were searched against the 1199 

National Center for Biotechnology Information’s (NCBI) human RefSeq protein 1200 
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database (updated on 04-07-2013, 32,015 entries) using Firmiana 1.0 enabled 1201 

with Mascot 2.3 (Matrix Science Inc.)93. MS raw files generated by the second 1202 

batch of peptide reference materials were searched against UniProt 1203 

(http://www.uniprot.org) (release-2021_04), using in-house pipelines from 1204 

different labs (MaxQuant 1.5.3.17, Spectronaut 14.4, mProphet or Proteome 1205 

Discoverer 2.2). Fixed modification is Carbamidomethyl (C), and Variable 1206 

modifications are oxidation (M) and acetyl (Protein N-term). Proteins with at 1207 

least 1 unique peptide with 1% FDR at the peptide level and Mascot ion score 1208 

greater than 20 were selected for further analysis. The fraction of total (FOT) 1209 

values were used for downstream analysis. FOT was defined as a protein’s 1210 

iBAQ divided by the total iBAQ of all identified proteins within one sample. The 1211 

FOT was multiplied by 105 for the ease of presentation. 1212 

Mass spectrometry (MS)-based metabolomics data 1213 

Data generation. In order to evaluate the intra-lab performance of MS-based 1214 

metabolomics, three replicates for each of the Quartet sample groups were 1215 

profiled in a fixed order (D5_1, D6_1, F7_1, M8_1, D5_2, D6_2, F7_2, M8_2, 1216 

D5_3, D6_3, F7_3, and M8_3). The dried cell extracts were re-dissolved in 1217 

mobile phase in each lab, and a total of 264 libraries were generated from five 1218 

labs. The non-targeted metabolomics datasets were generated using AB 1219 

SCIEX Triple TOF6600 and Thermo Scientific Q Exactive mass spectrometer 1220 

systems in three different labs. The targeted metabolomics datasets were 1221 

generated using Waters Xevo TQ-S, AB SCIEX QTRAP 5500, and AB SCIEX 1222 

QTRAP 6500+ mass spectrometers in four labs. More information was detailed 1223 

in the metabolite accompanying paper (Zhang et al., 2022). 1224 

Compound identification and metabolite quantification. Raw data were 1225 

extracted, peak-identified and QC processed using the in-house methods in 1226 

each lab. Compound identification was conducted using in-house library based 1227 

on the retention time/index (RI), mass to charge ratio (m/z), and MS spectral 1228 

data for each metabolite. Metabolite quantification was conducted using area-1229 

under-the-curve or the concentration calculated by calibration curve using 1230 

standards of each metabolite. All the expression tables of metabolomics were 1231 

log2 transformed and then normalized by Z-score transformation across all 1232 

metabolites for each sample. 1233 
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Construction workflow of reference datasets 1234 

In the analysis of differentially expressed features (DEFs) and cross-omics 1235 

relationships, the methylation microarray data were converted to M values, 1236 

miRNA data were normalized to log2CPM, and RNA data were normalized to 1237 

log2FPKM, proteomics data were normalized to log2FOT, and metabolomics 1238 

data were log2 transformed based on the quantitative intensity. 1239 

Intra-batch quality control was performed to minimize the influence of 1240 

technical noises in the voting process. For each sample group, features that 1241 

were not detected in more than one technical replicate or that had large 1242 

variability (CV > 0.15 for methylation and > 0.3 for other omics) were excluded. 1243 

Afterward, we constructed the reference datasets of DEFs and cross-omics 1244 

feature relationships with the consensus voting approach described below. 1245 

Reference datasets for DEFs. Cross-batch QC was performed following the 1246 

previous intra-batch QC. Features retained in more than a certain percentage 1247 

(70% for Methylation, miRNA, and RNA; 30% for protein and metabolite) of 1248 

batches were kept for the subsequent differential expression analysis. 1249 

For each omics type, we analyzed the DEFs between D5 and F7 (D5/F7), 1250 

D5 and M8 (D5/M8), and F7 and M8 (F7/M8) within each batch using Student’s 1251 

t-test. A feature was identified as differentially expressed when satisfying the 1252 

criteria of p < 0.05 and log2 fold change ≥ 0.5 or ≤ -0.5 for miRNA, RNA, proteins, 1253 

and metabolite profiling, or p < 0.05 and log2 fold change ≥ 2 or ≤ -2 for 1254 

methylation M values. Furthermore, we determined whether a DEM was up- or 1255 

down-regulated based on the positive or negative sign of the log2 fold change.  1256 

After identifying DEFs from each batch, we kept the DEFs presented in 1257 

more than 70% batches with consistent regulatory directionality (up or down). 1258 

Finally, we calculated the mean log2 fold changes of all the retained intra-batch 1259 

DEFs as reference values. 1260 

Reference datasets for cross-omics feature relationships. The reference 1261 

datasets contained cross-omics feature relationships between methylation and 1262 

miRNA, methylation and RNA, RNA and miRNA, RNA and protein levels, 1263 

protein and metabolite. We first performed feature selection to better identify 1264 

biologically meaningful correlations by annotating cross-omics features to the 1265 

same genes. 1266 
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For the methylation probes, we converted the features from the level of 1267 

probes to genes by taking the mean value on the promoter region (TSS200 or 1268 

TSS1500) to characterize the methylation level. For the other omics types, we 1269 

did not perform the transformation of feature values, but simply searched for 1270 

associated genes. RNA profiles were associated with gene names via Ensembl 1271 

ID. Target genes associated with specific miRNA in all of miRDB94 (prediction 1272 

scores ≥ 80), miRTarBase95 (support type is Functional MTI), and TargetScan96 1273 

would be considered as plausible. The proteomics profiles were characterized 1274 

at the level of gene names. Metabolites were associated with genes on the 1275 

same pathway based on the HMDB database97. 1276 

Afterward, we exhaustively enumerated all the batch combinations of the 1277 

above five cross-omics types and conducted cross-batch QC. Associated 1278 

feature pairs retained in more than a certain number of batch combinations 1279 

were used for subsequent correlation analysis. This threshold is determined by 1280 

the product of the respective batch and rate (70% for Methylation, miRNA, and 1281 

RNA; 30% for protein and metabolite) of the two types of omics being compared. 1282 

Next, we calculated the Pearson correlation coefficients for each feature 1283 

pair in each batch combination of the five cross-omics types. According to the 1284 

results of Pearson correlation analysis, the cross-omics relationships were 1285 

classified into positive (R ≥ 0.5, p < 0.05), negative (R ≤ -0.5, p < 0.05), and 1286 

none (p ≥ 0.05). 1287 

Finally, we preserved the cross-omics relationships with the category that 1288 

account for more than 70% as the high-confidence relations. The reference 1289 

Pearson correlation coefficients were the mean value of the retained data. 1290 

Performance metrics 1291 

Adjusted Rand Index (ARI). ARI is a widely used QC metric to compare 1292 

clustering results against external criteria79. It measures the similarity of the true 1293 

labels and the clustering labels while ignoring permutations with chance 1294 

normalization, which means random assignments will have an ARI score close 1295 

to zero. ARI is in the range of -1 to 1, with 1 being the perfect clustering. ARI is 1296 

calculated based on RI as follows: 1297 

𝐴𝑅𝐼 =
𝑅𝐼 + 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑(𝑅𝐼)

𝑚𝑎𝑥(𝑅𝐼) − 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑(𝑅𝐼) 1298 
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Root Mean Square Error (RMSE). RMSE is the standard deviation of the 1299 

residuals (prediction errors), a widely used statistic in bioinformatics and 1300 

machine learning. In this study, we used RMSE to measure the consistency of 1301 

DEGs detected from a dataset for a given pair of samples with those from the 1302 

reference DEFs, or “RMSE of DEFs”. Reference DEFs were integrated by 1303 

consensus voting the intra-batch results, and the reference difference was 1304 

defined by the mean value of log2 fold change of high-confidence batches. 1305 

RMSE is computed using the following equation: 1306 

𝑅𝑀𝑆𝐸 = 4∑ (𝑥! − 𝑥6!)"#
!$%

𝑁  1307 

where 𝑁 is the total number of features considered for evaluation, 𝑥! − 𝑥6! is the 1308 

error, 𝑥6! is the log2 fold change after horizontal integration, and 𝑥! is the log2 1309 

fold change of the corresponding feature in the reference dataset. 1310 

Signal-to-Noise Ratio (SNR). SNR is a parameter based on the Quartet study 1311 

design for discriminating different types of reference samples. Based on 1312 

principal components analysis (PCA), SNR is defined as the ratio of the 1313 

average distance among different samples (like D5-1 vs. D6-1) to the average 1314 

distance among technical replicates (like D5-1 vs. D5-2). SNR is calculated as 1315 

follows: 1316 

𝑆𝑁𝑅 = 10 × 𝑙𝑜𝑔!" +
𝑚 × -#$.

-%$ . × 𝑛 × 𝑛
×
∑ ∑ ∑ ∑ ∑ 𝑊&$

&'! (𝑃𝐶&,),* − 𝑃𝐶&,+,,)$#
+'!

#
)'!

%
,'*-!

%
*'!

∑ ∑ ∑ ∑ 𝑊&$
&'! (𝑃𝐶&,),* − 𝑃𝐶&,+,*)$#

+')-!
#
)'!

%
*'!

7 1317 

where 𝑚 is the number of sample groups, while 𝑛 is the number of replicates in 1318 

each sample group. 	𝑊&  represents the pth principal component of 1319 

variances. 	𝑃𝐶&,!,( , 𝑃𝐶&,),(  and 𝑃𝐶&,),*	 represent the pth component values of 1320 

replicate 𝑖 and replicate 𝑗 in sample group 𝑥 or sample group 𝑦, respectively. 1321 

Balance of sample classes between batches 1322 

To evaluate the effect of the level of balance between the sample classes 1323 

across batches on the tasks of sample classification and the identification of 1324 

DEFs, we use the Jaccard index to represent the level of balance. The Jaccard 1325 

index is a common statistic used for gauging the similarity and diversity of two 1326 

sets. 1327 
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For the Quartet multiomics datasets, the total number of samples for each 1328 

of the four classes in each omic data type is the same (referred to as N). We 1329 

randomly selected a natural number n from 20% to 80% of N, then we drew n 1330 

samples from the sets of D5, D6, F7, and M8 and recorded the batch 1331 

information from which these samples came from. Further, we calculated the 1332 

Jaccard index between the batches of D5-D6, D6-F7, F7-M8, and M8-D5. 1333 

Finally, the mean value of the above four Jaccard indexes represented the 1334 

sample classes-batch balance. 1335 

Within-omic (Horizontal) integration 1336 

Data preprocessing. First, we randomly selected four batches for each 1337 

quantitative omic profiling (methylation, miRNA, RNA, protein, and metabolite). 1338 

We took three D5s with one D6, three D6s with one F7, three F7s with one M8, 1339 

and three M8s with one D5 from each of the four batches, to increase the 1340 

difficulty of the horizontal integration task. 1341 

Next, we used different strategies for handling missing values for different 1342 

omics. For methylation data, features containing missing values were removed. 1343 

For other omics data, a feature will be retained when it is detected in more than 1344 

80% of the samples. For miRNAseq and RNAseq, a flooring value of 0.01 was 1345 

added to each gene's FPKM or CPM value before log2 transformation. Missing 1346 

values were filled using the HM (Half of the Minimum) method. 1347 

Horizontal integration methods. A total of six methods were used in this study 1348 

to horizontally integrate multiple batches of data, including Ratio, ComBat, 1349 

Harmony, RUVg, Z-Score, and Absolute. Ratio method uses the mean value of 1350 

D6 samples as the denominator to scale the expression of D5, F7, and M8 on 1351 

a feature-by-feature basis. ComBat was implemented by using the ComBat 1352 

function of sva v3.38.0 package98. Harmony was implemented by using the 1353 

HarmonyMatrix function of harmony v0.1.0 package73. RUVg was conducted 1354 

by using the RUVg function of RUVSeq v1.24.0 package74. Z-Score was 1355 

performed by scaling each batch feature-wise before merging multiple batches 1356 

to eliminate the batch effect. Absolute method refers to direct integration after 1357 

normalization. 1358 

Cross-omics (Vertical) integration 1359 
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Two scenarios for vertical integration. (1) Integration of multi-batch 1360 

quantitative omic data, related to Fig. 4. After horizontally integrating 16 1361 

samples from four batches of methylation, miRNA, RNA, protein and metabolite, 1362 

vertical integration was performed using the five algorithms described above. 1363 

(2) Integration of single-batch quantitative and genomic data, related to Fig. 5. 1364 

The datasets of small variants were added to the integration task. Another 1365 

difference is that for each omics type we only used one batch of data, which 1366 

means that the vertically integrated results were not affected by problems that 1367 

exist in horizontal integration, e.g, batch effects. 1368 

Data preprocessing. Prior to the vertical integration, we filtered out batches of 1369 

very good (top 20%) or bad (bottom 20%) quality within each omics based on 1370 

SNR values to reduce the impact of extreme quality datasets. In total, five 1371 

batches of DNA (SNV/Indel) data, two batches of DNA methylation profiles, two 1372 

batches of miRNA profiles, 11 batches of RNA profiles, 18 batches of 1373 

proteomics data, and 12 batches of metabolomics data were retained. 1374 

To reduce the impact of large differences in dimensionality across 1375 

multiomics on the final results, for each omics type we selected the top 1000 1376 

most variable features based on the coefficient of variation (CV). After that, the 1377 

data matrices were centered and scaled to mean 0 and standard deviation 1 1378 

feature by feature. In addition, since intNMF and MCIA are methods based on 1379 

the principle of non-negative matrix decomposition, features containing 1380 

negative values were added with their absolute of minimum values to ensure 1381 

the non-negativity. 1382 

Vertical integration methods. SNF5, iClusterBayes75, MOFA+76, MCIA77, and 1383 

intNMF78 were used to integrate the multiomics data. SNFtool v2.3.1 package 1384 

was used with the parameter K (number of neighbors) set to the square of the 1385 

sample size after rounding, alpha (hyperparameter) to 0.05, and T (number of 1386 

Iterations) to 10. iClusterPlus v1.26.0 package was used with the parameter K 1387 

(number of eigen features) set to the number of sample groups minus one. 1388 

MOFA2 v1.1.21 package was used with the default parameters, and PAM 1389 

clustering was performed on the latent factors of the MOFA+ model to obtain 1390 

the sample labels. MCIA was implemented by using omicade4 v1.30.0 package, 1391 

and PAM clustering was performed on the synthetic scores to get the sample 1392 
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labels. IntNMF v1.2.0 package was used with the default parameters. All other 1393 

parameters were set by default for the above five tools. A total of 50 iterations 1394 

of data integration were performed. 1395 

Similarity between D5 and D6 1396 

The SNF method was used to integrate data from different multiomics 1397 

combinations to explore the genomic inheritance patterns of the Quartet 1398 

identical twins during data integration. During integration, we randomly selected 1399 

a batch from each omics with a moderate quality (SNR in the 20% to 80% range) 1400 

and then calculated the inter-sample similarity matrix W using the SNFtool 1401 

v2.3.1 package. Specifically, for single-omic datasets (i.e., DNA or metabolite), 1402 

we treated multiple batches of moderate quality data from the same omics type 1403 

as different sources, also using SNF for integration and to obtain the W matrix. 1404 

As D5 and D6 each contained three technical replicates, there were nine 1405 

similarity results in the W matrix. We used their mean values as the similarity 1406 

between D5 and D6 obtained from one integration. To ensure the robustness 1407 

of the results, a total of 50 iterations were performed for the multiomics 1408 

combination. 1409 

Statistical analysis 1410 

All statistical analyses were performed using R statistical packages (version 1411 

4.0.5) (https://www.r-project.org). Pearson’s correlation coefficients were 1412 

calculated using Hmisc v4.6.0 package (https://CRAN.R-1413 

project.org/package=Hmisc). Differential expression analyses were 1414 

implemented using ChAMP v2.20.1 package for methylation EPIC data85, and 1415 

using rstatix v0.7.0 package for other omics data 1416 

(https://github.com/kassambara/rstatix). PCA was conducted with the 1417 

univariance scaling using the prcomp function. PAM clustering was 1418 

implemented using cluster v2.1.3 package (https://CRAN.R-1419 

project.org/package=cluster). Data visualization was implemented using R 1420 

packages ggplot2 v3.3.6 (https://ggplot2.tidyverse.org/), ggsci v2.9 1421 

(https://github.com/nanxstats/ggsci), ggpubr v0.4.0 1422 

(https://github.com/kassambara/ggpubr/), ComplexHeatmap v2.6.299, and 1423 

networkD3 v0.4 (https://christophergandrud.github.io/networkD3/). 1424 

 1425 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 26, 2022. ; https://doi.org/10.1101/2022.10.24.513612doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.24.513612
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

54 
 

Materials availability 1426 

The Quartet multiomics reference materials generated in this study can be 1427 

accessed from the Quartet Data Portal (https://chinese-quartet.org/) under the 1428 

Administrative Regulations of the People’s Republic of China on Human 1429 

Genetic Resources. 1430 

 1431 

Data and code availability 1432 

All the raw data, processed data, and reference datasets can be accessed from 1433 

the Quartet Data Portal (https://chinese-quartet.org/) under the Administrative 1434 

Regulations of the People’s Republic of China on Human Genetic Resources. 1435 

They can also be accessed from the Genome Sequence Archive (GSA) of the 1436 

National Genomics Data Center of China with BioProject ID of PRJCA007703. 1437 

The source codes for the data analyses are available at 1438 

https://github.com/chinese-quartet/. 1439 
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Extended data 1534 

 1535 

Extended Data Fig. 1 | Characterization of the Quartet B-lymphoblastoid 1536 

cell lines (LCLs).  1537 
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a, Quartet LCLs were cultured in suspension with typical cell clusters under 1538 

phase-contrast microscopy (X400). b, Normal karyotypes of the LCLs were 1539 

shown. c, 15 STR loci were used for identification of Quartet monozygotic twins’ 1540 

family. Importantly, there were no differences between results from DNAs 1541 

isolated from LCLs and primary blood.  1542 
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 1543 

Extended Data Fig. 2 | Roadmap to the Quartet Project manuscripts. 1544 

MS-1: Quartet project overview and main findings; MS-2/3/4/5: 1545 

Genomics/Transcriptomics/Proteomics/Metabolomics reference materials and 1546 

reference datasets; MS-6: Batch effects and correction; MS-7: Data portal for 1547 

public access of Quartet Project resources.  1548 
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 1549 

Extended Data Fig. 3 | Quartet multi-sample based intra-batch Signal-to-1550 

Noise Ratio (SNR) for performance evaluation of each omics profiling.  1551 

Intra-batch performance evaluation using SNR. Two batches of typically good 1552 

(a) and bad (b) quality datasets of methylomics, transcriptomics, proteomics, 1553 

and metabolomics were visualized by PCA plots. N is the number of features 1554 

of the matrix used to calculate the SNR for the batch.  1555 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 26, 2022. ; https://doi.org/10.1101/2022.10.24.513612doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.24.513612
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

62 
 

 1556 

Extended Data Fig. 4 | Workflow for the construction of reference datasets 1557 

of differentially expressed features.  1558 

Reference datasets were constructed according to the following steps: (1) 1559 

Identifying detectable multiomics features and per-sample normalization. (2) 1560 

Intra-batch quality control. Features that were not detectable or had low 1561 

technical reproducibility were filtered out. (3) Cross-batch quality control. 1562 

Features that were able to be detected in a sufficient number of batches were 1563 

retained. (4) Calculating intra-batch differentially expressed features (DEFs) 1564 

using t-test analysis. DEFs were classified as up- or down-regulated based on 1565 

the positive or negative sign of the log2 fold change. (5) Voting based on the 1566 

regulatory directionality (up or down) to screen the high confidence DEFs.  1567 
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 1568 

Extended Data Fig. 5 | Scatter plots between SNR and the number of 1569 

features, CV, Pearson correlation, and RMSE.  1570 

Data points represent one batch and solid lines indicate fitted curves obtained 1571 

from linear regression. Red: Methylation; Blue: miRNA; Yellow: RNA; Green: 1572 

Protein; Purple: Metabolite. The annotated correlations were Pearson 1573 

correlation coefficients. ns, p ≥ 0.05 refers to not significant, * p<0.05, ** p<0.01, 1574 

*** p<0.001, **** p<0.0001. a, Scatter plots between SNR and number of 1575 

features. b, Scatter plots between SNR and Coefficient of Variation (CV). The 1576 

CV for each batch is the mean value of the CVs between technical replicates 1577 

on all features for the four sample groups. c, Scatter plots between SNR and 1578 

Pearson correlation coefficient, which is the mean of the results of the two-by-1579 

two calculations of the three technical replicates for each sample group. d, 1580 

Scatter plots between SNR and RMSE of DEFs, which is the mean of RMSEs 1581 

of all features within one batch.  1582 
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 1583 

Extended Data Fig. 6 | Ratio-based integration enhanced horizontal data 1584 

integration and was reference-sample independent. 1585 

a, Bar plots of Signal-to-Noise Ratio (SNR) of horizontal integration of all 1586 

batches of methylation, miRNAseq, RNAseq, proteomics, and metabolomics 1587 

datasets at absolute level (Blue) and ratio level (Red) with the choice of different 1588 

Quartet samples as the reference sample. b-d, PCA plots of horizontal 1589 

integration of omics datasets at ratio level by scaling to D5 (b), F7 (c), and M8 1590 

(d). 1591 
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 1592 

Extended Data Fig. 7 | Workflow for the construction of reference datasets 1593 

of cross-omics feature relationships. 1594 

Reference datasets of cross-omics feature relationships were constructed 1595 

according to the following steps: (1) Identifying detectable multiomics features 1596 

and per-sample normalization. (2) Intra-batch quality control. Features that 1597 

were not detectable or had low technical reproducibility were filtered out. (3) 1598 

Identification of cross-omics feature pairs. Features associated with the same 1599 

genes were retained for the five cross-omic types, i.e., methylation and miRNA, 1600 

methylation and RNA, RNA and miRNA, RNA and protein, as well as protein 1601 

and metabolite.  (4) Cross-batch quality control. Features retained in a sufficient 1602 
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number of batches were used for subsequent correlation analysis. (5) 1603 

Calculating Pearson correlation coefficients for each feature pair in each batch 1604 

combination. Cross-omics relationships were classified into positive (R ≥ 0.5, 1605 

p < 0.05), negative (R ≤ -0.5, p < 0.05), and none (p ≥ 0.05). (6) Voting based 1606 

on the direction of the correlations (negative or positive) to screen the high-1607 

confidence cross-omics feature relationships.  1608 
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Extended Data Table 1 | Quartet multiomics datasets generated from multiple 
omics types, batches, labs, and platforms 
Omics 
Types Materials Platforms Protocols Labs Replicates 

WGS 

Quartet_DNA
_20160806 

Illumina HiSeq XTen  PCR 
ARD, 
NVG, 
WUX 

9 

Illumina NovaSeq 
PCR WUX 3 

PCR-free BRG, 
ARD 9 

MGI MGISEQ-2000 PCR BGI 3 

MGI DNBSEQ-T7 PCR-free WGE 3 

Quartet_DNA
_20171028 

PacBio Sequal CLR NOM 1 

PacBio Sequal II CLR ARD 1 

Oxford NanoPore / GRM 1 

Methylat
ion 

Quartet_DNA
_20160806 Illumina 850K / BIO, SNT, 

ENG 18 

RNA-
seq 

Quartet_RNA
_20171028 

Illumina NovaSeq 

PolyA 
ABC, 
ARD, 
WUX, 

FDU, VAZ 

15 

RiboZero 

ABC, 
ARD, 
BRG, 
WUX, 

FDU, VAZ 

33 

MGI DNBSEQ-T7 
PolyA BGI, VAZ 6 

RiboZero BGI, VAZ, 
WEH 9 

miRNA-
seq 

Quartet_RNA
_20171028 

Illumina NovaSeq Nextflex FDU 6 
Illumina NovaSeq VAZ FDU 3 

Illumina NovaSeq QIAseq WUX 3 

Illumina NovaSeq TruSeq WUX 3 

Illumina HiSeq 2500 NEBNext ARD 3 

Proteom
ics 

Quartet_Pipe
tide_201711

06 

Thermo Q Exactive DDA NPS 3 

Thermo Q Exactive-HF 
DDA NPB 3 

DIA BGI 3 

Thermo Q Exactive-
HFX DDA 

ZJU, 
TMO, 
PTM, 

APT, FDU 

21 

Thermo Q Exactive-
Plus DDA NPB, 

SCU 6 

Thermo Orbitrap 
Fusion Lumos Tribrid DDA 

NPB, 
THU, 
JNU, 
TMO, 

BGI, FDU 

27 
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Thermo Orbitrap 
Fusion DDA NPB, 

SIM, IRC 9 

Thermo Orbitrap 
Exploris 480 DDA TMO 3 

Bruker timsTOF DDA BRK 3 
SCIEX Triple 

TOF6600 DDA ABS 3 

Quartet_Pipe
tide_202006

16 

Thermo Q Exactive DDA APT 3 

Thermo Q Exactive-HF DIA BGI 3 

Thermo Q Exactive-
HFX 

DDA NVG 3 

DIA APT 3 

Thermo Orbitrap 
Fusion Lumos Tribrid 

DDA FDU 3 

DIA FDU 3 

Metabol
omics 

Quartet_Met
abolite_2020

0108 

Thermo Scientific Q 
Exactive Untargeted MBL 6 

AB SCIEX Triple 
TOF6600 Untargeted APT, 

AQU 6 

AB SCIEX QTRAP 
6500+ 

Targeted NVG 3 

Targeted MIB 3 
AB SCIEX QTRAP 

5500 Targeted APT 3 

Waters Xevo TQ-S Targeted MBP 42 
 1609 
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