1 OVGP1 is an oviductal fluid factor essential particularly for early 2 embryonic development in golden hamsters 3 **Running title**: *Ovgp1*-knockout hamsters Kenji Yamatoya¹* Masaru Kurosawa¹*, Michiko Hirose², Yoshiki Miura³, 4 Hikari Taka³, Tomoyuki Nakano⁴, Akiko Hasegawa⁵, Kyosuke Kagami⁶, 5 Hiroshi Yoshitake¹, Kaoru Goto⁴, Takashi Ueno³, Hiroshi Fujiwara⁶, Yoichi Shinkai⁷, 6 Frederick W. K. Kan⁸, Atsuo Ogura², Yoshihiko Araki^{1,9,10#}, 7 8 ¹Institute for Environmental & Gender-specific Medicine, Juntendo University Graduate 9 School of Medicine, Chiba, Japan; ²RIKEN BioResource Research Center, Ibaraki, 10 Japan; ³Laboratory of Proteomics & Biomolecular Science, Biomedical Research Core Facilities, Juntendo University Graduate School of Medicine, Tokyo, Japan; 11 12 ⁴Department of Anatomy and Cell Biology, Yamagata University School of Medicine, Yamagata, Japan; ⁵Department of Obstetrics & Gynecology, Hyogo Medical University, 13 Hyogo, Japan; ⁶Department of Obstetrics & Gynecology, Kanazawa University 14 Graduate School of Medical Sciences, Ishikawa, Japan; ⁷Cellular Memory Laboratory, 15 RIKEN Cluster for Pioneering Research, RIKEN, Saitama, Japan; ⁸Department of 16 17 Biomedical and Molecular Sciences, Faculty of Health Sciences, Queen's University, 18 ON, Canada; ⁹Department of Obstetrics & Gynecology, Juntendo University Graduate

- 19 School of Medicine, Tokyo, Japan; ¹⁰Division of Microbiology and Immunology,
- 20 Department of Pathology and Microbiology, Nihon University School of Medicine,
- 21 Tokyo, Japan.
- 22 **These authors have contributed equally to this study.
- 23 #Correspondence:
- 24 Yoshihiko Araki
- 25 30-1 Oyaguchi-Kamicho, Itabashi-ku, Tokyo 173-8610, Japan
- 26 Tel: +81-3-3972-8111 ext.2261 E-mail <u>yaraki@juntendo.ac.jp</u>
- 27 Keywords: oviductal glycoprotein 1 (OVGP1); knockout-hamster; infertility;
- 28 early developmental failure; embryonic lethality
- 29 Author contribution statement

30 KY and MK designed the study, collected data, performed data analysis, and provided

- 31 financial support. HY designed and supervised the study, and provided financial
- 32 support. MH and AO generated Ovgp-1 deficient hamsters and provided financial
- 33 support. YM, HT, TN, AH, KK, KG, YS and TU collected data and performed data
- 34 analysis/interpretation. HF and AO analyzed the data, provided financial supports. YA
- 35 and FWKK conceived, designed and directed the study, provided financial support and
- 36 wrote the article. All authors have given approval to the final version of the article.

37 Abstract

38	The mammalian oviductal lumen is a specialized chamber that provides an environment
39	that strictly regulates fertilization an early embryogenesis, the regulatory mechanisms to
40	gametes/zygote are still largely unknown. In this report, we studied the oviductal
41	regulation of early embryonic development using Ovgp1 (a gene encoding an oviductal
42	humoral factor, OVGP1)-knockout (KO) hamsters. The experimental results revealed
43	the following: 1) Female Ovgp1-KO hamsters fail to produce any litters at all; 2) In the
44	oviducts from KO animal, fertilized eggs are sometimes identified, but their
45	morphology shows abnormal features; 3) The number of implantations in the KO
46	females is evidently low; 4) Even if implantations occur, the embryos develop
47	abnormally and eventually become embryonic lethal; and 5) Ovgp1-KO females
48	transferred to wild-type females produce KO egg-derived litters, but the reverse
49	experiment does not. These results suggest that OVGP1-mediated physiological events
50	are crucial for early embryonic development in vivo. This animal model shows that the
51	fate of the fertilized egg is not only genetically determined, but that the surrounding
52	oviductal microenvironment plays a pivotal role in normal embryonic development.

4

53

54 Summary statement

- 55 Deficiency an oviductal humoral factor (OVGP1) caused female infertility in the
- 56 golden hamsters. The presence or absence of OVGP1 has significant physiological
- 57 effects on early embryonic development *in vivo*.

5

58 Introduction

60	The mammalian oviduct is an intra-abdominal organ that serves as the site of
61	fertilization and early embryonic development prior to implantation of the blastocysts in
62	the endometrium. The lumen of the oviduct where fertilization takes place is strictly
63	extracorporeal, as is the lumen of the gastrointestinal tract. Thus, the mammalian
64	reproductive process from fertilization to preimplantation is essentially an "ex vivo"
65	event. Because mammalian fertilization appears to take place inside the body, in vitro
66	fertilization (IVF), the current treatment method in infertility medicine, is generally
67	misunderstood as a special type of fertilization, but the fact that it takes place outside
68	the body does not make it a special fertilization condition.
68 69	the body does not make it a special fertilization condition. The use of culture medium with a clearly defined composition in mammalian IVF
69	The use of culture medium with a clearly defined composition in mammalian IVF
69 70	The use of culture medium with a clearly defined composition in mammalian IVF was pioneered by Yanagimachi and Chang using the golden hamster (<i>Mesocricetus</i>
69 70 71	The use of culture medium with a clearly defined composition in mammalian IVF was pioneered by Yanagimachi and Chang using the golden hamster (<i>Mesocricetus auratus</i>) as an animal model [Yanagimachi & Chang, 1964]. This technique was
69 70 71 72	The use of culture medium with a clearly defined composition in mammalian IVF was pioneered by Yanagimachi and Chang using the golden hamster (<i>Mesocricetus auratus</i>) as an animal model [Yanagimachi & Chang, 1964]. This technique was originally developed to visualize mammalian fertilization. Since then, the theory

76	directly from the ovaries without passing through the Fallopian tubes (oviducts),
77	fertilized, and cultured in test tubes (dishes), then transferred vaginally into the uterine
78	cavity, has become widely used worldwide. Therefore, oviductal factors are generally
79	considered not always necessarily in the IVF-ET process, and studies of the
80	reproductive physiology of the oviducts have been neglected as a worldwide trend,
81	especially during the last two decades. However, the oviduct (or its homologous organ),
82	the original site of fertilization and early embryonic development, is widely conserved
83	in lower vertebrates as well as in mammals. The origin of sexually reproducing
84	organisms can be traced back to the Cambrian period, at least 600 million years ago
85	[Araki et al, 2021; Araki 2022]. The physiological functions of the oviduct, which have
86	been widely conserved during the long process of evolution and selection, are naturally
87	thought to have important functions (not necessarily one) which are not yet known.
88	The medium for IVF-ET has a long history of development based on the composition
89	of the original Fallopian tube and uterine fluids [Quinn et al, 1985ab; Gardner et al,
90	1996]. The composition was based on the concentrations of glucose, inorganic salts,
91	growth factors and hormones, but at that time the proteins, which are the main
92	components of oviductal fluid, were largely unknown. Therefore, serum components
93	were used as a substitute for the other components of the oviductal fluid. However,

94	the ultimate goal of IVF should be to reproduce the <i>in vivo</i> oviductal microenvironment
95	as closely as possible, as a medical treatment. It is also biologically important to
96	elucidate the reproductive physiology of the oviduct, or the site of fertilization and early
97	embryonic development in the majority of mammals.
98	In this study, using the golden hamster as a prototype model for mammalian IVF, we
99	have provided evidence to demonstrate that a humoral factor in the oviduct, Oviductal
100	glycoprotein 1 (OVGP1) has a significant effect on early embryonic development in

vivo.

8

102 **Results**

103 Generation of OVGP1-deficient hamsters

104	Among oviductal factors identified in the oviductal fluid, OVGP1 has been well
105	characterized and suggested to play important roles in the process of several
106	mammalian species, including humans [for review, see Araki & Yoshida-Komiya,
107	1998; Buhi 2002; Avilés et al, 2010; González-Brusi et al, 2020; Zhao et al, 2022].
108	Using the golden hamster as a model, which has provided a wealth of knowledge
109	concerning the mammalian reproductive process [Hirose & Ogura, 2019], Ovgp1-
110	knockout (KO) animals were generated using gene editing technology (Suppl. Fig.
111	1A,B). Preliminary mating experiments showed that the F0 KO females (2 independent
112	individuals; #8, #10) did not produce any offspring. On the other hand, KO males (#3,
113	#4) were found to be as fertile as those of wild-type (WT). In the F1 and later
114	generations, fertility was confirmed in 17 of 23 (73%) KO male individuals. Fertility
115	was also confirmed to be possible in heterozygous females; 28 of 45 (62%)
116	heterozygous-female individuals were confirmed fertile with an average litter size of
117	7.08, in the post-F1 generation. Therefore, we maintained a line of KO males and
118	heterozygous females for further experiments.

9

119	Western blotting with OVGP1-specific antibodies did not reveal OVGP1 expression
120	signal in Ovgp1-KO hamster oviducts (Suppl. Fig. 1C). In additional mating
121	experiments with F0-F2 KO females with WT males with confirmed fertility (total pair
122	number: 15), no litters were obtained from all Ovgp1-KO females (Suppl. Fig. 2A).
123	These results suggest a lack of fertility in Ovgp1 KO females. However, a FO female
124	(#10) used in the mating experiment did not show any outward signs of pregnancy, but
125	went into shock and died suddenly at 15-day-post-coitus (dpc)(almost full-term) after
126	several mating sessions (Suppl. Fig.2B). An autopsy revealed that the death was almost
127	sudden, as there was a large amount of food in the gastrointestinal tract. Both uterine
128	horns were externally hematomatous, and the split surface had a hematoma visible to
129	the naked eye around the fetal sac, but no fetus was observed (Suppl. Fig. 2Ba; 2Bb).
130	After fixation, observation under a light microscope revealed a placenta-like structure,
131	but no fetal scar was noticeable due to absorption and hemorrhage (Suppl. Fig. 2Bc).
132	Since this phenomenon was limited to this one case and was an F0 individual, we
133	cannot conclude at this time that it was the result of Ovgp1 gene editing. However, this
134	was considered a clear example of how OVGP1 may have a significant effect on the
135	reproductive process in the hamster models.

10

137 Fertilizing ability of Ovgp1-KO females

138	In order to find out what happened during the reproductive process, we first went on
139	to examine the development of the eggs after mating. In <i>Ovgp1</i> -KO animals, some
140	of the 1-dpc eggs appeared to be fertilized, but not most as in WT (Fig. 1A (control), D).
141	When examined under the light microscope (binary image), the egg cytoplasm from the
142	KO hamsters showed a central accumulation of intracellular organelles (Fig. 1B
143	(control), E). Electron microscopy showed that the KO eggs at 1-dpc displayed a
144	thinner zona pellucida (ZP) and a heterogeneous distribution of intracellular organelles
145	(Fig. 1C (control), F). In contrast to the synchronous development of four to eight cells
146	in fertilized eggs in WT 2.5-dpc, eggs in the oviducts of Ovgp1-KO females showed
147	developmental abnormalities evident at the level of light microscopy, such as delayed
148	development, disproportionate egg breakage and degeneration (Suppl.Fig.3).
149	At 4.5-dpc, implantation sites were observed in WT animals but not in the KO
150	animals (Fig. 2A). At the time of this experiment, it was thought that early embryos
151	might not implant in Ovgp1-KO female animals. However, at 5.5-dpc, statistically
152	significant fewer implantation sites were observed in the KO hamsters (Fig. 2B). These
153	results suggest that at least a small number of embryos produced by the KO females
154	were able to implant in the uterus.

155	
-----	--

156	Histological findings of 8.5-dpc embryos of <i>Ovgp1</i> -KO females
157	At 8.5-dpc, WT implanting embryos were well developed and pregnancy was clearly
158	visible (Fig. 3A-a). On the contrary, in <i>Ovgp1</i> -KO females, the number of implanting
159	embryos at 7.5-8.5-dpc was small or not well visible to the naked eye (n=4). Among
160	them, one individual appeared to be as well developed in appearance as those of the WT
161	(Fig, 3A-b).
162	The uterine epithelium of Ovgp1-KO hamsters (non-pregnant) showed no obvious
163	abnormality under the light microscope (Fig. 3B) when compared to the uterine
164	epithelium of WT hamsters. At 8.5-dpc of WT, the embryo was well developed and the
165	developing embryo and placenta can be seen in the fetal sac (Fig.3C). The developing
166	embryo (fetus) can be seen with the naked eye. The endometrium, except for the
167	implantation sites, can be seen to be composed of single columnar epithelium (Fig. 3C,
168	inset).
169	In Ovgp1-KO hamsters, no developing fetus was observed either with the naked eye
170	or under the stereomicroscope. When examined under a light microscope,
171	placenta/decidua-like primordial tissue with hemorrhagic degeneration was observed,
172	but no trace of embryo buds could be seen, and there was marked hemorrhage in the

173	placenta and uterine cavity (Fig.3D, arrowheads). It should be noted that the
174	endometrium adjacent to the implantation site differed from that of the WT in that it
175	showed formation of epithelial folds reminiscent of the ampulla of the oviduct (Fig.3D,
176	arrows). High magnification of this area revealed the presence of numerous cuboidal
177	cells each with a spherical nucleus and pale cytoplasm (Fig.3D, inset, noted by
178	asterisks). These are probably secretory cells intercalating with non-secretory cells
179	reflective of the typical columnar epithelium found in the WT.
179 180	reflective of the typical columnar epithelium found in the WT.
	reflective of the typical columnar epithelium found in the WT. Validation of phenotypic recovery after ovarian transplantation
180	
180 181	Validation of phenotypic recovery after ovarian transplantation

185 adversely affects early embryonic development immediately after fertilization.

186 However, in order to confirm that this clear phenotype is correct, it is usually necessary

to knock-in the inactivated gene region and see if the phenotype is restored. At present,

188 however, there are technical limitations to achieve this in hamsters, since they have

189 more fragile eggs than mice. Instead, we tried to see if we could restore the phenotype

190 using the ovarian transplant technique (Fig.4).

191	The fact that Ovgp1-KO male hamsters are fertile as described above, indicates that
192	even if the genotype of the zygote is $Ovgp1^{+/-}$, the embryo can develop normally and
193	produce litters in the wild-type oviduct microenvironment (Fig.4Aa). On the other hand,
194	embryos in the <i>Ovgp1</i> -KO female oviducts are lethally altered and no viable offspring
195	are produced whether the eggs are genotyped $Ovgp1^{+/-}$ or $^{-/-}$ (Fig.4Ab).
196	What happened when these WT females were implanted with KO ovaries and mated
197	with KO males (Fig. 4Ac)? As expected, these experiments resulted in $Ovgp1^{-/-}$ litters
198	(out of a total of 26 transplant experiments, litters were obtained from 11 individuals)
199	that could never be obtained by normal mating (Supple. Table S1; Fig.4B). These
200	litters can only be obtained under natural conditions by mating Ovgp1 ^{-/-} males with
201	$Ovgp1^{+/-}$ females. Conversely, transplantation of the ovaries from WT individuals into
202	KO females did not result in any offspring (n=5): it is noteworthy to mention that
203	preliminary experiments of ovarian transplantation using WT females as both recipients
204	and donors, showed that 11 out of 14 (78.6%) transplanted animals produced litters.
205	The possibility that an individual transplanted with ovaries from a WT individual to a
206	KO female could produce litters cannot be ruled out. However, when ovarian
207	transplants were performed using a 78.6% success rate technique, no litters were

208 produced from all five individuals. The probability of such an event occurring can be

- calculated to be less than 1%.
- 210

211 What's going on in the Ovgp1-KO hamster oviduct: comprehensive

212 quantitative protein analysis in the oviduct after ovulation

As noted above, OVGP1 is strongly suggested to be a microenvironmental factor in

- the hamster oviduct, the site of fertilization and early embryonic development, with
- 215 pronounced effects on gametes and zygotes.
- At this time, it is unclear whether the results obtained in the present study regarding
- the physiological activity of OVGP1 is commonly found in other mammals. However,
- 218 at the very least, exploring what is happening in the hamster oviduct represents an
- 219 important first step toward understanding the molecular mechanisms of these
- 220 phenomena. Therefore, an attempt was first made to perform a comprehensive protein
- 221 microanalysis by confining the target especially to the oviduct with unfertilized eggs
- retained immediately after ovulation in their lumen prior to mating.

Quantitative data for a total of 3,572 oviductal proteins were obtained by mass
spectrometry (MS) of the oviducts of super-ovulated animals (3 WT and 3 *Ovgp1*-KO,
each containing an unfertilized egg-cumulus complex in the oviduct lumen) (MS data

226	have been deposited in ProteomeXchange and jPOST with the accession
227	codes PXD037067 and JPST001867, respectively). In the Volcano diagram, changes
228	in the expression of oviductal proteins associated with OVGP1 deficiency were
229	observed. Of the 21 proteins that showed significant expression variation, a relatively
230	large number of down-regulated proteins (18 proteins) were identified, including some
231	the function of which has been previously implicated in the reproductive processes (Fig.
232	5; Supple. Table S2).

233 Discussion

234	This study has clearly shown, for the first time, that a deficiency of a fluid factor
235	secreted into the lumen of the oviduct causes lethal changes in early embryonic
236	development. Results of the present study are almost consistent with the currently
237	proposed bioactivities of OVGP1, which has been demonstrated in a variety of
238	mammalian models to date, including humans [Araki & Yoshida-Komiya, 1998; Buhi
239	2002; Avilés et al, 2010; González-Brusi et al, 2020; Zao et al, 2022] summarized in
240	Figure 6. Although OVGP1 has been suggested to be involved in sperm functions,
241	fertilization, and embryonic development, the clear KO phenotype observed in the
242	present study is a lethal change in embryonic development after fertilization. Since
243	normal embryonic development involves a comprehensive process including sperm-egg
244	function and fertilization, therefore, it is premature to conclude from this phenotype that
245	OVGP is essential only for embryonic development.
246	In hamsters, OVGP1 has been suggested to be an important fluid factor during in
247	vivo fertilization, especially since it modifies the ZP of oocytes in transit in the oviduct
248	after ovulation [Araki et al, 1987; Oikawa et al, 1988; Robitaille et al, 1988] and
249	inhibition of IVF was shown by targeting OVGP1 with a specific antibody [Sakai et al,

250 1988]. However, the conditions of experiments in vitro carried out with OVGP1 are

251	very different from their counterparts carried out in vivo, so that it is natural to argue
252	that we should be more cautious about evaluating in vitro interpretations as compared to
253	in vivo functions [O'Day-Bowman et al, 2002]. In addition, OVGP1 has been found to
254	be taken up by the developing embryos after fertilizations [Kan et al, 1993], suggesting
255	that it may have a role in early embryonic development and may even have a function in
256	implantation [Roux et al, 1997]. The data obtained in the present study provide direct
257	evidence of the intrinsic importance of the physiological function of OVGP1 in the
258	reproductive process of the hamster.
259	In considering the results of this study, it is necessary to reconsider the implications
260	of the lack of a clear phenotype in Ovgp1-KO mice published 20 years ago (these
261	genetically modified animals produced litters comparable to WT) [Araki et al, 2003].
262	At present, we cannot elaborate on the phenotypic differences between Ovgp1-KO mice
263	and hamsters due to insufficient experimental data. However, it is known that the
264	primary structure of OVGP1 is highly conserved between species on the N-terminal end,
265	and that there is considerable structural diversity between species on the C-terminal end
266	and in its degree of glycosylation [Araki & Yoshida-Komiya, 1998; Zao et al, 2022].
267	Furthermore, until the end of the 20th century, the molecular characterization of
268	OVGP1 was mainly carried out in large livestock such as cattle, pigs and sheep where

269	relatively large amounts of oviductal fluid were available, and in baboons as a human
270	model. Previous studies on the functions of OVGP1 in the reproductive process have
271	been carried out in rodents using mainly hamsters, but not mice, because of the stability
272	of their sexual cycle. As for mouse OVGP1, there were only three reports all from the
273	same research group in the mid-1980s [Kapur & Johnson, 1985; 1986; 1988], and there
274	have been no further protein-level reports to date concerning mouse OVGP1. Since
275	the identification of OVGP1, knowledge about genetic engineering of mouse oviductal
276	glycoprotein has been accumulating [Sendai et al, 1995; Takahashi et al, 2000], while
277	studies of the underlying mechanisms of OVGP1 that regulate its function are clearly
278	lacking. This is one of the reasons why research in this field has not progressed since
279	the establishment of the Ovgp1-KO mouse.
280	Elucidating the molecular mechanisms of the phenotype caused by OVGP1
281	deficiency is an urgent research priority. For this reason, the results of MS analysis
282	using oviducts immediately after ovulation (Fig. 5; Suppl. Table 2) could be one of the
283	breakthroughs. Among the group of molecules in the oviduct down-regulated by Ovgp1
284	KO hamsters, ZP3, the major component of ZP glycoproteins, deserves the first
285	attention. Although the importance of the ZP glycans and the structure and function of
286	homologous molecules among all animal models examined to date remains

287	controversial [Tulsiani et al, 1988; Moros-Nicolás et al, 2019; Tumova et al, 2021], ZP3
288	has been suggested to play an important role in fertilization due to the protein's three-
289	dimensional structure [Tracy et al, 1995; Han et al, 2010]. Similarly, serpin family E
290	member 2 (SERPIN2) and ovostatin homolog (OVOS), serine protease inhibitors, were
291	identified as down-regulated molecules by Ovgp1-KO hamsters (Fig. 5). SERPIN2 is
292	abundantly expressed in granulosa cells although its function is unknown in humans
293	[THE HUMAN PROTEIN ATRAS; https://www.proteinatlas.org/ENSG00000135919-
294	SERPINE2]. Furthermore, OVOS has also been identified in mouse uterine fluid
295	[Huang et al, 2019] and may also be present in oviductal fluid. These findings suggest
296	that since unfertilized eggs are surrounded by cumulus cells (i.e., granulosa cells) in the
297	oviductal lumen, the decrease in SERPIN2 and OVOS may have caused a local increase
298	in protease activity, which in turn, affected ZP3 stability and decreased fertilization
299	rates. In hamsters, OVGP1 modifies the ZP promptly after ovulation [Araki et al, 1987;
300	Oikawa et al, 1988; Robitaille et al, 1988], and its loss may directly or indirectly affect
301	the three-dimensional structure of the ZP by downregulating ZP3. The latter
302	speculation is also consistent with the thinning of the ZP immediately after fertilization
303	as shown by electron microscopy (Fig. 1F). In general, the current status of research on
304	hamster OVGP1 is that various databases are still underdeveloped compared to those of

305	humans and mice. However, since this is a problem that will be resolved over time, we
306	believe that the present study has provided sufficient and novel results that could
307	considered as a breakthrough in OVGP1 research.
308	Early mammalian development (even before the widespread use of recombinant
309	technology) has been studied mainly in the mouse model. This is because the
310	development of blastocysts is easier in media with a simpler chemical composition, but
311	this development process is much more complex in the <i>in vivo</i> situation in mammals. In
312	vitro culture of non-mouse embryos, including humans, still has some technical issues
313	to overcome such as two-cell block and blastocyst formation, and it took a long time to
314	solve these problems in hamsters through various innovations [Schini & Bavister, 1988].
315	Although it is now possible to culture hamsters to blastocysts and obtain litters by
316	embryo transfer [Seshagiri & Vani, 2019], the unfertilized eggs used in these
317	experiments, whether in hamsters or mice, are usually prepared from oviducts after
318	ovulation. These facts suggest that the microenvironment in the oviduct and uterus,
319	which is generally important for early embryonic development, is governed by a variety
320	of cell biological control mechanisms. The in vivo interaction between the early
321	embryos and the epithelium of the female reproductive tract can be inferred from the
322	fact that early embryos, which are undifferentiated totipotent cells, have a much higher

323 mitotic potential than cancer cells (it is almost unlikely that a single cancer cell will 324 grow to the same weight as fetal tissue in the same amount of time as its gestation 325 period, not to mention the human example), and are reliably regulated to carry out 326 normal development.

327 At present, IVF-ET is widely used as a treatment for infertility in which eggs from 328 the ovaries are fertilized in a culture medium and trans-vaginally transferred into the 329 uterine cavity for subsequent implantation, but the reproductive physiology of the 330 oviducts has been long neglected as described above. However, the oviducts (and their 331 homologous organs), the original site of fertilization and early embryonic development, 332 are widely conserved in vertebrates as well as mammals, and one could imagine that 333 they have important physiological functions yet to be explored and unraveled. The 334 molecular comparison of the reproductive processes between the *Ovgp1*-KO hamsters 335 established in the present study and the homologous gene KO mice provides an 336 excellent animal model to further elucidate the mammalian reproductive mechanisms. 337 Comprehensive molecular dynamics studies are currently underway using these KO 338 animals. Future research originating from OVGP1 has the potential to elucidate some 339 aspects of the pathogenesis for human disease, such as infertility due to disorders of the

- 340 early fertilization process or infertility due to fetal growth retardation in the early stage
- 341 of pregnancy the causes of which remain unknown.

23

342 Materials and Methods

343 Animals

344	Sexually mature (7~8-week-old) golden hamsters (Mesocricetus auratus) were
345	purchased from Japan SLC, Inc. (Hamamatsu, Shizuoka, Japan). They were
346	maintained and bred at our Animal facilities under 12L:12D conditions. Observation of
347	sperms in the vaginal plug in females after mating was considered as 0-dpc. All animal
348	experiments were conducted according to the guidelines for care and use of laboratory
349	animals, Juntendo University (approval # 768) and RIKEN Tsukuba Institute, (approval
350	# T2021-Jitsu004) Japan.
351	For genotyping, ear biopsies were lysed with 0.4 mg/mL proteinase K (Nakalai
352	Tesque Inc., Kyoto, Japan) and partially purified using standard chloroform extraction.
353	Genomic fragments containing the target site were then amplified by PCR using primers
354	(forward: 5'-AAGCCAGAATCCAAAGCTGAAGCAC-3'; Reverse: 5'-
355	GTATTAAACCCTCACAACTGGGCTC-3'). The PCR procedure followed the
356	instructions for Tks Gflex DNA polymerase (TaKaRa Bio Inc., Shiga, Japan). The
357	amplified PCR fragments were subcloned into the pGEM T Vector system (Promega
358	Corporation, Madison, WI, USA) and sequenced to confirm each allele.
359	

24

360 Generation of Ovgp1-KO hamsters

361	Ovgp1-KO hamsters were established using an in vivo electroporation CRISPR-Cas9
362	system, essentially followed as described previously [Hirose et al, 2020]. Pairs of
363	sgRNAs were designed to delete the OVGP1 genomic sequence from exon 1 to 3
364	(sequence of DNA targets: + allele; 5'-ACTGACTCCCTGCTAGCGTCAGG-3', -
365	allele; 5'-CCTGCTAGCGTCAGGCCACGGAT-3'; 5'-
366	CCATCGACCAGCCCCTGAGCTG-3'; 5'- CCTCGATGACTTGGGAGTTAATG-
367	3')(Suppl. Fig.1A). Ten animals were born of which three male individuals (#1, 3, 4)
368	and two females individuals (#8, 10) appeared to be homozygously defective in the
369	target gene region (Suppl. Fig. 1B). Females #8 and #10 did not show any external signs
370	of pregnancy in mating experiments with wild-type males with confirmed fertility; two
371	males (#3, 4) were fertile and the defective gene was transmitted to their offspring when
372	mated with wild-type females. To minimize the possible effects of off-targeting when
373	heterozygotes were mated, two generations of heterozygotes were mated to wild-type
374	and the heterozygotes were mated to homozygous males derived from #3 and #4,
375	respectively, and were found to produce a normal number of offspring.
276	

376

377 Western blotting analysis

25

378	The concentration of total protein extracted from animal organs was quantified using
379	BradfordUltra (Expedeon Ltd, Cambridgeshire, UK). Antibodies (Abs) specific for
380	hamster OVGP1 used in this study were as follows: AZPO-8 (monoclonal Ab (mAb)
381	against the oligosaccharide portion of hamster OVGP1 (mouse IgG1)[Araki et al,
382	1987]); anti-OVGP1 N-terminal -peptide polyclonal Ab (pAb)(rabbit IgG, ab74544;
383	Abcam plc, Cambridge, UK); horse radish peroxidase (HRP)-conjugated anti-mouse
384	IgG pAb (P0260) and anti-rabbit IgG pAb (P0448)(Dako, Carpinteria, CA, USA).
385	Proteins were separated by SDS-PAGE system and transferred to Immobilon-P
386	membrane (Merck KGaA, Darmstadt, Germany). Immunoreactions were detected
387	according to standard methods described previously [Yoshitake et al, 2015; Oda-
388	Sakurai et al, 2019].

389

390 Collection of eggs

Eggs were collected from the oviducts of mature females by natural mating with fertile males. Coitus was confirmed by the presence of vaginal sperm in the postovulatory vaginal discharge and that day was defined as 0-dpc. For the collection of unfertilized eggs in the oviduct, ovulation was artificially induced by gonadotropin according to the standard method as described previously [Araki et al, 1987; 1992]

26

396

397 Morphological observation

398	Tissues from animals were fixed with 20% Formalin solution (FUJUFILM Wako
399	Chemical Co., Osaka, Japan) and embedded in paraffin wax according to standard
400	procedure. Three- μ m thick sections were cut and stained with Hematoxylin-Eosin for
401	light microscopic observations. For transmission electron microscopy, samples were
402	fixed with 2.5% glutaraldehyde (FUJIFILM Wako Pure Chemical) in 0.1 M phosphate
403	buffer (PB)(pH 7.2) followed by post-fixation with 2% OsO ₄ in 0.1 M PB (pH 7.4).
404	Fixed specimens were dehydrated with a graded series of ethanol, and embedded in
405	Epok812 (Okenshoji Co., Ltd. Tokyo, Japan) according to standard procedure.
406	To detect implantation site(s), a solution of Chicago Sky Blue 6B (Tokyo Kasei
407	Kogyo Co., Ltd.) diluted to 1% in saline was injected into the heart of female animals
408	under anesthesia. After circulating for 10 min, blood was perfused with 50 mL of PB
409	saline to clearly visualize the blue pigment in the uterus.

410

411 **Ovary transplantation**

412 The technique of ovarian transplantation used in this study essentially followed the413 methods reported elsewhere [Yun et al, 1990; Takahashi et al., 2001; Miyoshi et al,

414 2002].

415

416 Statistical analysis

- 417 To compare the implantation number at 5.5-dpc of WT and *Ovgp1* KO female
- 418 animals, the Mann-Whitney U test was utilized. A probability of p < 0.05 was
- 419 considered statistically significant.

420

421 Quantitative protein MS analysis

422 a) Sample preparation and protein digestion

423 Three oviducts collected at after ovulation induced by hormonal induction from each 424 of WT and Ovgp1-KO hamster were used for analysis. Samples were lyophilized and stored at -80°C until use. Protein digestion on S-Trap[™] micro (ProtiFi, Huntington, NY, 425 426 USA) was performed according to the manufacturer's procedure, except for reductive 427 alkylation. Briefly, lyophilized samples were mixed with lysis buffer containing 5% 428 SDS, 4 mM tris (2-carboxyethyl) phosphine, 16 mM chloroacetamide, 50 mM 429 triethylammonium bicarbonate (TEAB)(Thermo Fisher Scientific Inc., Waltham, MA, 430 USA) boiled at 95°C for 5 min, and cooled to room temperature for 30 min. Afterward, 431 phosphoric acid was added to oviductal lysate to a final concentration of 1.2%, and then

28

432	six volumes of binding buffer containing 90% methanol, 100 mM TEAB were added.
433	The protein solutions were loaded to an S-Trap filter, spun at 4,000 \times g for 30 sec.
434	Then the filter was washed 3 times with 150 μL of binding buffer. Finally, 2 μg of MS
435	grade Trypsin Platinum (Promega, Madison, WI, USA) in 40 μL of digestion buffer
436	containing 50 mM TEAB was added into the filter and digested at 37°C for 16 h. To
437	elute peptides, three stepwise buffers were applied, with 40 μL each containing 50 mM
438	TEAB, 0.2% formic acid in water, and 50% acetonitrile. The peptide solutions were
439	pooled, lyophilized, and desalted with a GL-Tip SDB column (GL Sciences, Tokyo,
440	Japan).
441	

442 b) Liquid chromatography (LC)/MS analysis

443	LC/MS analysis was performed using an Orbitrap Eclipse Tribrid mass spectrometer
444	equipped with FAIMS PRO coupled to an EASY-nLC 1200 system (Thermo Fisher
445	Scientific Inc.). Peptides were resuspended in a mixture of 0.1% formic acid and 2%
446	acetonitrile (v/v), and then loaded on a packed C18 column (15 cm, 3 $\mu m,$ 75 μm i.d.,
447	Nikyo Technos Co.,Ltd, Tokyo, Japan). As mobile phases, 0.1% formic acid in water
448	was used for mobile phase A and a mixture of 0.1% formic acid and 90% acetonitrile
449	(v/v) for mobile phase B. Peptides were separated with a linear gradient of acetonitrile

450	from 2% to 35% (phase B) at 120 min at flow rate of 300 nL/min. The mass
451	spectrometer was operated in positive ionization mode, and the correction voltages on
452	the FAIMS Pro interface were set to -40V, -60V, and -80V, respectively. Data-
453	dependent acquisition (DDA) was performed using the following parameters. MS1
454	resolution was set at 60,000, and a maximum inject time was set to auto and scan range
455	from 350 to 1,800 m/z . During the tandem MS (MS/MS) scan, the linear ion trap
456	analyzer detects, and the precursor sets its intensity threshold at 5,000. For precursor
457	fragmentation in High-energy collisional dissociation (HCD) mode, a normalized
458	collision energy of 30% was used.
459	Protein identification and label-free quantification were performed using Proteome
460	Discoverer (PD)(ver. 2.5.0.400, Thermo Fisher Scientific Inc.). SEQUEST HT in PD
461	and MASCOT (Version 2.8.0, Matrix Science Inc.) were used as search engines, and all
462	raw files were searched against a Mesocricetus auratus (Syrian Golden hamster) protein
463	database in Universal Proteins Resource Knowledgebase (UniProtKB)(32,230 entries,
464	2022_02). Carbamidomethylation of cysteine was a fixed modification, while
465	acetylation of the protein N-terminus and oxidation of methionine were variable
466	modifications. Mass tolerances were set at 10 ppm and 0.8 Da for MS and MS/MS,
467	respectively. A false discovery rate (FDR) of 1% was applied to the analysis for both

- 468 peptide and peptide spectral match levels. Peaks were detected and integrated using the
- 469 Minora algorithm embedded in PD. Proteins were quantified based on unique and razor
- 470 peptides intensities. Normalization was performed based on the total protein amount.

31

471 Acknowledgments

472	We are indebted to Dr. Satoshi Hayakawa (Nihon University), Dr. Ichiro Miyoshi, Dr.
473	Shoichiro Kurata (Tohoku University), and Dr. Hiromi Yoshida-Komiya (Fukushima
474	Medical University) for both material and emotional support. The authors express deep
475	appreciations to Dr. Soichiro Kakuta (Juntendo University) and Dr. Kei Fukuda
476	(RIKEN) for their technical supports in using electron microscopy and designing
477	gRNAs, respectively. The excellent secretarial assistance of Ms. Keiko Fukuda
478	(Jundendo University) and Ms. Mari Enomoto (Nihon University) is gratefully
479	acknowledged.
480	

481 Competing interests

482 The authors declare that there is no conflict of interest that could be perceived as

483 prejudicing the impartiality of the research reported.

484

485 Funding

486 This work was supported in part by Grants-in-Aid for Scientific Research
487 [17K19734/18KK0256/22K09648 to YA, 19K22681/21H04837/22K18396 to HF,
488 21K09503 to HY, 19H00456/20H01113/21H04279/22H04388 to MK, 20K09608 to

489	KY,	19H03151/	19H05758	to	AO	from	the	Minister	of	Education,	Culture,	Sports,
-----	-----	-----------	----------	----	----	------	-----	----------	----	------------	----------	---------

- 490 Science & Technology, Japan, and a grant from Japan Science and Technology Agency
- 491 No. 19-191030923 to HF.
- 492

493 Data availability

- 494 Data for comprehensive protein quantitative analysis by mass spectrometry reported in
- this paper have been submitted to the ProteomeXchange and jPOST with the accession
- 496 codes PXD037067 and JPST001867, respectively.

497 References

498

499 Ai	aki, Y.	(2022)	Embryos,	cancers,	and	parasites:	potential	applications	to	the stud	y o	f
--------	---------	--------	----------	----------	-----	------------	-----------	--------------	----	----------	-----	---

- 500 reproductive biology in view of their similarity as biological phenomena. *Reprod. Med.*
- 501 Biol. 21, e12447. doi: 10.1002/rmb2.12447

502

503 Araki, Y., Kurata, S., Oikawa, T., Yamashita, T., Hiroi, M., Naiki, M. and Sendo,

504 F. (1987) A monoclonal antibody reacting with the zona pellucida of the oviductal egg

505 but not with that of the ovarian egg of the golden hamster. J. Reprod. Immunol. 11,193-

- 506 208. doi: 10.1016/0165-0378(87)90057-x
- 507
- Araki, Y., Orgebin-Crist, M.C. and Tulsiani, D.R. (1992) Qualitative
 characterization of oligosaccharide chains present on the rat zona pellucida
 glycoconjugates. *Biol. Reprod.* 46, 912-919. doi: 10.1095/biolreprod46.5.912
- 511
- 512 Araki, Y., Nohara, M., Yoshida-Komiya, H., Kuramochi, T., Ito, M., Hoshi, H.,
- 513 Shinkai, Y. and Sendai, Y. (2003) Effect of a null mutation of the oviduct-specific

514	glycoprotein	gene	on	mouse	fertilization.	Biochem.	J.	374,	551-557.	doi:
515	10.1042/BJ20	030466	5.							

- 516
- 517 Araki, Y. and Yoshida-Komiya, H. (1998) Mammalian oviduct-specific glycoprotein:
- 518 Characterization and potential role in fertilization process. J. Reprod. Dev. 44, 215-228.
- 519 doi:10.1262/jrd.44.215
- 520
- 521 Araki, Y., Yoshitake, H., Yamatoya, K. and Fujiwara, H. (2021) An overview of sex
- 522 and reproductive immunity from an evolutionary/anthropological perspective. *Immunol*.
- 523 Med. 44, 152-158. doi:10.1080/25785826.2020.1831219
- 524
- 525 Avilés, M., Gutiérrez-Adán, A. and Coy, P. (2010) Oviductal secretions: will they be
- 526 key factors for the future ARTs? Mol. Hum. Reprod. 16, 896-906. doi:
- 527 10.1093/molehr/gaq056
- 528
- 529 Buhi, W. (2002) Characterization and biological roles of oviduct-specific, oestrogen-
- 530 dependent glycoprotein. *Reproduction* **123**, 355-362. doi:10.1530/rep.0.1230355
- 531

532	Edwards, R.G., Bavister, B.D. and Steptoe, P.C. (1969) Early stages of fertilization
533	in vitro of human oocytes matured in vitro. Nature 221, 632-635. doi:10.1038/221632a0
534	
535	Gardner, D.K., Lane, M., Calderon, I. and Leeton, J. (1996) Environment of the
536	pre-implantation human embryo in vivo: Metabolite analysis of oviduct and uterine
537	fluids and Metabolite analysis of oviduct and uterine fluids and metabolism of cumulus
538	cells. Fertil. Steril. 65, 349-353. doi: 10.1016/s0015-0282(16)58097-2
539	
540	González-Brusi, L., Algarra, B., Moros-Nicolás, C., Izquierdo-Rico, M.J., Avilés,
541	M. and Jiménez-Movilla, M. (2020) A Comparative View on the Oviductal
542	Environment during the Periconception Period. Biomolecules 10, 1690. doi:
543	10.3390/biom10121690.
544	
545	Han, L., Monné, M., Okumura, H., Schwend, T., Cherry, A.L., Flot, D., Matsuda,
546	T. and Jovine, L. (2010) Insights into egg coat assembly and egg-sperm interaction
547	from the X-ray structure of full-length ZP3. Cell 143, 404-415. doi:
548	10.1016/j.cell.2010.09.041.

550	Hirose, M. and Ogura A. (2019) The golden (Syrian) hamster as a model for the study
551	of reproductive biology: Past, present, and future. Reprod. Med. Biol. 18, 34-39.
552	doi:10.1002/rmb2.12241
553	
554	Hirose, M., Honda, A., Fulka, H., Tamura-Nakano, M., Matoba, S., Tomishima, T.,
555	Mochida, K., Hasegawa, A., Nagashima, K., Inoue, K., et al. (2020) Acrosin is
556	essential for sperm penetration through the zona pellucida in hamsters. Proc. Natl. Acad.
557	Sci. USA. 117, 2513-2518. doi: 10.1073/pnas.1917595117 (Erratum in: (2020) Proc.
558	Natl. Acad. Sci. USA. 117, 24601.)
559	

- 560 Huang, H.L., Li, S.C. and Wu, J.F. (2019) A complex of novel protease inhibitor,
- 561 ovostatin homolog, with its cognate proteases in immature mice uterine luminal
- 562 fluid. Sci. Rep. 9:4973. https://doi.org/10.1038/s41598-019-41426-4
- 563
- 564 Kan, F.W., Roux, E. and Bleau, G. (1993) Immunolocalization of oviductin in
- 565 endocytic compartments in the blastomeres of developing embryos in the golden
- 566 hamster. Biol. Reprod. 48, 77-88. doi: 10.1095/biolreprod48.1.77
- 567

568	Kapur, R.P. and Johnson, L,V. (1985) An oviductal fluid glycoprotein associated
569	with ovulated mouse ova and early embryos. Dev. Biol. 112, 89-93. doi: 10.1016/0012-
570	1606(85)90122-8
571	
572	Kapur, R.P. and Johnson, L,V. (1986) Selective sequestration of an oviductal fluid
573	glycoprotein in the perivitelline space of mouse oocytes and embryos. J. Exp. Zool. 238,
574	249-260. doi: 10.1002/jez.1402380215
575	
576	Kapur, R.P. and Johnson, L,V. (1988) Ultrastructural evidence that specialized
577	regions of the murine oviduct contribute a glycoprotein to the extracellular matrix of
578	mouse oocytes. Anat. Rec. 221, 720-729. doi: 10.1002/ar.1092210307
579	
580	Miyoshi, I., Takahashi, K., Kon, Y., Okamura, T., Mototani, Y., Araki, Y. and
581	Kasai, N. (2002) Mouse transgenic for murine oviduct-specific glycoprotein promoter-
582	driven simian virus 40 large T-antigen: tumor formation and its hormonal regulation.
583	Mol. Reprod. Dev. 63, 168-176. doi: 10.1002/mrd.10175
584	

585	Moros-Nicolás, C., Chevret, P., Jiménez-Movilla, M., Algarra, B., Cots-Rodríguez,
586	P., González-Brusi, L., Avilés, M. and Izquierdo-Rico, M.J. (2021) New Insights
587	into the Mammalian Egg Zona Pellucida. Int. J. Mol. Sci. 22, 3276. doi:
588	10.3390/ijms22063276
589	
590	Oda-Sakurai R., Yoshitake, H., Miura, Y., Kazuno, S., Ueno, T., Hasegawa, A.,
591	Yamatoya, K., Takamori, K., Itakura, A., Fujiwara, H., et al. (2019) NUP62: the
592	target of an anti-sperm auto-monoclonal antibody during testicular development.
593	Reproduction 158, 503-516. doi: 10.1530/REP-19-0333
594	
595	O'Day-Bowman, M.B., Mavrogianis, P.A., Minshall, R.D. and Verhage, H.G.

596 (2002) In vivo versus in vitro oviductal glycoprotein (OGP) association with the zona

- 597 pellucida (ZP) in the hamster and baboon. Mol. Reprod. Dev. 62, 248-256. doi:
- 598 10.1002/mrd.10091
- 599

600	Oikawa, T	., Sendai,	Y., Kur	ata, S. and	Yanagimachi F	R. (1988) <i>I</i>	A glycoprotein of
-----	-----------	------------	---------	-------------	---------------	---------------------------	-------------------

- 601 oviductal origin alters biochemical properties of the zona pellucida of hamster egg.
- 602 Gamete Res. 19, 113-122. doi: 10.1002/mrd.1120190202

603	3
-----	---

604	Quinn, P., Kerin, J.F. and Warnes, G.M. (1985a) Improved pregnancy rate in human
605	in vitro fertilization with the use of a medium based on the composition of human tubal
606	fluid. Fertil. Steril. 44, 493-498. doi: 10.1016/s0015-0282(16)48918-1
607	
608	Quinn, P., Warnes, G.M., Kerin, J.F. and Kirby, C. (1985b) Culture factors affecting
609	the success rate of in vitro fertilization and embryo transfer. Ann. N. Y. Acad. Sci. 442,
610	195-204. doi:10.1111/j.1749-6632.1985.tb37520.x
611	
612	Robitaille, G., St-Jacques, S., Potier, M. and Bleau, G. (1988) Characterization of an
612 613	Robitaille, G., St-Jacques, S., Potier, M. and Bleau, G. (1988) Characterization of an oviductal glycoprotein associated with the ovulated hamster oocyte. <i>Biol. Reprod.</i> 38,
613	oviductal glycoprotein associated with the ovulated hamster oocyte. Biol. Reprod. 38,
613 614	oviductal glycoprotein associated with the ovulated hamster oocyte. Biol. Reprod. 38,
613 614 615	oviductal glycoprotein associated with the ovulated hamster oocyte. <i>Biol. Reprod.</i> 38 , 687-694. doi: 10.1095/biolreprod38.3.687. PMID: 2454136.
613 614 615 616	oviductal glycoprotein associated with the ovulated hamster oocyte. <i>Biol. Reprod.</i> 38 , 687-694. doi: 10.1095/biolreprod38.3.687. PMID: 2454136. Roux, E., Bleau, G. and Kan, F.W. (1997) Fate of hamster oviductin in the oviduct

620	Sakai, Y., Araki, Y., Yamashita, T., Kurata, S., Oikawa, T., Hiroi, M. and Sendo F.
621	(1988) Inhibition of in vitro fertilization by a monoclonal antibody reacting with the
622	zona pellucida of the oviductal egg but not with that of the ovarian egg of the golden
623	hamster. J. Reprod. Immunol. 14, 177-189. doi: 10.1016/0165-0378(88)90068-x
624	
625	Schini, S.A. and Bavister, B.D. (1988) Two-cell block to development of cultured
626	hamster embryos is caused by phosphate and glucose. Biol. Reprod. 39, 1183-1192. doi:
627	10.1095/biolreprod39.5.1183
628	
629	Sendai, Y., Komiya, H., Suzuki, K., Onuma, T., Kikuchi, M., Hoshi, H. and Araki
630	Y. (1995) Molecular cloning and characterization of a mouse oviduct-specific
631	glycoprotein. Biol. Reprod. 53, 285-294. doi: 10.1095/biolreprod53.2.285
632	

- 633 Seshagiri, P.B. and Vani, V. (2019) Enabling Hamster Embryo Culture System:
- 634 Development of Preimplantation Embryos. *Methods Mol. Biol.* 2006, 45-61. doi:
- **635** 10.1007/978-1-4939-9566-0_4.
- 636

637	Takahashi, K., Sendai, Y., Matsuda, Y., Hoshi, H., Hiroi, M. and Araki Y. (2000)
638	Mouse oviduct-specific glycoprotein gene: genomic organization and structure of the 5'-
639	flanking regulatory region. Biol. Reprod. 62, 217-226. doi: 10.1095/biolreprod62.2.217
640	
641	Takahashi, E,. Miyoshi, I. and Nagasu, T. Rescue of a transgenic mouse line by
642	transplantation of a frozen-thawed ovary obtained postmortem. Contemp. Top. Lab.
643	Anim. Sci. 40, 28-31. PMID: 11451392
644	
645	Rankin, T., Familari, M., Lee, E., Ginsberg, A., Dwyer, N., Blanchette-Mackie, J.,
645 646	Rankin, T., Familari, M., Lee, E., Ginsberg, A., Dwyer, N., Blanchette-Mackie, J., Drago, J., Westphal, H. and Dean J. (1996) Mice homozygous for an insertional
646	Drago, J., Westphal, H. and Dean J. (1996) Mice homozygous for an insertional
646 647	Drago, J., Westphal, H. and Dean J. (1996) Mice homozygous for an insertional mutation in the Zp3 gene lack a zona pellucida and are infertile. <i>Development</i> 122 ,
646 647 648	Drago, J., Westphal, H. and Dean J. (1996) Mice homozygous for an insertional mutation in the Zp3 gene lack a zona pellucida and are infertile. <i>Development</i> 122 ,
646 647 648 649	Drago, J., Westphal, H. and Dean J. (1996) Mice homozygous for an insertional mutation in the Zp3 gene lack a zona pellucida and are infertile. <i>Development</i> 122 , 2903-2910. doi: 10.1242/dev.122.9.2903

653

654 Tumova, L., Zigo, M., Sutovsky, P., Sedmikova,	NI.	and	Postlerova,	Р.	(2021)
--	-----	-----	-------------	----	--------

- 655 Ligands and Receptors Involved in the Sperm-Zona Pellucida Interactions in Mammals.
- 656 *Cells* **10**, 133. doi: 10.3390/cells10010133.

657

- 658 Yanagimachi, R. and Chang, M.C. (1963) Fertilization of Hamster Eggs in vitro.
- 659 *Nature* 200, 281-282. doi: 10.1038/200281b0
- 660
- 661 Yun, J.S., Li, Y.S., Wight, D.C., Portanova, R., Selden, R.F. and Wagner, T.E.
- 662 (1990) The human growth hormone transgene: expression in hemizygous and
- 663 homozygous mice. Proc. Soc. Exp. Biol. Med. 194, 308-313. doi: 10.3181/00379727-
- 664 194-43096.
- 665

666	Yoshitake,	Н.,	Hashii,	N.,	Kawasaki,	N.,	Endo,	S.,	Takamori,	К.,	Hasegawa,	A.	.,
-----	------------	-----	---------	-----	-----------	-----	-------	-----	-----------	-----	-----------	----	----

- 667 Fujiwara, H. and Araki, Y. (2015) Chemical characterization of N-Linked
- 668 oligosaccharide as the antigen epitope recognized by an anti-sperm auto-monoclonal
- 669 antibody, Ts4. *PLoS One* **10**, e0133784. doi: 10.1371/journal.pone.0133784
- 670

- 671 Zhao, Y., Vanderkooi, S. and Kan, F.W.K. (2022) The role of oviduct-specific
- 672 glycoprotein (OVGP1) in modulating biological functions of gametes and embryos.
- 673 Histochem. Cell Biol. 157, 371-388. doi: 10.1007/s00418-021-02065-x

44

674 Figure legends

675	Figure 1. Morphological findings of zygotes at 1-dpc in hamsters. Female animals
676	were mated spontaneously with fertile WT males. Eggs were collected from the
677	ampullary region of oviduct, and counter-stained with 4',6-diamidino-2-phenylindole
678	solution (FUJI FILM Wako Chemicals) for light microscopic (LM) observation and
679	some were processed for electron microscopy (EM). The images show eggs from WT
680	female (A, B; binary image of A, C; transmission electron microscopic (TEM) image)
681	and Ovgp1-KO female (D, E; binary image of D, F; TEM image), respectively.
682	Pronuclei indicated by arrowheads and sperm tails are shown by double arrowheads in
683	the high magnification images (A', D'). Bars; 50 μ m (LM); 10 μ m (EM)
684	Figure 2. Observation of fetal implantation in the uterus of hamsters. At 4.5-dpc (A),
685	and 5.5-dpc (B). Female animals were mated spontaneously with fertile WT males, and
686	showed typical uterine appearance at 4.5-dpc and 5.5-dpc (b). Box-and-whisker
687	diagram of the number of implantations at 5.5-dpc (c). <i>P</i> -value was calculated by the
688	Mann-Whitney U test. * P<0.05

Figure 3. Morphological findings of the uteri at 8.5-dpc in hamsters. (A) Appearance of
the uteri in pregnancy; WT (a) and *Ovgp1*-KO (b). Bars: 10 mm. (B) Sagittal section of

691	the uterus of a KO hamster in non-pregnant state. The inset shows a magnified view of
692	the endometrium. Bar: 500 μm (inset: 50 μm). Sagittal sections of pregnant uteri and
693	their corresponding magnified images (insets) of WT (C); Ovgp1-KO (D). Dc: decidua
694	cells ; PL, placenta; F, fetus. dPL; hemorrhagic degenerated placental tissues, dDC ;
695	denatured decidualized membrane cells. Arrowheads indicate hemorrhage traces, and
696	arrows reveal endometrial folds not seen in WT. Cuboidal epithelial cells with
697	spherical nuclei and bright cytoplasm are shown by asterisks (inset). Bars: 500 μm (50
698	μm in insets).
600	
699	
700	Figure 4. Effects of OVGP1 on early embryogenesis. (A) Schematic of fertilized eggs

701	and oviductal epithelium in early of	development: Post-fertilization embryos and oviductal
-----	--------------------------------------	---

702 epithelium in WT (a) and *Ovgp1*-KO (b) females mated with either WT, heterozygous

703 $(Ovgp1^{+/-})$ or KO male, and what happens if a WT female is implanted with an Ovgp1-

704 KO ovary and mated with an Ovgp1-KO male?(c). (B) Typical results of ovarian

- transplantation experiments proposed in A-c showing the appearance of litters (a) and
- their genotyping (b).

707

708	Figure 5. Volcano diagram showing the down/up-regulated oviductal proteins after
709	ovulation in WT/Ovgp1-KO females. Oviducts were isolated from each of three
710	independent WT/Ovgp1 KO individuals. Dotted red lines indicate the fold-change (FC)
711	protein expression at 2 and -0.5, and p -value = 0.05, respectively. Blue/red dots show
712	the down/up-regulated proteins in the oviducts from Ovgp1-KO females. BCAT1;
713	branched-chain-amino-acid aminotransferase, B3GNT7; hexosyltransferase, CCDC114;
714	coiled-coil domain-containing protein 114, CD63; tetraspanin, CD74; HLA class II
715	histocompatibility antigen gamma chain isoform X2, CKAP5; cytoskeleton-associated
716	protein 5, COPG2; Coatomer subunit gamma-2, CUNHXORF38; uncharacterized
717	protein CXorf38 homolog isoform X1; EXOC3; exocyst complex component 3,
718	HMGCS1; hydroxymethylglutaryl-CoA synthase, HSP60; 60 kDa heat shock protein,
719	mitochondrial,
720	JCHAIN; immunoglobulin J chain, OVGP1; oviduct-specific glycoprotein 1, OVOS;
721	ovostatin homolog, PLA2G7; platelet-activating factor acetylhydrolase, PNLIPRP2;
722	triacylglycerol lipase, SERPIN2; glia-derived nexin (serpin family E member 2),
723	SERPINB11; serpin family B member 11, RAB3B/D; Ras-related protein Rab-3B/D,
724	RPRD2; regulation of nuclear pre-mRNA domain containing 2, ZP3; zona pellucida
725	sperm-binding protein 3. KRT90; keratin, type II cytoskeletal cochlear-like, is

726	considered a conta	aminant in san	nple preparati	on and is listed	l in Supplementa	ry Table S2
-----	--------------------	----------------	----------------	------------------	------------------	-------------

- 727 but omitted in this figure.
- 728
- 729 Figure 6. Potential physiological activities of an oviductal humoral factor OVGP1
- 730 during early reproductive process as suggested by the present study. Previous in vitro
- experiments have proposed that OVGP1 secreted from the oviduct 1) modifies the egg,
- 2) also modifies the sperm, and 3) is incorporated into the early embryo. The present
- 733 study has demonstrated that OVGP1 is an essential factor that aids fertilization and the
- normal development of early embryos (totipotent cells) in the hamster model. ZP, zona
- pellucida; PB, polar body ; MP, male pronucleus; FP, female pronucleus; ST, sperm
- tail; ICM, inner cell mass; OCT, outer cell mass.

737	Supplementary Figure 1. Production of Ovgp1-null hamsters. Gene structure of
738	hamster Ovgp1 and its editing strategy (A). The position of the gene sequence to be
739	removed from EXON 1 to 3 is indicated by vertical arrows and the position of PCR
740	primers for mutant detection is indicated by red arrows. Genotypes of F0 animals after
741	gene editing by PCR (B). The positions of the predicted PCR products relative to the
742	genomic DNA are indicated by arrowheads (WT) and double arrowheads (KO),
743	respectively. Male #1, 3, 4 and female #8, 10 were successfully gene edited as designed.
744	Male #1, females #8, and #10 did not produce pups, so males #3 and #4 were used to
745	maintain the strain. #4(F3) indicates that DNA extracted from a F3 generation female
746	derived from a #4 F0 male individual was used as the template. Western blotting
747	analysis using OVGP1-specific antibodies (C); Equal amounts of tissue protein solution
748	were detected by SDS-PAGE followed by OVGP1-specific antibodies (AZPO8,
749	recognizing carbohydrate moiety of the OVGP1 (a); ab74544, recognizing the N-
750	terminal peptide of OVGP1 (b)). lanes 1: ovary, 2: oviduct and 3: uterus, respectively.
751	

752 Supplementary Figure 2. Reproductive ability of *Ovgp1*-KO hamsters. Fertility of
753 *Ovgp1*-KO female hamsters (A). Female WT (n=5) and *Ovgp1*-KO (n=15) mated with
754 fertility confirmed WT males. Autopsy image (B) of an F0 *Ovgp1*-KO female (15-dpc)

- that died suddenly during a mating experiment. Appearance of the uterus (a), its cross-
- sectional image (b) and hematoxylin-eosin stained image (c). Bar = 1 mm.
- 757
- 758 Supplementary Figure 3. Early embryos at 2.5-dpc. From oviduct of WT (A) and
- 759 Ovgp1-KO animals (B). Bars = 50 µm.

760	Supplementary Table S1 Fertility of female individuals after ovarian transplantation.
761	* After the ovaries were implanted, they were mated with male individuals to see if they
762	could produce litters.
763	** In 11 deliveries obtained after ovarian transplantation, the genotype of the fetus
764	could not be confirmed in 5 cases due to maternal cannibalism immediately after
765	delivery. The remaining 6 deliveries yielded a total of 29 fetuses (mean litter size =
766	4.83), 19 of which were $Ovgp1^{-/-}$.
767	

768 Supplementary Table S2 List of proteins whose expression was changed after
769 ovulation between WT and *Ovgp1*-KO hamsters oviducts. Of the 3573 proteins
770 identified, 3/19 were significantly up/down regulated, respectively (these Volcano plots
771 are shown in Figure 5).

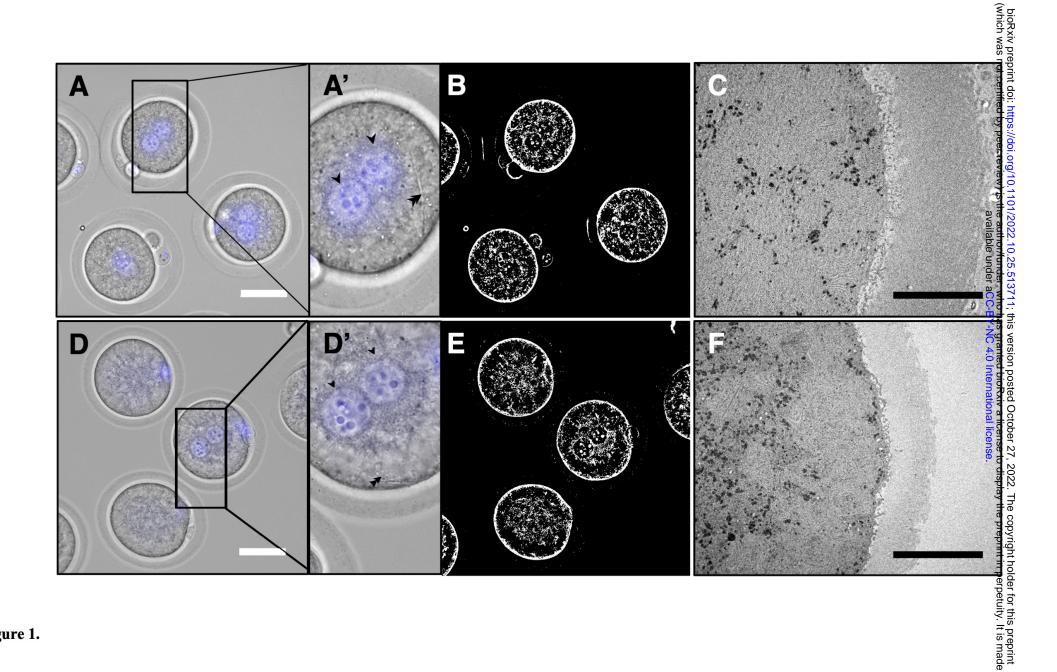


Figure 1.

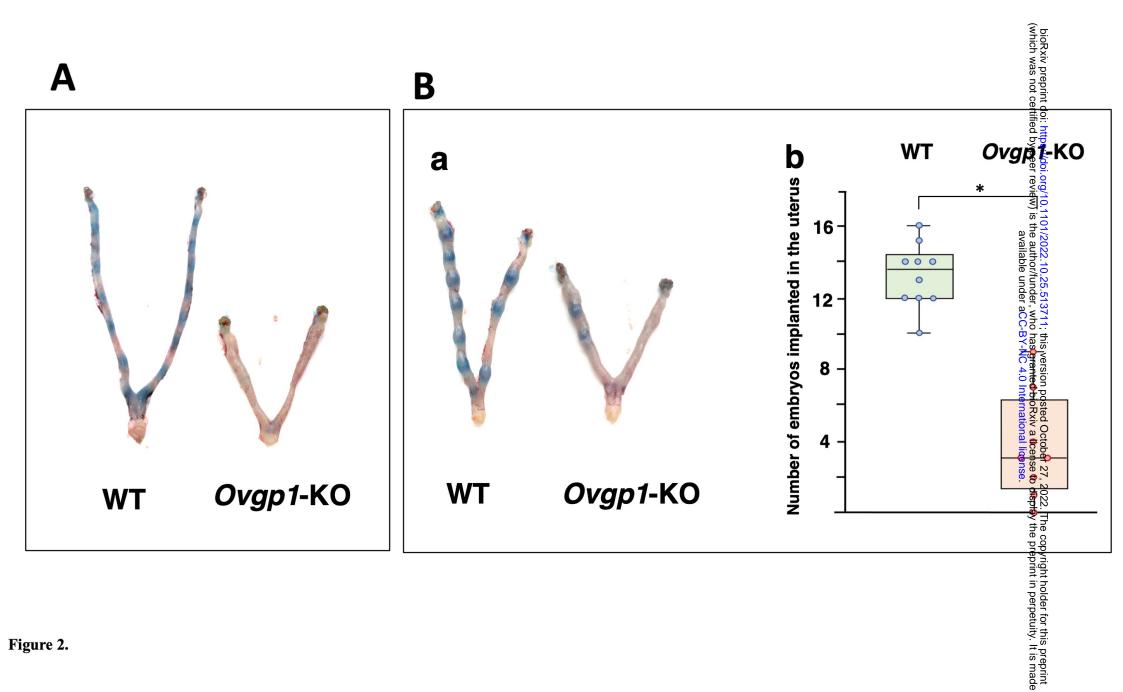


Figure 2.

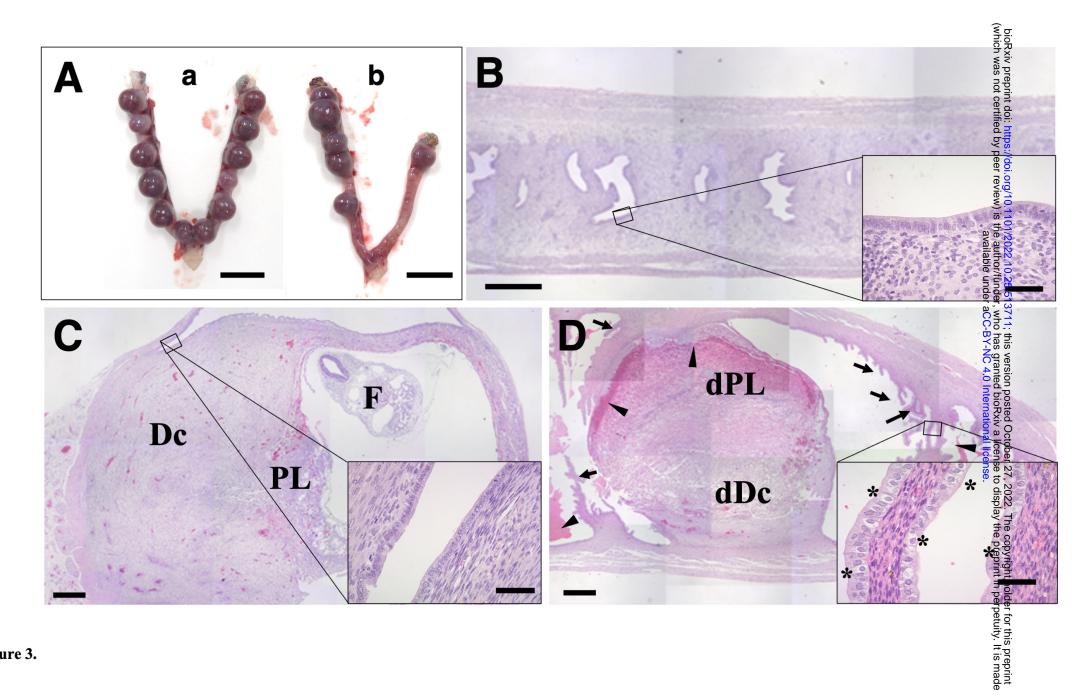
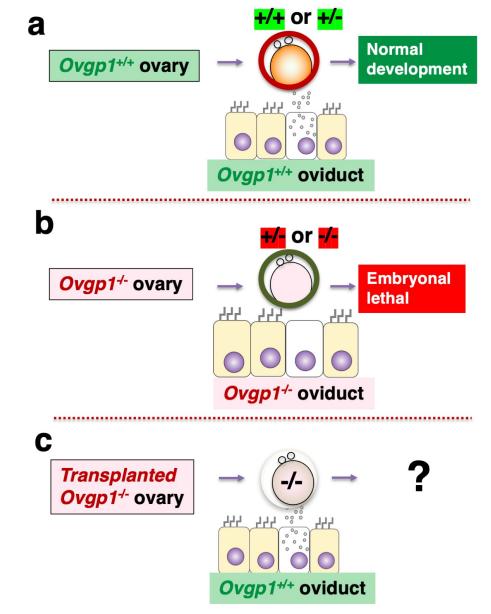
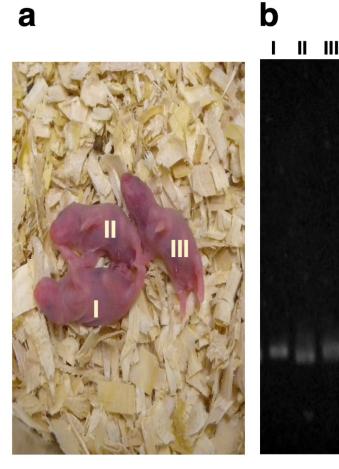




Figure 3.

B

lable 10.25.513711; this ersion posted October 27, 2022 The copyright holder for this preprint or/funder, who has granted bioRx a license to display the preprint in perpetuity. It is made be under a CC-BY-NC 4.0 International license.

Figure 4.

Д

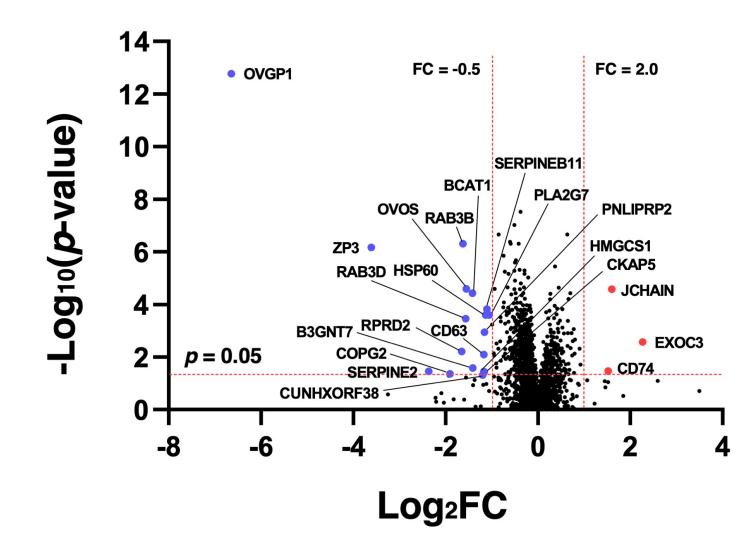
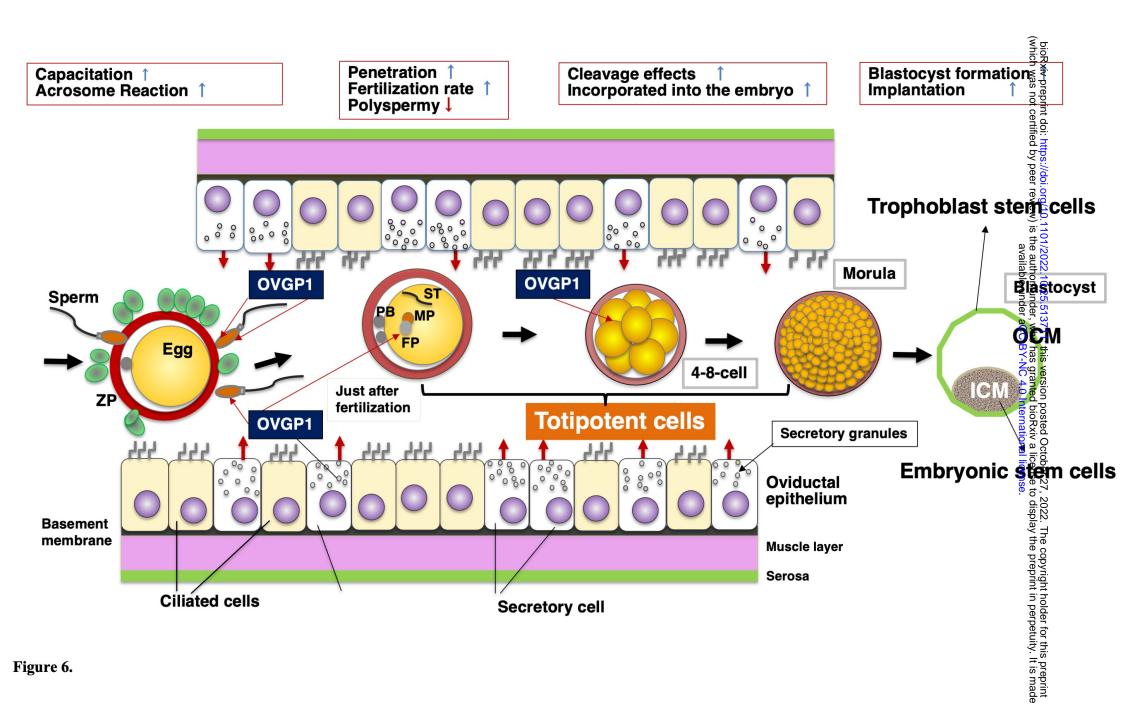



Figure 5.

