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ABSTRACT
Motivation: Our aim was to simplify and speedup joint-genotyping,
from sequence based variation data of individual samples, while
maintaining as high sensitivity and specificity as possible.
Results: We have leveraged versatile GOR data structures to store
biallelic representations of variants and sequence read coverage in
a very efficient way, allowing for very fast joint-genotyping that is an
order of magnitude faster than any joint-genotyping method published
to date. Furthermore, it can be easily extended and executed much
faster in an incremental fashion. Concordance analysis based on
the Genome In A Bottle (GIAB) samples shows favorable results
when compared with the de-facto standard approach, using gVCF
files and GATK joint-calling. Additionally, we have developed variant
quality classification using XGBoost and variant training sets derived
from the GIAB samples. The entire business logic is implemented
efficiently and concisely in SparkGOR.
Availability: SparkGOR is open-source and freely available at
https://github.com/gorpipe.
Contact: hakon@genuitysci.com

1 INTRODUCTION
Genetic association studies that test whether a given sequence
variant has involvement in controlling a given phenotype rely on
ever increasing cohort sizes, in order to increase the power to
detect disease association. These studies now often utilize variations
derived from sequence read data in order to detect more rare variants
and other features not readily available from array based data [11].
An important part in this process is to perform so-called joint-
genotyping; to organize the genotypes into data structures that are
efficient for large-scale cohort analysis, to properly account for
lack of data due to low sequence read coverage, and to leverage
population statistics to estimate, filter and improve quality.

Many of the early short read sequence variation callers use a
position based model following sequence read alignment [15] where
a Bayesian statistical model based on pileup of sequence bases
quality and genotype priors is used, e.g. SAMtools, SOAP, and
GATK’s Unified Genotyper [19][16][17]. These callers are highly
effective for calling SNPs but less effective for InDels due to their
reliance on independent read alignments to a reference sequence.
To address this, algorithms using haplotype realignment and local
assembly have been developed, such as GATK’s HaplotypeCaller,
FreeBayes, Isaac, Platypus [5][6][23][24], as well as algorithms
that use de Bruijn-like graphs for de novo assembly [12][20].
Although these algorithms call InDels with greater accuracy, they
do not scale well, due in part to exponential increase in complexity
with the number of samples, making joint-calling challenging for
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large cohorts, but joint-calling can be used to improve quality
by providing cohort based distributions for variant attributes and
support variant quality re-calibration (VQSR).

In order to enable joint-calling of larger cohorts, the reference
confidence model (RCM) has been developed [22], where in
addition to likelihoods for all alleles explicitly observed in sample
reads, the model generates the likelihood over the set of unobserved
non-reference alleles and stores them in gVCF format for each
sample [23]. The primary purpose of this is to allow downstream
joint-analysis of multiple gVCF files to distinguish homozygous
reference from the void of any read data at all. Additionally, this
reduces the computational burden associated with the so-called N+1
problem for incremental joint-genotyping, as cohorts increase in
size.

For very large cohort sizes, with tens of thousands of samples,
practical performance issues, related to the necessary parallelism,
indexing, and random access to the relevant genome shards of each
sample, start to play an important role [11][14]. To address this,
systems such as GLnexus [18] have been developed where the gVCF
blocks from individual samples are stored in a RocksDB database.
The GLnexus system has also been optimized [29] for single sample
gVCF files generated with the DeepVariant caller [21], but they have
a smaller storage footprint because of efficient quantization of the
reference records.

Deep-learning methods such as DeepVariant have also been
augmented with new channels to encode allele frequencies [2] and
sequence reads from parents [13] and shown to improve precision
and recall in single sample calls.

Pangenomes have been proposed to remove bias toward the
reference genome. They incorporate prior information about
variation, allowing read aligners to distinguish better between
sequencing errors in reads and true sequence variation. Unlike
de novo assembly algorithms, pangenomes represent sequence
variation with respect to the reference genome, enabling direct
access to its annotated biological features. PanGenie [7] leverages
a haplotype-resolved pangenome reference together with k-mer
counts from short-read sequencing and allows read mapping and
genotype calling to be performed efficiently in a single step,
however, currently it cannot be used to genotype very rare variants
that are present only in the sample, but in none of the other
reference haplotypes. GraphTyper [8][9] relies on global alignment
to the linear reference sequence to assign reads to regions. It then
locally realigns sequence reads from a region to a pangenome graph,
uses the resulting alignments to efficiently update the graph, and
concomitantly genotypes sequence variants. This method has been
shown to be better suited for population-scale genotyping than
other widely used pipelines and provide improved sensitivity and
precision [11].
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Here we present a joint-genotyping method implemented
efficiently in SparkGOR [27]. Our pipeline accepts single sample
gVCF-like input and generates pVCF-like output. By storing
variants and sequence read coverage information in separate
bucketized GORZ files [10], we obtain up to 20 fold storage
footprint reduction, as compared with conventional gVCF files,
structures that are easy to update and lend themselves well to
parallel processing. Also, by converting multi-allelic locus based
variant calls to bi-allelic variants, we simplify and speed up
our joint-genotyping computation dramatically while maintaining
excellent quality and concordance with GIAB samples [30]. Finally,
we aggregate variant and sequence coverage attributes and train
a supervised XGBoost [3] variant classifier, using training data
derived from concordance with GIAB samples. We show how
this efficient QC classifier, that segregates good and bad variants,
is consistent with GATK’s best practice VQSR quality filtering
approach. Finally, we outline how our approach can be used for very
efficient incremental joint-genotyping, something that can be of
importance in a setting where large databases are frequently updated
with new samples.

2 METHODS
2.1 Evaluation data
To test our joint-calling pipeline, we used about 37 thousand
samples that had already been sequenced with Illumina-Novaseq
technology. These samples are mostly of Caucasian ethnicity
and their target sequence depth was 30 reads. Additionally, we
downloaded 7 GIAB samples [30] and their BAM files were sub
sampled to reach the same mean depth. Also, we sequenced
one of the GIAB samples, NA12878, which represents the same
individual as the data downloaded for sample HG001. The Sentieon
implementation of GATK [25],[26] was used to generate gVCF files
from the BAM sequence read files. These gVCF files are therefore
the starting point for our GOR based processing pipeline. For
joint-calling, we used both pipelines to processed all the samples,
including the GIAB samples, for chr22 only. Because of the cost,
we only processed the entire genome with our GOR pipeline, but
for comparison, we had an earlier Sentieon run processed genome
wide, with all the samples except the 7 GIAB samples.

2.2 Converting gVCF to GOR files
In our supplementary material, query Example 1 shows the
logic used to split up a gVCF file into biallelic variants and
sequence read coverage segments. In particular, the create step
for #biallelevars# shows the commands used to generate
the biallelic variants. Noteworthy is the use of the PIVOT
command to move the attribute-value based content in the INFO
and FORMAT/DATA columns into separate columns. Then there
are the commands CALC ngt, SPLIT ngt, CALC thePL, and
REPLACE pl, that are used to convert the multi-allelic locus
representation into biallelic format, where each row corresponds to
a single allele.

The other noteworthy create step is for #segcov# which picks
up the depth and segment size, rounds the depth as shown in
CALC rd, such that little rounding is used where the depth is low,
and then combines adjacent segments with equal depth, using the

Table 1. File sizes for two example gVCFs and corresponding GORZ files

PN1 PN2
Filetype Filesize in bytes % Rows Filesize in bytes % Rows
gvcf.gorz 8,382,422,788 100.0 439,304,078 3,336,629,971 100.0 154,518,568
biallelefile.gorz 260,918,637 3.11 5,083,826 258,550,605 7.75 5,065,486
segcovfile.gorz 103,407,142 1.23 55,062,862 51,163,969 1.53 25,370,440
lowcovfile.gorz 7,265,032 0.09 3,369,573 5,903,302 0.18 2,709,705
goodcov10.gorz 1,795,958 0.02 651,303 1,419,577 0.04 603,447
goodcov8.gorz 1,503,959 0.02 609,043 1,221,080 0.04 575,143
goodcov6.gorz 1,236,350 0.01 571,480 1,042,059 0.03 559,519
goodcov4.gorz 985,993 0.01 548,203 862,595 0.03 542,570

SEGSPAN command. This makes the downstream data processing
faster because the segments are larger and fewer; reducing the file
sizes as demonstrated inTable 1 shows.

The gVCF2GOR queries in Ex. 1 take about 10-15 minutes
to run for a single gVCF file when executed in parallel. The
overall computation cost is about 1.5 core-hour and while the script
could be optimized by writing dedicated GOR commands to handle
multiple pipe steps, as compared to using only standard general
purpose GOR commands, the overhead of running the script is
still only four to five times that of reading and de-compressing the
gVCF file. Since this is a one-time operation per gVCF file and
much less expensive than the variant calling step for generating
the gVCF file in the first place, we have not spent time on writing
dedicated commands for this purpose. For comparison, running our
Sentieon pipeline on a 36 core instance with 72 GB of memory,
it typically uses 2.5 hours for BWA alignment, 12min for marking
duplicates, 15min for realignment, 11min for BQSR, and 46min for
the GATK-like haplotype variant calling step.

In Table 1, we see two examples of gVCF files and their
corresponding GORZ derivatives as specified in query Ex. 1. The
gVCF files are significantly different in size because of their
difference in storing <NON_REF> records. We see that the GORZ
files are in total only 1/20th to 1/10th of the original gVCF
files. The biallelic variants take most of the storage because the
coverage segments are highly compressed due to the rounding of the
coverage depth, as mentioned before. As their name indicates, the
"goodcov" files store just sparse binary segments, the presence of
the segment indicating that the coverage exceeds a certain coverage
threshold and their absence that the coverage is lower. Similarly,
both the "segcovfile" and the "lowcovfile" are storing information
on approximate coverage, the latter capping the depth on 15 reads;
both representing zero depth in a sparse manner with the absence of
segments.

In the joint-calling steps discussed later, we don’t need the full
coverage information, but rather, we need to know it where it is
relatively bad, in order to distinguish lack of data from homozygous
reference. Therefore, in the downstream joint-calling step, we only
need biallelefile.gorz and lowcovfile.gorz, making
the data input less than 1/10th of gVCF input.

2.3 Bucketizing GOR tables
When each gVCF sample has been processed with the gVCF2GOR
queries presented above, we insert them into GOR tables [10] which
we typically refer to as GOR dictionaries or GORD files. The
dictionaries are GOR relations that are partitioned and the GORD
files are essentially metadata files pointing to the partitions that
are selected using the -f or -ff filtering options on the GOR
command. Unique to GOR dictionaries is that they support two
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partition levels, or so called buckets, providing very rapid table
insert and read access in selective queries. The bucket partitions
then enable efficient access (in terms of file driver memory footprint
and random file seeks) in less selective cohort type queries and
the GOR command will try to optimize which partitions to use
for mixed scenarios. Furthermore, the parallel macro command
PARTGOR provides an easy way to optimize distributed parallel
queries based on storage partitions and input selection criteria,
allowing for parallelism, not just across the genome as with PGOR,
but also across the data partitions.

Query Ex. 2. in the supplementary material shows an example
of how easy it is to create the bucket partitions, given that all
the original sample level partitions are present in a file such
as biallele.gord. With dual partitions the data footprint is
approximately duplicated, with the benefit of having rapid access
to data from few selected samples. If the data is only to be used
by a joint-calling process, and not by ad-hoc queries with different
selectivity, then only the bucket partitions are needed, making the
storage comparison with gVCF slightly better than shown in Table 1,
because increased compression ratio often observed in buckets due
to the homogeneity of the data.

By using a bucket size of 500 as shown in our example the number
of files, that are initially randomly accessed and subsequently
simultaneously kept open for streaming for each parallel worker, is
reduced by the same amount. This naturally eliminates the issues
related to Tabix indexes, as discussed in [11][14][8][18], solved
by them with custom index strategies for multiple samples or by
using database systems, such as RocksDB or LevelDB, that support
batch writing, somewhat analogous to the bucket strategy in GOR.
Importantly, although not shown here, the bucketization process for
GOR dictionary tables can be made fully incremental, and as long as
the joint-genotyping process uses a substantial fraction of the data
in the buckets, there is no need for re-bucketization.

2.4 Joint calling
The actual code for the joint genotyping step is shown in query
Ex. 3. The implementation shown here uses a distributive model
that can scale to extremely large number of samples and lends it
well towards and incremental approach. This approach is analogous
to the one used by GLnexus approach [18], i.e. where a subset
of the samples are called together. Hence, it requires two passes
through the variants; one to find all possible variants present in
the sample population and then call each sample subgroup at every
given variant.

There are two create steps, #part_allvars# and #allvars#,
that find how many rows there are for each variant. The first step
executes in parallel across the genome for each bucket partition
and the second one aggregates the counts across the partitions. We
then generate #jc_buckets# to define multiple groups of 5000
samples that are called together with the PRGTGEN command. This
command is the only one presented in this work and our example
queries that is not a general purpose GOR command and specifically
written to speed up joint genotyping. This command takes a left-
input stream of variants and joins them with a right-input stream
of low coverage segments (see #lowcov_dict#). Additionally,
it gets as an input the relation [#jc_buckets#] to specify
how the genotypes should be arranged horizontally in a values
column in the output rows. This is equivalent to different columns

in pVCF files except that different horizontal buckets are stored
in different row partitions and therefore amenable to incremental
update. Note that this relation is filtered to include only the samples
being processed in each group, because the input is assumed sparse
and the absence of coverage row for a sample is equivalent to zero
coverage and similarly the variants are sparse, i.e. only present
where called and included by the -ff option in the GOR source
commands. Also notice that the -split option is used to call
variants in genomic segments as specified by [#par_segs#], i.e.
1M variants per worker job as defined with the SEGHIST command.

The PRGTGEN command has multiple options and can either
use sequence read depth and allele call-ratio or PL probability
triplets to estimate the quality of the single sample called variant,
the latter being preferred since it does not assume a constant base
quality across the read pileup. It does also have options to specify
the genotype priors in the single sample calling step (-fpab and
-fpbb), the error rate per read, ϵ, and the genotype probability
threshold, to avoid an "unknown" call. Also, if there is a close
call between heterozygote and homozygote call, but neither crosses
the threshold, the option -combgt can be used to combine these
probabilities to see if the one more likely should be pushed over
the threshold to avoid an unknown call, e.g. something that may be
useful for gene burden analysis of rare variants.

For samples where there is no variant record, the coverage
estimate in #lowcov_dict# is used to estimate the PL triplet as
((1−ϵ)d,(1/2)d,ϵd) for the genotypes (hom-ref,het,hom-alt), where
d is the read count or depth. Typically, the value for ϵ is small
and therefore 1 − ϵ ≈ 1 and the probability for the homozygous
reference will quickly dominate in the triplet as d is increased.
Thus the joint calling is not very sensitive to the accuracy of the ϵ
estimate. Likewise, we argue that it is NOT important to distinguish
between a sequence read depth of 15 or higher, nor with greater
resolution for lower depths than the definition in Ex. 1 specifies, i.e.
a resolution of two reads.

While the PRGTGEN command can accept additional input with
genotype frequency priors (not shown in our example) we typically
don’t see a great need for that if sufficient number of samples
are called together, e.g. in our example we do it in batches of
5000 samples. Our command, like so many other systems, uses
an iterative EM algorithm [4]; to estimate the sample genotypes
based on the probability likelihood triplets and the genotype priors,
and then to update the priors based on the estimated genotype
frequencies. Now, one can show that with N samples the chances
of detecting a variant with AF of 1/(2N) is only 1/e ≈ 37%
and for 1/10th of that frequency it is ≈ 10%, for 1/100th ≈ 1%,
and so on. Thus, when the samples are only a finite subset of a
population, we risk not observing variants and estimating the prior
as zero. Therefore, in our EM estimate, we add a correction factor to
the genotype frequencies to avoid that they fully converge to zero.
For a Bayesian model, the priors don’t matter that much, if there is
significant amount of data, because then P (D|G) converges to zero
for the incorrect genotypes, G, as the number of data points/reads
grows. Indeed, the priors will mostly impact the decision between
unknown and homozygous reference, in the spectrum of common
and moderately common variants where the coverage and quality is
poor.

Because the Bayesian EM logic in the PRGTGEN command uses
only bialleic variants, it fits well with a streaming architecture,
uses little memory, and is computationally fast. Contrast this with
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models that take into account multiple allele combinations per
individual, where the likelihood state space grows quadratically
with the number of possible alleles per loci. Therefore, algorithms
like GATK and GraphTyper provide a parameter to prune and
collapse alleles together to limit the number of possible genotypes,
e.g. in InDel repeat regions, an approximation that is related to the
biallelic approximation used here.

2.5 Generating variant attributes for QC
Although a typical WGS sample harbors between 4 and 5M variants,
the total number of observed variants in joint genotyping can easily
be several hundred millions, for tens of thousands of samples (e.g.
300M for 30k samples); mostly rare variants. Figure 1 shows how
the number of distinct variants we observed on chr2 as a function of
number samples; a relationship that seems to be quite close to the
square-root of the sample number1.

Fig. 1: Observed variants on chr2 as a function of sample number.

In practice, many of these very rare variants may be due to
sequencing errors or alignment imperfections. Therefore, it is very
important to be able to classify the variants and filter out bad
variants that may cause spurious associations in downstream GWAS
analysis and distract from real signals.

From the genotypes, we aggregate standard metrics such as AF,
HWE, yield etc. Example. 4 in the supplementary material shows
example GOR queries that use the genotypes that we generated
in Ex. 3 and stored in horizontal bucket structures. With high
parallelism, this query runs quickly, because of the small data
footprint of the genotypes and because it uses a counting command
CSVCC that is designed and optimized for rows with horizontal
values.

With the output from the previous query, we use the queries in
Ex. 5 to evaluate regional attributes, based on adjacency to other
variants and characteristics of the reference sequence. These are
just few examples of easily calculated features and nowhere an
exhaustive list of all meaningful possibilities.

1 See Ex. 15 in supplementary notes for the query to generate this curve.

Another set of relatively easily calculated features, that are unique
to our approach, are shown in Ex. 6. There we calculate segments
across the entire genome, with the total sequence read depth, in
create step #depth_segs#, and segments with counts showing
how many samples have coverage below a given threshold, e.g.
#lowCovQC4#,#lowCovQC6#, . . .

Then we generate attributes based on the variant calls, that are
similar to those generated by GATK, e.g. MD, QD, FS, SOR,
BaseQRankSum, MQRankSum, and ReadPosRankSum. In Ex. 7,
we show a query that reads through all the variants and aggregates
metrics based on their annotations, such as those derived from the
INFO field in the gVCF files.

At present, the query steps shown in Ex. 7, are the only ones
that are written in a non-distributive manner and hence do not
lend themselves to incremental update. This is because we use
the median operator for some of the features, instead of average,
to be compatible with the GATK specification. Also, we are just
using the standard GROUP aggregation command and have not spent
time generating an approximate distributive median calculation.
Regardless, with all the features calculated, the query cost of create
step #varqc# is still only 6× higher than when only reading
through the data. By creating a simple command that does multiple
CALC steps and with some optimization for a specialized GROUP
command, we could most likely cut the time in half.

Finally, inspired by [1] we also label regions and variants based on
alignment quality from several samples. In Ex. 8, we show verbatim
the query we used to calculate fbQ20, avg MapQ, and normalized
average depth. This we did for 32 BAM files from our sample pool,
but ensured that all the samples had a very close average read depth
across the genome. Note that this BAM analysis is a one-time work
that depends only on the sequencing method and the alignment steps
and as long as they are unchanged, this does not have to be repeated.
In Ex. 7, we can see the command calc seqBad where the
number of bad labels are calculated, according to the table presented
in [1].

2.6 Generating training data and GIAB concordance
analysis

The thinned out GIAB BAM files were processed like our in-house
samples and their gVCF files included in our sample processing
pipeline, like the other 37k samples, and included both in our
GOR joint-genotyping as well as our Sentieon implementation of
the GATK-RCM pipeline [26]. For our concordance analysis, we
ran the GATK pipeline only for chr22 while we ran our GOR fast-
freeze pipeline described above for the complete genome. Then we
downloaded the GIAB reference VCF files and the associated BED
files that define the "trustworthy" regions. Example 9 shows how
we process the files into corresponding GOR files. The logic for the
VCFs is a simple version of Ex. 1 and the BED processing is only
to ensure consistent order. We looked at the number of variants and
the coverage of good regions with query as shown in Ex. 10 and
found that all the BED files cover about 87% of the genome and the
number of variants is close to 4M, thereof around 500k InDels.

In order to train a supervised classifier like XGBoost, we need
positive and negative training samples. We use the concordance
of GIAB samples for that purpose, i.e. comparison between the
genotypes of these samples in the GOR joint-calling process and the
genotypes observed in the reference VCF files, within the regions
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defined in the BED files. Notice that the BED files allow us to
define false positive. The query logic in Ex. 11 shows the details of
the analysis; #GORvars_per_pn# defines all observed variants,
in either the reference files or the joint-called genotypes. These
variants are joined with our observations and the truth and then
we calculate pos-neg status as shown in calc posneg, after
aggregating the truth status across the samples for each variant.

From #posnegvars#, we get 7,176,112 positive training
variants and 684,020 negative variants; close to 10× fewer. For
testing our classifier, we leave out chr2 entirely from the training
set and use it only for our AUC calculations, giving us 601,547
positive and 27,819 negative variants for scoring test. Also, for the
training, we tried to balance the number of positive and negative
training variants, as shown in the definition of #training#. This
gave us 657,973 positive and 632,788 negative training samples.

The GIAB concordance analysis was performed for chr22. It
compares GATK and GOR joint-calling genotypes, as well as
the biallelic variants, with the GIAB reference VCF data and
implemented in similar fashion as shown in Ex. 12. Notice that we
count per pn,callcopies,callcopiesx,depth,snp,good,
allowing us to calculate the sensitivity and precision in one genome
sweep, for several scenarios of variant type; sequence read depth,
and the variant classification that is implemented as discussed in
next section.

Additionally, we calculate concordance for all the samples
between genotypes produced with our GOR fast-freeze biallelic
method and the GATK based approach. Query Ex. 16 in the
supplementary material shows how we calculate the approximate
mismatch rate for the variants and how many variants fall into each
mismatch rate band. We define the mismatch rate in two ways;
both based on all genotypes were neither samples has unknown call
and for calls were either call in non-homozygous reference. This
calculation is then done for both all variants, as well as only good
variants, based on our variant classification as described below.

2.7 Training a variant classifier
We use a Spark implementation of XGBoost to train and predict
variant classification. Ex. 13 shows the Python code that uses
SparkGOR to define the dataframe traindf, using a parallel
GORpipe query expression that generates a distributed RDD. As in
regular Spark, all these manipulation of traindf are lazy until the
model is evaluated in the very end. While this is not important for
the training data, which in our case is only about 1.2M rows because
of how few the GIAB samples are and the fact that we balance pos
and neg variants, however, this is important for the prediction phase
that may have to score many hundred millions of variants.

In addittion to scoring the variants with XGBoost based on the
GIAB training data and the attributes shown in Ex. 13, we used the
Sentieon release of the GATK VQSR Gaussian-mixture algorithm
using the features MQ, QD, DP, MQRankSum, ReadPosRankSum,
FS, SOR, InbreedingCoeff. This analysis we had performed earlier,
using the entire genome with all the same 37k samples except for the
8 GIAB samples that we used for the concordance analysis, which
as mentioned before was only evaluated for chr22.

We then compare the segregation power of these methods, using
the pos/neg labels from the GIAB test data and calculate the AUC
using the roc_auc_score function from the metrics module in
the Scikit-learn Python package.

Table 2. GIAB SNPs and InDels for chr22

GIAB Num TPR PPV F1
Vars Vars Biall GATK GOR Biall GATK GOR Biall GATK GOR
All 317181 0.9921 0.9930 0.9932 0.9680 0.9683 0.9692 0.9799 0.9805 0.9810
All* 309291 0.9988 0.9984 0.9989 0.9910 0.9909 0.9910 0.9949 0.9947 0.9950
SNPs 278249 0.9927 0.9943 0.9938 0.9706 0.9713 0.9718 0.9815 0.9827 0.9827
SNPs* 273512 0.9991 0.9992 0.9992 0.9928 0.9926 0.9928 0.9959 0.9959 0.9959
InDels 38932 0.9878 0.9834 0.9884 0.9501 0.9466 0.9509 0.9686 0.9647 0.9693
InDels* 35779 0.9968 0.9925 0.9969 0.9782 0.9779 0.9782 0.9874 0.9852 0.9874

* Quality variants based on GIAB-XGBoost prediction model.
Biall denotes single-called biallelic GATK variants.

Table 3. GIAB low cov SNPs and InDels for chr22, depth < 8

GIAB Num TPR PPV F1
Vars Vars Biall GATK GOR Biall GATK GOR Biall GATK GOR
All 1952 0.4191 0.5440 0.5085 0.6694 0.6601 0.6691 0.5154 0.5964 0.5778
All* 367 0.8692 0.8968 0.9068 0.9246 0.9288 0.9251 0.8961 0.9125 0.9158
SNPs 1589 0.3593 0.4939 0.4497 0.6282 0.6282 0.6269 0.4572 0.5530 0.5237
SNPs* 220 0.8682 0.9272 0.9231 0.9409 0.9409 0.9412 0.9031 0.9340 0.9320
InDels 363 0.6804 0.7236 0.7230 0.7891 0.7540 0.7898 0.7308 0.7385 0.7549
InDels* 147 0.8707 0.8531 0.8836 0.9014 0.9104 0.9021 0.8858 0.8809 0.8927

* Quality variants based on GIAB-XGBoost prediction model.
Biall denotes single-called biallelic GATK variants

3 RESULTS
3.1 GIAB concordance comparison
The results from the concordance analysis are summarized in
Table 2 for all the GIAB samples. We notice that the overall
performance, as measured by F1, is best for our method
implemented in GOR and similarly the overall sensitivity (TPR)
and precision (PPV). Both of the joint-calling methods have better
overall F1 score than the single-called (biallele), except for InDels,
where GATK performs worse. These results are consistent with
the fact that GATK joint-calling logic collapses variants in highly
polymorphic sites and overall our results are consistent with GIAB
concordance numbers reported from joint calling with UKBB
data [11].

Table 2 shows similar numbers, now only based on variants
predicted to be "good", according our GIAB-XGBoost variant
classifier. We notice a small increase in the numbers, however,
the deviation from perfect concordance is approximately four times
smaller. Table 3 shows similar analysis, but now only for variants in
regions where the sequence read coverage of the samples was poor.
Here we notice a great difference in the number, with or without
the variant quality filtering. Also, we see that GATK has a slight
advantage for the SNPs without filtering, while our GOR methods
performs better on the InDels and when filtering is applied. Single-
called gives always the worst F1, except for quality filtered InDels,
where GATK has the lowest F1 number.

The supplementary material shows the same analysis for each
sample as well as concordance numbers for our GOR method for
the entire genome. There, we see that our joint-calling method
gives consistently better F1 numbers than the single-called biallelic
variants.

3.2 Variant classification
The variant classifications were carried out based on our XGBoost
model trained on our GIAB training set, as described in section
2.6, and using a VQSLOD score derived using the GATK-VQSR
process. Figures 3a-d) show the distributions for VQSLOD and the
XGBoost score for a balanced set of variants on chr2; "pos" and
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GATK-VQSLOD GIAB-XGBoost XGBoost v2

Variants Count AUC AUC AUC
All 629,366 0.919 0.981 0.975
SNPs 525,194 0.937 0.987 0.987
InDels 104,172 0.788 0.925 0.873

Table 4. AUC for all test variants on chr2, defined using GIAB.

GIAB GATK All SNPs InDels
XGBoost VQSLOD Variants Fraction % Variants Fraction % Variants Fraction %

bad bad 2678794 10.27 2221934 9.61 456860 15.42
bad good 2276259 8.73 1855395 8.03 420864 14.21

good bad 1213982 4.65 473139 2.05 740843 25.01
good good 19910484 76.35 18566887 80.32 1343597 45.36

Table 5. Quality labeling comparison for chr2

GIAB GATK All SNPs InDels
XGBoost VQSLOD Variants Fraction % Variants Fraction % Variants Fraction %

bad bad 397669 17.53 348561 19.77 49108 9.70
bad good 89168 3.93 83657 4.75 5511 1.09

good bad 237714 10.48 25623 1.45 212091 41.91
good good 1544237 68.06 1304831 74.03 239406 47.30

Table 6. Quality labeling comparison for chr2, with AF >= 0.001

"neg" defined based on the concordance of our GIAB samples as
shown in query Ex. 11 in the supplemental material.

We notice a much more complex distributions for the VQSLOD
than the XGBoost score and significant difference between the
SNP and InDel distributions. For InDels, there is clearly limited
segregation power in the VQSLOD score. The XGBoost score
distributions are more similar although we see less certainty in the
quality prediction for InDels.

The power of these distributions to segregate good and bad
variants can be summarized using the area under the curve of
receiver operating characteristic, ROC-AUC [28]. Table 4 shows the
AUC value for these distributions based on all available test variants
on chr2. We see that the XGBoost distribution has significantly
higher segregation power, especially for InDels. For comparison,
we also trained a second version XGBoost, using only the variant
features used for the VQSLOD model. Interestingly, it compares
quite well with the model using much larger number of features,
although it does significantly worse for InDels. Overall, it is
only 30% further away from the "perfect" classifier and shows
that the features used for the GATK-VQSLOD model are highly
informative.

Typically, we have used a VQSLOD threshold of 2.41 to qualify
good SNPs and a threshold of -1.77 for InDels2. For the XGBoost
score we simply use a threshold of 0.5. Table 5 shows the
correspondence between the variant classification using these two
methods. Our GIAB-XGBoost based method eliminates 19% of the
variants giving us 21M good variant on chr2 while with VQSLOD
we eliminate 15%, keeping 22M variants as good.

2 Corresponding to VQSRTrancheSNP99.90to100.00, i.e. 0.1% of the truth
set is false positive.

(a) GATK-VQSLOD for SNPs (b) GATK-VQSLOD for InDels

(c) GIAB-XGBoost for SNPs (d) GIAB-XGBoost for InDels

(a) GAKT-VQSLOD* (b) GIAB-XGBoost*

* Variants selected from chr2:50Mb-150Mb; 1M SNPs and 1M InDels.

3.3 Concordance between GOR and GATK
Tables 7 and 8 show results from the concordance analysis between
GOR and GATK processes for all samples. Importantly, we do
provide these numbers to reflect on the similarity between methods,
but not to reflect on quality, unlike the numbers presented in section
3.1. The first table outlines the distribution of mismatch rate in all
variants and the second show the analysis only for variants classified
as "good" using our GIAB-XGBoost classifier. Both tables show
two types of analysis. The left numbers based on dis-concordance
rate where the denominator ignores genotypes where they are both
homozygous reference3 and in the right column the mismatch
rate calculation includes these genotypes4. We refer to these two
different definitions of the dis-concordance rate as A1 and A2. The
A2 analysis shows that less than 1% of the variants have genotype
mismatch rate above 0.3% and for good variants the corresponding
mismatch rate cutoff falls to 0.03%. When we define mismatch rate
only from the non-ref calls, analysis A1, the mismatch rate rises.
Still, less than 1% of the good variants have mismatch rate higher
than 0.3%.

3 See the filtering definition in #temp1# in Ex. 16, e.g.
gt1 != 3 and gt2 !=3 and not(gt1=0 and gt2=0)
4 See definition of #temp2#, e.g. gt1 != 3 and gt2 !=3.
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A1 A2
band Dis-concordance rate range Variants Fraction % Variants Fraction %
0 1.000000 - 0.3162278 60175 1.27 46 0.00
-1 0.3162278 - 0.0316228 95226 2.02 4141 0.09
-2 0.0316228 - 0.0031623 66309 1.40 25939 0.56
-3 0.0031623 - 0.0003162 81156 1.72 57414 1.25
-4 0.0003162 - 0.0000316 90751 1.92 192143 4.17
-6 0.0000032 - 0.0000003 4328491 91.66 4328491 93.93

Table 7. GATK-GOR genotype concordance for all variants on chr22

A1 A2
band Dis-concordance rate range Variants Fraction % Variants Fraction %
0 1.0000000 - 0.3162278 5405 0.16 1 0.00
-1 0.3162278 - 0.0316228 4772 0.14 196 0.01
-2 0.0316228 - 0.0031623 14189 0.42 2030 0.06
-3 0.0031623 - 0.0003162 47493 1.42 8284 0.25
-4 0.0003162 - 0.0000316 70184 2.10 88607 2.68
-6 0.0000032 - 0.0000003 3201558 95.75 3201558 97.00

Table 8. GATK-GOR genotype concordance for "good" variants on chr22

3.4 Execution speed
As we show in the supplementary material, to generate the joint-
calling genotypes, there are are several step involved in our
processing of the single called gVCF output. The conversion from
gVCF to GOR in Ex. 1 and the bucketization in Ex. 2 are one time
processing steps that can be utilized for multiple subsequent joint-
calling analysis. Therefore we do not consider them in the overall
processing time, but for 37k samples it is about 55k core-hours for
the complete genome.

In Ex. 3, the step to find all variants for the complete genome is
about 450 core-hours. The joint-calling variant step itself, involving
PRGTGEN, is only about 1500 core hours. However, the query in
Ex. 7 that generates the variant attributes that are used for the variant
classifier takes about 1000 core-hours. The queries in Ex. 4 and 5
are in total less than 250 core-hours and thus insignificant in the
overall cost. The coverage query in Ex. 6 does however take 4900
core-hours, with the majority of the time, 4300 core-hours, spent
on calculating the total depth across the genome, using #segcov#.
The majority of the time is therefore not spent on the joint-calling
step itself, but rather queries to gather metadata on the variants and
their genotypes. This is a result of the fact that we are using general
purpose GOR commands to aggregate these metrics and this logic is
not folded into the PRGTGEN command itself5. For comparison, in
query Ex. 3, we replaced the low coverage dictionary table with the
segment coverage table. This resulted in 3.4× longer computation,
i.e 4500 core-hours for the PRGTGEN step. This is because, as
Table 1 shows, the segment coverage files are about 10× larger than
the low coverage files and have over ten times as many rows.

The above numbers show that to generate joint-called genotypes
for 37k samples and about 357M variants, the total computational
cost with our biallelic GOR approach is 8100 core-hours6. Typical
cloud computation cost for this is $370 and less than $200 by using
spot instances.

For comparison, our cost for running the Sentieon-GATK
pipeline for the same set is more than 30× larger! For alternative
comparison, the numbers reported for calling 125k samples from
UKBB using improved version of GATK4 [11] is 8.1M core-hours.

5 PRGTGEN was coded before we attended the variant scoring problem.
6 (450+1500+1000+250+4900) core-hours

Method Core-hours Cost estimate
GOR biallelic 8.1k $370

UKBB GATK4 (scaled estimate) 1,1M $49k
Our inhouse Sentieon 250k $11k

Table 9. Comparison of computation resources and cost estimates for 37k
sample join-calling

Scaling this number down by (35k samples * 357M vars)/(125k
samples * 711M var) we get 0.14 * 8.1M core-hours, that is
1134k/13.8k = 82 times slower than our approach. Hence, we can
infer that our joint-calling method is also significantly faster than
the GLnexus joint-calling approach [29], which is reported to be 8
times faster than comparable GATK tools.

It is important to realize that in making the cost comparison based
on cpu-hours, we are assuming it to be fixed across machine types
and ignoring the memory requirements of the algorithms. Without
going into detailed analysis of this aspect of the computation, we
would like to mention that the GOR approach is very memory
efficient, meaning that it does not need high memory/cpu ratio.
While we can easily customize it, we typically use nodes with
36 cores and 64Gb memory for 28 GOR-workers7 and have
never run into memory issues with our pipeline, in contrast with
our experience executing our Sentieon-GATK pipeline. As we
mentioned earlier, the variant aggregation step in Ex. 7 is the only
step now that is not distributive in nature and hence the only step
that may need larger memory as the number of samples grows.
Alternativey, as we discussed before, we can approximate the
median operator or replace is with the mean operator to solve this
issue.

Here we have not listed the execution times for the XGBoost
logic in Ex. 13, because it is small fraction of the overall computing
time; usually executed in few minutes in Spark. Also, we have not
included the time used for running the GATK-VQSR logic.

4 DISCUSSION
Here we have presented a very fast method for joint-genotyping
large volume of samples and shown the entire code that is needed to
implement and run it in parallel using SparkGOR. Our approach
uses generic GOR files to store biallelic variants and sequence
read coverage in separate files, therefore obtaining very high
compression rates. We show that by simplifying the Bayesian joint-
calling statistical model to deal only with biallelic variants and
low-coverage approximations, we get very fast execution while
preserving quality. By including the 7 GIAB reference samples in
the joint-calling process, we have shown concordance, that exceeds
what we observe for single-called samples and joint-calling with the
GATK-RCM [22][26] method.

Additionally, we have presented a supervised XGBoost method
for classifying variants based on multiple aggregate variant metrics
and genome regional metrics. We then defined variant data sets with
positive and negative variants, defined by the overall concordance

7 Parallel queries in GOR are split up and executed on one or more GOR
worker. A GOR worker executes one GORpipe query at the time but may
use one or more threads to do so, depending on the commands in the query.
A typical query uses about 1.2cores at the time.
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of the GIAB samples. We compared this classifier with the GATK-
VQSR approach, which is a semi-supervised clustering approach
based on Gaussian mixture models. Our results show that our
XGBoost approach yields better variant classification, based on
the GIAB test data. While strikingly different approaches for
classification, they do nevertheless result in similar numbers of good
variants. Our classifier uses a rich set of features, many of which
can be informative to humans when they explore variants or regions.
However, here we have clearly not exhausted the number of possible
features not done a thorough analysis of their importance. Neither
have we done a rigorous exploration or automated search for optimal
parameters to use in the joint-calling step itself, e.g. like presented
in ref. [29], and is something that awaits future research.

At first, one might think that by feeding the joint-calling step only
biallelic representations of the variants, that significant information
is lost. However, when doing so, we are always picking the most
likely single-called allele and only very rarely does some alternative
genotype in the gVCF become more probable due to ensemble
statistics. For instance, we have looked at double-heterozygous sites
to see where our biallelic method could potentially give inconsistent
genotypes (e.g. more than 2 allele copies per site). We have found
that inconsistency occurs in less than one in million non-reference
call genotypes and is fully absent in variants that are classified as
good. Furthermore, although not done here, one should be able
to provide the single-sample calling step approximate genotype
frequencies, to make this a non-issue in the joint calling step.
Providing population data has indeed been shown to improve quality
in concordance comparison with GIAB [2].

By looking at the GIAB concordance numbers, we see that while
our method gives the best F1 numbers, the different methods have
quite comparable outcome for most of the variant classes. One
can therefore argue that the primary purpose of a joint-genotyping
step is therefore to distinguish between homozygous-reference and
unknown, as well as to store the data in a format that is compact
and efficient for regional based cohort analysis. Our output files
are GORZ files, storing rows with genotypes in a value column,
horizontally based on bucket structure. It has very similar data
footprint as pVCF and PGEN files, but is more amenable for
incremental update.

Indeed, as mentioned earlier, our method is easily extended to
enable incremental joint-calling. As new samples are added to the
pool, there will be new variants that have not been called before.
These variants are easily identified by performing a negative join
(VARJOIN -n) between a distinct list of all the variants in the
new samples and the previous list of all distinct variants, e.g.
#allvars# in Ex. 3. If we look at step #joint_calls#, for
our previous samples, we can simply skip reading the biallelic
variants, #biallele_dict#, because none of the new variants
will be present there, and replace #allvars# with this new delta
variant list. Thus, for all the old samples, we are only reading
#lowcov_dict#, a table that is more than 25 times smaller
than the biallelic variant input table, and performing joint-calling
at very few sites compared with the total variant list. Using GOR
dictionaries, we can also write the new genotypes called for the
older samples into separate files, making incremental write trivial.
This approach can be 100× more efficient than full genotyping, all
depending on the ratio of new samples vs old samples. All the steps
in our implementation, except for those in Ex. 7, are distributive in

nature8 and can therefore be adjusted for incremental update. So far,
we have not implemented the whole process to allow for incremental
update since our full-update approach is very fast. However, one
can envision scenarios where this is desirable, such as for research
hospitals where data is being added on a regular basis. Our logic can
also easily be used to provide reliable updates of AF, that properly
takes into account lack of variant data because of low sequence read
coverage.

The distributive nature of our approach provides it inherent
scalability and option for incremental updates. We can also further
increase the computational efficiency and speed of our approach by
combining more business logic into commands, such as PRGTGEN
which could for instance easily be modified to calculate the total
read depth, given it is fed with the full coverage segments instead of
the low coverage segments. By allowing us to drop steps involving
SEGPROJ, this would lower cost of by 30% and by including more
of the variant metadata logic, we could probably reduce the cost
down to 50%. This will however reduce our agility in modifying our
business logic and force deviation from the simple relational output
model of our GOR commands, for moderate benefits. Some low
level optimization of commands such as SEGPROJ might possibly
achieve similar speed improvements, while allowing us to stay
closer to our RISK-like Unix design philosophy, having a command
set of "many small sharp tools".

As a final remark, it should be evident that our method is quite
generic and does not depend on the specific nature of the GATK
gVCF files. Thus, our simple and efficient approach could be
used to accelerate joint-genotyping by an order of magnitude, as
compared to any other available method today, while maintaining
high genotype quality.
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