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ABSTRACT 10 

Genetic diversity is a key component of population persistence. However, most genetic investigations of 11 

natural populations focus on a single species, overlooking opportunities for multispecies conservation 12 

plans to benefit entire communities in an ecosystem. We developed a framework to evaluate genomic 13 

diversity within and among many species and demonstrate how this riverscape community genomics 14 

approach can be applied to identify common drivers of genetic structure. Our study evaluated genomic 15 

diversity in 31 co-distributed native stream fishes sampled from 75 sites across the White River Basin 16 

(Ozark Mountains, USA) using SNP genotyping (ddRAD). Despite variance in genetic divergence, 17 

general spatial patterns were identified corresponding to river network architecture. Most species (N=24) 18 

were partitioned into discrete sub-populations (K=2–7). We used partial redundancy analysis to compare 19 

species-specific genomic diversity across four models of genetic structure: Isolation by distance (IBD), 20 

isolation by barrier (IBB), isolation by stream hierarchy (IBH), and isolation by environment (IBE). A 21 

significant proportion of intraspecific genetic variation was explained by IBH (x�=62%), with the 22 

remaining models generally redundant. Our results indicated that gene flow is higher within rather than 23 

between hierarchical units (i.e., catchments, watersheds, basins), supporting the Stream Hierarchy Model 24 

and its generality. We discuss our conclusions regarding conservation and management and identify the 25 

8-digit Hydrologic Unit (HUC) as the most relevant spatial scale for managing genetic diversity across 26 

riverine networks. 27 

 28 
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1 | INTRODUCTION 32 

Genetic diversity is a quantitative metric applied across spatial and temporal scales (Huber et al., 2010; 33 

Leonard et al., 2017) tied to the evolutionary trajectories of species (Shelley et al., 2021). It also serves as 34 

a barometer for population-level persistence in accurately reflecting demographic history, connectivity, 35 

and adaptive potential (Davis et al., 2018; DeWoody et al., 2021; Paz-Vinas et al., 2018). Surprisingly, 36 

and despite its many accolades, genetic diversity is often underutilized in conservation planning (Laikre, 37 

2010; Paz-Vinas et al., 2018), in part due to a suite of affiliated necessities (i.e., specialized equipment, 38 

technical expertise, and required externalities such as genomics centers), all of which expand its bottom 39 

line (Blanchet et al., 2020). Moreover, when assessment does occur, it is most often limited to populations 40 

within a single species or a small cadre of entities within a species-group, thus minimizing the potential 41 

for much-needed generalizations (Anthonysamy et al., 2018). 42 

When the concept of genetic diversity is applied in a comparative sense across co-distributed 43 

species, it provides a solid framework from which community-wide management and policy can be 44 

defined. For example, multispecies assessments can reveal common dispersal barriers (Pilger et al., 2017; 45 

Roberts et al., 2013), congruent distributions of genetic diversity (Hotaling et al., 2019; Ruzich et al., 46 

2019), relevant spatial scales for management (Blanchet et al., 2020), and associations among species 47 

characteristics and genetic diversity (Bohonak, 1999; Pearson et al., 2014). Despite its potential 48 

complexity, a comprehensive management strategy can emerge, one more appropriately aligned towards 49 

managing numerous species, with long-term conservation goals beneficial to an entire community 50 

(Blanchet et al., 2017). In addition, it also tacitly encourages support by stakeholders for an overarching 51 

management plan, one representing a consensus across multiple species and ecosystems (Douglas et al., 52 

2020). 53 

The spatial structure of genetic variation is primarily dictated by gene flow and genetic drift 54 

within a species (Holderegger et al., 2006), with the uniformity of its distribution (i.e., panmixia; 55 

Rosenberg et al., 2005) serving as an implicit null hypothesis. The de facto alternative is that genetic 56 

variation is spatially autocorrelated (i.e., isolation by distance, IBD; Wright, 1943). For most species, a 57 
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significant relationship between genetic dissimilarity and geographic distance is the expectation 58 

(Meirmans, 2012), yet the strength of this association will vary (Bohonak, 1999; Singhal et al., 2018). For 59 

example, genetic divergence may be promoted by environmental dissimilarities (i.e., isolation by 60 

environment, IBE; Wang & Bradburd, 2014) or by physical barriers to dispersal (i.e., isolation by barrier, 61 

IBB; Cushman et al., 2006; Ruiz-Gonzalez et al., 2015).  62 

For aquatic biodiversity, patterns of genetic divergence will also be governed by the structure and 63 

architecture of the riverine network (in contemporary and historic representations). Organisms within 64 

such dendritic networks are demonstrably impacted by the physical structure of the habitat (Peterson et 65 

al., 2013; White et al., 2020), with genetic relatedness as a surrogate for the underlying structural 66 

hierarchy (Hughes et al., 2009). While this is most apparent within the contemporary structure of river 67 

networks, their historic structure, i.e., paleohydrology, also serves to bookmark genetic diversity 68 

(Mayden, 1988; Strange & Burr, 1997). Moreover, the hierarchical complexity of these networks will 69 

likewise dictate population processes, as reflected within genetic diversities and divergences (Chiu et al., 70 

2020; Hopken et al., 2013; Thomaz et al., 2016). Thus, spatial genetic structuring within such biodiversity 71 

should reflect isolation by stream hierarchy (IBH; sensu Stream Hierarchy Model (SHM); Meffe & 72 

Vrijenhoek, 1988). The initial genesis for the SHM was narrowly defined within desert stream fishes of 73 

the American West (Meffe and Vrijenhoek, 1988). An assessment of its generality, as compared to 74 

alternative isolating regimes, was thus imperative (Brauer et al., 2018; Hopken et al., 2013).  75 

The factors that cause genetic structure can be confounding on the one hand (Perez et al., 2018) 76 

but also correlated on the other (Meirmans, 2012; Wang & Bradburd, 2014). Different mechanisms can 77 

mask the occurrence of major drivers by promoting those more ancillary with regard to single-species 78 

assessments. The emerging results are twofold: Potentially erroneous conclusions, which in turn beget 79 

ineffective management strategies. These issues can be effectively mitigated using replicated multispecies 80 

assessments to allow influential major processes to surface, thus effectively categorizing both 'signal and 81 

noise' components with the former driving patterns of regional biodiversity (Roberts et al., 2013). 82 
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Hypotheses relating to genetic structure are best contrasted by partitioning available genetic 83 

variation via partial redundancy analysis (Borcard et al., 1992; Chan & Brown, 2020), thus allowing the 84 

contrast of multiple alternative models. In turn, the best-performing model should be substantially 85 

correlated with other (more redundant) models but also provide the best explanation for residual variation 86 

once competing models adequately explain antecedent variability (Cushman et al., 2006). If alternative 87 

models explain significant amounts of genetic variation, then the null hypothesis of panmixia would be 88 

rejected. The main drivers of genetic diversity should then emerge as comparisons are made across the 89 

community's many species. This approach also allows the appropriate scale to be defined at which genetic 90 

and conservation perspectives can be integrated to optimize benefits across species. 91 

Our objective was to establish a framework from which the generality of the SHM could be tested 92 

across constituents of a riverscape fish community. This framework would allow key drivers to be 93 

identified, with a concurrent expectation of common processes re-emerging within these ecological 94 

networks as the analysis was processed. We accomplish this by comparing patterns of genetic diversity 95 

across 31 fish species within the White River Basin of the Ozark Mountains (AR/MO, USA). For each, 96 

we contrasted four alternative models (Cushman et al., 2013) representing major drivers of genetic 97 

structure: Isolation by distance (IBD), isolation by stream hierarchy (IBH), isolation by barrier (IBB), and 98 

isolation by environment (IBE). Our data represent thousands of SNPs (single nucleotide 99 

polymorphisms), as derived via recent advances in high-throughput sequencing (Peterson et al., 2012). 100 

This has, in turn, allowed thousands of individuals to be genotyped as a financially and logistically 101 

practical research endeavor across multiple non-model species (da Fonseca et al., 2016). We offer our 102 

approach as a potential blueprint for developing more comprehensive genetic management plans at the 103 

community level. 104 

 105 

 106 

 107 

 108 
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2 | MATERIALS AND METHODS 109 

2.1 | Study system 110 

Our study system, the White River Basin, is located within the Western Interior Highlands of North 111 

America, a previous component of the more extensive pre-Pleistocene Central Highlands extending north 112 

and east but subsequently subsumed by numerous glacial advances into two disjunct sub-components: 113 

Western Interior Highlands (i.e., Ozark Plateau, Ouachita Mountains), and Eastern Highlands (i.e., 114 

Appalachian Plateau, Blue Ridge, Appalachian Highlands) (Mayden, 1985). The Ozark Plateau remained 115 

an unglaciated refugium with elevated endemism and diversity (Warren et al., 2000). The White River 116 

Basin was established by at least Late Pliocene (>3 MYA; Jorgensen, 1993), but its eastern tributaries 117 

were captured by the Mississippi River when it bisected the basin during the Pleistocene (Mayden, 1988; 118 

Strange & Burr, 1997). This paleohydrologic signature may remain in contemporary patterns of 119 

population divergence in the White River Basin, as manifested by replicated patterns of genetic structure 120 

between eastern and western populations. 121 

 122 

2.2 | Sampling 123 

The sampling region for our study is composed of the White River and St. Francis River basins (AR/MO) 124 

(Figure 1). Both are tributaries to the Mississippi River, draining 71,911 km2 and 19,600 km2, 125 

respectively. Five sub-basins are apparent: St. Francis, Upper White, Black, Lower White, and Little Red 126 

rivers (Figure 1). These are further subdivided into the following hierarchical Hydrologic Units (HUC) 127 

(USGS & USDA-NRCS, 2013; USGS, 2021) representing different spatial scales: HUC-4 Subregions 128 

(N=2); HUC-6 Basins (N=3); HUC-8 Subbasins (N=19); HUC-10 Watersheds (N=129) (Figure 1). 129 

Sampling was approved by the University of Arkansas Institutional Animal Care and Use 130 

Committee (IACUC: #17077), with collecting permits as follows: Arkansas Game & Fish Commission 131 

(#020120191); Missouri Department of Wildlife Conservation (#18136); US National Parks Service 132 

(Buffalo River Permit; BUFF-2017-SCI-0013). Fishes were sampled using seine nets in wadable streams 133 

during low flow between June 2017 and September 2018. Time spent sampling a site ranged from 30–60 134 
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mins, with a target of 5-10 individuals/species encountered. Individuals were euthanized by immersion in 135 

tricaine methanesulfonate (MS-222) at a concentration of 500 mg/L, buffered to pH=7 with subsequent 136 

preservation in 95% ethanol. Formal species diagnosis occurred in the laboratory, and the right pectoral 137 

fin was removed from each specimen and stored in 95% ethanol at -20 °C prior to subsequent DNA 138 

extraction. Specimens are housed at the Arkansas Conservation and Molecular Ecology Lab, University 139 

of Arkansas, Fayetteville. 140 

 141 

2.2 | Genomic data collection and filtering 142 

Genomic DNA was isolated (Qiagen Fast kits; Qiagen Inc.) and quantified by fluorometry (Qubit; 143 

Thermo-Fisher Scientific). Individuals were genotyped using double-digest restriction site-associated 144 

DNA (ddRAD) sequencing (Peterson et al., 2012), with procedures modified appropriately (Chafin et al., 145 

2019). Standardized DNA amounts (1,000 ng) were digested at 37°C with high-fidelity restriction 146 

enzymes MspI (5’-CCGG-3') and PstI (5’-CTGCAG-3') (New England Biosciences), bead-purified 147 

(Ampure XP; Beckman-Coulter Inc.), standardized to 100 ng, and then ligated with custom adapters 148 

containing in-line identifying barcodes (T4 Ligase; New England Biosciences). Samples were pooled in 149 

sets of 48 and size-selected from 326-426 bp, including adapter length (Pippin Prep; Sage Sciences). 150 

Illumina adapters and i7 index were added via 12-cycle PCR with Phusion high-fidelity DNA polymerase 151 

(New England Biosciences). Three libraries (3x48=144 individuals/lane) were pooled per lane and single-152 

end sequenced on the Illumina HiSeq 4000 platform (1x100bp; Genomics & Cell Characterization Core 153 

Facility; University of Oregon, Eugene). Quality control checks, including fragment analysis and 154 

quantitative real-time PCR, were performed at the core facility before sequencing.  155 

Raw Illumina reads were demultiplexed, clustered, filtered, and aligned in IPYRAD v.0.9.62 156 

(Eaton & Overcast, 2020). Reads were first demultiplexed, allowing up to one barcode mismatch, 157 

yielding individual FASTQ files containing raw reads (N=3,060 individual files). Individuals averaged >2 158 

million reads, with those extremely low removed ( < x� – 2s) to reduce errors from poor quality 159 

sequencing. Individuals were screened for putative hybrids (Zbinden, Douglas, et al., 2022), and those 160 
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with admixed ancestry were removed. Raw sequence reads were partitioned by species (N=31) and 161 

aligned de novo in IPYRAD (Eaton & Overcast, 2020). Adapters/primers were removed, and reads with >5 162 

bases having Phred quality <20 or read length <35 bases (after trimming) were discarded. Clusters of 163 

homologous loci were assembled using an 85% identity threshold. Putative homologs were removed if 164 

any of the following were met: <20x and >500x coverage per individual; >5% of consensus nucleotides 165 

ambiguous; >20% of nucleotides polymorphic; >8 indels present; or presence in <15% of individuals. 166 

Paralogs were identified (and subsequently removed) as those clusters exhibiting either >2 alleles per site 167 

in consensus sequence or excessive heterozygosity (>5% of consensus bases or >50% heterozygosity/site 168 

among individuals).  169 

Biallelic SNP panels for each species were then visualized and filtered with the R package 170 

RADIATOR (Gosselin, 2020). To ensure high data quality, loci were removed if: Monomorphic; minor 171 

allele frequency <3%; Mean coverage <20 or >200; Missing data >30%; SNP position on read >91; and if 172 

HWE lacking in one or more sampling sites (α = 0.0001). To reduce linkage disequilibrium, only one 173 

SNP per locus was retained (that which maximized minor allele count). Finally, singleton 174 

individuals/species at a sampling site and those with >75% missing data in the filtered panel were 175 

removed. 176 

 177 

2.3 | Genetic structure 178 

Genetic structure was assessed using the resultant SNP genotypes. For each species (N=31), pairwise FST 179 

(Weir & Cockerham, 1984) was calculated among sites (HIERFSTAT; Goudet et al., 2017). Jost's D was 180 

also quantified among sites and globally, as it is based on the effective number of alleles rather than 181 

heterozygosity and hence less biased by sampling differences (Jost, 2008). Additional global intraspecific 182 

FST analogs were also quantified for comparison: Multi-allelic GST (Nei, 1973) and unbiased G"ST 183 

(Meirmans & Hedrick, 2011) (MMOD; Winter, 2012). We tested for isolation by distance (IBD) using both 184 

linearized FST and Jost's D. Their relationships with river distance (log-transformed) were assessed using 185 
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the Mantel test (Mantel & Valand, 1970) (ECODIST; Goslee & Urban, 2020), then visualized using linear 186 

regression (Rousset, 1997). 187 

Admixture analysis of population structure and ancestry coefficients were estimated using sparse 188 

non-negative matrix factorization (sNMF) (Frichot et al., 2014). We ran sNMF for each species, with 20 189 

repetitions per K value (1 to N sites or 20, whichever was smallest) and α=100 (LEA; Frichot & François, 190 

2015). The best K (i.e., number of distinct gene pools) from each sNMF run minimizes the cross-191 

validation entropy criterion (Alexander & Lange, 2011). The best K was then used to impute missing data 192 

(impute function using method=‘mode' in LEA). The sNMF algorithm was then repeated (as above) using 193 

imputed genotypes. The resulting Q-matrices of ancestry coefficients were used to map population 194 

structure and served as the "IBB" (isolation by barrier) model below.  195 

We further assessed among-site genetic variation between Hydrologic Units (HUCs) and discrete 196 

population clusters (determined via sNMF) using analysis of molecular variance (AMOVA) (Excoffier et 197 

al., 1992). AMOVA was performed for each species at four HUC levels (4-, 6-, 8-, and 10-digit) to 198 

compare the amount of genetic variation among HUCs, among all sites, and among sites within HUCs. 199 

The Watershed Boundary Dataset (USGS, 2021) assigned HUC classifications to each site. AMOVA was 200 

then performed for each species with genetic clusters K>1 to compare the amount of genetic variation 201 

among populations, among all sites, and among sites within populations. The variance components were 202 

used to estimate Φ-statistics (analogous to F-statistics): ΦCT = the genetic variation among groups (either 203 

HUCs or discrete populations); ΦST = the genetic variation among sites across all groups; and ΦSC = the 204 

genetic variation among sites within groups. The wrapper R package POPPR (Kamvar et al., 2015) was 205 

used to implement the PEGAS (Paradis, 2010) version of AMOVA with default settings. 206 

 207 

2.4 | Modelling genetic structure 208 

We employed a variation partitioning framework (Capblancq & Forester, 2021; Chan & Brown, 2020) to 209 

compare four models of genetic structure for each species based on: IBD, IBB, IBH, and IBE. Individual 210 

genetic variation within each species was reduced to major axes of variation using principal components 211 
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analysis (PCA) on each SNP panel. The appropriate number of PCs retained for each species was based 212 

on observed eigenvalues, Rnd-Lambda (Peres-Neto et al., 2005), implemented in the R package 213 

PCDIMENSION (Coombes & Wang, 2019). Individual scores on the retained PCs represented individual 214 

genetic variation. 215 

The first model (IBD) relied on river network distance measured between individuals (RIVERDIST; 216 

Tyers, 2017). The resulting distance matrix was then decomposed into positively correlated spatial 217 

eigenvectors using distance-based Moran's eigenvector maps (Chan & Brown, 2020) within the R 218 

package ADESPATIAL (Dray et al., 2020). 219 

The second model (IBB) was based on individual population coefficients, i.e., population 220 

structure, from the Q-matrix generated above using sNMF. The assumption was that population structure 221 

indicates a reduction of gene flow between discrete populations due to a barrier (or high resistance) to 222 

dispersal. Note: This model could not be incorporated for species in which population structure was not 223 

apparent (K=1), and these species were thus tested using only three models.  224 

The third model (IBH) was constructed using four levels of HUCs (4-, 6-, 8-, and 10-digit) that 225 

characterized an individual's position within the stream hierarchy, i.e., hydrologic unit (USGS, 2021). We 226 

transformed the data matrix of individuals by HUC so that each unique HUC was represented at each 227 

corresponding level as a binary 'dummy' variable. 228 

The fourth model (IBE) relied on contrasting environmental variation across sites that harbored 229 

individuals. Environmental variables were taken from a compendium of 281 factors related to five major 230 

classes: hydrology/physiography, climate, land cover, geology/soil composition, and anthropogenic 231 

impact (HYDRORIVERSv.1.0; Linke et al., 2019). Variables for each site were extracted prior to being 232 

separated into the five major classes, with invariant factors and those exhibiting collinearity being 233 

removed in a stepwise manner (USDM; Naimi, 2013) until each had a variation inflation factor (VIF) <10. 234 

Standardization occurred by subtracting means and dividing by standard deviations. Variables within each 235 

class were selected for subsequent analyses using forward selection (Blanchet et al., 2008). 236 
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In summary: Variables were first tested for a relationship with the response data (individual 237 

genetic variation) using redundancy analysis (RDA). If the relationship was significant (α < 0.05), a 238 

stepwise forward procedure was carried out such that variables were selected if the adjusted R2 of the 239 

model increased significantly (α < 0.05) and the adjusted R2 did not exceed that of the overall model. This 240 

procedure was employed using the ordiR2step function in the R package VEGAN (Oksanen et al., 2020). 241 

The selected variables from each of the five classes were combined into a single matrix, then reduced to a 242 

set of PCs using robust principal components analysis (ROBPCA; Hubert et al., 2005). The number of 243 

PCs retained for each category was determined following Hubert and coworkers (2005), as implemented 244 

in the R package ROSPCA (Hubert et al., 2016). 245 

Individual genetic variation (a matrix of PCs for each species) was then partitioned among the 246 

four explanatory models of genetic structure (Partial redundancy analysis; Anderson & Legendre, 1999; 247 

Capblancq & Forester, 2021). This allowed an estimation of individual genetic variation explained by 248 

each model, all models combined, and then each "pure" model after partitioning out variability explained 249 

by the other three. This allows the correlation structure among competing models to be visualized as 250 

redundant relationships. 251 

 252 

3 | RESULTS 253 

3.1 | Sampling and data recovery summarized 254 

Collections (N=75; Figure 1) yielded N=72 species and N=3,605 individuals. On average, we collected 255 

~11 species/site, typical for streams sampled with seine nets in North America (Matthews, 1998) and 256 

similar highland streams within the Mississippi Basin (Zbinden, Geheber, Lehrter, & Matthews, 2022; 257 

Zbinden, Geheber, Matthews, Marsh-Matthews, 2022).  258 

We genotyped N=3,060 individuals across N=31 species, with at least two individuals collected 259 

at ≥5 sampled sites. Simulations and empirical evaluations underscore the accuracy of FST estimates when 260 

large numbers of SNPs (≥1,500) are employed across a minimum of two individuals (Nazareno et al., 261 

2017; Willing et al., 2012). After removing samples with missing data >75% and those as singletons of 262 
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their species at a site, the remaining N=2,861 were analyzed for genetic structure (Table 1). The number 263 

of individuals analyzed per species ranged from 15–358 (x�=92.3; s=80.8), and the sites at which each 264 

species was collected ranged from 5–50 (x�=16.8; s=11.2). Number of individuals/species/site ranged 265 

from 2–15 (x�=5.1; s=1.5). Mean number of raw reads/individual/species spanned from 1.65 million to 266 

3.22 million (x�=2,289,230.0; s=341,159.5). Mean N of loci/species recovered by IPYRAD ranged from 267 

14,599–30,509 (x�=20,081.7; s=4,697.6) with a mean sequencing depth/locus of 73.6x (s=12.0x). After 268 

filtering loci and retaining one SNP per locus, the panels for each species contained 2,168–10,033 269 

polymorphic sites (x�=4,486.7; s=1,931.1) with mean missing data/species at 12% (s=2%). 270 

 271 

3.2 | Genetic structure 272 

3.2.1 | Among-site genetic divergence 273 

Distributions of among-site FST  and D varied widely among species (Figure 2), as did global indices of 274 

genetic divergence (Table 2). All three global indices of fixation or genetic divergence (GST, G"ST, D) 275 

were negatively correlated with within-site heterozygosity (HS), positively correlated with total 276 

heterozygosity (HT), and highly, positively correlated with each other (Table 3). 277 

Regarding IBD, a significant relationship was found between linearized among-site FST and log-278 

transformed among-site river network distance for 23 (74%) of the N=31 species (Figure 3). Mantel 279 

coefficients ranged from 0.11–0.88 (x�=0.51; s=0.19). The slope of the linear relationship between FST 280 

and distance for each species ranged from 0.003–2.62 (x�=0.46; s=0.76). Results were largely similar 281 

when IBD was tested with Jost's D, again with the same 23 species showing a significant relationship, 282 

along with two additional taxa: Smallmouth Bass (Micropterus dolomieu; Lacepède, 1802) and 283 

Largemouth Bass [Micropterus salmoides; (Lacepède, 1802)]. Mantel correlation coefficients ranged 284 

from 0.15–0.92 (x�=0.51; s=0.19). The slope of the linear relationship between Jost's D and log river 285 

network distance for each species ranged from 0.0007–0.28 (x�=0.04; s=0.06). 286 

 287 

 288 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 27, 2022. ; https://doi.org/10.1101/2022.10.26.513848doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.26.513848
http://creativecommons.org/licenses/by-nd/4.0/


 

 

12

3.2.2 | Population structure 289 

An apparent lack of discrete genetic structure emerged across seven species, suggesting continuous 290 

structuring at the spatial scale of our study (Figure 4). For the remaining 24 species, at least two and up to 291 

seven discrete sub-populations were identified (Figure 5). This structure corresponded at the broadest 292 

hierarchical level to the two major northern basins: Upper White and Black rivers, for all species sampled 293 

in both sub-basins (N=22). There was also evidence of fine-scale structure for five species within the 294 

Little Red River Basin. Smaller catchments with distinct gene pools across multiple species included: 295 

North Fork (4 spp.), Buffalo (3 spp.), Upper Black (4 spp.), Current (3 spp.), and Spring rivers (4 spp.). 296 

 297 

3.2.3 | AMOVA 298 

Discrete genetic structuring was also supported via AMOVA. Genetic variation among HUCs was 299 

significant for 24 species (Table 4). The genetic variance explained for these species by HUCs ranged 300 

from 1–70% (x�=25.0%; s=20.7%). For the other seven species, variation among HUCs was ≤ 1%, save 301 

for Ozark Sculpin (Cottus hypselurus; Robins & Robison, 1985) and Creek Chub [Semotilus 302 

atromaculatus; (Mitchill, 1818)]. HUC differences for these accounted for >80% of the genetic variance 303 

but were non-significant due to a lack of power. Southern Redbelly Dace [Chrosomus erythrogaster; 304 

(Rafinesque, 1820)] could not be tested due to a lack of repeated samples within HUC levels. Further 305 

evidence of genetic structure among HUCs was revealed in the pattern of ΦSC (genetic divergence among 306 

sites within HUCs) < ΦST (divergence among all sites) found across 26 species. The 8-digit HUC level 307 

explained the greatest genetic variance across 21 species (Table 4). 308 

Genetic variation among discrete population clusters (based on sNMF) was significant for 21 of 309 

the N=31 species (Table 4). Seven species were best described as single populations (K=1) and were 310 

therefore not tested further. For those exhibiting structure, the genetic variance among clusters ranged 311 

from 5–95% (x�=38.0%; s=26.5%). The three species without significant structure, despite K>1 via 312 

sNMF, could likely be explained by low power resulting from a small number of sample sites. Again, as 313 
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with HUCs, ΦSC < ΦST was observed. However, all tested species showed this pattern (i.e., sites within the 314 

same population were less differentiated than sites across all populations). 315 

 316 

3.3 | Models of genetic structure 317 

Variability in genetic diversity was partitioned across four models of genetic structure for the N=31 318 

species. Principal components of SNP panel variation served as representatives of genetic variation. 319 

Across species, the number of genetic PCs ranged from 2–93 (x�=20.0; s=20.1; Table 1). Cumulative 320 

genomic variance explained ranged from 24.7–88.7% (x�=46.2%; s=14.3%; Table 1). 321 

Combining the four models (IBD, IBB, IBH, IBE) accounted for between 3–100% of the 322 

genomic diversity across species (x�=63.0%; s=35.3%; Figure 6). Isolation by stream hierarchy (IBH; 323 

x�=62.0%; s=34.7%) and barrier (IBB; x�=49.3%; s=30.0%) contributed most to the total variation 324 

explained, while distance (IBD; x�=32.1%; s=25.1%) and environment (IBE; x�=33.0%; s=21.4%) 325 

explained less (Figure 6). Variation explained by "pure" models, after accounting for that explained by 326 

the other three, was >0 only for stream hierarchy and barrier (Figure 6), suggesting that distance and 327 

environment are encapsulated by the former. Indeed, correlative structure among models revealed most 328 

genetic variance was explained by stream hierarchy, with the other models largely redundant (Figure 7). 329 

 330 

4 | DISCUSSION 331 

Genetic diversity is an essential metric for inferring evolutionary processes and guiding conservation. 332 

Single-species estimates of genetic diversity are standard given practical constraints, e.g., funding 333 

mandates for species of conservation concern. However, adopting a multispecies framework for analyzing 334 

genetic diversity could allow for more comprehensive management plans to be developed by focusing on 335 

commonalities (rather than differences) among species. The Stream Hierarchy Model (Meffe & 336 

Vrijenhoek, 1988) posits that the dispersal of stream-dwelling organisms is more limited between 337 

hierarchical units (basins, sub-basins, watersheds) than within. If this model was generalizable, it could 338 

determine relevant scales and regions for managing genetic diversity. 339 
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Our multispecies approach yielded two salient points: 1) From a macro-perspective, river network 340 

topology and complexity are manifested in common patterns of genetic structure across species; and 2) on 341 

a finer scale, the degree of intraspecific genetic divergence varies widely among co-distributed species. 342 

Most species showed significant IBD patterns but also discrete population sub-structure, as reflected most 343 

strongly by sub-basin delineations (e.g., HUC-8). These patterns were corroborated by AMOVA and 344 

variance partitioning and are generalized across species. Overall, stream fish genetic structure was 345 

indicative of dispersal limited primarily among versus within river catchments. 346 

 347 

4.1 | Drivers of isolation at the basin-wide scale  348 

4.1.1 Isolation by Distance and river networks 349 

IBD is expected when a genetic study's spatial extent is greater than individuals' average dispersal 350 

distance, i.e., distance moved from natal habitat to breeding habitat. Indeed, significant IBD patterns were 351 

detected in 81% of the species in our study. However, the strength of the relationship was generally weak 352 

(Mantel r =0.47 & 0.51 for linearized FST and D, respectively). 353 

While IBD may primarily explain genetic variation along a single stream or river, i.e., linear 354 

scale, it fails to incorporate the spatial structure of riverine networks (Thomaz et al., 2016). Therefore, 355 

IBD may not be an appropriate general model for fish genetic structure at the network scale (Hopken et 356 

al., 2013). IBD plots for many species (Figure 3) showed high genetic divergence even among relatively 357 

proximate localities, with apparent clusters indicating discrete rather than continuous structure (Guillot et 358 

al., 2009). This evidence suggests that — at the network scale — a more nuanced pattern occurs, with 359 

high residual variation resulting. The failure of IBD to account for large amounts of variation in genetic 360 

divergence reflects additional resistance to dispersal, as caused by longitudinal changes in habitat 361 

characteristics such as slope, depth, volume, and predator composition. For example, two river reaches of 362 

equal length can have very different habitat matrices, and these can be more influential on gene flow than 363 

space alone (Guillot et al., 2009; Lowe et al., 2006; Ruiz-Gonzalez et al., 2015). 364 

 365 
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4.1.2 Stream Hierarchy Model  366 

Our results show that individual genetic variation is best explained by the Stream Hierarchy Model 367 

(Brauer et al., 2018; Hopken et al., 2013; Meffe & Vrijenhoek, 1988). In other words, the majority of 368 

variation explained by IBD, IBE, and IBB could be accounted for by IBH alone. This was corroborated 369 

via variation partitioning, in which IBD, IBE, and IBB models were redundant with IBH. A concordance 370 

of population structure with stream hierarchy yielded a similar percentage of among-site genetic variation, 371 

as explained by among-HUC and among-population groupings. In short, variance explained by distance 372 

and environment was due to differences among HUC drainages. These results highlight the necessity of 373 

accounting for population structure prior to exploring the relationship between genotypes and 374 

environmental heterogeneity, e.g., within genotype by environment frameworks (Lawson et al., 2020). 375 

 376 

4.1.3 Disentangling cumulative effects  377 

Our analyses also revealed complex spatial patterns of genetic diversity. We evaluated competing 378 

isolation models using a framework that identified distance and barriers as putative drivers, with strong 379 

genetic divergence identified even across short geographical distances (Chan & Brown, 2020; Ruiz-380 

Gonzalez et al., 2015). This interaction can confound analyses that incorporate either alone. For example, 381 

if sampling is clustered, discrete genetic groups can be spuriously inferred along an otherwise continuous 382 

gradient of genetic variation (Frantz et al., 2009). Furthermore, a continuous pattern can be erroneously 383 

extrapolated when the underlying reality is described by distinct clusters separated by geographic distance 384 

(Meirmans, 2012). Here we echo the importance of testing various hypotheses concerning genetic 385 

structure (Perez et al., 2018). Idiosyncrasies and complex interactions cannot be discerned by testing 386 

single models in isolation (e.g., discrete structure or IBD).  387 

 388 

4.2 | Drivers of variation within and among species 389 

The species assayed herein display marked differences concerning dispersal capability (Shelley et al., 390 

2021). Given this, we expected genetic structure to widely vary among species across our study region 391 
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(Comte & Olden, 2018; Husemann et al., 2012; Pilger et al., 2017). Dispersal-related traits drive gene 392 

flow among localities and determine the spatial scale at which patterns of genetic structure emerge 393 

(Bohonak, 1999; Riginos et al., 2014). The physical structure of the river network then further modulates 394 

these patterns by dictating dispersal pathways of metapopulations and their colonization and extinction 395 

probabilities (Falke et al., 2012; Labonne et al., 2008; Fagan, 2002). These superimposed processes 396 

promote genetic divergence among distal populations (Thomaz et al., 2016; Chiu et al., 2020). Similar 397 

patterns emerge when analyzing community diversity via species composition. Headwater streams tend to 398 

have very different communities due to dispersal limitations (Finn et al., 2011; Zbinden & Matthews, 399 

2017; Zbinden, Geheber, Lehrter, & Matthews, 2022). Hence the interaction between traits and 400 

environment is an overarching influence that unites ecology and evolution. 401 

Many species studied herein are small-bodied with aggregate distributions in upland and 402 

headwater streams (Robison & Buchanan, 2020). Thus, species-specific dispersal limitations, as imposed 403 

by unsuitable riverine habitats (Radinger & Wolter, 2015; Schmidt & Schaefer, 2018), explain 404 

considerable variation in genetic structuring within the White River. Large rivers are hypothesized as 405 

inhospitable habitats to upland fishes (e.g., resources, depth, turbidity, substrates) and impose resistance 406 

to successful migration (e.g., higher discharge, greater density of large-bodied predators). These 407 

characteristics constrain migration and limit gene flow amongst basins that drain into large rivers (Fluker 408 

et al., 2014; Schmidt & Schaefer, 2018; Turner & Robison, 2006). The results are asymmetric gene flow 409 

and source-sink metapopulation dynamics, with susceptible species, those smaller and less tolerant, 410 

diverging most rapidly (Campbell Grant et al., 2007). 411 

Other life-history traits may also play a role as well. For example, those that directly influence 412 

effective population size (Nei & Tajima, 1981) may generate differences among species regarding the rate 413 

at which genetic differences arise (Blanchet et al., 2020). Species with 'slow' life histories, characterized 414 

by longer generations and delayed maturity, show an increased probability of local extirpation, inflating 415 

genetic drift concomitant with global extinction risk (Hutchings et al., 2012; Pearson et al., 2014; Chafin 416 

et al., 2019). Similar contingencies exist for other ecological traits, such as highly specialized trophic 417 
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adaptations, narrow environmental tolerances, or those that follow the same general mechanism by 418 

predisposing species to fragmented population structures (Olden et al., 2008). Ecological traits are 419 

mirrored by morphology (Douglas & Matthews, 1992), underscoring an interaction of trait effects that are 420 

difficult to disentangle. Ultimately, intraspecific genetic divergence is driven by a combination of factors 421 

that influence population size, demographic history, and connectivity. Clearly, these complex interactions 422 

among drivers require more comparative multispecies assessments as they shape genetic diversity and 423 

structure within and among species (microevolutionary scale) and thus ultimately lead to speciation and 424 

extinction (macroevolutionary scale). Our analytical framework outlined herein provides a template for 425 

such community-genomics studies. 426 

 427 

4.3 | Disentangling historic and contemporary drivers  428 

4.3.1 Paleohydrology in the White River system 429 

In this study, discrete population structure coincides with major topological divides within the White 430 

River stream network, such as a consistent east/west divide between Upper White and Black rivers, 431 

mirroring prior community composition studies (Matthews & Robison, 1988; 1998). Similar patterns 432 

were observed at smaller scales among drainages within the study region, as reported for White River 433 

crayfish (Fetzner & DiStefano, 2008). While the Lower White and Black rivers are certainly 434 

contemporary large-river habitats, both would have been much larger pre-Pleistocene when together they 435 

represented the main channel of the Old Mississippi River (Mayden, 1988; Strange & Burr, 1997). This 436 

large-river habitat would have separated the eastern and western highland tributaries, with inhospitable 437 

habitat for upland species. Pronounced limitations regarding historic dispersal induced by the Old 438 

Mississippi could explain the greater isolation of the Little Red River and Black River tributary 439 

populations compared to those in the Upper White River. Here, additional work should incorporate 440 

coalescent perspectives (e.g., Oaks, 2019) that test the role of past geomorphic events in driving co-441 

divergence and co-demographic patterns, such as the Pleistocene incursion by the Old Mississippi into the 442 

modern Black River channel. 443 
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 444 

4.3.2 Contemporary drivers 445 

Spatial discontinuities in genetic structure can also reveal contemporary barriers to migration/gene flow 446 

(Lee et al., 2018; Ruiz-Gonzalez et al., 2015). The Upper White River dams (e.g., Norfork, Bull Shoals, 447 

Table Rock, and Beaver dams) represent the most apparent anthropogenic barriers to gene flow. Dams 448 

elsewhere have demonstrated discrete population structures above and below the structure (Roberts et al., 449 

2013). However, impacts can be limited due to the relatively short period these dams have been in place 450 

(Ruzich et al., 2019). Those on the White River were constructed between 1912 (Taneycomo Powersite 451 

Dam) and 1966 (Beaver Dam).  452 

Our study was not explicitly designed to assess impoundment effects on diversity, nor were they 453 

directly tested. Nevertheless, evidence of discrete population structure has emerged, corresponding to the 454 

location of such dams. Four species showed discrete populations within the North Fork River above the 455 

Norfork Dam: Southern Redbelly Dace [Chrosomus erythrogaster; (Rafinesque, 1820)]; Yoke Darter 456 

(Etheostoma juliae; Meek, 1891); Northern Studfish [Fundulus catenatus; (Storer, 1846)]; and 457 

Blackspotted Topminnow [Fundulus olivaceus; (Storer, 1845)] (sites colored magenta; Figure 5). One 458 

species, Orangethroat Darter [Etheostoma spectabile; (Agassiz, 1854)], showed a distinct population in 459 

the James River above Table Rock Dam (sites colored gold; Figure 5). However, both North Fork and 460 

James rivers drain eight-digit HUC watersheds, which explains high amounts of genetic variation across 461 

the study region, regardless of dams. This highlights the importance of understanding 'natural' network-462 

wide patterns of genetic structure prior to deriving conclusions regarding anthropogenic barriers, 463 

particularly when they coincide with stream hierarchy. Differentiating dams as barriers versus stream 464 

hierarchy could be accomplished through divergence time estimates (Hansen et al., 2014). That aspect, as 465 

it now stands, is beyond the scope of our study. 466 

 467 

 468 

 469 
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5| CONCLUSIONS 470 

The multispecies comparative approach employed here revealed general patterns that could not have been 471 

discerned from a singular study of any one species. Additionally, the variability in intraspecific genetic 472 

structure among species provides a specific, all-encompassing dimension that single-species studies 473 

cannot. While meta-analytic frameworks have some potential, they are limited by confounding effects 474 

that stem from differences between studies, such as markers, sample sizes, environmental exigencies, and 475 

historic context. This necessitates a community-level approach within a study region. Further work aimed 476 

at modeling variables can lead to greater insight, ultimately improving our hypotheses regarding genetic 477 

diversity for which contemporary data are unavailable. 478 

Importantly, our comparative framework supports the Stream Hierarchy Model as a general model 479 

for the genetic structure of lotic fish species and suggests that hydrologic units characterize regional 480 

genetic diversity quite well. Out of this result emerged the potential for HUC units to serve as a 'rule of 481 

thumb' for riverine biodiversity conservation. None of the species evaluated herein were panmictic. 482 

Genetic variation among HUCs was apparent despite limited evidence of discrete population or 483 

continuous structure. Across a suite of commonly occurring fishes representing seven families, we 484 

identified greater intraspecific gene flow within basins/sub-basins, rather than gene flow among them. 485 

Therefore, fish populations within separate HUCs at the 8-digit+ level (e.g., HUC6, HUC4, HUC2) 486 

should be considered isolated until proven otherwise (Shelley et al., 2021). 487 

As previously recognized, independent populations warrant independent management (Hopken et 488 

al., 2013). When migration is low or non-existent, management of one population is unlikely to impact 489 

another. Genetic variation unique to hydrologic units could allow for adaptation to future environmental 490 

change, while on the other hand, isolation of populations could underscore elevated extirpation risks 491 

(Harrisson et al., 2014). Furthermore, efforts to propagate populations via stocking or translocation should 492 

carefully assess the genetic landscape of the species in question, particularly before co-mingling diversity 493 

from different sub-basins (Meffe & Vrijenhoek, 1988). Such uninformed mixing of genetic stocks could 494 
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promote outbreeding and the erosion of unique genetic diversity within river catchments. However, this 495 

must be weighed against the risks of local extirpation (Pavlova et al., 2017). 496 

Given this study's general and comparative nature, we refrain from designating populations within 497 

species as potential management units (MUs). However, species showing high levels of genetic structure 498 

(Table 2) should be assessed individually for such designation, possibly requiring more fine-scaled, 499 

targeted sampling. Additional river/sub-basin-specific management efforts could also be justified, given 500 

the presence of unique populations across multiple species (Hopken et al., 2013). Here we specifically 501 

refer to: The Little Red, North Fork, Buffalo, Upper Black, Current, and Spring rivers. These may indeed 502 

represent evolutionarily significant catchments, and this insight underscores the potential for community-503 

level genetic examination to elevate management to the ecosystem scale. 504 

 505 
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TABLE 1 Fish species (N=31) were collected at 75 sampling locations across the White River Basin of 835 

the Ozark Mountains, U.S.A. Summary data are tabulated for N=2,861 individuals across seven families 836 

genotyped and analyzed for genetic structure. Family=fish family; Species=species name; NI=number of 837 

individuals analyzed after filtering; NS=number of sites at which filtered individuals occurred; 838 

NI/S=mean number of individuals per site; Reads=mean number of raw reads recovered by Illumina 839 

HiSeq; Loci=mean number of loci recovered by iPyrad; Depth=mean coverage of loci; Ho=mean 840 

observed heterozygosity; SNPs=number of single nucleotide polymorphisms in the analyzed data panel; 841 

Miss=mean missing data; and PCs=number of principal components used to characterize neutral genetic 842 

variation and PCvar=the original genetic variance explained by the set of PCs. 843 

 844 

Family Species NI NS NI/S Reads Loci Depth Ho SNPs Miss PCs PCvar 
Atherinopsidae Labidesthes sicculus 99 18 5.5 2401513 19532 83 0.0013 2956 0.11 17 40.2 

Centrarchidae 

Lepomis macrochirus 63 17 3.7 2369445 26142 61 0.0028 5873 0.14 19 45.5 
Lepomis megalotis 242 44 5.5 2330434 25126 59 0.0036 4841 0.13 48 45.2 

Micropterus dolomieu 56 15 3.7 2014858 21420 58 0.0018 2813 0.11 11 32.6 
Micropterus salmoides 15 7 2.1 2338155 22827 65 0.0018 2825 0.06 7 59.4 

Cottidae 
Cottus carolinae 24 9 2.7 2973760 27523 74 0.0012 5798 0.12 5 61.6 

Cottus hypselurus 40 8 5.0 3226846 28108 76 0.0015 7116 0.11 5 75.1 

Fundulidae 
Fundulus catenatus 112 23 4.9 2757508 30509 52 0.0014 3378 0.13 18 46.0 
Fundulus olivaceus 131 24 5.5 2647685 27631 51 0.0025 3111 0.14 22 42.6 

Leuciscidae 

Campostoma anomalum 93 20 4.7 2226556 16753 77 0.0036 3187 0.13 10 36.7 
Campostoma oligolepis 119 31 3.8 2038589 16107 76 0.0030 3121 0.12 40 44.7 

Chrosomus erythrogaster 53 7 7.6 2180045 16508 73 0.0033 3440 0.14 6 55.8 
Cyprinella galactura 72 10 7.2 1648530 14839 72 0.0029 3322 0.11 27 52.1 
Cyprinella whipplei 29 6 4.8 1870427 14599 84 0.0033 2847 0.12 8 39.5 

Luxilus chrysocephalus 57 13 4.4 1677176 15089 68 0.0025 2168 0.14 17 47.2 
Luxilus pilsbryi 244 31 7.9 2028625 16063 81 0.0033 4922 0.14 93 52.1 
Luxilus zonatus 98 16 6.1 2273167 16964 89 0.0030 5496 0.12 12 24.7 

Lythrurus umbratilis 23 5 4.6 1970516 16465 68 0.0032 2491 0.12 6 40.3 
Notropis boops 233 28 8.3 2355581 15684 104 0.0040 6161 0.11 71 43.8 

Notropis nubilus  191 32 6.0 2087695 15544 81 0.0040 4018 0.14 65 46.3 
Notropis percobromus 62 10 6.2 2082050 17852 74 0.0047 4393 0.13 36 65.6 

Notropis telescopus 81 13 6.2 2092015 16154 85 0.0024 4741 0.11 12 31.2 
Pimephales notatus 47 13 3.6 2106907 15271 92 0.0029 4022 0.13 11 49.3 

Semotilus atromaculatus 30 9 3.3 2216336 15406 84 0.0020 2644 0.15 2 63.6 

Percidae 

Etheostoma blennioides 52 14 3.7 2491915 21416 71 0.0024 5124 0.11 2 36.4 
Etheostoma caeruleum 358 50 7.2 2170268 21900 62 0.0044 3511 0.13 20 28.7 
Etheostoma flabellare 22 6 3.7 2288120 21041 62 0.0015 9927 0.08 4 88.7 

Etheostoma juliae 57 10 5.7 2513876 20652 84 0.0014 5473 0.1 7 39.5 
Etheostoma spectabile 49 10 4.9 2565769 23873 64 0.0051 5519 0.15 6 33.6 

Etheostoma zonale 74 15 4.9 2364158 21514 74 0.0033 10033 0.13 5 24.9 
Poeciliidae Gambusia affinis 35 8 4.4 2657603 24021 78 0.0021 3818 0.09 9 39.9 

  MEAN 92.3 16.8 5.1 2289230.0 20081.7 73.6 0.0028 4486.7 0.12 20.0 46.2 
  STDEV 80.8 11.2 1.5 341159.5 4697.6 12.0 0.0010 1931.1 0.02 22.1 14.3 
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TABLE 2 Summary of genetic structure observed for N=31 species of fish collected across the White 845 

River Basin, U.S.A. Classifications to family and species are provided for each, along with summaries of 846 

genetic structure: HT=total heterozygosity; HS=within-site heterozygosity; GST=Nei's fixation index; G" 847 

ST=unbiased fixation index; D=Jost's genetic differentiation; IBD=significant tests of isolation by distance 848 

denoted "X"; Structure=whether the species could be subdivided into more than one population, denoted 849 

"X"; Model=the isolation model explaining the most individual genetic variance; and Model Var=the 850 

amount of variance explained by the best isolation model. Species are ordered by Jost's D. 851 

 852 

Family Species HT HS GST G"ST D IBD Structure Model 
Model 

Var 
Percidae Etheostoma flabellare 0.35 0.02 0.93 0.96 0.40 - X stream hierarchy 99% 
Leuciscidae Semotilus atromaculatus 0.30 0.09 0.70 0.79 0.26 X X stream hierarchy 91% 
Cottidae Cottus hypselurus 0.24 0.07 0.73 0.81 0.22 - X stream hierarchy 99% 
Leuciscidae Chrosomus erythrogaster 0.27 0.11 0.59 0.71 0.21 X X stream hierarchy 98% 
Cottidae Cottus carolinae 0.26 0.11 0.58 0.69 0.19 X X stream hierarchy 93% 
Leuciscidae Campostoma anomalum 0.20 0.12 0.38 0.45 0.09 X X stream hierarchy 87% 
Percidae Etheostoma blennioides 0.21 0.13 0.35 0.43 0.09 X X stream hierarchy 98% 
Leuciscidae Pimephales notatus 0.25 0.18 0.28 0.36 0.09 X X stream hierarchy 98% 
Percidae Etheostoma juliae 0.23 0.16 0.29 0.37 0.09 X X stream hierarchy 97% 
Leuciscidae Lythrurus umbratilis 0.30 0.25 0.17 0.27 0.09 - - stream hierarchy 69% 
Percidae Etheostoma spectabile 0.20 0.14 0.31 0.38 0.08 X X stream hierarchy 99% 
Fundulidae Fundulus olivaceus 0.24 0.18 0.25 0.32 0.08 X X stream hierarchy 88% 
Fundulidae Fundulus catenatus 0.20 0.14 0.31 0.37 0.07 X X stream hierarchy 83% 
Atherinopsidae Labidesthes sicculus 0.18 0.14 0.24 0.29 0.05 X X stream hierarchy 84% 
Leuciscidae Notropis telescopus 0.20 0.16 0.20 0.25 0.05 X X stream hierarchy 60% 
Percidae Etheostoma caeruleum 0.14 0.10 0.27 0.30 0.04 X X stream hierarchy 90% 
Percidae Etheostoma zonale 0.16 0.13 0.20 0.25 0.04 X X stream hierarchy 98% 
Leuciscidae Luxilus chrysocephalus 0.26 0.23 0.11 0.15 0.04 X X stream hierarchy 38% 
Centrarchidae Lepomis megalotis 0.18 0.15 0.17 0.21 0.04 X X stream hierarchy 47% 
Poeciliidae Gambusia affinis 0.26 0.24 0.10 0.14 0.04 X X stream hierarchy 59% 
Leuciscidae Cyprinella whipplei 0.26 0.24 0.09 0.14 0.04 X X stream hierarchy 50% 
Centrarchidae Micropterus salmoides 0.30 0.28 0.06 0.10 0.03 X - stream hierarchy 12% 
Leuciscidae Luxilus zonatus 0.19 0.17 0.11 0.14 0.03 - X stream hierarchy 76% 
Centrarchidae Lepomis macrochirus 0.24 0.22 0.07 0.10 0.02 - - stream hierarchy 19% 
Centrarchidae Micropterus dolomieu 0.23 0.22 0.07 0.10 0.02 X - stream hierarchy 57% 
Leuciscidae Notropis boops 0.17 0.16 0.06 0.08 0.01 X X stream hierarchy 23% 
Leuciscidae Notropis nubilus  0.14 0.13 0.07 0.08 0.01 X X stream hierarchy 13% 
Leuciscidae Campostoma oligolepis 0.17 0.16 0.05 0.06 0.01 X X stream hierarchy 15% 
Leuciscidae Cyprinella galactura 0.18 0.18 0.04 0.05 0.01 - - stream hierarchy 12% 
Leuciscidae Notropis percobromus 0.18 0.18 0.03 0.04 0.01 X - stream hierarchy 3% 
Leuciscidae Luxilus pilsbryi 0.14 0.13 0.02 0.02 0.00 X - stream hierarchy 6% 

MEAN 0.22 0.16 0.25 0.30 0.08 63% 
  STDEV 0.05 0.06 0.23 0.25 0.09       35% 
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TABLE 3 Summary of correlation among population genetic parameter estimates calculated for N=31 853 

fish species collected across the White River Basin, U.S.A. HS=within-site heterozygosity; HT=total 854 

heterozygosity; GST=Nei’s fixation index; G”ST=unbiased fixation index; and D=Jost’s genetic 855 

differentiation. Pearson's product-moment correlation between each parameter estimate is shown in the 856 

table below. Only significant (α < 0.05) correlations are shown.  857 

 858 

  HS HT GST G"ST 
HT ns - 

  GST -0.75 0.52 - 
 G"ST -0.71 0.55 0.99 - 

D -0.65 0.67 0.97 0.96 
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TABLE 4 Genetic variation of fish species (N=31) sampled across the White River Basin (Ozark Mountains, U.S.A.), was tested using analysis of 859 

molecular variance (AMOVA) to determine the proportion of genetic variation differing among distinct hydrologic units (HUCs) and among 860 

discrete population clusters. HUC tests were performed at four HUC-levels (4-, 6-, 8-, and 10-digit HUCs) and the level depicting the most genetic 861 

variance is shown. Var=percent genetic variance explained; sig=the significant of the test (* for <0.05 and ns for >0.05); ΦST = genetic variation 862 

among sites across all groups; ΦSC = genetic variation among sites within a group. 863 

 864 

    Hydrologic Units   Population Clusters 

Family Species HUC-level 
Among HUCs 

 
Among Sites Among Pops Among Sites 

%var sig.   %var ΦST sig. ΦSC   %var sig.   %var ΦST sig. ΦSC 
Atherinopsidae Labidesthes sicculus HUC-8 21% *   19% 0.40 * 0.24   25% *   18% 0.436 * 0.243 

Centrarchidae 

Lepomis macrochirus - 0% ns 7% 0.07 * 0.07 - - - - - - 
Lepomis megalotis HUC-4 70% * 7% 0.77 * 0.23 37% * 6% 0.428 * 0.098 

Micropterus dolomieu HUC-8 5% * 7% 0.12 * 0.07 - - - - - - 
Micropterus salmoides HUC-4 3% *   0% 0.02 ns 0.00   - -   - - - - 

Cottidae 
Cottus carolinae HUC-8 66% * 9% 0.74 * 0.26 62% * 15% 0.772 * 0.402 

Cottus hypselurus HUC-8 84% ns   5% 0.89 ns 0.31   85% ns   7% 0.917 * 0.442 

Fundulidae 
Fundulus catenatus HUC-8 36% * 15% 0.51 * 0.23 36% * 16% 0.516 * 0.244 
Fundulus olivaceus HUC-8 18% *   18% 0.36 * 0.22   16% *   21% 0.372 * 0.252 

Leuciscidae 

Campostoma anomalum HUC-8 53% * 2% 0.55 * 0.05 61% * 7% 0.680 * 0.175 
Campostoma oligolepis HUC-8 6% * 1% 0.07 ns 0.01 5% * 3% 0.081 * 0.036 

Chrosomus erythrogaster - - - - - - - 62% * 21% 0.829 * 0.548 
Cyprinella galactura HUC-8 7% * 0% 0.07 ns 0.00 - - - - - - 
Cyprinella whipplei HUC-8 14% * 4% 0.18 * 0.05 14% ns 7% 0.202 * 0.078 

Luxilus chrysocephalus HUC-8 14% * 7% 0.21 * 0.08 17% * 10% 0.266 * 0.120 
Luxilus pilsbryi HUC-10 1% ns 1% 0.02 * 0.01 - - - - - - 
Luxilus zonatus HUC-10 15% * 3% 0.18 * 0.03 9% * 10% 0.199 * 0.115 

Lythrurus umbratilis - 0% ns 22% 0.20 * 0.22 - - - - - - 
Notropis boops HUC-8 6% * 3% 0.09 * 0.03 6% * 6% 0.113 * 0.059 

Notropis nubilus  HUC-4 10% * 7% 0.17 * 0.08 16% * 1% 0.172 * 0.015 
Notropis percobromus HUC-8 1% * 1% 0.01 ns 0.01 - - - - - - 

Notropis telescopus HUC-8 33% * 1% 0.34 * 0.01 41% * 3% 0.436 * 0.046 
Pimephales notatus HUC-8 17% * 26% 0.44 * 0.32 13% * 32% 0.453 * 0.372 

Semotilus atromaculatus HUC-8 87% ns   1% 0.88 * 0.08   92% *   2% 0.934 * 0.194 

Percidae 

Etheostoma blennioides HUC-8 61% * 2% 0.62 * 0.04 67% * 2% 0.686 * 0.053 
Etheostoma caeruleum HUC-8 40% * 3% 0.44 * 0.06 45% * 5% 0.497 * 0.093 
Etheostoma flabellare - 0% ns 99% 0.98 * 0.98 95% * 3% 0.977 ns 0.580 

Etheostoma juliae HUC-8 34% * 11% 0.45 * 0.16 36% * 12% 0.478 * 0.182 
Etheostoma spectabile HUC-8 29% * 10% 0.38 * 0.14 26% * 13% 0.394 * 0.181 

Etheostoma zonale HUC-8 32% * 2% 0.34 * 0.02 38% * 5% 0.422 * 0.074 
Poeciliidae Gambusia affinis HUC-4 7% *   13% 0.20 * 0.14   13% ns   11% 0.239 * 0.123 
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FIGURE 1 Fish were sampled at N=75 locations across the White River Basin (Ozark Mountains, 865 

U.S.A.). The study basin is contained within the larger Mississippi River Basin, and is a direct tributary to 866 

the mainstem Mississippi. The study region is subdivided into five subbasins: Upper White, Lower White, 867 

Black, Little Red, and the St. Francis. Beyond these basins, USGS Hydrologic Unit Codes (HUCs) were 868 

also used to characterize the stream hierarchy position of sampling locations (4-, 6-, 8-, and 10-digit 869 

HUCs). 870 

 871 

 872 
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FIGURE 2 Genetic structure of N=31 fish species collected across the White River Basin (Ozark 873 

Mountains, U.S.A.) as summarized by among-site FST (Weir and Cockerham's θ) and Jost's D. Boxplots 874 

show the distributions of both pairwise estimates among sampling sites for each species. Inner quantiles 875 

are colored to indicate species in the same family (N=7). 876 

 877 

 878 
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FIGURE 3 Isolation by distance plots for N=31 fish species collected across the White River Basin ( 879 

Ozark Mountains, U.S.A.). Each depicts the relationship between among-site FST (linearized) and log river 880 

distance among sites. The following are represented below each species name: m=slope of the linear 881 

regression model (dashed red line) and r= the Mantel coefficient indicating the strength of the correlation 882 

between genetic structure and distance. Significant r-values denoted with a red asterisk (α≤ 0.05). 883 

 884 

885 
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FIGURE 4 Sampling distribution maps of seven species which showed no evidence of discrete genetic 886 

population structure within the White River Basin ( Ozark Mountains, U.S.A.). A total of N=31 species 887 

were sampled across 75 sites. The number of collection sites (red circles) for each species is denoted by 888 

N; K=the number of discrete genetic populations discerned from sparse non-negative matrix factorization. 889 

  890 

 891 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 27, 2022. ; https://doi.org/10.1101/2022.10.26.513848doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.26.513848
http://creativecommons.org/licenses/by-nd/4.0/


 

 

37

FIGURE 5 Sampling distribution maps of 24 species which showed evidence of genetic population structure 892 

within the White River Basin (Ozark Mountains, U.S.A.). N=31 species were sampled across 75 sites. K= the 893 

number of discrete genetic populations discerned from sparse non-negative matrix factorization. Sampling 894 

sites are denoted as pie charts representing the average population coefficients for each site. N= number of 895 

sites where each species was collected. 896 

 897 

898 
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FIGURE 6 Neutral genetic variation was partitioned between four explanatory models for N=31 fish 899 

species sampled across the White River Basin (Ozark Mountains, U.S.A.). Partitioning was conducted 900 

separately for each species. The four models represent: (i) isolation by distance, the river network 901 

distance among individuals represented by spatial eigenvectors; (ii) isolation by barrier, represented by 902 

population structure coefficients among individuals; (iii) isolation by stream hierarchy, based on the 903 

hydrologic units (at four different hierarchical levels) in which an individual was collected; and (iv) 904 

isolation by environment, characterized by the environmental heterogeneity across sampling sites where 905 

individuals were collected. Total = the genetic variation explained by all four models combined. The 906 

"Pure" models represent the variation explained by each model after partialling out the variation 907 

explained by the other three models.  908 

 909 

910 
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FIGURE 7 Venn diagrams depict neutral genetic variation resulting from four models as applied to N=31 911 

fish species sampled from the White River Basin (Ozark Mountains, U.S.A.). Models were based on: (i) 912 

isolation by distance, isolation by barrier, isolation by stream hierarchy, and isolation by environment. 913 

Values in the Venn diagrams are percent of genetic variance explained (i.e., rounded adjusted R2 values). 914 

Total variance explained is shown below each diagram. The bottom two rows show species that showed 915 

no discrete population structure (i.e., no isolation by barrier) and thus only three of the models were 916 

tested. 917 

 918 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 27, 2022. ; https://doi.org/10.1101/2022.10.26.513848doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.26.513848
http://creativecommons.org/licenses/by-nd/4.0/

