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Humans estimate sound-source directions by combining prior beliefs with sensory evidence.
Prior beliefs represent statistical knowledge about the environment while sensory evidence is
acquired from auditory features such as interaural disparities and monaural spectral shapes.
Models of directional sound localization often impose constraints on the contribution of these
features to either the horizontal or vertical dimension. Instead, we propose a Bayesian model
that more flexibly incorporates each feature according to its spatial precision and integrates
prior beliefs in the inference process. We applied the model to directional localization of
a single, broadband, stationary sound source presented to a static human listener in an
anechoic environment. We simplified interaural features to be broadband and compared two
model variants, each considering a different type of monaural spectral features: magnitude
profiles and gradient profiles. Both model variants were fitted to the baseline performance
of five listeners and evaluated on the effects of localizing with non-individual head-related
transfer functions (HRTFs) and sounds with rippled spectrum. The model variant with
spectral gradient profiles outperformed other localization models. This model variant appears
particularly useful for the evaluation of HRTFs and may serve as a basis for future extensions
towards modeling dynamic listening conditions.

©2022 [https://doi.org(DOI number)]

[XYZ] Pages: 1–14

I. INTRODUCTION

When localizing a sound source, human listeners
have to deal with numerous sources of uncertainty [1].
Uncertainties originate from ambiguities in the acoustic
signal encoding the source position [2] as well as the lim-
ited precision of the auditory system in decoding the re-
ceived acoustic information [3, 4]. Bayesian inference de-
scribes a statistically optimal solution to deal with such
uncertainties in the process of perceptual decision mak-
ing [5] and has been applied to model sound localization
in various ways [6–9].

Common approaches of sound localization models
rely on the evaluation of several spatial auditory features.
Head-related transfer functions (HRTFs) describe all the
spatially dependent acoustic filtering produced by the lis-
tener’s ears, head, and body [10] and have been used to
derive spatial auditory features. The way to quantify or
extract those features is a matter of debate. In partic-
ular, a large variety of monaural spectral-shape features
have been studied [11–17], with spectral magnitude pro-
files [14, 17] and spectral gradient profiles [12, 15] being
the most established ones. Despite such details, there is
consensus that the interaural time and level differences
(ITDs and ILDs) [1] as well as some form of monaural
spectral shapes are important features for the directional
localization of broadband sound sources [18].

In order to decode the spatial direction from the au-
ditory features, models rely on the assumption that lis-
teners have learned to associate acoustic features with
spatial directions [13, 19]. In fact, the interaural features
are particularly informative about the horizontal dimen-
sion [1] though rather ambiguous with respect to the ver-
tical dimension, where evidence from the monaural spec-
tral features is more important [12]. This anisotropic rel-
evance of different features is the reason for why specific
auditory features are often studied along a single dimen-
sion of the so-called modified interaural-polar coordinate
system [20], with the lateral angle along the horizontal
left/right dimension and the polar angle along the ver-
tical and front/back dimension. However, this geomet-
ric separation is a simplification. Monaural spectral fea-
tures, for instance, can also contribute to the inference
process in the direction estimation along the lateral di-
mension [21–23]. Hence, directional sound localization
models should rather exploit the joint information en-
coded by all auditory features.

Such joint information has already been considered
in a model of directional sound localization based on
Bayesian inference [6]. This model computes a spatial
likelihood function from a precision-weighted integration
of a set of noisy acoustic features. Then, the perceived
source direction is assumed to be at the maximum of that
likelihood function. While this model was built to assess
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FIG. 1: Model structure. Gray blocks: Model’s processing pipeline consisting of 1) the feature extraction stage to
compute spatial features from the binaural sound; 2) the Bayesian inference stage integrating the sensory evidence

obtained by comparison with feature templates and with prior beliefs in order to estimate the most probable
direction; and 3) the response stage transforming the internal estimate to the final localization response. White

blocks: Elements required to fit the model to an individual subject consisting of listener performances in estimating
sound direction and individual HRTF dataset.

which spatial information can be accessible to the audi-
tory system, its predictions overestimate the actual hu-
man performance yielding unrealistically low front-back
confusion rates and localization errors [24]. Still, in order
to model human performance, this model can serve as a
solid basis for improvements such as the consideration of
monaural spectral features, the integration of response
noise involved in typical localization tasks, and the in-
corporation of prior beliefs.

Prior beliefs are important in the process of Bayesian
inference because they reflect the listener’s statistical
knowledge about the environment, helping to compen-
sate for uncertainties in the sensory evidence [25]. For
example, listeners seem to effectively increase precision in
a frontal localization task by assuming source directions
to be more likely located at the eye-level rather than at
extreme vertical positions [8]. However, such an increase
in precision may come at the cost of decreasing accuracy.
As it seems, the optimal accuracy-precision trade-off in
directional localization depends on the statistical distri-
bution of sound sources [26]. While listeners seem to
adjust their prior beliefs to changes in the sound-source
distribution [26, 27], they may also establish long-term
priors reflecting the distribution of sound sources in their
everyday environment.

Here, we introduce a Bayesian inference model to
predict the performance of a listener in estimating the
direction of static broadband sounds. Similar to [6], our
model implements a noisy feature extraction and prob-
abilistically combines interaural and monaural spatial
features. These features are then compared with tem-
plates of spatial features, obtained from listener-specific

HRTFs, to generate the sensory evidence in the form of a
likelihood function. Subsequently, the sensory evidence
is combined with prior beliefs emphasizing directions at
the eye level [8]. The estimated source direction is se-
lected from the resulting (posterior) spatial representa-
tion according to a Bayesian decision function. In a final
stage, the model incorporates response scattering [15] to
account for the uncertainty introduced by pointing re-
sponses in localization experiments.

For evaluation, we considered a model variant based
on spectral amplitudes and a model variant based on
spectral gradients [15]. Each model’s free parameters
were fitted to the sound-localization performance of in-
dividual listeners [28]. We then tested the simulated re-
sponses of both model variants against human responses
from sound-localization experiments investigating the ef-
fects of non-individual HRTFs [29] and ripples in the
source spectrum [30].

The paper is organized as follows: Sec. II describes
the auditory model (Sec. II A) and explains the param-
eter estimation (Sec. II B). Then, Sec.III evaluates the
model’s performance by comparing its estimations to the
actual performance of human listeners. Finally, Sec. IV
discusses the model’s relevance as well as its limitations,
and outlines its potential for future extensions.

II. METHODS

A.Model description

The proposed auditory model consists of three main
stages, as shown in Fig. 1: 1) The feature extraction

2 Bayesian model for directional sound localization

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 23, 2022. ; https://doi.org/10.1101/2022.10.25.513770doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.25.513770
http://creativecommons.org/licenses/by-nc-nd/4.0/


FIG. 2: Interaural features as functions of lateral angle
in the horizontal frontal plane (ϕ = 0◦). Left axis (blue
solid line): Transformed ITD xitd (dimensionless), see
Eq. 2. Right axis (green dashed line): ILD (in dB)
obtained from the magnitude profiles. Example for

subject NH12 [28].

stage determines the encoded acoustic spatial informa-
tion represented as a set of spatial features altered by
noise; 2) The Bayesian inference integrates the sensory
evidence resulting from the decoding procedure based on
feature templates with the prior belief and forms a per-
ceptual decision, and 3) The response stage transforms
the perceptual decision in a directional response by cor-
rupting the estimation with uncertainty in the pointing
action.

1. Feature extraction

The spatial auditory features are extracted from the sen-
sory input which is provided by the directional transfer
function transformed in the time domain (i.e. the HRTF
processed to remove the direction independent compo-
nent [31]). We follow [6] in that we decode the spatial
information provided by a single sound source via the
binaural stimulus from a vector of spatial features:

t = [xitd, xild,xL,mon,xR,mon] , (1)

where xitd denotes a scalar ITD feature, xild a scalar ILD
feature, and a vector that concatenates monaural spec-
tral features for left ear, xL,mon, and right ear, xR,mon.
Each feature is assumed to be extracted by different neu-
ral pathways responsible to deliver encoded spatial infor-
mation to higher levels of the auditory system [1, 4].

Assuming broadband and spatially stationary
sources, interaural features can be heavily approximated
by means of wideband estimators [18, 32]. The ILD was
approximated as the time-averaged broadband level dif-
ference between the left and right channels [18]. The ITD
was estimated by first processing each channel of the bin-
aural signal with a low-pass Butterworth filter (10th or-
der and cutoff 3000 Hz) and an envelope extraction step
based on the Hilbert transform. Then, the ITD value is
computed with the interaural cross-correlation method

FIG. 3: Monaural spectral features as a function of
polar angle in the median plane (θ = 0◦). Top: Features

obtained from the magnitude profiles. Bottom:
Features obtained from the gradient profiles. Example

for the left ear of subject NH12 [28].

which is a good estimator of perceived lateralization in
static scenarios with noise bursts [32]. In addition, we ap-
plied the transformation proposed by Reijniers et al. [6]
to compensate the increasing uncertainty levels for in-
creasing ITDs [33] resulting in a dimensionless quantity
with a more isotropic variance:

xitd =
sgn(itd)

bitd
log

(
1 +

bitd
aitd

· |itd|
)
, (2)

with itd denoting ITDs in µs and the parameters aitd =
32.5µs and bitd = 0.095 and ’sgn’ indicating the sign
function (for details on the derivation based on signal de-
tection theory, see Supplementary Information from [6]).
An example of the interaural features as functions of the
lateral angle is shown in Fig. 2.

Monaural spectral features, x{L,R},mon, were derived
from approximate neural excitation patterns. To approx-
imate the spectral resolution of the human cochlea, we
processed the binaural signal by the gammatone filter-
bank with non-overlapping equivalent rectangular band-
widths [34, 35], resulting in NB = 27 bands within the
interval [0.7, 18] kHz [36, 37]. Followed by half-wave rec-
tification and square-root compression to model hair-cell
transduction [e.g., 38, 39], it results in the unit-less exci-
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tation:

cφζ,b[n] = (hφ
ζ ∗ gb)[n],

cφζ,b[n] =


√
cφζ,b[n] if cφζ,b[n] ≥ 0

0 otherwise,

(3)

where subscripts ζ ∈ {L,R} indicate the left and right
ears, n = 1, . . . , N is the time index, b = 1, . . . , NB is the
band index, gb[n] is the corresponding gammatone filter
and hφ

ζ [n] is the binaural signal in a normalized scale with

sound direction φ (i.e. a pair of head-related impulse
responses or their convolution with a source signal).

We thus define the spectral feature for the magnitude
profiles (MPs) with the vector xζ,MP . This vector is the
collection of root mean square amplitudes across time in
decibels for each of the spectral bands for each ear:

mpφζ,b = 10 log10

(
1
N

∑N
n=1 c

φ
ζ,b[n]

2
)
,

xζ,mp =
[
mpφζ,1, . . . ,mpφζ,NB

]
,

(4)

where the function cφζ,b[n] is defined in Eq. 3.
An alternative spectral feature can be computed by

positive gradient extraction over the frequency dimen-
sion. It has previously been shown that integrating such
spectral features in an auditory model provides good
agreement with human localization performance [15].
Therefore, we define a second possible spectral feature
based on gradient profiles (GPs) with the vector xζ,GP .
It includes the gradient extraction as an additional pro-
cessing step:

gpφζ,b = mpφζ,b+1 −mpφζ,b,

gpφζ,b =

{
gpφζ,b if gpφζ,b ≥ 0

0 otherwise,

xζ,GP =
[
gpφζ,1, · · · , gp

φ
ζ,NB−1

]
.

(5)

A visualization of these monaural features is shown in
Fig. 3.

To demonstrate the impact of monaural spectral fea-
ture type, we will analyze the results of both variants
with the corresponding feature spaces defined as follows:

tMP = [xitd, xild,xL,MP ,xR,MP ],

tGP = [xitd, xild,xL,GP ,xR,GP ].
(6)

Limited precision in the feature extraction process
leads to corruption of the features and can be modelled
as additive internal noise [6]. Hence, we define the noisy
internal representation of the target features as:

t = t+ δ,

δ ∼ N (0,Σ),
(7)

where Σ is the covariance matrix of the multivariate
Gaussian noise. Furthermore, we assume each spatial

FIG. 4: Example of the model estimating the direction
of a broadband sound source. Red: Actual direction of
the sound source. The grayscale represents the posterior

probability distribution p(φ|t), shown, in order to
increase the readability, on a logarithmic scale. Green:

Direction inferred by the Bayesian-inference stage
(without the response stage). Orange: Direction

inferred by the model (with the response stage). Blue:
Actual response of the subject.

feature to be processed independently and thus to be
also corrupted by independent noise [1]. Hence, the co-
variance matrix Σ is defined as:

Σ =

 σ2
itd 0 0

0 σ2
ild 0

0 0 σ2
monI

 , (8)

with σ2
itd and σ2

ild being the variances associated with the
ITDs and ILDs and σ2

monI being the covariance matrix
for the monaural features where I is the identity matrix
and the scalar σmon represents a constant and identical
uncertainty for all frequency bands.

2. Bayesian inference

The observer infers the sound direction φ from the spa-
tial features in t while taking into account potential prior
beliefs about the sound direction. Within the Bayesian
inference framework [5], this requires to weight the like-
lihood p(t|φ) with the prior p(φ) to obtain the posterior
distribution by means of Bayes’ law as:

p(φ|t) ∝ p(t|φ)p(φ). (9)

The likelihood function is implemented by comparing t
with the feature templates. Similarly to [6], the tem-
plate T (φ) contains noiseless features of Eq. 1 for every
sound direction φ. While the sound direction is defined
on a continuous support, our implementation sampled
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it over a uniform spherical grid with a spacing of 4.5◦

between points (Nφ = 1500 over the full sphere). Tem-
plate features were computed from the listener-specific
HRTFs. To accommodate non-uniform HRTF acquisi-
tion grids, we performed spatial interpolation based on
spherical harmonics with order NSH = 15, followed by
Tikhonov regularization [40].

Since the templates are constructed without noise
there exists a one-to-one mapping between direction and
template features. This allows us to write the likelihood
function for each point of the direction grid as:

p(t|φ) = p(t|T (φ)) = N (t|T (φ),Σ), (10)

where Σ represents the learned precision of the auditory
system (i.e. the sensory uncertainty δ reported in Eq. 7).
Finally, we interpret the a-priori probability p(φ) to re-
flect long-term expectations of listeners where prior prob-
abilities are modelled as uniformly distributed along the
horizontal dimension but centered towards the horizon
as [8]. In particular, we extend the results from Ege et
al. for sources positioned in the front and as well as back
positions with:

p(φ) ∝ exp

(
− ϵ2

2σ2
P,ϵ

)
, (11)

with ϵ denoting the elevation angle of φ and σ2
P,ϵ the

variance of the prior distribution [8]. For simplicity, the
prior definition is based for the spherical coordinate sys-
tem. Importantly, the origin of that prior is currently
unknown and its implications are discussed in Sec. IV.

According to Eq. 9, a posterior spatial probability
distribution is computed for every sound by optimally
combining sensory evidence with prior knowledge [25].
As shown in Fig. 4, the most probable direction of the
source φ is then selected as the maximum a-posteriori
(MAP) estimate:

φ̂ = argmax
φ

p(t|T (φ))p(φ). (12)

3. Response stage

After a sound direction estimate has been inferred, ex-
periments usually require the listener to provide a motor
response (e.g. manual pointing). To account for the un-
certainty introduced by such responses, we incorporate
post-decision noise in the model’s response stage. Fol-
lowing the approach from previous work [15], we distort
the location estimate by additive, direction-independent
(i.e. isotropic noise) Gaussian noise:

φ̂r = φ̂+m, (13)

where m ∼ vMF(0, κm) is a von-Mises-Fisher distribu-
tion with zero mean and concentration parameter κm.
The concentration parameter κm can be interpreted as a
standard deviation σm = κ−2

m · 180π−1 [deg]. The con-
tribution of the response noise is also visible in Fig. 4,
where the final estimate is scattered independently of the

spatial information provided by the a-posteriori distribu-
tion. With Eq. 13, the model outputs the response of the
estimated sound source direction.

B. Parameter estimation

The model includes the following free parameters:
σild, σmon (amount of noise per feature; σitd was fixed to
0.569 as in [6]), σP,ϵ (directional prior), and σm (amount
of response noise). Because of the structure of the model,
these parameters jointly contribute to the prediction of
performance in both lateral and polar dimensions. To
roughly account for listener-specific differences in local-
ization performance [2], the parameters were fitted to
match individual listener performance.

As for the objective fitting function, we selected a
set of performance metrics widely used in the analysis
of behavioral localization experiments [28, 29, 41], for a
summary see [42]. A commonly used set of metrics con-
tains the quadrant error rate (QE, i.e., frequency of polar
errors larger than 90◦), local polar errors (PE, i.e., root
mean square error in the polar dimension that are smaller
than 90◦, limited to lateral angles in the range of ±30◦),
and lateral errors (LE, i.e., root mean square error in
the lateral dimension) [29]. We accounted for the inher-
ent stochasticity of the model estimations by averaging
the simulated performance metrics over 300 repetitions
of the Nφ = 1550 directions in the HRTF dataset (i.e.
Monte Carlo approximation with 465000 model simula-
tions). Model parameters were jointly adjusted in an
iterative procedure (see below) until the relative resid-
ual between the actual performance metric Ea and the
predicted performance metric Ep was minimized below a
metric-specific threshold τE , i.e.,

|Ea − Ep|
1

Ea
< τE . (14)

We set the thresholds to τLE = 0.1, τPE = 0.15, and
τQE = 0.2 because those values were feasible for all sub-
jects. In addition, the QE was transformed with the
rationalized arcsine function to handle small and large
values adequately [43].

We ran the estimation procedure separately for each
feature space in Eq. 6 and each listener. First, initial
values of the parameters were derived from previous lit-
erature: the variance of the prior distribution was set to
σP,ϵ = 11.5◦ as in [8]. The interaural feature noise was
set to σild = 1 dB, reflecting the range of ILD thresholds
for pure tones [44]. The starting value for the monau-
ral feature noise was set to σmon = 3.5 dB similarly to
in [6]. The response noise standard deviation was set to
σm = 17◦ as the sensorimotor scatter found in [15]. Sec-
ond, in an iterative procedure, σm was optimized to min-
imize the residual error relative to the PE metric and,
similarly, σmon was adjusted to match the QE metric.
Then, σild was decreased to reach the LE metric. These
steps were reiterated until the residual errors between ac-
tual and simulated metrics was less than the respective
threshold. This procedure limited the σm to the interval
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TABLE I: Parameters estimated to fit the models to
actual subjects’ performance [28] for both model
variants where either magnitude profiles (MPs) or
gradient profiles (GPs) were the monaural spectral

features.

Variant Subject σP,ϵ [deg] σild [dB] σmon [deg] σm [deg]

MP

NH12 11.50 0.50 3.40 8.50

NH15 10.00 0.50 3.20 14.27

NH16 11.50 1.00 3.60 11.00

NH17 11.50 0.50 4.10 14.30

NH18 11.50 1.00 6.50 14.00

GP

NH12 11.50 0.50 1.10 8.50

NH15 11.00 0.50 1.25 14.30

NH16 11.50 1.00 1.25 11.50

NH17 11.50 1.00 1.60 14.00

NH18 11.50 1.00 2.10 15.00

TABLE II: Predicted performance metrics averaged
across all subjects and directions (±1 standard

deviation across subjects) for both model variants.
Actual data from [28].

Metric Actual
Predicted

MP GP

LE [deg] 12.25± 2.43 12.97± 2.50 13.18± 2.66

PE [deg] 32.73± 3.44 31.20± 4.04 29.78± 4.01

QE [%] 7.83± 7.11 8.32± 5.75 9.80± 5.23

[5◦, 20◦] and used a step-size of 0.1◦, σmon was defined in
the interval [0.5, 10] dB with a step-size of 0.05 dB; σild

was defined in the interval of [0.5, 2] dB with a step-size
of 0.5 dB. If the procedure did not converge, we decreased
σP,ϵ by 0.5◦ and reattempted the parameter optimization
procedure.

III. RESULTS

We first report the quality of model fits to the cal-
ibration data itself [28] in Sec. IIIA. Then, Sec. III B
quantitatively evaluates the simulated performances of
our two model variants and of two previously proposed
models against data from two additional sound localiza-
tion experiments.

A. Parameter fits

The parameter estimation procedure was done with
both model variants, based on either tMP or tGP, and for
five individuals tested in a previous study [28]. In that
experiment, naive listeners were asked to localize broad-
band noise bursts of 500 ms duration presented from
various directions on the sphere via binaural rendering
through headphones based on listener-specific directional
transfer functions. The subjects were wearing a head-

mounted display and were asked to orient the pointer in
their right hand to the perceived sound-source direction.
The fitting procedure converged for both models and all
subjects. Notably, subject NH15 required to reduce the
step size of σm to 0.1◦ to meet the convergence crite-
ria. Tab. I reports the estimated parameters σm, σP,ϵ,
σmon and σild for every listener. The amount of response
noise was similar for both model types. Tab. II contrasts
the predicted performance metrics with the actual ones,
averaged across listeners.

More in detail, Fig. 5 compares predicted localization
performance to the actual performance of subjects esti-
mating the direction of a noise burst for different spher-
ical segments [28]. The predicted LEs and PEs, both as
functions of the actual lateral and polar angles, respec-
tively, were in good agreement with those from the actual
experiment. Instead, the simulated QE metric failed to
mimic the front back asymmetries present in four sub-
jects. Finally, only small differences were observed be-
tween the two feature spaces tMP and tGP.

Contribution of model stages

Fig. 6 illustrates the effects of different model stages
on target-specific predictions. The example shows direc-
tion estimations from subject NH16 localizing broadband
noise bursts [28] and the corresponding predictions of the
model based on tGP with different configurations of pri-
ors and response noise: without both (a), with priors
only (b), and with both (c). While adding response noise
scatters the estimated directions equally across spatial
dimensions (compare c to b), including the spatial prior
only affects the polar dimension (compare b to a). As
observed in the actual responses, the prior causes more
of the simulated estimations to be biased towards the
horizon (0◦ and 180◦).

In order to quantify the effect of introducing the spa-
tial prior in the polar dimension, we computed the polar
gain as a measure of accuracy [13] for both simulated
and the actual responses. This metric relies on two re-
gressions performed on the baseline condition, separating
between targets in the front and back. The linear fits for
the baseline condition are defined as:

ϕe = gϕ · ϕa + bϕ (15)

with ϕe being the estimated polar angles and ϕa being the
actual polar angles. The parameters are the localization
bias bϕ in degrees, which is typically very small, and the
dimensionless localization gain gϕ, which can be seen as
a measure of accuracy [8, 13]. The regression fits only in-
corporate ϕe that deviate from the regression line by less
than 40◦. Since that definition of outliers depends on the
regression parameters, this procedure is initialized with
bϕ = 0◦ and gϕ = 1 and re-iterated until convergence. In
our analysis, only the frontal positions were considered.
The polar gain of the actual responses, averaged over
subjects, was 0.50, indicating that our subjects showed a
localization error increasing with the angular distance to
the horizontal plane. For the models without the prior,
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FIG. 5: Sound-localization performance as functions of sound-source direction. Open symbols: Predictions obtained
by the two model’s variants based on either spectral magnitude profiles (MPs) or gradient profiles (GPs). Filled

grey symbol: Actual data from [28]. Top row: Lateral error, calculated for all targets with lateral angles of
−65◦ ± 25◦, −20◦ ± 20◦, 20◦ ± 20◦, and 65◦ ± 25◦. Center and bottom rows: Polar error and quadrant error rates,
respectively, calculated for all median-plane (±30◦) targets with polar angles of 0◦ ± 30◦, 90◦ ± 60◦, and 180◦ ± 40◦.

the predicted polar gain was 1.00 (Fig. 6a). The polar
gain obtained by the model including the prior was 0.62
(Fig. 6b and c) showing a better correspondence to the
actual polar gain. Hence, the introduction of the prior
belief improved the agreement with the actual localiza-
tion responses by biasing them towards the horizon.

B.Model evaluation

The performance evaluation was done at the group-
level. For our model, we used the five calibrated pa-
rameter sets with templates T (φ) based on the individ-
uals’ HRTFs as “digital observers”. Group-level results
of these digital observers were then evaluated for two
psychoacoustic experiments with acoustic stimuli as in-
put that differed from the baseline condition with a flat
source spectrum and individual HRTFs.

In addition, we compared our results with the ones of
two previously published models. The first one, described
by Reijniers et al. [6], is probabilistic and able to jointly
estimate the lateral and polar dimensions similar to the
model described in this work. Reijniers’ model deviates
from the current model since it relies on a different fea-
ture extraction stage, uses a uniform spatial prior distri-

bution, does not include response noise (Eq. 13) and does
not fit individualized parameters. The second model, de-
scribed by Baumgartner et al. [15], estimates sound posi-
tions only in the polar dimension. Nevertheless, it shares
a similar processing pipeline with the current model in
that it considers both a perceptually relevant feature ex-
traction stage, includes response noise, and considers in-
dividualized parameters. The main differences with our
model resides on the incorporation of a directional prior
and of the lateral dimension per se, and on how the dis-
tance between target and templates is computed. Par-
ticularly, this previous work resorted on the l2-norm to
implement the template comparison procedure which is
substantially different from our likelihood function. At
the moment, this model is commonly used by the scien-
tific community that is interested in elevation perception
based on monaural spectral features for sound direction
estimation [e.g., 45, 46]. We will refer to these two models
as reijniers2014 and baumgartner2014, respectively.

1. Effects of non-individual HRTFs

In first evaluation, sounds were spatialized using non-
individualized HRTFs [29]. Originally, eleven listeners
localized Gaussian white noise bursts with a duration
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FIG. 6: Effects of likelihood, prior, and response noise
on predicted response patterns as a result of modeling
the directional localization of broadband noise bursts.
a) Likelihood obtained by sensory evidence (i.e, no
spatial prior and no response noise). b) Bayesian

inference (with the spatial prior but no response noise).
c) Full model (with prior and response noise). Gray:
actual data of NH16 from [28]. Black: estimation

obtained by the model considering spectral gradient
profiles (GPs). Red cross: frontal position. Blue dashed

lines separate regions of front-back confusions.

of 250 ms and sound directions were randomly sampled
from the full sphere. Subjects were asked to estimate the
direction of sounds that were spatialized using their own
HRTFs in addition to sounds that were spatialized using
up to 4 HRTFs from other subjects (21 cases in total).
With the aim to reproduce these results, we had our pool
of five digital listeners localize sounds from all available
directions that were spatialized with their own individual
HRTFs (Own) as well as sounds that were spatialized
with HRTFs from the other 4 individuals (Other). We

thus considered all inter-listener HRTF combinations for
the non-individual condition.

Fig. 7 summarizes the results obtained for localiza-
tion experiments with own and other HRTFs. In the
Own condition, there is a small deviation between the
actual results from [29] and our model predictions. This
mismatch reflects the fact that the digital observers rep-
resent a different pool of subjects (taken from [28]) tested
on a slightly different experimental protocol and setup.
Differences in performance metrics are small between the
two feature spaces, as already reported during parame-
ter fitting. Predictions from the baumgartner2014model
are only possible for the polar dimension. Instead, the
model reijniers2014 predicted too small errors, as also
observed in previous simulations employing this model
[24, 47].

In the Other condition, both of our model variants
predicted a smaller degradation for the lateral dimen-
sion as compared to the actual data. The lateral errors
predicted by reinjiers2014 increased moderately but
remained too small in comparison to the actual data.
In the polar dimension, both model variants resulted
in increased PEs and QEs, but the amount of increase
was larger and more similar to the actual data for the
variant equipped with gradients profiles, especially with
respect to QE. The predictions from baumgartner2014
were very similar to the model based on spectral gra-
dients, as expected given the similar method to extract
monaural spectral feature. Instead, the simulations form
reijniers2014 demonstrates how this model reported
super-human performances as already demonstrated in
previous analysis [24].

2. Effects of rippled-spectrum sources

The second evaluation tested the effect of spectral
modulation of sound sources on directional localization
in the polar dimension [30]. In that study, localization
performance was probed by using noises in the frequency
band [1, 16] kHz which spectral shape were distorted with
a sinusoidal modulation in the log-magnitude domain.
The conditions considered different ripple depths, defined
as the peak-to-peak difference of the log-spectral magni-
tude, and ripple densities, defined as the sinusoidal pe-
riod along the logarithmic frequency scale. The actual
experiment tested six trained subjects in a dark, anechoic
chamber listening to the stimuli via loudspeakers. The
sounds lasted 250 ms and were positioned between lateral
angles of ±30◦ and polar angles of either 0± 60◦ for the
front or 180 ± 60◦ for the back. A “baseline” condition
included a broadband noise without any spectral modu-
lation (ripple depth of 0dB). To quantify the localization
performance, we used the polar error rate (PER) as they
defined [30]. For every condition, two baseline regres-
sions are computed as in Sec. III A allowing to quantify
the PER as the ratio of actual responses deviating by
more than 45◦ from the predicted values of the baseline
regression.

Fig. 8 shows the results of testing the fitted models
with rippled spectra. In the baseline condition, our model
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FIG. 7: Localization performance with individual (Own) and non-individual (Other) HRTFs. Actual data from [29]
(data middlebrooks1999). Model predictions for two model variants: spectral magnitude profiles (MPs) and

spectral gradient profiles (GPs). As references, predictions by the models reijniers2014 [6] and
baumgartner2014 [15] are shown. Note that baumgartner2014 does not predict the lateral error.

exhibited similar performances to those obtained in the
actual experiment, whereas baumgartner2014 underesti-
mates the baseline performance for this particular error
metric. In the ripple conditions, actual listeners demon-
strated poorest performance for ripple densities around
one ripple per octave and a systematic increase in error
rate with increasing ripple depth. These effects were well
predicted by the model variant based on gradient pro-
files, similar to the predictions from baumgartner2014.
In contrast, both reijnier2014 and our model based on
magnitude profiles were not able to reflect the effects of
ripple density and depth as present in the actual data.
Hence, the positive gradient extraction appears crucial
processing step for predicting sagittal-plane localization
of sources with a non-flat spectrum.

IV. DISCUSSION

The proposed functional model aims at reproducing
listeners’ performances when inferring the sound-source
direction.The model formulation relies on Bayesian infer-
ence [25] as it integrates the sensory evidence for spatial
directions obtained by combining binaural and monaural
features [13] with a spatial prior [8]. Our approach con-
siders uncertainties about the various sensory features, as

in [6], in addition to the noise introduced by pointing re-
sponses [15]. These model components enabled us to suc-
cessfully match overall performance metrics (LE, PE, and
QE) for five subjects (see Tab. II) and within spatially re-
stricted areas (Fig. 5). Importantly, with the inclusion of
a spatial prior the model was able to adequately explain
listeners’ response biases towards the horizontal plane.
Compared to previous models [6, 15], our model bet-
ter predicted the group-level effects of non-individualized
HRTFs and rippled source spectra, yet only if positive
spectral gradient profiles (tGP), rather than magnitude
profiles, served as monaural spectral features.

The validity of the model is limited to scenarios
where both the source and subject are spatially static
and situated in an acoustic free-field. Additionally, the
current model evaluation only considered broadband and
stationary sounds. For this reason, we have restricted the
extraction of ITDs and ILDs to simple approximations
that are sufficient for this set of conditions, as demon-
strated both in our present work as well as in previous
literature [18, 32] by the high accuracy of estimated lat-
eral angles, where those features are arguable most im-
portant. The model, as presented here, does not cur-
rently account for feature-specific non-linearities required
to predict phenomena like the precedence effect [48, 49]
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FIG. 8: Effect of spectral ripples in the source spectrum on sound localization performance in the median plane.
Right-most bottom panel: localization error rates obtained without spectral ripples serving as reference. Top and
bottom left panels: Differences to the reference condition shown in the right-most bottom panel. In addition to

predictions from the two model variants (MP and GP), predictions from reijniers2014 [6] and
baumgartner2014 [15] as well as actual data from [30] (data macpherson2003) as shown. Note that ripple densities
were varied at a fixed ripple depth of 40 dB and ripple depths were varied at a fixed ripple density of one ripple per

octave.

and cannot readily be applied to non-stationary sounds,
such as speech, without extensions to the feature extrac-
tion procedure. Nevertheless, from an application point
of view, the proposed model can be a useful tool to as-
sess the perceptual validity of a non-individual HRTF
dataset. As an example, one can use the model’s predic-
tions to quantify differences in expected direction estima-
tion performance for (input) sounds that are spatialized
with generic vs. individual HRTFs [50].

In this work, the most probable source position is
selected from the posterior distribution via the MAP de-
cision rule. We preferred this widely-used estimator over
the equally-common mean estimator to adequately deal
with multiple modes of the posterior distribution gener-
ated by poor discrimination between front-back positions
along sagittal planes. On the other hand, one could argue
that the MAP estimator disproportionately biases direc-
tion estimates towards the mode where prior probability
is large, at least under conditions of high sensory uncer-
tainty. One of many possible alternative decision func-
tions that may better describe stochastic human localiza-
tion responses is posterior sampling [8]. With this deci-
sion function the model would probabilistically sample its
best perceptual estimate from the full posterior distribu-
tion. Although often considered suboptimal, this strat-

egy would allow an observer faster exploration and flexi-
ble adaptation to novel environmental statistics [51]. Im-
portantly, a different decision rule might affect the here-
estimated magnitudes of the sensory and motor noise.
Therefore, comparative evaluations of different estima-
tors would benefit from a more robust fitting procedure,
which falls outside of the scope of the current study.

The model incorporates several non-acoustic compo-
nents because they are deemed crucial to explain hu-
man performances [2, 52]. Extending the reijniers2014
model [6] by incorporating a spatial prior and response
scatter appears vital to explain listeners’ estimation pat-
terns. Without these components, fitting the model to
the polar performance metrics was unfeasible [24]. First,
response noise allowed us to control response precision at
a local level (LE and PE) while leaving global errors (QE)
largely unaffected. Instead, the occurrence rate of such
global errors depends predominantly on the noise vari-
ance that is added to the monaural features. Second, the
spatial prior shapes the response patterns by introduc-
ing a bias towards the horizon [41]. As shown in Fig. 6,
the prior contribution is visible in the polar component
of the simulated responses which cluster around the eye-
level direction. Additional evidence is given by the polar
gain measure as reported in Sec. III A where the inte-
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gration of prior beliefs leads to better matching perfor-
mances in the vertical dimension. Our formulation of the
spatial prior was extrapolated from previous work [8] in
the sense that its spatial distribution was assumed to be
front-back symmetric. Discrepancies observed between
actual and predicted global errors (Fig. 5) indicate that
this assumption is likely incorrect and points towards an
asymmetric prior instead. Nonetheless, at this point we
can only speculate about the reasons behind the existence
of such a long-term prior in spatial hearing. It potentially
reflects the spatial distribution of sound sources during
everyday exposure [53], or it may stem from an evolution-
ary emphasis on high relevance auditory signals [4], or
could be related to the center of gaze as observed in barn
owls [54] although the processing underlying the spatial
inference mechanism might be different in mammals [3].

While the model currently only considers the static
scenario, it sets the foundations for future work on pre-
dicting sound localization behavior in realistic environ-
ments. Evaluating the environment’s dynamics as a
chain of consecutive events as in [7] may be a promis-
ing approach. Sequential updating of one’s beliefs, from
prior to posterior to prior again, comes natural under
the Bayesian inference scheme [25]. This makes the here-
proposed model well suited as a basis for such investi-
gations. Thus, a rich set of modulators might influence
spatial hearing and the model’s prior belief is an entry
point to account for many of those, c.f.: evidence accu-
mulation to track source statistics [26, 55], visual influ-
ences on auditory spatial perception [56], and auditory
attention to segregate sources [57]. Selective temporal
integration appears important to deal with the spatial
information of many natural sources and their reflections
competing in realistic scenarios. This aspect could be
partially addressed by integrating recent findings related
to interaural feature extraction [58]. To this end, the
model will need to consider the dynamic interaction be-
tween the listener and the acoustic field. Consequently,
these extensions will potentially enable the model to ac-
count for subject movements [9] and simultaneous track-
ing of source movements [59] while extracting spatial in-
formation from echoic scenarios [60].

V. CONCLUSIONS

We proposed a computational auditory model for
the perceptual inference of sound-source direction based
on Bayesian inference. From a binaural input, inter-
aural and monaural spatial features jointly provide the
sensory evidence to estimate the sound direction. The

model parameters are interpretable and related to sen-
sory noise, prior uncertainty, and response noise. Hav-
ing fitted the model parameters to match subject-specific
performance in a baseline condition, the model accu-
rately predicted the localization performance observed
for test conditions with non-individualized HRTFs and
spectrally-modulated source spectra. Regarding spectral
monaural feature extraction, the model variant evaluat-
ing gradient profiles performed best.

The proposed model seems useful to assess the per-
ceptual validity of HRTFs. The model’s domain is cur-
rently limited to static conditions, but it seems to pro-
vide a good basis for future extensions to spatially dy-
namic situations, spectro-temporally dynamic signals like
speech and music, and reverberant environments.
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