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ABSTRACT 10 

Genetic differentiation among local groups of individuals, i.e., genetic β-diversity, is a key component of 11 

population persistence related to connectivity and isolation. However, most genetic investigations of 12 

natural populations focus on a single species, overlooking opportunities for multispecies conservation 13 

plans to benefit entire communities in an ecosystem. We present an approach to evaluate genetic β-14 

diversity within and among many species and demonstrate how this riverscape community genomics 15 

approach can be applied to identify common drivers of genetic structure. Our study evaluated genetic β-16 

diversity in 31 co-distributed native stream fishes sampled from 75 sites across the White River Basin 17 

(Ozarks, USA) using SNP genotyping (ddRAD). Despite variance among species in the degree of genetic 18 

divergence, general spatial patterns were identified corresponding to river network architecture. Most 19 

species (N=24) were partitioned into discrete sub-populations (K=2–7). We used partial redundancy 20 

analysis to compare species-specific genetic β-diversity across four models of genetic structure: Isolation 21 

by distance (IBD), isolation by barrier (IBB), isolation by stream hierarchy (IBH), and isolation by 22 

environment (IBE). A significant proportion of intraspecific genetic variation was explained by IBH 23 

(x�=62%), with the remaining models generally redundant. We found evidence for consistent spatial 24 

modularity in that gene flow is higher within rather than between hierarchical units (i.e., catchments, 25 

watersheds, basins), supporting the generalization of the Stream Hierarchy Model. We discuss our 26 

conclusions regarding conservation and management and identify the 8-digit Hydrologic Unit (HUC) as 27 

the most relevant spatial scale for managing genetic diversity across riverine networks. 28 

 29 
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1 | INTRODUCTION 33 

Genetic diversity is a biodiversity measure that may be quantified across geography and through time 34 

(Huber et al., 2010; Leonard et al., 2017). It is tied to species' past and future evolutionary trajectories 35 

(Shelley et al., 2021). Genetic diversity is a barometer for population-level persistence in accurately 36 

reflecting demography, connectivity, and adaptive potential (Davis et al., 2018; DeWoody et al., 2021; 37 

Paz-Vinas et al., 2018). But genetic diversity is often underutilized in conservation planning (Laikre, 38 

2010; Paz-Vinas et al., 2018), in part due to a suite of affiliated necessities (i.e., specialized equipment, 39 

technical expertise), all of which expand its bottom line (Blanchet et al., 2020). Moreover, when 40 

assessment does occur, it is most often limited to populations within a single species or a small cadre of 41 

entities within a species-group, thus minimizing the potential for much-needed generalizations 42 

(Anthonysamy et al., 2018). 43 

Therefore, when the concept of genetic diversity is applied in a comparative sense across co-44 

distributed species, it provides a solid framework from which community-wide management and policy 45 

can be defined (Hanson et al., 2020). Systematic conservation planning (SCP; Margules & Pressey, 46 

2000), based on managing complementary sites within a region containing unique biodiversity, could 47 

benefit from focusing on intraspecific genetic diversity measured across community members (Paz-Vinas 48 

et al., 2018; Xuereb et al., 2021). For example, multispecies assessments can reveal common dispersal 49 

barriers (Pilger et al., 2017; Roberts et al., 2013), congruent distributions of genetic diversity (Hotaling et 50 

al., 2019; Ruzich et al., 2019), relevant spatial scales for management (Blanchet et al., 2020), and 51 

associations among species characteristics and genetic diversity (Bohonak, 1999; De Kort et al., 2021; 52 

Pearson et al., 2014). Despite the potential complexity, a comprehensive and systematic management 53 

strategy can emerge, one more appropriately aligned towards managing numerous species, with long-term 54 

conservation goals beneficial to entire communities (Blanchet et al., 2017). In addition, it also tacitly 55 

encourages support by stakeholders for an overarching management plan, one representing a consensus 56 

across multiple species and ecosystems (Douglas et al., 2020). 57 
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The spatial structure—or pattern—of genetic variation within a species is primarily dictated by 58 

the interplay between gene flow and genetic drift (Holderegger et al., 2006; Hutchinson & Templeton, 59 

1999). Different observable patterns of spatial genetic structure (i.e., genetic β-diversity) are used to infer 60 

the influence of different underlying processes (Orsini et al., 2013). Spatial uniformity of genetic diversity 61 

(i.e., panmixia; Rosenberg et al., 2005) is the implicit null model of population structure indicative of the 62 

differentiating effects of genetic drift being overwhelmed by homogenizing gene flow. The de facto 63 

alternative is spatially continuous genetic divergence driven by an equilibrium between gene flow and 64 

drift occurring within stable, dispersal-limited populations (i.e., isolation by distance, IBD; Wright, 1943). 65 

For most species, a significant relationship between genetic dissimilarity and geographic distance is 66 

expected (Meirmans, 2012), yet the strength of this association may vary due to the intrinsic 67 

characteristics of a species (Bohonak, 1999; Singhal et al., 2018) or the extrinsic factors experienced by a 68 

species (environmental or historical) that affect dispersal (gene flow) or effective population size (genetic 69 

drift) (Orsini et al., 2013; Paz-Vinas & Blanchet, 2015). Additional models to explain spatial structure 70 

have been introduced to explore other processes. For example, genetic divergence may be further 71 

promoted by environmental dissimilarities across sites that promote local adaptation or limited/biased 72 

dispersal (isolation by environment, IBE; Bradburd et al., 2013; Wang & Bradburd, 2014). Dispersal 73 

resistance induced by physical and environmental characteristics in between sites (isolation by resistance, 74 

IBR; McRae, 2006) or barriers to dispersal (i.e., isolation by barrier, IBB; Cushman et al., 2006; Ruiz-75 

Gonzalez et al., 2015) can also amplify the amount of genetic dissimilarity observed over a given 76 

geographic distance. 77 

For aquatic biodiversity, patterns of genetic divergence will also be governed by the structure and 78 

architecture of the riverine network (in contemporary and past representations). Organisms within such 79 

dendritic networks are demonstrably impacted by the physical structure of the habitat, which constrains 80 

their movement (Peterson et al., 2013; White et al., 2020; Paz-Vinas et al., 2015) and leads to 81 

correspondence between genetic relatedness and the underlying structural hierarchy (Hughes et al., 2009). 82 

While this is most apparent within the contemporary structure of river networks, their historic structure, 83 
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i.e., paleohydrology, also serves to bookmark genetic diversity, and the effects of past connectivity or 84 

isolation can still be observed within contemporary spatial patterns (Mayden, 1988; Strange & Burr, 85 

1997). Moreover, the hierarchical complexity of these networks will likewise dictate population processes 86 

related to colonization/extinction and effective sizes, as reflected within genetic diversities and 87 

divergences (Chiu et al., 2020; Hopken et al., 2013; Thomaz et al., 2016). Thus, spatial genetic structuring 88 

within riverine biodiversity should reflect isolation by stream hierarchy (IBH; sensu Stream Hierarchy 89 

Model (SHM); Meffe & Vrijenhoek, 1988). The initial genesis for the SHM was narrowly defined within 90 

desert stream fishes of the American West (Meffe and Vrijenhoek, 1988). The model is an example of the 91 

more general principle of 'spatial modularity,' which occurs when certain sets of habitat patches are more 92 

tightly connected through individual movement than they are to others (Fortuna et al., 2009). Spatial 93 

modularity can reveal fundamental scales common among populations and possibly species, which can 94 

inform conservation strategies (Fletcher et al., 2013). Therefore, an assessment of the SHM's generality, 95 

as compared to alternative isolating regimes, was thus imperative (Brauer et al., 2018; Hopken et al., 96 

2013).  97 

The factors that cause genetic structure can be correlated and confounding (Meirmans, 2012; 98 

Perez et al., 2018; Wang & Bradburd, 2014). Different mechanisms can mask the occurrence of major 99 

drivers by promoting those more ancillary with regard to single-species assessments. Variation in 100 

intraspecific genetic β-diversity across space is driven by the balance between gene flow and genetic drift 101 

(Hutchinson & Templeton, 1999), which is, in turn, tied to dispersal, life history, and biogeography 102 

(Avise, 1992; Comte & Olden, 2018). While co-occurring species with similar histories and environments 103 

should display similar patterns of genetic structure that reflect their shared set of extrinsic factors, the 104 

degree of genetic divergence across space can vary due to differences in the species' intrinsic 105 

characteristics (Riginos et al., 2014). Weaker genetic β-diversity can reduce the power to model genetic 106 

structure accurately (Jones & Wang, 2012). The emerging results are twofold: Potentially erroneous 107 

conclusions, which in turn beget ineffective management strategies. These issues can be mitigated using 108 

replicated multispecies assessments to allow influential major processes to surface, thus effectively 109 
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categorizing both 'signal and noise' components with the former driving patterns of regional biodiversity 110 

(Roberts et al., 2013). 111 

Our objective was to establish an approach from which the generality of the SHM could be tested 112 

across species of a riverscape fish community. This approach would allow key drivers to be identified, 113 

with a concurrent expectation of common processes re-emerging within these ecological networks. We 114 

accomplish this by comparing patterns of genetic diversity across 31 fish species within the White River 115 

Basin of the Ozarks (AR/MO, USA). For each, we compared four models representing major drivers of 116 

genetic structure: Isolation by distance (IBD), isolation by stream hierarchy (IBH), isolation by barrier 117 

(IBB), and isolation by environment (IBE). We predicted that IBH would consistently explain genetic β-118 

diversity for most species and that variation explained by the alternative models would mostly be 119 

captured by IBH. While we expected this consistent pattern of congruence between river network 120 

architecture and genetic β-diversity, we expected that the degree of the strength of this association would 121 

vary among species due to their unique histories and intrinsic characteristics that influenced dispersal and 122 

effective population sizes. Our data represent thousands of SNPs (single nucleotide polymorphisms) 123 

derived via recent advances in high-throughput sequencing (Peterson et al., 2012). This technology has, in 124 

turn, allowed thousands of individuals to be genotyped as a financially and logistically practical research 125 

endeavor across multiple non-model species (da Fonseca et al., 2016). Our study and the data we present 126 

are relatively novel and provide an additional perspective compared to that established with meta-analytic 127 

frameworks with similar aims (e.g., Pas-Vinas et al., 2015). We offer our approach as a potential blueprint 128 

for developing more comprehensive genetic management plans at the community level.  129 

 130 

2 | MATERIALS AND METHODS 131 

2.1 | Study system 132 

Our study system, the White River Basin, is located within the Western Interior Highlands of North 133 

America, a previous component of the more extensive pre-Pleistocene Central Highlands extending north 134 

and east but subsequently subsumed by numerous glacial advances into two disjunct sub-components: 135 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 2, 2022. ; https://doi.org/10.1101/2022.10.26.513848doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.26.513848
http://creativecommons.org/licenses/by-nd/4.0/


 

 

6 

Western Interior Highlands (i.e., Ozarks, Ouachita Mountains), and Eastern Highlands (i.e., Appalachian 136 

Plateau, Blue Ridge, Appalachian Highlands) (Mayden, 1985). The Ozark Plateau remained an 137 

unglaciated refugium with elevated endemism and diversity (Warren et al., 2000). The White River Basin 138 

was established by at least Late Pliocene (>3 MYA; Jorgensen, 1993), but its eastern tributaries were 139 

captured by the Mississippi River when it bisected the basin during the Pleistocene (Mayden, 1988; 140 

Strange & Burr, 1997). This paleohydrologic signature may remain in contemporary patterns of 141 

population divergence in the White River Basin, as manifested by replicated patterns of genetic structure 142 

between eastern and western populations. 143 

 144 

2.2 | Sampling 145 

The sampling region for our study is composed of the White River and St. Francis River basins (AR/MO) 146 

(Figure 1). Both are tributaries to the Mississippi River, draining 71,911 km2 and 19,600 km2, 147 

respectively. Five sub-basins are apparent: St. Francis, Upper White, Black, Lower White, and Little Red 148 

rivers (Figure 1). These are further subdivided into the following hierarchical Hydrologic Units (HUC) 149 

(USGS & USDA-NRCS, 2013; USGS, 2021) representing different spatial scales: HUC-4 Subregions 150 

(N=2); HUC-6 Basins (N=3); HUC-8 Subbasins (N=19); HUC-10 Watersheds (N=129) (Figure 1). 151 

Sampling was approved by the University of Arkansas Institutional Animal Care and Use 152 

Committee (IACUC: #17077), with collecting permits as follows: Arkansas Game & Fish Commission 153 

(#020120191); Missouri Department of Wildlife Conservation (#18136); US National Parks Service 154 

(Buffalo River Permit; BUFF-2017-SCI-0013). Fishes were sampled using seine nets in wadable streams 155 

during low flow between June 2017 and September 2018. Time spent sampling a site ranged from 30–60 156 

mins, with a target of 5-10 individuals/species encountered. Individuals were euthanized by immersion in 157 

tricaine methanesulfonate (MS-222) at a concentration of 500 mg/L, buffered to pH=7 with subsequent 158 

preservation in 95% ethanol. Formal species diagnosis occurred in the laboratory, and the right pectoral 159 

fin was removed from each specimen and stored in 95% ethanol at -20 °C prior to subsequent DNA 160 
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extraction. Specimens are housed at the Arkansas Conservation and Molecular Ecology Lab, University 161 

of Arkansas, Fayetteville. 162 

 163 

2.2 | Genomic data collection and filtering 164 

Genomic DNA was isolated (Qiagen Fast kits; Qiagen Inc.) and quantified by fluorometry (Qubit; 165 

Thermo-Fisher Scientific). Individuals were genotyped using double-digest restriction site-associated 166 

DNA (ddRAD) sequencing (Peterson et al., 2012), with procedures modified appropriately (Chafin et al., 167 

2019). Standardized DNA amounts (1,000 ng) were digested at 37°C with high-fidelity restriction 168 

enzymes MspI (5’-CCGG-3') and PstI (5’-CTGCAG-3') (New England Biosciences), bead-purified 169 

(Ampure XP; Beckman-Coulter Inc.), standardized to 100 ng, and then ligated with custom adapters 170 

containing in-line identifying barcodes (T4 Ligase; New England Biosciences). Samples were pooled in 171 

sets of 48 and size-selected from 326-426 bp, including adapter length (Pippin Prep; Sage Sciences). 172 

Illumina adapters and i7 index were added via 12-cycle PCR with Phusion high-fidelity DNA polymerase 173 

(New England Biosciences). Three libraries (3x48=144 individuals/lane) were pooled per lane and single-174 

end sequenced on the Illumina HiSeq 4000 platform (1x100bp; Genomics & Cell Characterization Core 175 

Facility; University of Oregon, Eugene). Quality control checks, including fragment analysis and 176 

quantitative real-time PCR, were performed at the core facility before sequencing. Raw sequence reads 177 

are deposited in the NCBI Sequence Read Archive (Zbinden, Douglas, et al., 2022a).  178 

Raw Illumina reads were demultiplexed, clustered, filtered, and aligned in IPYRAD v.0.9.62 179 

(Eaton & Overcast, 2020). Reads were first demultiplexed, allowing up to one barcode mismatch, 180 

yielding individual FASTQ files containing raw reads (N=3,060 individual files). Individuals averaged >2 181 

million reads, with those extremely low removed ( < x� – 2s) to reduce errors from poor-quality 182 

sequencing. Individuals were previously screened for admixture among species using a combination of 183 

standard analyses for assigning ancestry proportions based on SNP data (Zbinden, Douglas, et al., 2022b). 184 

There were 70 putatively admixed individuals removed, most (N=66) belonging to the minnow family 185 

Leuciscidae. Raw sequence reads were partitioned by species (N=31) and aligned de novo in IPYRAD 186 
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(Eaton & Overcast, 2020). Adapters/primers were removed, and reads with >5 bases having Phred quality 187 

<20 or read length <35 bases (after trimming) were discarded. Clusters of homologous loci were 188 

assembled using an 85% identity threshold. Putative homologs were removed if any of the following were 189 

met: <20x and >500x coverage per individual; >5% of consensus nucleotides ambiguous; >20% of 190 

nucleotides polymorphic; >8 indels present; or presence in <15% of individuals. Paralogs were identified 191 

(and subsequently removed) as those clusters exhibiting either >2 alleles per site in consensus sequence or 192 

excessive heterozygosity (>5% of consensus bases or >50% heterozygosity/site among individuals).  193 

Biallelic SNP panels for each species were then visualized and filtered with the R package 194 

RADIATOR (Gosselin, 2020). To ensure high data quality, loci were removed if: Monomorphic; minor 195 

allele frequency <3%; Mean coverage <20 or >200; Missing data >30%; SNP position on read >91; and if 196 

HWE lacking in one or more sampling sites (α = 0.0001). To reduce linkage disequilibrium, only one 197 

SNP per locus was retained (that which maximized minor allele count). Finally, singleton individuals per 198 

species at a sampling site and those with >75% missing data in the filtered panel were removed. Species-199 

level SNP panel alignments, metadata, and R code are available on Open Science Framework (Zbinden, 200 

Douglas, et al., 2022c). 201 

 202 

2.3 | Exploring genetic structure 203 

Intraspecific genetic structure was first assessed among sites for visualization, with subsequent modeling 204 

done among individuals. For each species (N=31), pairwise FST (Weir & Cockerham, 1984) was 205 

calculated among sites (HIERFSTAT; Goudet et al., 2017). Jost's D was also quantified among sites and 206 

globally, as it is based on the effective number of alleles rather than heterozygosity and hence less biased 207 

by sampling differences (Jost, 2008). Additional global intraspecific FST analogs were also quantified for 208 

comparison: Multi-allelic GST (Nei, 1973) and unbiased G" ST (Meirmans & Hedrick, 2011) (MMOD; 209 

Winter, 2012). We tested for isolation by distance (IBD) using both linearized FST and Jost's D. Their 210 

relationships with river distance (log-transformed) were assessed using the Mantel test (Mantel & Valand, 211 

1970) (ECODIST; Goslee & Urban, 2020) and visualized using linear regression (Rousset, 1997). 212 
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Admixture analysis of population structure and ancestry coefficients were estimated using sparse 213 

non-negative matrix factorization (sNMF) (Frichot et al., 2014). We ran sNMF for each species, with 20 214 

repetitions per K value (1 to N sites or 20, whichever was smallest) and α=100 (LEA; Frichot & François, 215 

2015). The best K (i.e., the number of distinct gene pools) from each sNMF run minimizes the cross-216 

validation entropy criterion (Alexander & Lange, 2011). The best K was then used to impute missing data 217 

(impute function using method=‘mode' in LEA). The sNMF algorithm was then repeated (as above) using 218 

imputed genotypes. The resulting Q-matrices of ancestry coefficients per cluster were used to map 219 

population structure and served as the "IBB" (isolation by barrier) model below. The indirect inference of 220 

dispersal barriers based on discrete population structure was previously used to represent IBB (Ruiz-221 

Gonzalez et al., 2015) and is consistent with the use of population structure maps to infer the presence of 222 

dispersal barriers. 223 

We further assessed among-site genetic variation between Hydrologic Units (HUCs) and discrete 224 

population clusters (determined via sNMF) using analysis of molecular variance (AMOVA) (Excoffier et 225 

al., 1992). The purpose was to determine which spatial scale of HUC explained the most variance and to 226 

compare that to the variance explained by discrete structure across K populations inferred above with 227 

sNMF. AMOVA was performed for each species at four HUC levels (4-, 6-, 8-, and 10-digit) to compare 228 

the amount of genetic variation among HUCs, all sites, and sites within HUCs. The Watershed Boundary 229 

Dataset (USGS, 2021) was used to assign HUC classifications to each site. AMOVA was then performed 230 

for each species with genetic clusters K>1 to compare the genetic variation among discrete populations, 231 

all sites, and sites within populations. Individuals with admixed ancestry between different K populations 232 

were assigned to a population based on their highest ancestry proportion. The variance components were 233 

used to estimate Φ-statistics (analogous to F-statistics): ΦCT = the genetic variation among groups (either 234 

HUCs or discrete populations); ΦST = the genetic variation among sites across all groups; and ΦSC = the 235 

genetic variation among sites within groups. The wrapper R package POPPR (Kamvar et al., 2015) was 236 

used to implement the PEGAS (Paradis, 2010) version of AMOVA with default settings. 237 

 238 
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2.4 | Modeling genetic β-diversity 239 

To compare four models of spatial genetic variation among groups of individuals (i.e., β-Diversity), we 240 

employed a variation partitioning framework based on partial redundancy analysis (Capblancq & 241 

Forester, 2021; Chan & Brown, 2020). We elected to analyze individual genetic values (i.e., individual x 242 

SNP data matrix) rather than decomposing them into among-site distances (e.g., FST) to allow the use of 243 

more powerful multivariate methods rather than derived forms of the Mantel test (e.g., multiple regression 244 

on distance matrices) (Legendre & Fortin, 2010). For each species, we partitioned a matrix representing 245 

individual genetic variation among four explanatory matrices based on: IBD, IBB, IBH, and IBE (Figure 246 

2).  247 

Individual genetic variation within each species (i.e., individual x SNP data matrix)  was reduced 248 

to major axes of variation using principal components analysis (PCA) on each SNP panel (Xuereb et al., 249 

2018). The appropriate number of PCs retained for each species was determined by testing the 250 

significance of observed component eigenvalues versus random eigenvalues generated by randomly 251 

shuffling the genetic data matrix and performing a PCA 999 times. The p-value for each PC axis was 252 

estimated as: (number of random eigenvalues equal to or larger than the observed + 1)/1000 (Rnd-253 

Lambda; Peres-Neto et al., 2005). This method was implemented using the R package PCDIMENSION 254 

(Coombes & Wang, 2019). For each species, individual scores on the retained PCs represented individual 255 

genetic variation (i.e., response matrix) which was modeled using the explanatory matrices (i.e., models) 256 

described below (Figure 2). 257 

The first model (IBD) relied on river network distance measured between individuals (RIVERDIST; 258 

Tyers, 2017). The distance matrix was decomposed into positively correlated spatial eigenvectors using 259 

distance-based Moran's eigenvector maps (Borcard & Legendre, 2002; Chan & Brown, 2020; Dray et al., 260 

2006) within the R package ADESPATIAL (Dray et al., 2020). Each individual was assigned a score for 261 

each eigenvector positively correlated with genetic diversity (Figure 2). Eigenfunction analysis is an 262 

alternative means to assess the contribution of geographic distance on patterns of genetic variation and is 263 

more powerful than Mantel correlations at detecting fine-scale structure (Xuereb et al., 2018). 264 
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The second model (IBB) was based on the discrete population structure inferred above using the 265 

admixture analysis sNMF, which was represented as the individual population coefficients (i.e., Q-266 

matrix). The assumption was that discrete population structure indicates a reduction of gene flow between 267 

populations due to a barrier (or high resistance) to dispersal. Similar clustering analysis output was 268 

previously used to represent IBB (Ruiz-Gonzalez et al., 2015). However, IBB often implicitly refers to 269 

instream barriers, such as dams and weirs. Our indirect approach based on population coefficients should 270 

capture the effects of those barriers as well as natural barriers to gene flow. While testing for significant 271 

genetic differences among populations defined by clustering methods is entirely meaningless due to 272 

circularity, it is reasonable to assess the strength of separation among clusters (e.g., F-statistics from 273 

AMOVA) or variation explained by clustering (e.g., adjusted R2 from RDA) (Meirmans 2015). Note: the 274 

IBB model could not be incorporated for species in which population structure was not apparent (K=1), 275 

and these species were thus tested using only three models of genetic structure.  276 

The third model (IBH) was constructed using four levels of HUCs (4-, 6-, 8-, and 10-digit) that 277 

characterized an individual's position within the stream hierarchy, i.e., hydrologic unit (USGS, 2021). 278 

Each site and individual within site could be classified by its unique HUC code at the four levels. These 279 

codes were nominal categories and were decomposed into N-1 binary 'dummy variables.' This 280 

decomposition produces a 'new' variable for each HUC within a spatial level, and an individual is either 281 

within (=1) or outside (=0) a given HUC. Note: the dummy variables produced were one less than the 282 

number of original categories to avoid introducing collinearity.  283 

The fourth model (IBE) relied on contrasting environmental variation across sites—represented 284 

using principal component scores (Figure 2). Environmental variables were taken from a compendium of 285 

281 factors distinguished by five major classes: (i) hydrology/physiography, (ii) climate, (iii) land cover, 286 

(iv) geology, and (v) anthropogenic (HYDRORIVERSv.1.0; Linke et al., 2019). We aimed to reduce the 287 

environmental factors to include only those demonstrating a significant relationship with genetic 288 

variation. Variables were first analyzed within major classes, with invariant factors and those exhibiting 289 

collinearity being removed in a stepwise manner (USDM; Naimi, 2013) until each had a variation inflation 290 
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factor (VIF) <10 to reduce collinearity. Standardization occurred by subtracting means and dividing by 291 

standard deviations to ensure variables had a common scale. Variables within each major class (e.g., 292 

climate) were selected for subsequent analyses using forward selection (Blanchet et al., 2008). Variables 293 

within the class being considered (e.g., climate) were first tested for a significant relationship with the 294 

response data (individual genetic variation) using redundancy analysis (RDA; Rao, 1964). If the overall 295 

relationship was significant (α < 0.05), a stepwise forward procedure was carried out such that specific 296 

variables were selected if the adjusted R2 of the model increased significantly (α < 0.05) and the adjusted 297 

R2 did not exceed that of the overall model (Blanchet et al., 2008). This procedure was employed using 298 

the ordiR2step function in the R package VEGAN (Oksanen et al., 2020). The selected variables from each 299 

of the five classes (hydrology/physiography, climate, land cover, geology, and anthropogenic) were 300 

combined into a single environmental matrix, then reduced to a set of PCs using robust principal 301 

components analysis (ROBPCA; Hubert et al., 2005). The number of PCs retained was determined 302 

following Hubert and coworkers (2005), as implemented in the R package ROSPCA (Hubert et al., 2016). 303 

The environmental matrix of individuals x PCs was used to model IBE. 304 

For each species, individual genetic variation (individuals x PCs matrix) was partitioned among 305 

the four explanatory models of genetic structure (IBD, IBB, IBH, IBE) using variation partitioning based 306 

on partial redundancy analysis (pRDA; Anderson & Legendre, 1999; Borcard et al., 1992). Redundancy 307 

analysis (Rao, 1964) is a constrained ordination technique and an extension of multiple regression that 308 

summarizes the relationship between linear combinations of multiple response variables and linear 309 

combinations of multiple explanatory variables (Capblancq & Forester, 2021). The overall variance in the 310 

response matrix is partitioned into constrained and unconstrained fractions. The former is interpreted as 311 

the amount of response variation 'explained' by the explanatory set(s), expressed as a proportion 312 

equivalent to R2 in multiple regression, which is adjusted to reduce bias introduced by multiple predictors 313 

(Peres-Neto et al., 2006). The formula for the full RDA model herein was: Genetic β Diversity ~ IBD + 314 

IBB + IBH + IBE (Figure 2). Variation partitioning consists of running sequential pRDAs to adjust the 315 

linear effects of an explanatory set on the response by accounting for other explanatory sets first, e.g., 316 
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Genetic β Diversity ~ IBD | (IBB + IBH + IBE). (In other words, here we estimate variation explained by 317 

distance after removing that explained by the other three response matrices.) This set of tests allows 318 

partitioning the variation explained into that 'purely' attributable to a given explanatory set (e.g., IBD) and 319 

into shared components attributable to two or more sets (e.g., IBD + IBH). Variation partitioning allows 320 

the correlation structure among competing models to be visualized, typically using Venn diagrams 321 

showing adjusted R2 for different intersectionalities of the explanatory data sets (i.e., pure and correlated 322 

components). The variation partitioning was performed using the varpart function in the R package VEGAN 323 

(Oksanen et al., 2020). The models were judged based on their significance, adjusted coefficients of 324 

determination R2, and correlation with other models. The 'best' model should explain the most variation in 325 

the genetic response matrix (i.e., highest adj. R2), should account for variation after accounting for that 326 

explained by other models (i.e., 'pure' adj. R2 > 0), and account for most variation explained by competing 327 

models (i.e., other models are redundant). 328 

 329 

3 | RESULTS 330 

3.1 | Sampling and data recovery summarized 331 

Collections (N=75; Figure 1) yielded N=72 species and N=3,605 individuals. On average, we collected 332 

~11 species/site, typical for streams sampled with seine nets in North America (Matthews, 1998) and 333 

similar highland streams within the Mississippi Basin (Zbinden, Geheber, Lehrter, & Matthews, 2022; 334 

Zbinden, Geheber, Matthews, & Marsh-Matthews, 2022).  335 

We genotyped N=3,060 individuals across N=31 species, with at least two individuals collected 336 

at ≥5 sampled sites. Simulations and empirical evaluations underscore the accuracy of FST estimates when 337 

large numbers of SNPs (≥1,500) are employed across a minimum of two individuals (Nazareno et al., 338 

2017; Willing et al., 2012). After removing samples with missing data >75% and those as singletons of 339 

their species at a site, the remaining N=2,861 were analyzed for genetic structure (Table 1). The number 340 

of individuals analyzed per species ranged from 15–358 (x�=92.3; s=80.8), and the sites at which each 341 

species was collected ranged from 5–50 (x�=16.8; s=11.2). The number of individuals/species/site 342 
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ranged from 2–15 (x�=5.1; s=1.5). The mean number of raw reads/individual/species spanned from 1.65 343 

million to 3.22 million (x�=2,289,230.0; s=341,159.5). The mean N of loci/species recovered by IPYRAD 344 

ranged from 14,599–30,509 (x�=20,081.7; s=4,697.6) with a mean sequencing depth/locus of 73.6x 345 

(s=12.0x). After filtering loci and retaining one SNP per locus, the panels for each species contained 346 

2,168–10,033 polymorphic sites (x�=4,486.7; s=1,931.1) with mean missing data/species at 12% (s=2%). 347 

 348 

3.2 | Genetic structure 349 

3.2.1 | Among-site genetic divergence 350 

Distributions of among-site FST  and D varied widely among species (Figure 3; Supplement S1), as did 351 

global indices of genetic divergence (Table 2). All three global indices of fixation or genetic divergence 352 

(GST, G" ST, D) were negatively correlated with within-site heterozygosity (HS), positively correlated with 353 

total heterozygosity (HT), and highly, positively correlated with each other (Table 3). 354 

A significant relationship was found between linearized among-site FST and log-transformed 355 

among-site river network distance for 23 (74%) of the N=31 species (Figure 4). Mantel coefficients 356 

ranged from 0.11–0.88 (x�=0.51; s=0.19). Results were largely similar when IBD was tested with Jost's 357 

D, again with the same 23 species showing a significant relationship, along with two additional taxa: 358 

Smallmouth Bass (Micropterus dolomieu; Lacepède, 1802) and Largemouth Bass [Micropterus 359 

salmoides; (Lacepède, 1802)]. Mantel correlation coefficients ranged from 0.15–0.92 (x�=0.51; s=0.19).  360 

 361 

3.2.2 | Population structure 362 

An apparent lack of discrete genetic structure emerged across seven species, suggesting continuous 363 

structuring at the spatial scale of our study (Figure 5). For the remaining 24 species, at least two and up to 364 

seven discrete sub-populations were identified (Figure 6). This structure corresponded at the broadest 365 

hierarchical level to the two major northern basins: Upper White and Black rivers, for all species sampled 366 

in both sub-basins (N=22). There was also evidence of fine-scale structure for five species within the 367 
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Little Red River Basin. Smaller catchments with distinct gene pools across multiple species included: 368 

North Fork (4 spp.), Buffalo (3 spp.), Upper Black (4 spp.), Current (3 spp.), and Spring rivers (4 spp.). 369 

 370 

3.2.3 | AMOVA 371 

Discrete genetic structuring was also supported via AMOVA. Genetic variation among HUCs was 372 

significant for 24 species (Table 4). For the other seven species, variation among HUCs was ≤ 1%, save 373 

for Ozark Sculpin (Cottus hypselurus; Robins & Robison, 1985) and Creek Chub [Semotilus 374 

atromaculatus; (Mitchill, 1818)]. HUC differences for these accounted for >80% of the genetic variance 375 

but were non-significant due to a lack of power. Southern Redbelly Dace [Chrosomus erythrogaster; 376 

(Rafinesque, 1820)] could not be tested due to a lack of repeated samples within HUC levels. Further 377 

evidence of genetic structure among HUCs was revealed in the pattern of ΦSC (genetic divergence among 378 

sites within HUCs) < ΦST (divergence among all sites) found across 26 species. The 8-digit HUC level 379 

explained the greatest genetic variance across 21 species (Table 4). 380 

Genetic variation among discrete population clusters (based on sNMF) was significant for 21 of 381 

the N=31 species (Table 4). Seven species were best described as single populations (K=1) and were not 382 

tested. The three species without significant structure, despite K>1 via sNMF, could likely be explained 383 

by low power resulting from a small number of sample sites. Again, as with HUCs, ΦSC < ΦST was 384 

observed. However, all tested species showed this pattern (i.e., sites within the same population were less 385 

differentiated than sites across all populations). 386 

 387 

3.3 | Modeling genetic β-diversity 388 

Variability in genetic β-diversity was partitioned across four models of genetic structure for the N=31 389 

species. Principal components of SNP panel variation served as representatives of genetic variation. 390 

Across species, the number of genetic PCs ranged from 2–93 (x�=20.0; s=20.1; Table 1). 391 

Combining the four models (IBD, IBB, IBH, IBE) explained between 3–100% of the genetic β-392 

diversity across species (x�=63.0%; s=35.3%; Figure 7). Isolation by stream hierarchy (IBH; x�=62.0%; 393 
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s=34.7%) and barrier (IBB; x�=49.3%; s=30.0%) contributed most to the total variation explained, while 394 

distance (IBD; x�=32.1%; s=25.1%) and environment (IBE; x�=33.0%; s=21.4%) explained less (Figure 395 

7; Supplement S1). Variation explained by "pure" models, after accounting for that explained by the other 396 

three, was >0 only for stream hierarchy and barrier (Figure 7; Supplement S1), suggesting that distance 397 

and environment are encapsulated by the former. Indeed, correlative structure among models revealed 398 

most genetic variance was explained by stream hierarchy, with the other models largely redundant (Figure 399 

8; Supplement S1). 400 

 401 

4 | DISCUSSION 402 

Genetic diversity is an essential metric for inferring evolutionary processes and guiding conservation. 403 

Single-species estimates of genetic diversity are standard given practical constraints, e.g., funding 404 

mandates for species of conservation concern. However, adopting a multispecies approach for analyzing 405 

genetic diversity could allow for more comprehensive and systematic management plans to be developed 406 

by focusing on commonalities (rather than differences) among species. The Stream Hierarchy Model 407 

(Meffe & Vrijenhoek, 1988) posits that the dispersal of stream-dwelling organisms is more limited 408 

between hierarchical units (basins, sub-basins, watersheds) than within (i.e., 'spatial modularity; Fortuna 409 

et al., 2009). If this model was generalizable, it could determine relevant scales and regions for managing 410 

genetic diversity that may harbor complementary biodiversity and aid in systematic conservation planning 411 

(Margules & Pressey, 2000; Paz-Vinas et al., 2018; Xuereb et al., 2021). 412 

 Few studies have analytically compared the spatial structure of genetic β-diversity. Paz-Vinas et 413 

al. (2018) compared genetic α- and β-diversity among six river-dwelling fish species in France using 414 

microsatellites. In contrast to our results, their study found that species did not conform to common 415 

spatial patterns, although their approach differed from that herein (i.e., 'hot-' and 'coldspots' of α- and β-416 

diversity). Fortuna et al. (2009) used isozymes to demonstrate that three of four Mediterranean shrubs in 417 

their study displayed similar patterns of network connectivity (modularity) in that the same sets of 418 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 2, 2022. ; https://doi.org/10.1101/2022.10.26.513848doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.26.513848
http://creativecommons.org/licenses/by-nd/4.0/


 

 

17

sampling sites formed consistent patches based on estimates of genetic connectivity (i.e., higher 419 

connectivity among sites within a patch) that likely represent fundamental scales for populations. 420 

Our multispecies approach yielded two salient points: 1) From a macro-perspective, river network 421 

topology and complexity are manifested in common patterns of genetic structure across species 422 

(consistent modularity); and 2) on a finer scale, the degree of intraspecific genetic divergence varies 423 

widely among co-distributed species. Most species showed significant IBD patterns but also discrete 424 

population sub-structure, as reflected most strongly by sub-basin delineations (e.g., HUC-8). These 425 

patterns were corroborated by AMOVA and variation partitioning and are generalized across species. 426 

Overall, stream fish genetic structure patterns indicated dispersal limited primarily among versus within 427 

river catchments. 428 

 429 

4.1 | Drivers of isolation at the basin-wide scale  430 

4.1.1 Isolation by Distance and river networks 431 

IBD is expected when a genetic study's spatial extent is greater than individuals' average dispersal 432 

distance, i.e., distance moved from natal habitat to breeding habitat. We examined species from seven 433 

families of fishes, most of which are small-bodied, highland species that presumably do not disperse great 434 

distances (Matthews & Robison, 1988). Indeed, significant IBD patterns were detected in 81% of the 435 

species in our study. However, the strength of the relationship was generally weak (Mantel r =0.47 & 436 

0.51 for linearized FST and D, respectively). 437 

While IBD may primarily explain genetic variation along a single stream or river, i.e., linear 438 

scale, it fails to incorporate the spatial structure of riverine networks (Thomaz et al., 2016). Therefore, 439 

IBD may not be an appropriate general model for fish genetic structure at the network scale (Hopken et 440 

al., 2013). IBD plots for many species (Figure 4) showed high genetic divergence even among relatively 441 

proximate localities, with apparent clusters indicating discrete rather than continuous structure (Guillot et 442 

al., 2009). This evidence suggests that—at the network scale—a more nuanced pattern occurs, with high 443 

residual variation resulting. The failure of IBD to account for large amounts of variation in genetic 444 
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divergence reflects additional resistance to dispersal, as caused by longitudinal changes in habitat 445 

characteristics such as slope, depth, volume, and predator composition. For example, two river reaches of 446 

equal length can have very different habitat matrices, and these can be more influential on gene flow than 447 

space alone (Guillot et al., 2009; Lowe et al., 2006; Ruiz-Gonzalez et al., 2015). 448 

 449 

4.1.2 Stream Hierarchy Model  450 

Our results show that individual genetic variation is best explained by the Stream Hierarchy Model 451 

(Brauer et al., 2018; Hopken et al., 2013; Meffe & Vrijenhoek, 1988). In other words, the majority of 452 

variation explained by IBD, IBE, and IBB could be accounted for by IBH alone. This was corroborated 453 

via variation partitioning, in which IBD, IBE, and IBB models were redundant with IBH. A concordance 454 

of population structure with stream hierarchy yielded a similar percentage of among-site genetic variation, 455 

as explained by among-HUC and among-population groupings. In short, the variance explained by 456 

distance and environment was due to differences among HUC drainages. These results highlight the 457 

necessity of accounting for population structure prior to exploring the relationship between genotypes and 458 

environmental heterogeneity, e.g., within genotype by environment frameworks (Lawson et al., 2020). 459 

 460 

4.1.3 Disentangling cumulative effects  461 

Our analyses also revealed complex spatial patterns of genetic diversity. We evaluated competing 462 

isolation models using an approach that identified distance and barriers as putative drivers, with strong 463 

genetic divergence identified even across short geographical distances (Chan & Brown, 2020; Ruiz-464 

Gonzalez et al., 2015). This interaction can confound analyses that incorporate either alone. For example, 465 

if sampling is clustered, discrete genetic groups can be spuriously inferred along an otherwise continuous 466 

gradient of genetic variation (Frantz et al., 2009). Furthermore, a continuous pattern can be erroneously 467 

extrapolated when the underlying reality is described by distinct clusters separated by geographic distance 468 

(Meirmans, 2012). Here we echo the importance of testing various hypotheses concerning genetic 469 
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structure (Perez et al., 2018). Idiosyncrasies and complex interactions cannot be discerned by testing 470 

single models in isolation (e.g., discrete structure or IBD).  471 

 472 

4.2 | Drivers of variation within and among species 473 

The species assayed herein display marked differences concerning dispersal capability (Shelley et al., 474 

2021). Given this, we expected the degree of genetic structure to vary widely among species across our 475 

study region (Comte & Olden, 2018; Husemann et al., 2012; Pilger et al., 2017). Dispersal-related traits 476 

drive gene flow among localities and determine the spatial scale at which patterns of genetic structure 477 

emerge (Bohonak, 1999; Riginos et al., 2014). The physical structure of the river network then further 478 

modulates these patterns by dictating dispersal pathways of metapopulations and their colonization and 479 

extinction probabilities (Falke et al., 2012; Labonne et al., 2008; Fagan, 2002). These superimposed 480 

processes influence genetic divergence among distal populations (Thomaz et al., 2016; Chiu et al., 2020). 481 

Similar patterns emerge when analyzing community diversity via species composition. Headwater 482 

streams tend to have very different communities due to dispersal limitations (Finn et al., 2011; Zbinden & 483 

Matthews, 2017; Zbinden, Geheber, Lehrter, & Matthews, 2022). The interaction between traits and the 484 

environment is an overarching influence that unites ecology and evolution. 485 

Many species studied herein are small-bodied with aggregate distributions in upland and 486 

headwater streams (Robison & Buchanan, 2020). Thus, species-specific dispersal limitations, as imposed 487 

by unsuitable large riverine habitats (Radinger & Wolter, 2015; Schmidt & Schaefer, 2018), explain 488 

considerable variation in genetic structuring within the White River. Large rivers are hypothesized as 489 

inhospitable habitats to upland fishes (e.g., resources, depth, turbidity, substrates) and impose resistance 490 

to successful migration (e.g., higher discharge, greater density of large-bodied predators). These 491 

characteristics constrain migration and limit gene flow amongst basins that drain into large rivers (Fluker 492 

et al., 2014; Schmidt & Schaefer, 2018; Turner & Robison, 2006). The results are asymmetric gene flow 493 

and source-sink metapopulation dynamics, with susceptible species, those smaller and less tolerant, 494 

diverging most rapidly (Campbell Grant et al., 2007). Thus it is not surprising that the species for which 495 
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we found no evidence of discrete genetic structure (i.e., K=1) are also among the larger, more generalist 496 

species. 497 

Life-history traits likely play an important role as well. For example, those that directly influence 498 

effective population size (Nei & Tajima, 1981; Waples, 2022) may generate differences among species 499 

regarding the rate at which genetic differences arise due to genetic drift (Blanchet et al., 2020). Species 500 

with 'slow' life histories, characterized by longer generations and delayed maturity, show an increased 501 

probability of local extirpation, inflating genetic drift concomitant with global extinction risk (Hutchings 502 

et al., 2012; Pearson et al., 2014; Chafin et al., 2019). Similar contingencies exist for ecological traits, 503 

such as highly specialized trophic adaptations, narrow environmental tolerances, or any other following 504 

the same general mechanism of influence on dispersal or effective population sizes (Olden et al., 2008). 505 

Ecological traits are mirrored by morphology (Douglas & Matthews, 1992), underscoring an interaction 506 

of trait effects that are difficult to disentangle. Ultimately, intraspecific genetic divergence is driven by a 507 

combination of factors that influence population size, demographic history, and connectivity (Zbinden et 508 

al., 2022d). Clearly, these complex interactions among drivers require more comparative multispecies 509 

assessments as they shape genetic diversity and structure within and among species (microevolutionary 510 

scale) and, thus, ultimately lead to speciation and extinction (macroevolutionary scale). 511 

 512 

4.3 | Disentangling historic and contemporary drivers  513 

4.3.1 Paleohydrology in the White River system 514 

In this study, discrete population structure coincides with major topological divides within the White 515 

River stream network, such as a consistent east/west divide between Upper White and Black rivers, 516 

mirroring prior community composition studies (Matthews & Robison, 1988; 1998). Similar patterns 517 

were observed at smaller scales among drainages within the study region, as reported for White River 518 

crayfish (Fetzner & DiStefano, 2008). While the Lower White and Black rivers are certainly 519 

contemporary large-river habitats, both would have been much larger pre-Pleistocene when together they 520 

represented the main channel of the Old Mississippi River (Mayden, 1988; Strange & Burr, 1997). This 521 
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large-river habitat would have separated the eastern and western highland tributaries, with inhospitable 522 

habitat for upland species. Pronounced limitations regarding historic dispersal induced by the Old 523 

Mississippi could explain the greater isolation of the Little Red River and Black River tributary 524 

populations compared to those in the Upper White River. Here, additional work should incorporate 525 

coalescent perspectives (e.g., Oaks, 2019) that test the role of past geomorphic events in driving co-526 

divergence and co-demographic patterns, such as the Pleistocene incursion by the Old Mississippi into the 527 

modern Black River channel. 528 

 529 

4.3.2 Contemporary drivers 530 

Spatial discontinuities in genetic structure can also reveal contemporary barriers to migration/gene flow 531 

(Lee et al., 2018; Ruiz-Gonzalez et al., 2015). The Upper White River dams (e.g., Norfork, Bull Shoals, 532 

Table Rock, and Beaver dams) represent the most apparent anthropogenic barriers to gene flow. Dams 533 

elsewhere have demonstrated discrete populations above and below the structure (Roberts et al., 2013). 534 

However, observable genetic impacts can be limited due to the relatively short period these dams have 535 

been in place (Ruzich et al., 2019). Those on the White River were constructed between 1912 536 

(Taneycomo Powersite Dam) and 1966 (Beaver Dam).  537 

Our study was not explicitly designed to assess impoundment effects on diversity, nor were they 538 

directly tested. Nevertheless, evidence of discrete population structure has emerged, corresponding to the 539 

location of such dams. Four species showed discrete populations within the North Fork River above the 540 

Norfork Dam: Southern Redbelly Dace [Chrosomus erythrogaster; (Rafinesque, 1820)]; Yoke Darter 541 

(Etheostoma juliae; Meek, 1891); Northern Studfish [Fundulus catenatus; (Storer, 1846)]; and 542 

Blackspotted Topminnow [Fundulus olivaceus; (Storer, 1845)] (sites colored magenta; Figure 6). One 543 

species, Orangethroat Darter [Etheostoma spectabile; (Agassiz, 1854)], showed a distinct population in 544 

the James River above Table Rock Dam (sites colored gold; Figure 6). However, both North Fork and 545 

James rivers drain eight-digit HUC watersheds, which explains high amounts of genetic variation across 546 

the study region, regardless of dams. This highlights the importance of understanding 'natural' network-547 
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wide patterns of genetic structure prior to deriving conclusions regarding anthropogenic barriers, 548 

particularly when they coincide with stream hierarchy. Differentiating dams as barriers versus stream 549 

hierarchy could be accomplished through divergence time estimates (Hansen et al., 2014) or by 550 

contrasting observed genetic differentiation with that expected in the face of a true obstacle for N 551 

generations (Prunier et al., 2020). That aspect, as it now stands, is beyond the scope of our current study. 552 

 553 

5| CONCLUSIONS 554 

The multispecies comparative approach employed here revealed general patterns that could not have been 555 

discerned from a singular study of any one species. Additionally, the variability among species regarding 556 

intraspecific genetic structure provides specific information of interest that single-species studies cannot. 557 

While meta-analytic approaches have some potential, they are limited by confounding effects that stem 558 

from differences between studies, such as markers, sample sizes, environmental exigencies, and historical 559 

context. This necessitates a community-level approach within a study region. Further work aimed at 560 

modeling variables can lead to greater insight, ultimately improving our hypotheses regarding genetic 561 

diversity for which contemporary data are unavailable. 562 

Importantly, our comparative approach supports the Stream Hierarchy Model as a general model for 563 

the genetic structure of lotic fish species and suggests that hydrologic units characterize regional genetic 564 

diversity quite well. Out of this result emerged the potential for HUC units to serve as a 'rule of thumb' for 565 

riverine biodiversity conservation. None of the species evaluated herein were panmictic. Genetic variation 566 

among HUCs was apparent despite limited evidence of discrete population or continuous structure for 567 

some species. Across a suite of commonly occurring fishes representing seven families, we identified 568 

greater intraspecific gene flow within than among basins/sub-basins. Therefore, fish populations within 569 

separate HUCs at the 8-digit+ level (e.g., HUC6, HUC4, HUC2) should be considered isolated until 570 

proven otherwise (Shelley et al., 2021). 571 

As previously recognized, independent populations warrant independent management (Hopken et 572 

al., 2013). When migration is low or non-existent, management of one population is unlikely to impact 573 
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another. Genetic variation unique to hydrologic units could allow for adaptation to future environmental 574 

change, while on the other hand, isolation of populations could underscore elevated extirpation risks 575 

(Harrisson et al., 2014). Furthermore, efforts to propagate populations via stocking or translocation should 576 

carefully assess the genetic landscape of the species in question, particularly before co-mingling diversity 577 

from different sub-basins (Meffe & Vrijenhoek, 1988). Such uninformed mixing of genetic stocks could 578 

promote outbreeding and the erosion of unique genetic diversity within river catchments. However, this 579 

must be weighed against the risks of local extirpation (Pavlova et al., 2017). 580 

Given this study's general and comparative nature, we refrain from designating populations within 581 

species as potential management units (MUs). However, species showing high levels of genetic structure 582 

(Table 2) could be assessed individually for such designation, possibly requiring more fine-scaled, 583 

targeted sampling. Additional river/sub-basin-specific management efforts could also be justified, given 584 

the presence of unique populations across multiple species (Hopken et al., 2013). These consistent spatial 585 

modalities shared among multiple species point to areas of the river network that not only harbor unique 586 

genetic diversity but also play a key role in metapopulation viability and metacommunity dynamics 587 

(Fletcher et al., 2013). Here we specifically refer to: The Little Red, North Fork, Buffalo, Upper Black, 588 

Current, and Spring rivers. These may indeed represent evolutionarily significant catchments, and this 589 

insight underscores the potential for community-level genetic examination to elevate management to the 590 

ecosystem scale (Hanson et al., 2020; Paz-Vinas et al., 2018). 591 
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TABLE 1 Fish species (N=31) were collected at 75 sampling locations across the White River Basin of 1002 

the Ozark Mountains, U.S.A. Summary data are tabulated for N=2,861 individuals across seven families 1003 

genotyped and analyzed for genetic structure. Family=fish family; Species=species name; NI=number of 1004 

individuals analyzed after filtering; NS=number of sites at which filtered individuals occurred; 1005 

NI/S=mean number of individuals per site; Reads=mean number of raw reads recovered by Illumina 1006 

HiSeq; Loci=mean number of loci recovered by iPyrad; Depth=mean coverage of loci; Ho=mean 1007 

observed heterozygosity; SNPs=number of single nucleotide polymorphisms in the analyzed data panel; 1008 

Miss=mean missing data; and PCs=number of principal components used to characterize neutral genetic 1009 

variation and PCvar=the original genetic variance explained by the set of PCs. 1010 

 1011 

Family Species NI NS NI/S Reads Loci Depth Ho SNPs Miss PCs PCvar 
Atherinopsidae Labidesthes sicculus 99 18 5.5 2401513 19532 83 0.0013 2956 0.11 17 40.2 

Centrarchidae 

Lepomis macrochirus 63 17 3.7 2369445 26142 61 0.0028 5873 0.14 19 45.5 
Lepomis megalotis 242 44 5.5 2330434 25126 59 0.0036 4841 0.13 48 45.2 

Micropterus dolomieu 56 15 3.7 2014858 21420 58 0.0018 2813 0.11 11 32.6 
Micropterus salmoides 15 7 2.1 2338155 22827 65 0.0018 2825 0.06 7 59.4 

Cottidae 
Cottus carolinae 24 9 2.7 2973760 27523 74 0.0012 5798 0.12 5 61.6 

Cottus hypselurus 40 8 5.0 3226846 28108 76 0.0015 7116 0.11 5 75.1 

Fundulidae 
Fundulus catenatus 112 23 4.9 2757508 30509 52 0.0014 3378 0.13 18 46.0 
Fundulus olivaceus 131 24 5.5 2647685 27631 51 0.0025 3111 0.14 22 42.6 

Leuciscidae 

Campostoma anomalum 93 20 4.7 2226556 16753 77 0.0036 3187 0.13 10 36.7 
Campostoma oligolepis 119 31 3.8 2038589 16107 76 0.0030 3121 0.12 40 44.7 

Chrosomus erythrogaster 53 7 7.6 2180045 16508 73 0.0033 3440 0.14 6 55.8 
Cyprinella galactura 72 10 7.2 1648530 14839 72 0.0029 3322 0.11 27 52.1 
Cyprinella whipplei 29 6 4.8 1870427 14599 84 0.0033 2847 0.12 8 39.5 

Luxilus chrysocephalus 57 13 4.4 1677176 15089 68 0.0025 2168 0.14 17 47.2 
Luxilus pilsbryi 244 31 7.9 2028625 16063 81 0.0033 4922 0.14 93 52.1 
Luxilus zonatus 98 16 6.1 2273167 16964 89 0.0030 5496 0.12 12 24.7 

Lythrurus umbratilis 23 5 4.6 1970516 16465 68 0.0032 2491 0.12 6 40.3 
Notropis boops 233 28 8.3 2355581 15684 104 0.0040 6161 0.11 71 43.8 

Notropis nubilus  191 32 6.0 2087695 15544 81 0.0040 4018 0.14 65 46.3 
Notropis percobromus 62 10 6.2 2082050 17852 74 0.0047 4393 0.13 36 65.6 

Notropis telescopus 81 13 6.2 2092015 16154 85 0.0024 4741 0.11 12 31.2 
Pimephales notatus 47 13 3.6 2106907 15271 92 0.0029 4022 0.13 11 49.3 

Semotilus atromaculatus 30 9 3.3 2216336 15406 84 0.0020 2644 0.15 2 63.6 

Percidae 

Etheostoma blennioides 52 14 3.7 2491915 21416 71 0.0024 5124 0.11 2 36.4 
Etheostoma caeruleum 358 50 7.2 2170268 21900 62 0.0044 3511 0.13 20 28.7 
Etheostoma flabellare 22 6 3.7 2288120 21041 62 0.0015 9927 0.08 4 88.7 

Etheostoma juliae 57 10 5.7 2513876 20652 84 0.0014 5473 0.1 7 39.5 
Etheostoma spectabile 49 10 4.9 2565769 23873 64 0.0051 5519 0.15 6 33.6 

Etheostoma zonale 74 15 4.9 2364158 21514 74 0.0033 10033 0.13 5 24.9 
Poeciliidae Gambusia affinis 35 8 4.4 2657603 24021 78 0.0021 3818 0.09 9 39.9 

  MEAN 92.3 16.8 5.1 2289230.0 20081.7 73.6 0.0028 4486.7 0.12 20.0 46.2 
  STDEV 80.8 11.2 1.5 341159.5 4697.6 12.0 0.0010 1931.1 0.02 22.1 14.3 
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TABLE 2 Summary of genetic structure observed for N=31 species of fish collected across the White 1012 

River Basin, U.S.A. Classifications to family and species are provided for each, along with summaries of 1013 

genetic structure: HT=total heterozygosity; HS=within-site heterozygosity; GST=Nei's fixation index; G" 1014 

ST=unbiased fixation index; D=Jost's genetic differentiation; IBD=significant tests of isolation by distance 1015 

denoted "X"; Structure=whether the species could be subdivided into more than one population, denoted 1016 

"X"; Model=the isolation model explaining the most individual genetic variance; and Model Var=the 1017 

amount of variance explained by the best isolation model. Species are ordered by Jost's D. 1018 

 1019 

Family Species HT HS GST 
G 

"ST D IBD Structure Model 
Model 

Var 
Percidae Etheostoma flabellare 0.35 0.02 0.93 0.96 0.40 - X stream hierarchy 99% 
Leuciscidae Semotilus atromaculatus 0.30 0.09 0.70 0.79 0.26 X X stream hierarchy 91% 
Cottidae Cottus hypselurus 0.24 0.07 0.73 0.81 0.22 - X stream hierarchy 99% 
Leuciscidae Chrosomus erythrogaster 0.27 0.11 0.59 0.71 0.21 X X stream hierarchy 98% 
Cottidae Cottus carolinae 0.26 0.11 0.58 0.69 0.19 X X stream hierarchy 93% 
Leuciscidae Campostoma anomalum 0.20 0.12 0.38 0.45 0.09 X X stream hierarchy 87% 
Percidae Etheostoma blennioides 0.21 0.13 0.35 0.43 0.09 X X stream hierarchy 98% 
Leuciscidae Pimephales notatus 0.25 0.18 0.28 0.36 0.09 X X stream hierarchy 98% 
Percidae Etheostoma juliae 0.23 0.16 0.29 0.37 0.09 X X stream hierarchy 97% 
Leuciscidae Lythrurus umbratilis 0.30 0.25 0.17 0.27 0.09 - - stream hierarchy 69% 
Percidae Etheostoma spectabile 0.20 0.14 0.31 0.38 0.08 X X stream hierarchy 99% 
Fundulidae Fundulus olivaceus 0.24 0.18 0.25 0.32 0.08 X X stream hierarchy 88% 
Fundulidae Fundulus catenatus 0.20 0.14 0.31 0.37 0.07 X X stream hierarchy 83% 
Atherinopsidae Labidesthes sicculus 0.18 0.14 0.24 0.29 0.05 X X stream hierarchy 84% 
Leuciscidae Notropis telescopus 0.20 0.16 0.20 0.25 0.05 X X stream hierarchy 60% 
Percidae Etheostoma caeruleum 0.14 0.10 0.27 0.30 0.04 X X stream hierarchy 90% 
Percidae Etheostoma zonale 0.16 0.13 0.20 0.25 0.04 X X stream hierarchy 98% 
Leuciscidae Luxilus chrysocephalus 0.26 0.23 0.11 0.15 0.04 X X stream hierarchy 38% 
Centrarchidae Lepomis megalotis 0.18 0.15 0.17 0.21 0.04 X X stream hierarchy 47% 
Poeciliidae Gambusia affinis 0.26 0.24 0.10 0.14 0.04 X X stream hierarchy 59% 
Leuciscidae Cyprinella whipplei 0.26 0.24 0.09 0.14 0.04 X X stream hierarchy 50% 
Centrarchidae Micropterus salmoides 0.30 0.28 0.06 0.10 0.03 X - stream hierarchy 12% 
Leuciscidae Luxilus zonatus 0.19 0.17 0.11 0.14 0.03 - X stream hierarchy 76% 
Centrarchidae Lepomis macrochirus 0.24 0.22 0.07 0.10 0.02 - - stream hierarchy 19% 
Centrarchidae Micropterus dolomieu 0.23 0.22 0.07 0.10 0.02 X - stream hierarchy 57% 
Leuciscidae Notropis boops 0.17 0.16 0.06 0.08 0.01 X X stream hierarchy 23% 
Leuciscidae Notropis nubilus  0.14 0.13 0.07 0.08 0.01 X X stream hierarchy 13% 
Leuciscidae Campostoma oligolepis 0.17 0.16 0.05 0.06 0.01 X X stream hierarchy 15% 
Leuciscidae Cyprinella galactura 0.18 0.18 0.04 0.05 0.01 - - stream hierarchy 12% 
Leuciscidae Notropis percobromus 0.18 0.18 0.03 0.04 0.01 X - stream hierarchy 3% 
Leuciscidae Luxilus pilsbryi 0.14 0.13 0.02 0.02 0.00 X - stream hierarchy 6% 

MEAN 0.22 0.16 0.25 0.30 0.08 63% 
  STDEV 0.05 0.06 0.23 0.25 0.09       35% 
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TABLE 3 Summary of correlation among population genetic parameter estimates calculated for N=31 1020 

fish species collected across the White River Basin, U.S.A. HS=within-site heterozygosity; HT=total 1021 

heterozygosity; GST=Nei's fixation index; G" ST=unbiased fixation index; and D=Jost's genetic 1022 

differentiation. Pearson's product-moment correlation between each parameter estimate is shown in the 1023 

table below. Only significant (α < 0.05) correlations are shown.  1024 

 1025 

  HS HT GST G"ST 
HT ns - 

  GST -0.75 0.52 - 
 G "ST -0.71 0.55 0.99 - 

D -0.65 0.67 0.97 0.96 
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TABLE 4 Genetic variation of fish species (N=31) sampled across the White River Basin (Ozark Mountains, U.S.A.), was tested using analysis of 1026 

molecular variance (AMOVA) to determine the proportion of genetic variation differing among distinct hydrologic units (HUCs) and among 1027 

discrete population clusters. HUC tests were performed at four HUC-levels (4-, 6-, 8-, and 10-digit HUCs) and the level depicting the most genetic 1028 

variance is shown. Var=percent genetic variance explained; sig=the significant of the test (* for <0.05 and ns for >0.05); ΦST = genetic variation 1029 

among sites across all groups; ΦSC = genetic variation among sites within a group. 1030 

 1031 

    Hydrologic Units   Population Clusters 

Family Species HUC-level 
Among HUCs 

 
Among Sites Among Pops Among Sites 

%var sig.   %var ΦST sig. ΦSC   %var sig.   %var ΦST sig. ΦSC 
Atherinopsidae Labidesthes sicculus HUC-8 21% *   19% 0.40 * 0.24   25% *   18% 0.436 * 0.243 

Centrarchidae 

Lepomis macrochirus - 0% ns 7% 0.07 * 0.07 - - - - - - 
Lepomis megalotis HUC-4 70% * 7% 0.77 * 0.23 37% * 6% 0.428 * 0.098 

Micropterus dolomieu HUC-8 5% * 7% 0.12 * 0.07 - - - - - - 
Micropterus salmoides HUC-4 3% *   0% 0.02 ns 0.00   - -   - - - - 

Cottidae 
Cottus carolinae HUC-8 66% * 9% 0.74 * 0.26 62% * 15% 0.772 * 0.402 

Cottus hypselurus HUC-8 84% ns   5% 0.89 ns 0.31   85% ns   7% 0.917 * 0.442 

Fundulidae 
Fundulus catenatus HUC-8 36% * 15% 0.51 * 0.23 36% * 16% 0.516 * 0.244 
Fundulus olivaceus HUC-8 18% *   18% 0.36 * 0.22   16% *   21% 0.372 * 0.252 

Leuciscidae 

Campostoma anomalum HUC-8 53% * 2% 0.55 * 0.05 61% * 7% 0.680 * 0.175 
Campostoma oligolepis HUC-8 6% * 1% 0.07 ns 0.01 5% * 3% 0.081 * 0.036 

Chrosomus erythrogaster - - - - - - - 62% * 21% 0.829 * 0.548 
Cyprinella galactura HUC-8 7% * 0% 0.07 ns 0.00 - - - - - - 
Cyprinella whipplei HUC-8 14% * 4% 0.18 * 0.05 14% ns 7% 0.202 * 0.078 

Luxilus chrysocephalus HUC-8 14% * 7% 0.21 * 0.08 17% * 10% 0.266 * 0.120 
Luxilus pilsbryi HUC-10 1% ns 1% 0.02 * 0.01 - - - - - - 
Luxilus zonatus HUC-10 15% * 3% 0.18 * 0.03 9% * 10% 0.199 * 0.115 

Lythrurus umbratilis - 0% ns 22% 0.20 * 0.22 - - - - - - 
Notropis boops HUC-8 6% * 3% 0.09 * 0.03 6% * 6% 0.113 * 0.059 

Notropis nubilus  HUC-4 10% * 7% 0.17 * 0.08 16% * 1% 0.172 * 0.015 
Notropis percobromus HUC-8 1% * 1% 0.01 ns 0.01 - - - - - - 

Notropis telescopus HUC-8 33% * 1% 0.34 * 0.01 41% * 3% 0.436 * 0.046 
Pimephales notatus HUC-8 17% * 26% 0.44 * 0.32 13% * 32% 0.453 * 0.372 

Semotilus atromaculatus HUC-8 87% ns   1% 0.88 * 0.08   92% *   2% 0.934 * 0.194 

Percidae 

Etheostoma blennioides HUC-8 61% * 2% 0.62 * 0.04 67% * 2% 0.686 * 0.053 
Etheostoma caeruleum HUC-8 40% * 3% 0.44 * 0.06 45% * 5% 0.497 * 0.093 
Etheostoma flabellare - 0% ns 99% 0.98 * 0.98 95% * 3% 0.977 ns 0.580 

Etheostoma juliae HUC-8 34% * 11% 0.45 * 0.16 36% * 12% 0.478 * 0.182 
Etheostoma spectabile HUC-8 29% * 10% 0.38 * 0.14 26% * 13% 0.394 * 0.181 

Etheostoma zonale HUC-8 32% * 2% 0.34 * 0.02 38% * 5% 0.422 * 0.074 
Poeciliidae Gambusia affinis HUC-4 7% *   13% 0.20 * 0.14   13% ns   11% 0.239 * 0.123 
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FIGURE 1 Fish were sampled at N=75 locations across the White River Basin (Ozark Mountains, 1032 

U.S.A.). The study basin is contained within the larger Mississippi River Basin, and is a direct tributary to 1033 

the mainstem Mississippi. The study region is subdivided into five subbasins: Upper White, Lower White, 1034 

Black, Little Red, and the St. Francis. Beyond these basins, USGS Hydrologic Unit Codes (HUCs) were 1035 

also used to characterize the stream hierarchy position of sampling locations (4-, 6-, 8-, and 10-digit 1036 

HUCs). 1037 

 1038 

 1039 
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FIGURE 2  The analytic approach to partitioning individual genetic variation across four spatio-1040 

environmental predictor matrices. The approach was applied separately to 31 freshwater fish species 1041 

collected across the White River Basin of the Ozarks, USA. The full redundancy analysis model is shown 1042 

at the top of the figure, where genetic diversity is explained by geographic distance (IBD), discrete 1043 

population structure (IBB), stream hierarchical position (IBH), and environmental variation among 1044 

habitats (IBE). The initial data matrices representing genetic β-diversity (i.e., response variable) and the 1045 

four explanatory variables sets are depicted at the top. Each matrix is labeled to show rows, columns, and 1046 

values (e.g., individuals, single nucleotide polymorphisms, and alleles). These matrices each pass through 1047 

analyses and/or transformations (gray ellipses) to yield the matrices used for modeling at the bottom of 1048 

the figure. PCA = principal component analysis; PCs = principal components; dbMEM = distance-based 1049 

Moran's eigenvector maps; sNMF = sparse non-negative matrix factorization; dummy transform = 1050 

transforming categorical variable into separate binary variables; VIF = variance inflation factor; 1051 

ROBPCA = robust principal components analysis. Note that environmental factors were standardized (z-1052 

score). 1053 

1054 
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FIGURE 3 Genetic structure of N=31 fish species collected across the White River Basin (Ozark 1055 

Mountains, U.S.A.) as summarized by among-site FST (Weir and Cockerham's θ) and Jost's D. Boxplots 1056 

show the distributions of both pairwise estimates among sampling sites for each species. Inner quantiles 1057 

are colored to indicate species in the same family (N=7). 1058 

 1059 

 1060 
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FIGURE 4 Isolation by distance plots for N=31 fish species collected across the White River Basin ( 1061 

Ozark Mountains, U.S.A.). Each depicts the relationship between among-site FST (linearized) and log river 1062 

distance among sites. The following are represented below each species name: m=slope of the linear 1063 

regression model (dashed red line) and r= the Mantel coefficient indicating the strength of the correlation 1064 

between genetic structure and distance. Significant r-values denoted with a red asterisk (α≤ 0.05). 1065 

 1066 

1067 
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FIGURE 5 Sampling distribution maps of seven species which showed no evidence of discrete genetic 1068 

population structure within the White River Basin ( Ozark Mountains, U.S.A.). A total of N=31 species 1069 

were sampled across 75 sites. The number of collection sites (red circles) for each species is denoted by 1070 

N; K=the number of discrete genetic populations discerned from sparse non-negative matrix factorization. 1071 

  1072 

 1073 
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FIGURE 6 Sampling distribution maps of 24 species which showed evidence of genetic population structure 1074 

within the White River Basin (Ozark Mountains, U.S.A.). N=31 species were sampled across 75 sites. K= the 1075 

number of discrete genetic populations discerned from sparse non-negative matrix factorization. Sampling 1076 

sites are denoted as pie charts representing the average population coefficients for each site. N= number of 1077 

sites where each species was collected. 1078 

 1079 

1080 
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FIGURE 7 Neutral genetic variation was partitioned between four explanatory models for N=31 fish 1081 

species sampled across the White River Basin (Ozark Mountains, U.S.A.). Partitioning was conducted 1082 

separately for each species. The four models represent: (i) isolation by distance, the river network 1083 

distance among individuals represented by spatial eigenvectors; (ii) isolation by barrier, represented by 1084 

population structure coefficients among individuals; (iii) isolation by stream hierarchy, based on the 1085 

hydrologic units (at four different hierarchical levels) in which an individual was collected; and (iv) 1086 

isolation by environment, characterized by the environmental heterogeneity across sampling sites where 1087 

individuals were collected. Total = the genetic variation explained by all four models combined. The 1088 

"Pure" models represent the variation explained by each model after partialling out the variation 1089 

explained by the other three models.  1090 

 1091 

1092 
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FIGURE 8 Venn diagrams depict neutral genetic variation resulting from four models as applied to N=31 1093 

fish species sampled from the White River Basin (Ozark Mountains, U.S.A.). Models were based on: (i) 1094 

isolation by distance, isolation by barrier, isolation by stream hierarchy, and isolation by environment. 1095 

Values in the Venn diagrams are percent of genetic variance explained (i.e., rounded adjusted R2 values). 1096 

Total variance explained is shown below each diagram. The bottom two rows show species that showed 1097 

no discrete population structure (i.e., no isolation by barrier) and thus only three of the models were 1098 

tested. 1099 

 1100 
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