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 Abstract 
 Targeted low-throughput studies have previously identified subcellular RNA localization as 
 necessary for cellular functions including polarization, and translocation. Further, these studies 
 link localization to RNA isoform expression, especially 3’ Untranslated Region (UTR) regulation. 
 The recent introduction of genome-wide spatial transcriptomics techniques enable the potential 
 to test if subcellular localization is regulated in situ pervasively. In order to do this, robust 
 statistical measures of subcellular localization and alternative poly-adenylation (APA) at single 
 cell resolution are needed. Developing a new statistical framework called SPRAWL, we detect 
 extensive cell-type specific subcellular RNA localization regulation in the mouse brain and to a 
 lesser extent mouse liver. We integrated SPRAWL with a new approach to measure cell-type 
 specific regulation of alternative 3’ UTR processing and detected examples of significant 
 correlations between 3’ UTR length and subcellular localization. Included examples, Timp3, 
 Slc32a1, Cxcl14, and Nxph1 have subcellular localization in the brain highly correlated with 
 regulated 3’ UTR processing that includes use of unannotated, but highly conserved, 3’ ends. 
 Together, SPRAWL provides a statistical framework to integrate multi-omic single-cell resolved 
 measurements of gene-isoform pairs to prioritize an otherwise impossibly large list of candidate 
 functional 3’ UTRs for functional prediction and study. SPRAWL predicts 3’ UTR regulation of 
 subcellular localization may be more pervasive than currently known. 

 Introduction 
 As a general rule, it is accepted that the cellular localization of a protein is biologically 

 critical for its function  (Hung and Link, 2011)  . However, the general importance of RNA 
 localization within a cell, and how this localization varies in different biological situations remains 
 poorly understood. Targeted studies have identified examples of genes whose RNA localization 
 is critical to function, such as the enrichment of beta-actin (  Actb  ) RNA to lamellipodia in motile 
 chicken embryonic myoblasts  (Lawrence and Singer, 1986)  . It was observed that approximately 
 80% of total actin mRNA localized to the lamellipodia, and specific disruption of localization, but 
 not expression, of the mRNA resulted in decreased cell motility  (Kislauskis  et al.  , 1994, 1997)  . 
 The same authors also identified so-called “zipcode” sequences in the 3’ Untranslated Region 
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 (UTR) of  Actb  which were necessary for proper RNA localization  (Kislauskis  et al.  , 1994)  . In a 
 larger scale study it has been estimated that 70% of mRNAs are spatially localized in 
 Drosophila  embryogenesis  (Lécuyer  et al.  , 2007)  . Other well-known and recently identified 
 examples of RNA subcellular localization with functional consequences include lipid droplets 
 (Saka and Valdivia, 2012)  and TIS11B protein granules  (Ma and Mayr, 2018)  . In these case 
 studies, RNA localization is cis-regulated by either alternative splicing or 3’ UTR usage. 

 While the vast majority of 3’ UTR isoform functions remain unknown and incompletely 
 annotated, emerging evidence points to an abundance of cell-type specific regulation  (Meyer  et 
 al.  , 2022)  where inclusion of different 3’ UTRs may even have opposite functions. Cd47, for 
 example, expresses a long-isoform 3’ UTR that results in a peripherally localized protein product 
 protecting against phagocytosis, but can also express a short-isoform 3’ UTR that results in a 
 cytoplasmic protein product with the same amino-acid sequence that does not confer the same 
 phagocytotic protection  (Berkovits and Mayr, 2015)  . Control of RNA subcellular localization 
 through RNA isoform choice may help pinpoint functions for alternative RNA isoforms and UTRs 
 in eukaryotes. 

 Spatial transcriptomics has seen rapidly increasing interest as methods become 
 increasingly powerful and affordable  (Marx, 2021)  . However work remains primarily focused on 
 gene expression. Techniques such as MERFISH  (Moffitt  et al.  , 2016)  , and its commercialization 
 Vizgen, as well as SeqFISH+  (Eng  et al.  , 2019)  utilize sequential multiplexed fluorescence 
 imaging to localize hundreds to thousands of distinct genes across a tissue with subcellular 
 resolution. Along with RNA-capture based spatial transcriptomics techniques  (Ståhl  et al.  , 2016; 
 Stickels  et al.  , 2021; Su  et al.  , 2021)  , these spatial datasets have primarily been used to analyze 
 the distribution of cell-types within a tissue via gene expression. At a finer scale, RNA 
 distribution within cells has been understudied despite an established history of biologically 
 important case studies discussed in multiple reviews  (Lipshitz and Smibert, 2000; Holt and 
 Bullock, 2009; Suter, 2018)  . 

 The limited approaches that have been used to detect subcellular localization patterns 
 from high throughput, high resolution spatial datasets rely on co-stains and/or heuristics without 
 statistical formalism  (Samacoits  et al.  , 2018; Xue  et al.  , 2020; Tang  et al.  , 2021)  . As an example, 
 an analysis of a SeqFISH+ dataset relied on arbitrarily chosen hard thresholds to determine 
 peripherally and centrally localizing genes in different mouse cortex cell-types. The use of 
 thresholding can result in overlooked weaker spatial patterns and also makes it difficult to 
 control the false discovery rate (FDR)  (Eng  et al.  , 2019)  . Additionally, compartment-based 
 analysis of MERFISH datasets has been used to detect differences in neuron soma, axon, and 
 dendrite transcriptomes using the Wilcoxon rank-sum test and Moran’s I  (Moran, 1950; Xia  et 
 al.  , 2019)  . Discretizing cellular regions does not fully utilize the information present in the 
 MERFISH dataset since RNA subcellular localization is intrinsically a continuous process. 
 Similarly, while proximity-tagging and sequencing approaches such as APEX-seq  (Fazal  et al.  , 
 2019; Padrón and Ingolia, 2022)  have generated high-plex datasets for RNA localization within 
 subcellular compartments, these methods require genetically modified cell-lines, and cannot be 
 readily applied to tissue. Finally, to our knowledge no study has attempted to test whether 
 isoform regulation can explain subcellular localization at the gene level in massively multiplexed 
 FISH datasets. 
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 To address the limitations of prior approaches, we introduce Subcellular Patterning 
 Ranked Analysis With Labels (SPRAWL) as a transparent and statistical approach to detect 
 RNA subcellular patterning from multiplexed imaging datasets. SPRAWL assigns an 
 interpretable score to detect RNA localization patterning for a gene of interest in an individual 
 cell. Further, these scores can be carefully aggregated to detect spatial patterns between 
 cell-types and biological replicates with FDR control. SPRAWL currently identifies continuous 
 peripheral, central, radial, and punctate localization patterns which are significantly more 
 extreme than expected by chance in either direction of effect. SPRAWL can be extended to 
 detect user-defined patterns and represents a general framework for unbiased discovery of 
 RNA subcellular localization patterns from multiplexed imaging datasets. This integrative 
 approach identifies genes with potential cis-regulatory spatial sequences, and prioritizes 
 candidates for experimental follow-ups. 

 Results 
 SPRAWL was developed to be a non-parametric single-cell resolved measure of RNA 

 subcellular localization that is robust against confounding variables of cell size, and RNA 
 expression level, while providing effect-size and statistical significance measures. SPRAWL 
 reduces complex spatial patterns into one-dimensional scores that are readily interpretable and 
 comparable. An additional benefit of SPRAWL scores is their direct integration with other 
 statistical methods: scores can be analyzed through the lens of various metadata such as cell 
 type, or correlated with other measures such as RNA 3’ UTR regulation or splicing state. 

 SPRAWL is a publicly available Python package that can be installed using pypi with pip 
 install subcellular-sprawl and has also been implemented in Nextflow  (Di Tommaso  et al.  , 2017) 
 and Docker for reproducible analyses at large scale in high-performance or cloud computing 
 environments. SPRAWL source code and documentation are available at 
 https://github.com/salzman-lab/SPRAWL  . 

 SPRAWL quantifies peripheral and central subcellular RNA patterning with rank statistics 
 Examples of RNA localized to the plasma membrane include  Actin  and  Tubulin  in 

 mammalian cells  (Lawrence and Singer, 1986)  ,  ASH1  in yeast  (Bertrand  et al.  , 1998)  , and 
 Oskar  in fly oocytes  (Rongo  et al.  , 1995)  . These foundational examples motivate the unbiased 
 statistical detection of RNA localization patterns in reference to the cell-boundary. To satisfy this 
 need, we’ve created the SPRAWL peripheral metric (Figure 1) which quantifies the extent to 
 which the RNA spots of a gene of interest are more extremely proximal or distal from the 
 cell-membrane than expected by chance. 

 To calculate the SPRAWL peripheral metric for a given gene in a given cell, first the 
 minimum euclidean distance is calculated between each RNA spot, regardless of gene identity, 
 and the cell-boundary. These distances are then used to rank the spots from 1 to n 
 corresponding to the nearest and furthest RNA spot from the boundary respectively (Figure 1a). 
 The median rank is calculated for the m RNA spots of the gene. Under the null hypothesis that 
 the gene is not peripherally localized, the expected value is (n+1)/2. Genes with lower median 
 ranks than the expected value are more peripherally localizing, while larger median ranks 
 correspond with anti-peripheral localization. 
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 The probability mass function (PMF) of observing each possible median peripheral rank 
 has a direct formulation which allows for exact calculations of p-values under the null (Figure 
 1b). The actual SPRAWL peripheral score, X, is the result of normalizing the median rank to be 
 between -1 (anti-peripheral) and 1 (peripheral) with an expected value of 0 (not peripheral) 
 (Figure 1c). Finally, the per cell-type scores can be calculated as the mean of the SPRAWL cell 
 scores to provide an aggregate measure, Y, of RNA localization per gene per cell-type. Under 
 the Lyapunov Central Limit Theorem  (Billingsley, 1995)  , Y will approach in distribution a 
 standard normal as the number of cells increases. The SPRAWL centrality score is conceptually 
 identical to the peripheral score, but RNA spots are ranked by distance from the cell-centroid 
 rather than the cell boundary. All subsequent steps are the same as the peripheral metric. 

 One of the main advantages of using a rank-based formulation of the periphery and 
 centrality scores is the insensitivity to cell size and rotation. This feature facilitates direct 
 comparisons of SPRAWL scores between cells and even samples. The simplicity of the 
 statistically-backed metrics provides both effect size and p-value handles for detecting extreme 
 RNA patterning in either the positive (peripheral/central) or negative (anti-peripheral/anti-central) 
 direction of effect. Finally it is worth noting that while the peripheral and central scores are 
 strongly anti-correlated (Supplemental Figure 1d), there are clear examples of RNA with 
 simultaneously central and peripheral localization in a cell when the cell-boundary runs near to 
 the cell centroid. 

 SPRAWL detection of punctate and radial patterning relies on gene-label permutations 
 While some RNAs are known to be peripherally or centrally localizing as discussed 

 above, others are known to be trafficked to organelles  (Chang  et al.  , 2004)  , cell-poles  (Rongo  et 
 al.  , 1995; Hachet and Ephrussi, 2004)  , or neuronal processes  (Minis  et al.  , 2014; Zappulo  et al.  , 
 2017; Das  et al.  , 2019)  . In all cases, RNA molecules of the same gene will be more spatially 
 aggregated than expected by chance. To detect such patterning, SPRAWL punctate and radial 
 metrics have been defined to respectively identify RNA species that tend to aggregate by 
 euclidean distance or in one angular sector of the cell. 

 SPRAWL’s punctate score represents the degree to which RNA spots from a given gene 
 are clustered together, scores closer to 1 indicate self-colocalizing or self-aggregating genes. 
 Scores near -1 indicate self-repulsion, and scores of 0 indicate an expected level of aggregation 
 under the null of random patterning. 

 When calculating the punctate score for a gene of interest with m > 1 RNA spots in a 
 cell, a subset of k random pairs of spots are selected and the distances between them 
 measured and averaged (Figure 2a). Next gene-label permutations are performed, randomly 
 swapping gene labels but not RNA spot locations, to create a null background of mean 
 between-spot distances by again choosing k random spots from the gene of interest in each 
 permuted cell (Figure 2b). The punctate score, X, is normalized to be between -1 and 1 with 
 E[X] = 0 under the null (Figure 2c). Negative values indicate anti-punctate patterning, values 
 near 0 are random or non-punctate, and positive values indicate punctate behavior (Figure 2d). 
 Finally, SPRAWL cell-type scores can be calculated using the Lyapunov Central Limit theorem 
 in the same manner as in the peripheral score (Figure 1d). The radial metric is conceptually 
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 identical to the punctate metric but measures mean between-spot angles instead of 
 between-spot distances. 

 Unlike the peripheral and central metrics, the radial and punctate scores rely on 
 permutation testing to create a null distribution for each gene in each cell. The advantages of 
 permutation testing are that the metrics can be of any complexity, but the disadvantage is the 
 increased compute time in comparison with the simpler rank-based approaches. The 
 permutation-based metrics retain the critical insensitivity to cell size, shape, and orientation 
 present in the rank-based metrics. 

 SPRAWL robustly detects subcellular localization in massively multiplexed FISH datasets 
 The SPRAWL peripheral, central, punctate, and radial metrics described above have 

 been used to analyze spatial datasets comprising a total of 22 experiments over 4 mice 
 processed by three different research groups and two technologies  (Eng  et al.  , 2019; Zhang  et 
 al.  , 2021; Vizgen, n.d.)  . Applying SPRAWL to these datasets revealed: (1) gene/cell-type 
 localization patterns have high correlation between biological replicates; (2) differential 
 subcellular localization patterns of the same gene in different cell-types; and (3) differential 
 subcellular regulation corresponding with cell-type differential 3’ UTR length from associated 
 single-cell RNA sequencing (scRNAseq) datasets  (Yao  et al.  , 2021)  for 26 genes including 
 Slc32a1, Cxcl14  ,  Nxph1  , and  Timp3  . 

 SPRAWL detects cell-type specific localization patterns across biological replicates 
 We applied SPRAWL to the BICCN motor cortex (MOp)  (Zhang  et al.  , 2021)  , Vizgen 

 Brainmap, and Vizgen Liver datasets  (Vizgen, n.d.)  which each contained either biological or 
 technical replicates. The median SPRAWL gene/cell-type scores were significantly positively 
 correlated between replicates within all three datasets for all four spatial metrics having 
 significant Pearson correlation with coefficients larger than 0.8, Spearman correlation 
 coefficients larger than 0.72, at an alpha level of 0.05 (Figure 3a: blue). 

 Given the observed high pervasiveness of subcellular patterning in all datasets, we 
 tested the specificity of SPRAWL by using permuted data. By permuting the gene-label of the 
 RNA spots in a cell, we create negative control datasets that are known not to have significant 
 spatial patterning. Assuringly, SPRAWL median gene/cell-type scores were not significantly 
 correlated between biological replicates in any permuted dataset (Figure 3a: orange). 
 Furthermore, in these negative control datasets, SPRAWL does not call any gene to be 
 significantly localized in any cell-type after correcting for multiple hypothesis testing. 

 As an additional control for SPRAWL specificity, MERFISH and Vizgen experiments 
 include “blank-codes” which do not correspond to actual genes and are therefore not expected 
 to have significant spatial patterning. In the BICCN MOp dataset 10 blank-codes were included 
 which SPRAWL determined to be spatially regulated in only the radial and punctate metrics. For 
 the punctate metric, 191 of the 248 unique genes that had statistically significant patterning in at 
 least one cell-type had smaller BH-corrected p-values than the most significant blank-codes. 
 Similarly for the radial metric, 232 of the 241 unique significant genes had a smaller p-value 
 than the most significant blank-codes. SPRAWL did not identify significant patterning of 
 blank-codes in any cell-type pairings across all replicates for the Vizgen Brainmap and Vizgen 
 Liver datasets. Therefore, adjusting the p-value thresholds to filter out blank-codes would result 
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 in the loss of only 57 punctate and 9 radial gene significance calls from only one dataset, again 
 supporting SPRAWL’s specificity. 

 To test whether the SPRAWL peripheral score was sensitive to cell-segmentation, we 
 compared SPRAWL before and after mutating the cell boundaries of a dataset (Methods and 
 Supplemental Figure 1e). Specifically, the cell boundary locations were computationally shrunk 
 by a factor of 1.25 fold in the x and y direction, discarding spots that fell outside the new 
 boundaries. In both the BICCN MOp and Vizgen Brainmap datasets, a Pearson correlation 
 coefficient of greater than 0.85 was observed between the shrunk and original median 
 gene/cell-type periphery scores. Insensitivity to cell-segmentation is an important feature of a 
 subcellular localization algorithm due to the multitude of approaches and noted difficulties in 
 computational cell segmentation  (Coelho  et al.  , 2009; Thomas and John, 2017; Vicar  et al.  , 
 2019; Durkee  et al.  , 2021)  . 

 While SPRAWL’s specificity can be benchmarked with multiple approaches, estimating 
 SPRAWL’s sensitivity on real datasets is confounded by a lack of known true positive 
 subcellular RNA patterning by cell-type. As a proxy for ground-truth, we hypothesized that RNAs 
 encoding proteins with a signal recognition particle (SRP+) would have more centralized 
 patterning than RNAs without (SRP-) due to their known trafficking to the endoplasmic 
 reticulum. Surprisingly, the scores of all SPRAWL metrics were indistinguishably distributed 
 between SRP+ and SRP- genes (Supplemental Figure 5a). In an additional approach, we tested 
 whether highly central RNAs were enriched in single-nucleus sequencing (snRNAseq), 
 compared to scRNAseq, which was true for only a subset of genes (Supplemental Figure 5b). A 
 potential reason for both ground-truth proxies behaving unexpectedly is the nucleus is not 
 necessarily centrally localized and RNAs may not be detectable when protein-bound. 

 Cell-type specific subcellular localization is regulated in BICCN MOp replicates 
 In the MOp dataset, SPRAWL detects hundreds of significantly patterned gene/cell-type 

 groups. The MOp dataset imaged 252 genes through multiplexed barcoding, including 10 
 negative-control barcodes, and profiled nearly 300,000 cells from the mouse motor cortex 
 (Zhang  et al.  , 2021)  .  Biological replicates were present from two mice (Figure 3a: top row) with 
 6 slices taken from each animal. Conservative filtering of  cells and cell-types (see Methods: 
 SPRAWL Filtering) resulted in 220 unique genes and 19 distinct cell-types, with 1,999 of 4,180 
 (47.8 %) possible gene/cell-type combinations observed. After BH multiple hypothesis testing 
 correction over both biological replicates, 1511 (75.6%) gene/cell-type pairs were called 
 significant by the SPRAWL peripheral metric, 1492 74.6%) by the central metric, 1475 (73.8%) 
 by the radial metric, and 1448 (72.4%) by the punctate metric. Spatial patterning was extensive 
 and consistent between replicates with more than 77.8% of the gene/cell-type pairs having the 
 same direction of effect, positive or negative, between the two replicates. Additionally, 176 of 
 220 (80%) unique genes were found to be significantly spatially regulated in at least one 
 cell-type in all metrics, but not necessarily the same cell-type in all metrics. Similarly all 19 
 cell-types were observed to be significant with at least one gene in each metric (Supplemental 
 Table 1). 

 Cell-type specific subcellular localization is regulated in Vizgen Brain replicates 
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 The Vizgen Brainmap dataset contains nine MERFISH experiments from three coronal 
 sections of a mouse brain. Each section contains three adjacent cryotome slices from the same 
 animal that are considered pseudo-biological replicates (Figure 3a: middle row). Approximately 
 70,000 cells and 649 genes, of which 165 were blank-code negative controls, were imaged. 
 Cell-type annotations were not provided for this dataset, and instead a simple clustering of cells 
 by gene count from the spatial data was performed using scanpy  (Wolf  et al.  , 2018)  that resulted 
 in 42 cell-type proxies (Methods, Brainmap clustering). Analysis of the three brain slices 
 resulted in 158 (54.7%), and 159 (55.0%), 139 (48.1%), and 156 (54.0%) unique genes 
 significant in at least one cell-type for the peripheral, central, radial, and punctate analysis 
 respectively. For the peripheral metric, 2,535 of 2,877 (88.1%) gene/cell-type groups present in 
 all three tissue slices had significant Benjamini-Hochberg corrected p-values (ɑ = 0.05). A 
 similar 87.7% of gene/cell-types were significant according to the centrality metric. For the radial 
 metric, 1,194 of 2,877 (51.6%) gene/cell-type groups were significant, while the punctate metric 
 identified 2,196 of 2,877 (76.3%) of the gene/cell-type pairs as significant. 

 All slices from all sections were pairwise significantly correlated for the peripheral, radial, 
 and punctate metrics with a minimum Pearson correlation coefficient of 0.55. Cell-type SPRAWL 
 correlation results were insensitive to different cell-type clustering parameters (Supplemental 
 Figure 2), suggesting that the agreement between biological replicates found by SPRAWL is 
 robust to different granularities of clustering; a desirable trait since cell-type clustering 
 approaches vary widely. 

 Cell-type specific subcellular localization is regulated in Vizgen Liver replicates 
 The Vizgen Liver dataset consists of two mice, each with two replicates for a total of four 

 MERFISH experiments (Figure 3a: bottom row). Spatial data was collected on more than 1 
 million liver cells across all four datasets and 589 distinct genes were imaged, of which 127 
 were blank-codes. As with the Vizgen Brainmap dataset, no cell-type annotations were provided 
 and naive clustering was performed to generate pseudo-annotations. After filtering out 
 gene/cell-type groups with fewer than 20 cells, SPRAWL detected 112 (29.1%) peripheral, 112 
 (29.1%) central, 118 (30.6%) radial, and 134 (34.8%) punctate genes significant in at least one 
 cell-type. Median SPRAWL scores per gene/cell-type were highly correlated between the 
 biological replicates with Pearson correlation coefficients of 0.80, 0.74, 0.62, 0.77  for the 
 peripheral, central, radial, and punctate metrics respectively. The peripheral metric identified 
 1,399 of 1,642 (85.2%) significant gene/cell-type pairs after restricting to median RNA spot 
 count >=5, and presence in both biological replicates. Similar percentages of 85.1%, 51.4%, 
 and 77.4% of gene/cell-type pairs were found to be significantly patterned in the central, radial, 
 and punctate metrics. 

 Significant SPRAWL punctate and radial scores are highly skewed towards aggregation 
 Over 99% of the significant gene/cell-type groups have positive (X > 0) radial and 

 punctate scores, revealing a significant and general tendency of RNAs to colocalize with other 
 RNAs of the same gene both by euclidean distance (punctate metric), and angular dispersion 
 (radial metric). In comparison, the SPRAWL peripheral metric in the BICCN MOp dataset 
 identifies 828 significant gene/cell-type pairs, of which 56.1% are more positively peripheral (X > 
 0) and the remaining 43.9% are anti-peripheral (X < 0). Similarly, the SPRAWL central metric 
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 identifies 45.2% of significantly positive scoring gene/cell-type pairs. Empirical CDF plots of 
 SPRAWL metric scores provide an alternate view for the same phenomenon (Supplemental 
 Figure 1a,1b). Additionally, null simulated datasets did not have a bias towards positive radial or 
 punctate scoring (Figure 3a orange). 

 SPRAWL detects 112 of 252 genes (44.4%) as globally positively punctate and radial in 
 all cell-types which express them including extreme genes, such as Claudin 5 (  Cldn5  ) which has 
 a median SPRAWL punctate and radial score of 0.85 and 0.84 respectively (Figure 3b purple 
 ticks) as well as VEGFR-1 (  Flt1  ) which has a median  SPRAWL punctate and radial score of 
 0.83 for both metrics (Figure 3c).  Cldn5  protein product  is the primary integral membrane 
 protein component of tight junctions in mouse brain and knockouts result in postnatal death 
 (Nitta  et al.  , 2003)  .  Flt1  is a transmembrane tyrosine kinase receptor that binds vascular 
 endothelial growth factor (VEGFR) and also has a shortened alternative soluble protein isoform 
 (Shibuya  et al.  , 1990)  (Jin  et al.  , 2012)  . The consistent positive punctate and radial scores of 
 Flt1, and lack of differential localization patterns, could indicate that either only one isoform of 
 Flt1 is expressed across all cell-types, or that the two mRNA isoforms are alternatively 
 expressed but do not have differential subcellular localization patterns. It is currently not known 
 in the literature whether  Cldn5  or  Flt1  RNA localization  is regulated, but a followup targeted 
 FISH experiment could be insightful. We note that imaging errors resulting in calling a single 
 RNA molecule as two nearby molecules could be artificially inflating the radial and punctate 
 scores leading to more significant calls. 

 SPRAWL detects genes with opposite and cell-type dependent RNA localization 
 We defined opposite-directionality genes as those that have the pattern of being 

 significantly positively scoring in one cell-type, while being significantly negatively scoring in 
 another cell-type for the same metric, such as peripheral vs. anti-peripheral. Significant spatial 
 patterning of a gene in only a subset of cell-types suggests differences in either cis or 
 trans-acting regulatory factors. For the BICCN dataset out of 252 genes, 92 (36%) peripheral, 
 96 (38%) central, 2 (1%) radial, and 10 (4%) punctate genes are opposite-directionality 
 (Supplemental Table 1). We define an additional class of genes as cell-type dependent, but not 
 opposite-directionality patterning. These genes are significant in at least one cell-type, but 
 insignificantly localized in at least one other cell-type and account for approximately 55% of 
 genes in peripheral and central metrics, and 20% for the radial and punctate metrics across all 
 datasets. SPRAWL’s ability to detect cell-type specific regulation of subcellular patterning 
 generates testable hypotheses for follow-up analysis and experimentation. A computationally 
 tractable hypothesis of interest inspired by the known presence of “zip code” elements, is 
 whether there exist general correlations between 3’ UTR isoform and localization across 
 cell-types. 

 Subcellular RNA localization is enriched for correlations with 3’ UTR length 
 Alternative 3’ UTRs and splice isoforms are known to result in differential mRNA 

 localization  (Kislauskis  et al.  , 1994)  . Inclusion or exclusion of specific sequence elements can 
 disrupt RNA binding proteins (RBPs) from binding and localizing the transcript. RBPs that have 
 been identified as controlling transcript localization can have cell-type specific expression, 
 including at the isoform level  (Yisraeli, 2005; Müller-McNicoll and Neugebauer, 2013; Hentze  et 
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 al.  , 2018)  . Examples of such RBPs include members of the RNA-transport granule  (Kanai  et al.  , 
 2004)  , providing a model for why RNAs may be cell type specifically localized as a function of 
 their isoform. Conversely, differential localization of the same isoform can occur if the 
 trans-acting localization factor is differentially expressed in different cell-types. 

 We coupled a recent statistical method to measure 3’ UTR length called the ReadZS 
 (Meyer  et al.  , 2021)  with SPRAWL to identify genes with spatial localization correlated with 3’ 
 UTR regulation  (Booeshaghi  et al.  , 2021)  . We used ReadZS to statistically quantify 3’ UTR 
 lengths at single-cell resolution, and then computed the median ReadZS score by cell-type and 
 gene on cell-type-matched 10Xv3 scRNAseq datasets from the BICCN consortium  (BRAIN 
 Initiative Cell Census Network (BICCN), 2021)  . Spatial localization SPRAWL scores and 
 ReadZS 3’ UTR lengths were correlated by gene/cell-type (Figure 4a). Twenty-six genes were 
 detected as having significant SPRAWL/ReadZS correlation after BH multiple hypothesis 
 correction at an FDR level of 0.05, a 2-fold enrichment compared to what is expected by chance 
 (see Methods: Correlation analysis between SPRAWL and ReadZS). No significant gene/metric 
 pairs were detected from the CZB mouse kidney/liver dataset which was the only other dataset 
 with matched scRNAseq. The lack of significant correlations between SPRAWL metric score 
 and 3’ UTR length in this dataset could be due to multiple factors, including this dataset having 
 fewer coarser cell-type definitions. 

 Slc32a1, Cxcl14  , and  Nxph1  3’ UTR length predicts  sub-cellular localization 
 SPRAWL detects 36 unique genes and 84 pairs of gene/metric combinations  (i.e. 

 gene1/peripheral, gene1/radial) with significant correlations to that gene’s 3’ UTR length. From 
 this list  Slc32a1  ,  Cxcl14  , and  Nxph1  were selected  as representatives of the central, radial, and 
 punctate metrics respectively. All have significant evidence for cell-type differential expression of 
 un-annotated 3’ UTRs and an unusually high degree of 3’ UTR conservation. Figure 4 depicts 
 the SPRAWL scores and predicted 3’ UTR lengths for  Slc32a1  ,  Cxcl14  , and  Nxph1  in multiple 
 cell-types. Representative low and high scoring cells for each gene/cell-type pair were chosen 
 randomly after filtering for SPRAWL scores less than -0.2 and greater than 0.2 respectively, 
 having 5 or more RNA spots of the gene of interest. 

 Slc32a1  , synonymously  VIAAT  or  VGAT  , is a marker of  GABAergic neurons and was 
 found to be differentially central by cell-type (Figure 4b). Slc32a1 is an integral membrane 
 protein residing in synaptic vesicles where it uptakes glycine and gamma-aminobutyric acid 
 (GABA)  (Gasnier, 2004)  .  Slc32a1  is currently annotated to have 2 exons in the UCSC genome 
 browser mm39  (Lee  et al.  , 2022)  , but was at one point thought to have 3 exons and exhibit 
 alternative splicing near the 3’ UTR without known biological significance  (Ebihara  et al.  , 2003)  . 
 SPRAWL central score and ReadZS have significant correlation (Pearson R=-0.94, corrected p 
 << 0.05). Differential central localization of  Slc32a1  RNA between cell-types is of potential 
 interest due to the protein product's known role of localizing to synaptic vesicles in neurons 
 which would yield the highly non-central distribution observed in the L6 CT and L5 IT neuronal 
 cell-types. 

 Cxcl14  3’ UTR length and SPRAWL radial score were  significantly correlated (Pearson 
 R=0.9 corrected p << 0.05); cell-types with longer 3’ UTRs have increasingly extreme radial 
 clustering, while the unannotated shorter 3’ UTRs have middling SPRAWL non-radial scores 
 near zero. Only one Cxcl14 3’ UTR isoform is annotated, but ReadZS analysis predicts a 
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 decrease in length of about 600 bps (Figure 4c)  (Bässler  et al.  , 2001)  . The protein product of 
 Chemokine (C-X-C motif) ligand 14  , Cxcl14  or  BRAK,  is a small chemokine of length 99 
 residues in mouse and 111 in human, and was originally found to be highly expressed in breast 
 and kidney  (Hromas  et al.  , 1999)  . Cxcl14 is constitutively expressed in skin and keratinocytes 
 and is a potent leukocyte recruitment factor  (Westrich  et al.  , 2020)  but has also more recently 
 been observed as constitutively expressed throughout multiple brain regions where one of its 
 functions is to regulate synaptic transmission  (Banisadr  et al.  , 2011)  . According to the MERFISH 
 dataset,  Cxcl14  was lowly but consistently expressed  with the full-length 3’ annotated UTR in 
 429 L6 neurons with a median of 5 spots per cell while having higher expression in Vip-cells and 
 astrocytes where a slightly shorter 3’ UTR was expressed. We hypothesize that  Cxcl14  has 
 differential 3’ UTR usage associated with differential expression across these cell-types and that 
 the novel short 3’ UTR is less radially clustered than the annotated full-length 3’ UTR. 

 Nxph1  , neurexophilin-1, is a ligand of ⍺-neurexin  (  ⍺-Nrxn  ) and is expressed in inhibitory 
 neurons  (Born  et al.  , 2014)  . The radial SPRAWL score of  Nxph1  is positively correlated with 3’ 
 UTR length (Pearson R=0.9, corrected p << 0.05 Figure 4d). Nxph1 is a secreted protein that 
 binds to multiple splice isoforms of  ⍺-Nrxn  at synapses with varying specificity  (Wilson  et al.  , 
 2019)  . To our knowledge, neither differential 3’ UTR lengths nor differential subcellular 
 localization patterns have been previously described for  Nxph1  , although dendritic targeting by 
 3’ UTRs of other proteins, such as CaMKII, has been identified  (Mayford  et al.  , 1996)  . 

 All three genes,  Slc32a1  ,  Cxcl14,  and  Nxph1  , have  predicted miRNA binding sites tiling 
 their 3’ UTRs suggesting possible mechanisms of differential 3’ UTR post-transcriptional 
 selection and regulation (Supplemental Figure 4a). We show an additional three genes with 
 correlated spatial and 3’ UTR length show similar patterns (Supplemental Figure 4b). 

 Timp3  3’ UTR length predicts peripheral localization 
 In the BICCN data,  Timp3  has the largest observed  variation in estimated 3’ UTR length 

 between cell-types, with the most divergent read-buildup between layer-6 inferior temporal (L6 
 IT) and somatostatin-expressing (Sst) neurons reflecting at least two dominant 3’ UTRs differing 
 in length by > 2 kilobases (Figure 5a). These 3’ UTR read densities were consistent across 
 mouse biological sequencing replicates within 10X scRNAseq experiments. Only one UTR is 
 annotated, though a gene antisense to  Timp3  ,  Sync3  on the minus strand, overlaps its 
 transcriptional radius. We are confident that observed reads can be confidently attributed to 
 Timp3  as  Sync3’s  nearest exon is ~5kb from  Timp3’s  UTR and plus-strand mapping reads alone 
 were analyzed. 

 Timp3 is a secreted matrix metalloprotease inhibitor that has been implicated in multiple 
 diseases ranging from cardiomyopathies to macular dystrophies  (Weber  et al.  , 1994; Schrimpf 
 et al.  , 2012)  , but subcellular RNA localization patterns have not been reported. Elevated  Timp3 
 gene expression  (Capone  et al.  , 2016)  is linked to compromised cerebral blood flow, and the 
 RNA is experimentally validated to be a target of microRNA (miRNA) regulation  (Fiorentino  et 
 al.  , 2013)  . We observe  Timp3  RNA to be significantly peripheral in L6 IT neurons; while being 
 insignificantly peripherally localized in Sst cells. SPRAWL and ReadZS 3’ UTR scores had a 
 significant negative correlation of R=-0.68 and p << 0.05 Pearson BH-corrected p-value. 
 Timp3’s  longer, annotated 3’ UTR isoform is expressed  in cell-types with significantly less 
 peripheral localization as compared to shorter unannotated isoforms (Figure 5b). 
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 We studied whether  Timp3’s  3’ UTR length was more globally regulated in endothelial 
 and other cell-types through scRNAseq and in different biological contexts in both mouse and 
 human datasets and extended the analysis to include  Timp2  . Mouse and human  Timp3  have a 
 96.2% amino acid sequence similarity with mouse and human  Timp2  having an even higher 
 98.2% sequence identity. ReadZS also detected statistically significant  Timp3  3’ UTR length 
 shifts between cell-types from the Tabula Sapiens consortium  (Tabula Sapiens Consortium*  et 
 al.  , 2022)  in the lung and other tissues (Supplemental Figure 3a). Further, we found both  Timp2 
 and  Timp3  UTR length to be regulated in lung tissue  slices across endothelial, epithelial, 
 immune, and stroma cell-type compartments (Figure 5c,d). Since SPRAWL identified a highly 
 negative correlation between  Timp3  peripheral subcellular  localization and 3’ UTR length, and 
 since  Timp3  3’ UTRs become shorter during lung culture,  the subcellular localization of  Timp3  is 
 predicted to shift to a more peripheral distribution during the lung culture. In conjunction with 3’ 
 UTR length shortening, gene expression of  Timp3  decreases  over this time course in all 
 cell-type groups (Supplemental Figure 3b). 

 Both mouse and human  Timp3  show high conservation  within its 3’ UTR. Conservation 
 is particularly high near the two dominant alternative 3’ UTR regions (Figure 5a,c: Cons 100 
 Verts track), all but one of which are un-annotated. These regions could contain alternative end 
 processing or regulatory sequences. In the case of mouse  Timp3  , this includes annotated 
 binding sites for miR-181c-5p and miR-221-3p and RBPs Cirbp, Cpsf6, and Celf1 (Figure 5a). 
 The 3’ UTR isoforms differentially include these regions, releasing the shorter isoforms from 
 regulatory pressures by more distal elements, including the experimentally validated miR-21 
 that binds in the 3’ UTR of human  Timp3  (Hu  et al.  , 2016)  . In this study the authors found that 
 high expression of miR-21 led to repression of  Timp3  and pathogenic activation of 
 angiogenesis. 

 Together, we hypothesize that Timp3 may have both secreted and non-secreted 
 isoforms, with a precedent set by  Cd47  (Berkovits and Mayr, 2015)  . Further, we hypothesize 
 that this regulation is controlled by alternative 3’ UTR isoform lengths that determine subcellular 
 RNA localization through interaction with RBPs and microRNAs that specifically bind the longer 
 isoform. This example illustrates the power of SPRAWL for unsupervised discovery of 
 subcellular localization and its integration with isoform-resolved, annotation-free analysis of 
 scRNA-seq to generate testable biological hypotheses regarding isoform-specific regulation and 
 function. 

 Human brain pericyte cell culture shows differential temporal Timp3 3’ UTR usage 
 Motivated by the findings that (1) mouse brain cell-types expressing shorter  Timp3  3’ 

 UTR isoforms were correlated with increasingly peripherally localized  Timp3  RNA (Figure 5b), 
 and (2)  Timp3  3’ UTR lengths decrease throughout human  lung slice culture (Figure 5c,d), we 
 hypothesized that Timp3 protein secretion would be sensitive to RNA localization and/or 3’ UTR 
 length. We tested this hypothesis using a human brain pericyte cell-line known to express Timp3 
 protein. The pericytes were cultured over 5 days with supernatant samples collected at 6, 24, 
 48, and 72 after plating. At each timepoint, the number of cells, total extracellular protein 
 concentration (BCA), extracellular Timp3 protein (ELISA), and Timp3 RNA (qPCR) were 
 measured (Figure 6a). 
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 We observed that the rate of per-cell Timp3 protein secretion, as measured by ELISA, 
 does not significantly change throughout culture time, averaging 350 Timp3 protein molecules 
 per-cell per-hour. The approximately 15 hour half-life of Timp3 protein in cell culture  (Mao  et al.  , 
 2021)  was taken into account when making these calculations (Methods Timp3 protein 
 production estimation). However, total extracellular protein per-cell slightly decreased from 6 to 
 24 hours of cell culture as measured by BCA (Figure 6b). Taken together these findings suggest 
 that Timp3 protein production is not variable during cell culture. 

 From the previous human lung culture experiment (Figure 5c), we hypothesized that the 
 abundance of shortened 3’ UTRs of Timp3 would increase relative to the canonical full-length 
 isoform throughout pericyte cell culture. To test this hypothesis,  Timp3  short and long 3’ UTR 
 abundance were estimated using proximal and distal qPCR primers. The proximal qPCR primer 
 pair is designed to amplify both full-length canonical and un-annotated shortened 3’ UTR Timp3 
 templates. The distal qPCR primer pair, however, can only amplify the full-length isoform (Figure 
 6c). In support of our hypothesis, we observe the ratio of Timp3 distal to proximal RNA 
 abundance significantly decreased from 24 to 48 hours by a factor of 1.5X (Figure 6d). 

 Additionally, Timp3 3’ UTR expression decreased by half between 6 and 24 hours, 
 before doubling between 48 and 72 hours as measured by both proximal and distal qPCR 
 primers (Figure 6e). The large fluctuations in Timp3 expression relative to multiple 
 house-keeping genes is noteworthy since the Timp3 protein production levels remained 
 constant throughout the experiment. This observation may suggest post-transcriptional or 
 post-translational regulation. In conclusion, transcripts of Timp3 with the proximal 3’ UTR region 
 increased in relation to the distal region during pericyte culture, which is in agreement with our 
 hypothesis from the human lung culture model. 

 Discussion 
 Highly multiplexed spatial transcriptomics datasets are becoming increasingly available, 

 but analysis tools have overwhelmingly focused on localizing cell-types within tissue, rather than 
 RNA within cells. SPRAWL addresses this need as a novel non-parametric approach for 
 unbiased detection of subcellular RNA localization patterns. In this study, SPRAWL provides 
 evidence for (1) highly consistent RNA patterning across biological replicates, (2) abundant 
 cell-type specific RNA localization, and (3) differential patterning dependent on 3’ UTR isoform. 

 We show that SPRAWL has perfect specificity when benchmarked on simulated 
 negative control datasets, yet identifies thousands of significant genes with extreme RNA 
 localization patterns by cell-type in real datasets. The simplicity of the SPRAWL score facilitates 
 integration with other datasets and tools for follow-up computational studies. We’ve been able to 
 illustrate this concept by leveraging existing scRNAseq datasets and the ReadZS tool  (Meyer  et 
 al.  , 2022)  to find genes with correlated patterning and 3’ UTR usage. Additionally, SPRAWL 
 results can motivate experimental studies that detect novel biology as we’ve shown by 
 identifying shifting  Timp3  3’ UTR isoform usage in  a pericyte culture experiment. 

 SPRAWL prioritizes functionally important isoform expression for further study such as 
 Timp3, Slc32a1, Cxcl14  ,  and Nxph1  which have significant  spatial and 3’ UTR-usage correlation 
 between cell-types. SPRAWL generates testable hypotheses of cis-regulatory elements that 
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 alter RNA localization which is of high interest because in mice and humans, more than 96% of 
 genes are alternatively spliced and UTR regulation is pervasive but poorly annotated  (Olivieri  et 
 al.  , 2021, 2022)  . 

 The localization scores generated by SPRAWL are versatile and can be computed for 
 proteins rather than RNA. In fact, trans-regulated spatial events can be detected in future work 
 by applying SPRAWL to subcellular protein localization datasets generated by tools such as 
 CODEX  (Black  et al.  , 2021)  or MIBI  (Keren  et al.  , 2019)  . Furthermore, the SPRAWL framework 
 can be used to implement different measures of subcellular localization. Some but not all 
 statistically significant patterns detected by SPRAWL are “striking to the human eye,” which has 
 implications for whether human-guided or statistical-guided inferences are preferred and which 
 are more biologically meaningful. 

 The importance of correlation between SPRAWL subcellular localization and isoform 
 expression, including  Timp3  ,  Slc32a1, Cxcl14,  and  Nxph1  , was minimally explored in this work. 
 Still we hypothesize a causal link between 3’ UTR regulation, localization and potential protein 
 function, as was observed for  Actb  , which could guide  future experimental efforts, as well as 
 help pinpoint cell-type specific functions. Our in vitro human pericyte cell culture experiment, for 
 example, showed that pericytes are utilizing a previously unknown shortened  Timp3  3’ UTR in 
 addition to the full-length isoform. Furthermore, a shift towards more shortened 3’ UTR usage 
 occurs during pericyte cell culture; a result that mirrors SPRAWL findings in human lung tissue. 

 Sampling a handful of tissues and cell types, SPRAWL identified tens of RNA species 
 with subcellular localization related to cell type. Many technical limitations suggest that this 
 number is a significant underestimate: for one, MERFISH based approaches require probes to 
 be pre-specified, and thus they (a) aggregate isoforms, confounding cases where two 
 co-expressed isoforms have dramatically different localization patterns; (b) miss isoforms that 
 lack sequence contained in the probe set measurements. Further, single cell sequencing 
 technology and analysis may be under-ascertaining RNA expression due to (i) sampling depth; 
 (ii) poly-A capture bias and (iii) a dearth of computational algorithms to analyze isoform-specific 
 differences. Through the ReadZS we have collapsed UTR variation to a single scalar value 
 (Meyer  et al.  , 2021; Chaung  et al.  , 2022; Olivieri  et al.  , 2022)  but we have not explored 
 correlations with RNA splicing or other sequence variants, a topic of further research. Our 
 findings support a model where 3’ UTR regulation at the nucleotide level controls localization 
 through function. If this is true, imaging-based technology like MERFISH will have limited power 
 over discovery and in situ sequencing may be a preferred approach. Together, this suggests 
 that isoform-specific localization may be widespread and confer functions that should be tested 
 in future computational and experimental work. 

 SPRAWL provides an estimate of the pervasiveness of cell-type and 3’ UTR regulated 
 RNA localization. Limitations of the study include possible confounding by technical artifacts 
 from probe hybridization, improper cell-segmentation, and bias in the gene panel selected for 
 imaging. Additionally, our decision not to use nuclei boundaries blinds us to situations where an 
 RNA may be highly peripheral, but still within the cell nucleus. This could mean UTR 
 peripherality is confounded with dynamis of export, including transcription at the nuclear 
 periphery. We have attempted to address these potential artifacts through hundreds of 
 thousands of observations and by permutation where possible. Additionally, computationally 
 shrinking cell-boundaries resulted in only minimal changes in SPRAWL scores. Future work on 
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 novel datasets using different segmentation approaches will provide further confidence that 
 SPRAWL detects biologically relevant patterns. We believe the current implementation of 
 SPRAWL is conservative and likely misses patterns due to optical crowding and low-abundance 
 gene expression. 

 There exists no directly competing method to SPRAWL which is able to leverage highly 
 multiplexed imaging datasets, requiring only RNA spot locations, cell-boundary estimates, and 
 gene identity of each RNA spot. Many current software approaches aim to discretize RNA 
 patterning into subcompartments and rely on co-stains which are not guaranteed to be present 
 in every dataset. Other approaches use statistically opaque machine-learning based classifiers 
 to assign RNA spots to pre-specified patterns  (Mah  et al.  , 2022)  . As spatial transcriptomics 
 methods are commercialized and become more accessible, increasing numbers of public 
 datasets will become available and can be processed by SPRAWL regardless of the tissue or 
 study design. 

 Methods 
 SPRAWL input data and preprocessing 
 SPRAWL takes as input processed datasets from MERFISH, Vizgen, and SeqFISH+ requiring 
 cell-boundary and RNA spot x,y and gene label information. For MERFISH and Vizgen, this data 
 is the product of applying MERlin  (Emanuel  et al.  , 2020)  on the raw MERFISH microscopy 
 images to align the images between sequencing rounds, call RNA spots, and perform cell 
 segmentation using a seeded watershed approach described in a prior MERFISH work  (Moffitt 
 et al.  , 2018)  . SeqFISH+ utilizes a similar approach to identify and decode RNA spots, but then 
 simply defines the cell boundary as the convex hull around all points  (Eng  et al.  , 2019)  . 

 The MERFISH primary mouse cortex (MOp) dataset has 258 genes from coronal slices of the 
 MOp from two mice as biological replicates  (Zhang  et al.  , 2020)  . Each mouse had 6 MERFISH 
 experiments with 5-6 10 um sections processed together on the same coverslip. Each mouse 
 had 32 total sections. Each 10 um thick section had 7 optical layers spaced 1.5 microns apart. 
 The MERFISH brain MOp processed datasets include multiple z-slices for each cell. The data 
 was downloaded from 
 https://download.brainimagelibrary.org/cf/1c/cf1c1a431ef8d021/processed_data/ 

 The SeqFISH+ dataset imaged 913 cells and 10,000 genes in the mouse cortex at a single 
 z-slice  (Eng  et al.  , 2019)  . The authors assigned each cell to one of twenty-six different cell-type 
 annotations such as Endothelial, Interneuron, Astrocyte, etc. The dataset was downloaded from 
 https://github.com/CaiGroup/seqFISH-PLUS/blob/master/sourcedata.zip?raw=true 

 The Vizgen MERFISH Mouse Brain Map (BrainMap) is a dataset of 649 total genes which 
 include canonical brain cell type markers, GPCRs, and RTKs from a single mouse brain 
 (Vizgen, n.d.)  . Three full coronal sections were processed along the rostral-caudal axis. 
 Additionally, for each section, three adjacent slices were used as biological replicates with the 
 underlying assumption that adjacent slices in the mouse brain have high similarities in cell-type 
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 composition and spatial organization. Each of the nine imaging datasets contain seven optical 
 layers spaced 1.5 microns apart. Data is publicly available 
 https://console.cloud.google.com/marketplace/product/gcp-public-data-vizgen/vizgen-mouse-bra 
 in-map 

 The Vizgen MERFISH Liver showcase contained 2 mouse liver samples each with two 
 MERFISH experiments imaging 347 genes and over one million cells  (Vizgen, n.d.)  . Cell-type 
 annotations were not provided and instead cell-type proxies were determined by clustering the 
 cells based on the MERFISH-determined RNA composition of each cell (Methods: Vizgen 
 Brainmap and Liver showcase clustering to produce cell-type proxies). The dataset contains 
 seven optical layers spaced 1.5 microns apart and data is publicly available from 
 https://info.vizgen.com/mouse-liver-data?submissionGuid=832a9f61-22d3-44c1-a2cf-838c166d 
 9ac5 

 The CZB kidney/liver dataset contained a single mouse kidney and liver sample that were 
 imaged using the Vizgen platform to detect the same panel of 307 genes in ~57,000 cells in the 
 kidney and ~16,000 in the liver  (Liu  et al.  , 2022)  . 
 https://figshare.com/projects/MERFISH_mouse_comparison_study/134213 

 We have specified a simple HDF5 format to standardize the different data sources. In brief, data 
 is stored in a cell-centric manner, consolidating RNA spots and cell boundaries into the same 
 object. This flexible format is described in detail in the github repository 
 https://github.com/r-bierman/SPRAWL and includes vignettes with example datasets. For 
 MERFISH and Vizgen datasets, the RNA spots and cell boundaries were assigned locations in 
 a global coordinate, but lacked cell assignments for each RNA spot. We have written simple and 
 fast scripts to make these assignments using the python Rtree and shapely  (toblerity.org, 2007) 
 packages. The github repository includes the nextflow pipelines used to transform the 
 downloaded datasets to this HDF5 format. 

 SPRAWL methodology 
 SPRAWL preprocesses spatial datasets into a standardized HDF5 file that contains cell 
 boundary, cell-type, and RNA location information generated from MERFISH/Vizgen and 
 SeqFISH+ datasets (Figure 1a). Next per-gene/per-cells are calculated. For the peripheral 
 metric, all RNA spots are ranked based on their minimum distance to the cell boundary (Figure 
 1b), then their means are used to generate a gene/cell-type score and p-value (Figure 1c). 
 Scores near 1 indicate a gene is highly peripheral in a cell-type, while scores near -1 indicate a 
 pattern of RNA molecules far from the cell-boundary. Intuitively, if a gene is not significant it will 
 not be close or far from the cell boundary and its peripheral score will be near 0, and its p-value 
 will be insignificant. The centrality metric is conceptually similar, where ranking is determined by 
 minimum distance to the cell centroid and positive values indicate unexpectedly centrally-biased 
 distributions. Empirically, the centrality and peripherality metrics are anti-correlated 
 (Supplemental Figure 1b), but not perfectly, as it is possible for an RNA spot to be 
 simultaneously close to the periphery and cell centroid with certain cell shapes such as a 
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 “dumbbell”. Only the ranking step is different between the peripheral and central metrics; all 
 downstream steps are identical. 

 Under the null hypothesis that a gene is not subcellularly patterned within a cell, the peripheral 
 and central gene/cell scores have an expected value of 0 and a calculable variance that 
 depends on the number of RNA spots. These statistical underpinnings of the gene/cell scores 
 allow for identification of spatially significant patterning within gene/cell-types (Methods). Under 
 the null which is each spot’s gene identity is drawn uniformly from the set of gene/spots 
 observed from the cell, gene/  cell  scores for k cells  of a single cell-type and gene g are 
 independent random variables X  g,1  , X  g,  2  , X  g,3  , ...,  X  g,k  with expected values, μ  i  = 0 and variance 
 𝜎  i  . Independence in this case comes from the assumption  that the scores of a given gene 
 across different cells do not influence each other. Note that the scores of different genes within 
 the same cell are not independent due to the ranking procedure. We define Y = mean(X  g,1  , X  g,  2  , 
 X  g,3  , ..., X  g,k  ) as the SPRAWL gene/  cell-type  score  and a z-score can be calculated under the 
 null that within a cell, each spot’s gene identity is exchangeable with the Lyapunov Central Limit 
 Theorem  (Billingsley, 1995)  (Methods: SPRAWL gene/cell-type scoring). 

 The resulting values y are used to calculate two-sided p-values using the CDF of the standard 
 normal. Multiple hypothesis testing from the numerous gene/cell-type pairs is controlled using 
 the Benjamini-Hochberg correction  (Benjamini and Hochberg, 1995)  . 

 SPRAWL peripheral and central metric definition 
 Each gene-cell pair is assigned a SPRAWL score by (1) ranking all RNA spots, (2) calculating 
 median ranks per gene, and (3) normalizing by the expected median rank. Consider a single 
 cell, with a single z-slice, that has  total RNA  spots, and  unique genes with each gene having  𝑛  𝑔 

 spots such that  .  𝑚 
 1 
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 periphery of each RNA spot, for the central metric these distances are instead measured from 
 the cell centroid. Each spot is assigned a rank from 1 to n such that the spot with rank 1 is 
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 To generalize the definition of the peripheral/central SPRAWL score in the case that a cell has 
 multiple z-slices with a unique cell-boundary and set of spots for each, the distances  are  𝑑 

 𝑖 

 calculated from each RNA spot to the cell-boundary/centroid in the same z-slice, then the ranks 
 are assigned across all z-slices. 

 SPRAWL radial metric definition 
 The radial SPRAWL score is assigned to each gene-cell pair by performing gene-label 
 swapping bootstrapping iterations and measures tendency of genes to be in one sector of a cell 
 or to be radially dispersed. 

 Consider a single cell, with a single z-slice, that has  total RNA spots, and  unique genes with  𝑛  𝑔 

 each gene having  spots such that  . We restrict to  since  𝑚 
 1 
,     𝑚 

 2 
,     𝑚 

 3 
,    ...    ,     𝑚 

 𝑔 
 𝑖 

 𝑔 

∑  𝑚 
 𝑖 

=  𝑛  𝑚 
 𝑖 

>     2 

 genes with a single spot do not conceptually have a radial bias. 

 Before permuting the gene labels, we randomly select a pair of RNA spots for each gene and 
 measure the angle between them with respect to the cell-boundary centroid. Let  represent the θ
 minimum angle formed by the three points of the location of RNA spot 1  , the cell (    𝑥 

 1 
,     𝑦 

 1 
   )

 centroid  , and RNA spot 2  . The cell centroid  is approximated  as the (    𝑥 
 𝑐 
,     𝑦 

 𝑐 
   ) (    𝑥 

 2 
,     𝑦 

 2 
   ) (    𝑥 

 𝑐 
,     𝑦 

 𝑐 
   )

 mean of all vertices in the cell boundary polygon. This process is repeated 10 times and 
 averaged to calculate the mean observed angle of each gene. 

 The same process is repeated after randomly swapping gene labels but keeping the RNA spot 
 locations the same. We perform 1000 bootstrap iterations. These mean permuted angles serve 
 as the null distribution of mean angles which are used in conjunction with the mean observed 
 angle to calculate both mean and variance. In the case that a cell has multiple z-slices, the 
 mean cell centroid over all slices is used to calculate pairwise angles without regard to z-slice. 

 SPRAWL punctate score definition 
 The punctate SPRAWL score is conceptually identical to the radial score and also relies on 
 bootstrapping. The punctate score is assigned to each gene-cell pair measuring euclidean 
 distances instead of angles between randomly selected gene pairs. The null distribution is 
 created using the same process as the radial score. In the case that a cell has multiple z-slices, 
 the scoring is performed by projecting all points onto the same (x,y) plane before measuring 
 euclidean distances. This simplification can be readily replaced with true 3D pairwise distances. 

 Theoretical features of the SPRAWL peripheral score 
 While the punctate and radial metrics are calculated using bootstrapping and estimated 
 statistics, the SPRAWL peripheral and central metrics have known properties under the null 
 hypothesis that the gene of interest is not spatially regulated in the given cell. Under this null, 
 the ranks of the gene of interest are chosen with equal probability. In an alternate hypothesis 
 such as a gene being peripherally localized in a cell, RNA spots of the gene of interest will have 
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 a skewed probability of being assigned lower ranks, closer to the cell boundary. Under the null 
 hypothesis  , since  for gene  .  𝐸 [ 𝑋 

 𝑖 
]   =  0  𝐸 [ 𝑇 
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 When there are an odd number of gene spots  ,  is the  rank order statistic, and  𝑚  𝑡 ( 𝑚 +  1 ) /2 
 under the null hypothesis where the ranks are chosen uniformly, the probability of the  -th order  𝑟 
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 Calculating  when  is even-values requires  significantly more calculation. We still need  𝑉𝑎𝑟 [ 𝑋 ]  𝑚 
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 But  is no longer an order statistic and does not  have a closed form calculation. Instead  is the  𝑡  𝑡 
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 has an intuitive interpretation that  simplifies to an order statistic probability.  𝑃 ( 𝑅 =  𝑟  |  𝐿 =  𝑙 )
 Since we observe  we know that the  -th order  statistic must be one of the ranks between  𝐿    =  𝑙  𝑅 

 and  inclusively. We can renumber these ranks  to be between  and  and we  𝑙 +  1  𝑛  1  𝑛 −  𝑙 +  1 
 are interested in the probability that the 1-st order statistic takes the value  in the  𝑟 −  𝑙 
 renumbering. This has the same closed form solution as described in the odd-valued  case.  𝑚 

 Computing  for even-valued  is  since we have to iterate over all possible  𝑉𝑎𝑟 [ 𝑋 ]  𝑚  𝑂  𝑛  2 ( )
 medians, and then for each median we have to “walk”  and  outwards which is itself  . In  𝐿  𝑅  𝑂  𝑛 ( )
 comparison, the computation of  for odd-valued  is  . Through various optimizations,  𝑉𝑎𝑟 [ 𝑋 ]  𝑚  𝑂  𝑛 ( )
 multiprocessing, and caching, SPRAWL calculated  in under an hour for all processed  𝑉𝑎𝑟 [ 𝑋 ]
 samples. 

 SPRAWL is not highly sensitive to exact cell boundary segmentation 
 Sensitivity of SPRAWL to segmentation and cell-boundary locations was tested by 
 computationally shrinking the cell-boundaries. Median peripheral scores per gene/cell-type were 
 significantly correlated between original cell-boundaries and shrunk cell-boundaries with 
 Pearson correlation coefficient of 0.85 on the mouse motor cortex datasets (Supplemental 
 Figure 1e), suggesting empirically that SPRAWL would have low sensitivity to potential 
 cell-segmentation errors. 

 SPRAWL gene/cell-type scoring 
 Consider a cell-type with k cells with non-zero counts of a gene of interest where each cell is 
 assigned a SPRAWL score  . Note that the  are not i.i.d. due to having  different  𝑋 
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 interpretation that the localization of the gene of interest in one cell does not depend on its 
 localization in another cell. Under this assumption we utilize the Lyapunov Central Limit 
 Theorem  (Billingsley, 1995)  to estimate that 
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 We approximate values of  for each gene/cell-type using the observed  and theoretical mean  𝑦  𝑥 
 𝑖 

 and variance whose calculation is described above. These  are used to calculate two-sided  𝑦 
 p-values from the CDF of the standard normal. 

 Multiple hypothesis testing over all gene/cell-type pairs is controlled using the Benjamini 
 Hochberg correction  (Benjamini and Hochberg, 1995)  at a significance level of  . α =  0 .  05 

 We calculate the effect size for each gene/cell-type as the mean gene/cell score  1 
 𝑘 

 𝑖 

 𝑘 

∑  𝑥 
 𝑖 

 SPRAWL is highly specific in identifying genes with subcellular patterning conditional on 
 cell boundaries 
 If the gene labels of RNA spots within cells of real datasets are permuted to remove any 
 underlying spatial patterning (Methods), none of the metrics detect significant gene/cell-type 
 patterning after Benjamini Hochberg (BH) multiple hypothesis correction with an FDR of 0.05 for 
 any of the four datasets tested  (Benjamini and Hochberg, 1995)  . All metrics were observed to 
 produce uniform p-values under this null dataset regardless of the number of cells per cell-type, 
 as indicated by theory. The median score per gene/cell-type is dependent on the number of 
 cells, with larger groups having median scores closer to zero (Supplemental Figure 1). The lack 
 of any false positive calls under the permuted null is consistent with at an FDR of 0.05. 

 SPRAWL Filtering 
 For all datasets sparse cells and cell-types were filtered out by removing cells with fewer than 
 10 unique genes and/or fewer than 200 unique RNA spots. Gene/cell-type pairs with fewer than 
 20 cells were removed from consideration. Further filtering for the radial and punctate metrics 
 requires removal of genes from cells that have only a single RNA spot. These spots are 
 removed and then remaining spots can still be scored in this cell for other genes. All filtering 
 steps are implemented as user-accessible parameters and have made SPRAWL more 
 conservative, increasing the confidence of positive hits, but reducing the power to detect real 
 localization differences that occur for lowly expressed genes and/or rare cell-types. 

 ReadZS usage and modifications 
 The ReadZS  (Meyer  et al.  , 2021)  detects read buildup differences between cell-types from 
 single-cell RNA-seq datasets in an annotation independent manner using equal sized windows 
 tiling the genome. We modified the ReadZS to analyze at the 3’ UTR-level of just the ~250 
 genes imaged in the BICCN MOp dataset. The 10X scRNAseq data was processed individually 
 for the 4 different mouse donors while the SS2 cells across 45 donors were processed as a 
 single sample due to limited cell counts per mouse. 

 Correlation analysis between SPRAWL and ReadZS for MERFISH MOp datasets 
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 For a given SPRAWL gene and spatial metric, the median ReadZS score of that gene for each 
 cell-type was correlated against the median SPRAWL score over the same cell-types. For 
 positive-strand genes, larger ReadZS score indicates longer 3’ UTR isoforms, and vice versa for 
 negative-strand genes. A proxy for 3’ UTR length was defined as the distance between the 
 annotated start of the 3’ UTR and the RNA mapping position. The span in estimated 3’ UTR 
 lengths was measured as the difference between the longest and shortest median cell-type 3’ 
 UTR proxy lengths. 

 Vizgen Brainmap and Liver showcase clustering to produce cell-type proxies 
 Neither the Vizgen MERFISH Mouse Brain Map nor Liver showcase datasets provided cell-type 
 annotations. We decided to roughly cluster the cells into groups to serve as a proxy for cell-type. 
 The Leiden clustering method was used to find well-connected clusters in all of the filtered 90% 
 highest spot-count cells using Scanpy python package  (Wolf  et al.  , 2018)  . First each dataset 
 was normalized so that each cell had 10,000 spots, then the top 40 principal components were 
 used to build the neighborhood graph with 10 neighbors and perform the Leiden clustering. This 
 resulted in 22 clusters for the Brainmap dataset and 100 clusters for the Liver dataset. The 
 fraction of cells in each cluster was consistent across biological replicates for the Vizgen Liver 
 (Supplemental Figure 2) and Vizgen Brainmap (data not shown) indicating that cells were 
 primarily clustering by type, and not by batch. To estimate the batch effect, we calculated the 
 probability that two cells originated from the same biological replicate given that they were in the 
 same cluster and compared this to the overall probability that two cells are from the same 
 biological replicate. All clusters were within 0.05 of the overall probability of two cells sharing a 
 batch. 

 Simulations to benchmark SPRAWL sensitivity and specificity 
 Null simulated datasets were created from the MERFISH BICCN spatial dataset by randomly 
 permuting the RNA-spot gene labels within each cell across the entire dataset. The 
 cell-boundaries, RNA-spot counts, and RNA (x,y,z) coordinates were preserved in the null 
 dataset. 

 Identification of RBP and miRNA binding to Timp3 3’ UTR 
 The RNAInter v4.0 RNA interactome repository was used to search for RBPs and miRNAs with 
 experimental evidence of binding in the 3’ UTR of the Mus musculus  Timp3  ,  Slc32a1  ,  Cxcl14  , 
 and  Nxph1  genes  (Kang  et al.  , 2022)  . Target regions for RBPs were taken from RNAInter, while 
 miRNA binding sites were generated and cross-checked against TargetScan release 8.0 
 (McGeary  et al.  , 2019)  and miRWalk  (Sticht  et al.  , 2018)  . Only miRNAs shared by RNAInter, 
 TargetScan, and miRWalk results with experimental evidence were considered. 

 RNAs with signal peptides do not have significantly central or peripheral localization 
 We hypothesized that RNAs encoding a signal recognition peptide (SRP) for translation on the 
 rough endoplasmic reticulum would be nuclear localized and would therefore be more centrally 
 localized than genes without signal peptides. We predicted the presence of SRPs using 
 DeepSig  (Savojardo  et al.  , 2018)  with protein sequences downloaded from Gencode release 
 M28 protein coding transcripts fasta for all genes present across the MOp, Vizgen Brainmap, 
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 and SeqFISH+ cortex datasets. For genes with multiple protein isoforms, the longest isoform 
 was selected for SRP prediction. In all datasets the per-gene per-cell peripheral and central 
 scores were not significantly different according to a Kolmogorov Smirnov test (Supplemental 
 Figure 5a). 

 Genes enriched in single-nucleus RNAseq are marginally correlated with periphery score 
 We tested whether nuclear-localizing genes would be assigned higher SPRAWL central 
 periphery scores utilizing both the 10X single-cell RNAseq (scRNAseq) as well as 10X 
 single-nucleus RNAseq (snRNAseq) from the BICCN consortium (BRAIN Initiative Cell Census 
 Network (BICCN) 2021). The single-cell sequencing data was first normalized to the number of 
 counts per gene per cell per one million (TPM) reads for both the cell and nuclear datasets. The 
 median gene/cell-type TPM for both sequencing datasets was determined, and the 
 nuclear-fraction score was determined to be snRNAseq-TPM / (snRNAseq-TPM + 
 scRNAseq-TPM). The median periphery score per gene/cell-type was correlated against the 
 median snRNAseq-TPM, scRNAseq-TPM , and nuclear-fraction. In all comparisons, the 
 correlation coefficients were small in magnitude, but were significantly positive for the 
 snRNAseq, indicating a link between X tendency and peripherality, and significantly negative in 
 the nuclear-fraction analyses, indicating a link between the gene’s enrichment in nuclear reads 
 and its distance from the cell periphery. The small effect size was detectable due to the 
 approximately 8,000 gene/cell-type data points and provides weak support for the hypothesis. 
 We investigated which genes, if any, are differentially nuclear-enriched across cell-types by 
 sequencing and concordantly by peripheral score and discovered  Wipf3  (Supplemental Figure 
 5b) and  Slc30a3  , which were highly negatively correlated  with mean Pearson correlation 
 coefficients of -0.86 and -0.93 across MERFISH MOp samples. Surprisingly,  Satb2  was also 
 discovered to be significant, but had a highly positive mean Pearson correlation coefficient of 
 0.95. All genes were determined to be significant after Benjamini Hochberg multiple hypothesis 
 correction. 

 Pericyte culture experimental setup with ELISA, qPCR, and BCA readouts 
 Human brain vascular pericytes (PCs, Sciencell) were cultured up to passage 5 in low-glucose 
 DMEM (Gibco) supplemented with 10% FBS. ~1.2x105 PCs were seeded in each well of a 
 6-well plate pre-coated with 0.1% gelatin. PC lysates and conditioned media were collected 6 
 hours after seeding for RNA isolation and ELISA applications. Similar samples were collected 
 on 24, 48, 72 and 120 hours after seeding. The 120 hour time point was not considered for 
 analysis since the cells had lifted off from the culture dish. RNA was isolated with the PureLink 
 RNA Kit (Invitrogen) and reverse transcribed with the iScript cDNA Synthesis Kit (Bio-Rad) and 
 qRT-PCR was performed on a CFX96 Real-Time System (Bio-Rad) using SsoAdvanced 
 Universal supermix (Bio-Rad). Transcript levels of TIMP3 with short or long 3’ UTR relative to 
 housekeeping gene (B-actin or GAPDH or 18S rRNA) were determined for each timepoint with 
 four biological replicates and three technical replicates. 

 ELISA measurements were made using the Human TIMP-3 ELISA Kit from Invitrogen (Catalog 
 # EH458RB) and precisely following the manufacturer's instructions. 
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 >Proximal_primer_1_fwd 
 GGGAACTATCCTCCTGGCCC 
 >Proximal_primer_1_rev 
 TTCTGGCATGGCACCAGAAAT 

 >Proximal_primer_2_fwd 
 AGGTCTATGCTGTCATATGGGGT 
 >Proximal_primer_2_rev 
 TGGGGCCAGGAGGATAGTTC 

 >Distal_primer_1_fwd 
 AATTGGCTCTTTGGAGGCGA 
 >Distal_primer_1_rev 
 GCGGATGCTGGGAGAATCTA 

 >Distal_primer_2_fwd 
 TAGCCAGTCTGCTGTCCTGA 
 >Distal_primer_2_rev 
 GGGTTCGAGATCTCTTGTTGG 

 Timp3 protein production estimation 
 An estimate of the rate of Timp3 protein production per cell per hour was calculated using the 
 ELISA Timp3 measurements and cell counts at each hour. The extracellular Timp3 
 concentration from the ELISA measurements were converted from ng/mL to ng’s of Timp3 per 
 cell using the known culture volume of 2 mLs and the cell counts at the same time point. This 
 value represents the amount of extracellular Timp3 per cell; in order to calculate how much 
 Timp3 is produced, the amount of degraded Timp3 between timepoints is estimated from the 
 tissue-culture half-life estimate of 15 hours  (Mao  et al.  , 2021)  . The Timp3 protein production per 
 cell at time t2 is estimated to be the difference between the amount of Timp3 at t2 and the 
 previous timepoint t1, plus the degraded Timp3 fraction from t1, divided by the number of cells 
 at t2. 

 qPCR analysis of pericyte culture Timp3 3’ UTR abundance 
 Our goal is to estimate the relative abundance of the short vs. long Timp3 3' UTR isoforms at 
 multiple time-points during cell culture. The ratio of short to long Timp3 3' UTR isoform in a 
 sample can be estimated using the proximal and distal qPCR primer critical threshold (CT) 
 values.  Let the amount of template present in the sample which can be amplified by the 
 proximal qPCR primer be represented as  . Similarly  let the un-amplified amount of template for  𝑃 
 the distal primer be represented as  .  𝐷 
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 At the critical threshold number of cycles for both the distal  and proximal  qPCR  𝐶  𝑇 
 𝐷 

 𝐶  𝑇 
 𝑃 

 primers, the absorbances will be equal. Assuming that the initial amount of template  and  𝑃  𝐷 
 doubles in each cycle we can create an equation to solve for the ratio of  𝑃 

 𝐷 

 𝑃 *  2 
 𝐶  𝑇 

 𝑃    =  𝐷 *  2 
 𝐶  𝑇 

 𝐷    

 𝑃 
 𝐷    =  2 

 𝐶  𝑇 
 𝐷 

 2 
 𝐶  𝑇 

 𝑃 
=  2 

 𝐶  𝑇 
 𝐷 

− 𝐶  𝑇 
 𝑃    

 Since the proximal primers can amplify both the short and long isoforms, while the distal primers 
 can only amplify the long isoforms we can rewrite the previous equation with  and  𝑆  𝐿 
 representing the amount of short and long Timp3 3' UTR template in each sample. 

 𝑆 + 𝐿 
 𝐿    =  2 

 𝐶  𝑇 
 𝐷 

− 𝐶  𝑇 
 𝑃    

 Since  and  , we expect  , however, we observe 219 of 240 qPCR  𝑆    >     0  𝐿    >     0  2 
 𝐶  𝑇 

 𝐷 
− 𝐶  𝑇 

 𝑃    >     1 

 biological/technical replicates having  .  2 
 𝐶  𝑇 

 𝐷 
− 𝐶  𝑇 

 𝑃    <     1 

 We at first considered that this discrepancy may be due to differences in the amplification 
 efficiency of the proximal and distal qPCR primers which are assumed to be equal and 100% 
 efficient with a doubling in each PCR cycle. However, if for some reason the proximal and distal 
 primers had different efficiencies, it would be incorrect to directly compare their CT values. We 
 estimated the efficiencies of the proximal 1, proximal 2, distal 1, and distal 2 qPCR primers by 
 measuring the CT values at 2-fold dilutions of the same cDNA template and observed that all 
 primer pairs had near 100% efficiency except for proximal primer 1 which had 82% efficiency 
 (Supplemental Figure 6). For the qPCR analyses presented in this paper, proximal primer 2 and 
 distal primer 2 were used. Efficiency calculations were made by finding the slope, m, of the line 
 of best fit for (x = log2 cDNA dilution) vs. (y = CT) and then converting slope to efficiency as 
 (100/2^(m-1)). 

 Given that qPCR efficiency is not the cause of the widely observed  ratios, we believe  𝑆 + 𝐿 
 𝐿    <     1 

 that the existence of a template which is only amplified by the distal and not the proximal qPCR 
 primer pairs could be confounding. Such templates could arise from incomplete reverse 
 transcription or spliced Timp3 3' UTR isoforms. While we do not have a way to control for this in 
 the current qPCR experiment, we might expect to observe the same external effect at each 
 timepoint. 
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 Figures 

 Figure 1: SPRAWL peripheral and central score workflow.  a) RNAs are ranked from 
 closest to furthest from the cell-boundary to calculate the median peripheral rank of the gene 
 of interest. For the central metric, distances from the cell centroid are used for ranking 
 instead. b) Under the null hypothesis of each rank being equally likely, the probability mass 
 function of the median is exactly calculable. c) The intuitive SPRAWL score per gene per cell, 
 X, will be near +1 for highly-peripheral patterns, near 0 for randomly-peripheral patterns, and 
 near -1 for anti-peripheral patterns. d) Peripheral significance of a gene within a cell-type is 
 estimated from per cell SPRAWL scores using the Lyapunov Central Limit Theorem (CLT). 
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 Figure 2: SPRAWL punctate and radial scores workflow.  a) The SPRAWL punctate metric 
 relies on b) permutation testing to create a score c) that represents whether RNA molecules 
 from the gene of interest are closer together than expected by chance. The radial metric is 
 identically calculated, except using average angle instead of distance. The significance of 
 gene-celltype punctate patterns is calculated using the Lyapunov CLT as in the peripheral 
 metric. b) Depictions and interpretation of the SPRAWL punctate metric. 
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 Figure 3: SPRAWL gene-celltype scores are highly correlated between biological 
 replicates.  a)  BICCN MERFISH, Vizgen Brainmap, and  Vizgen Liver biological replicates 
 (rows top to bottom) have Pearson correlation coefficients (blue) larger than 0.47 for SPRAWL 
 peripheral, radial, punctate, and central metrics (columns left to right). Randomly permuting 
 gene labels in these datasets eliminates underlying spatial patterning and yields insignificant 
 Pearson correlation coefficients (orange) between biological replicates. Dotted lines indicate 
 zero-valued SPRAWL gene-celltype scores. b) In the MOp BICCN dataset 87% of 
 gene/cell-type pairs have positive punctate RNA patterning (blue), compared to 50% in the 
 gene-label permuted data (orange). Similarly extreme trends of 95% and 52% are observed 
 for the radial metric. Cldn5 RNA is consistently highly punctate and radial in all cell-types that 
 express it, depicted by purple x-axis ticks. 
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 Figure 4: SPRAWL spatial scores and 3’ UTR length are significantly correlated for a 
 subset of genes.  a) Workflow to calculate median 3’  UTR length and spatial score per 
 gene/cell-type. b) Slc32a1 median centrality, c) Cxcl14 radial, and d) Nxph1 punctate 
 SPRAWL scores from the BICCN MERFISH dataset correlate significantly with 3’ UTR length 
 determined from 10X scRNAseq data by ReadZS. The left-column boxplots show individual 
 SPRAWL cell scores as overlaid dots. The cell-types are sorted by increasing median score 
 marked in red. The two cell-types with the highest and lowest median SPRAWL scores are 
 plotted individually while the remaining cell-types are collapsed into the “Other” category. 
 Gene/cell examples are shown to the left the boxplots for each extreme cell-type group. The 
 density plots in the middle column show estimated 3’ UTR lengths for each read mapping 
 within the annotated 3’ UTR, stratified by cell-type. Lengths were approximated as the 
 distance between the annotated start of the 3’ UTR and the median read-mapping position. 
 Each density plot is normalized by cell-type to show relative shifts in 3’ UTR length with 
 median lengths depicted with red lines. The scatterplots show the significant correlations 
 between median SPRAWL score and median 3’ UTR length. The two cell-types with the 
 highest, and the two with the lowest SPRAWL median scores are highlighted. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 18, 2023. ; https://doi.org/10.1101/2022.10.26.513902doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.26.513902
http://creativecommons.org/licenses/by-nc-nd/4.0/


 Figure 5: Timp3 alternative peripheral localization across MOp cell-types is statistically 
 correlated with ReadZs differences in 3’ UTR length.  a) ReadZs detects two major 
 alternative 3’ UTRs in mouse Timp3 from 10X scRNAseq which correspond to miR-181c-5p 
 and miR-221-3p binding sites. Reads from L6 CT cells predominantly map to a novel 
 upstream shortened 3’ UTR while endothelial cells primarily express the longer annotated 3’ 
 UTR. The UCSC genome browser placental animal sequence conservation shows highly 
 conserved regions in blue. Fisher's exact test was highly significant between the two peaks 
 denoted by the dotted lines between the two cell-types. b) Timp3 mean periphery score is 
 significantly correlated with Timp3 median ReadZs score across MOp cell-types with Pearson 
 correlation coefficient of -0.91 and p << 0.05. c) Fraction of Timp3 RNA full-length 3’ UTR 
 reads, gray box and d) barplots, decreases during human lung tissue culture. 
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 Figure 6: Shorter Timp3 3’ UTRs become relatively more abundant in pericyte cell 
 culture while Timp3 protein production remains stable.  a) Experimental setup for human 
 pericyte cell culture with reverse-transcriptase quantitative PCR (RT-qPCR) and extracellular 
 Timp3 protein ELISA readouts at four time points. b) Timp3 protein secretion per cell per hour 
 does not significantly change throughout culture time, even though the total protein measured 
 by BCA does change. c) qPCR experiment design with proximal and distal qPCR primers to 
 distinguish long and short 3’ UTR isoforms. The proximal qPCR primer can detect both long 
 and short isoforms while the distal primer can only amplify the long 3’ UTR. d) The ratio of 
 distal to proximal primer template abundances significantly decreases throughout culture time, 
 implying increased usage of the short Timp3 3’ UTR compared to the long isoform. e) Timp3 
 3’ UTR abundance, normalized by 18s housekeeper abundance, fluctuates from halving to 
 doubling between culture timepoints for both distal and proximal primers. 
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 Supplemental Figures 

 Supplemental Table 1:  Counts of unique, significant,  and opposite-effect genes in each 
 experiment/metric combination. Genes are defined as significant if they are observed to be 
 significant in at least cell-type in any replicate. Opposite-effect genes are those observed to 
 have at least one significantly positive SPRAWL gene/cell-type score, and one significantly 
 negative SPRAWL gene/cell-type score. 
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 Supplementary Figure 1:  SPRAWL metrics have high specificity  and lack bias. a) SPRAWL 
 scores for permuted null datasets, reds, have expected mean values of zero regardless of 
 either the number of cells per cell-type or the gene abundance. The permuted datasets have 
 expectedly lower variance for higher cells per cell-type and gene abundance. The real data, 
 blue, shows expected means near 0 for the central and peripheral metrics, but higher scores 
 for the punctate and radial metrics. b) Under null simulations, red lines, all gene/cell-type pairs 
 are deemed insignificant at an alpha level of 0.05 (vertical dashed line) for the four metrics. In 
 the real data, blue lines, more gene/cell-type pairs are significant, after Benjamini-Hochberg 
 correction, with higher cell-type and RNA abundance. c) The fraction of significant 
 gene/cell-type pairs in the BICCN samples are consistent across abundance levels measured 
 as gene/cell-type median spot counts. d) Peripheral and central scores are strongly 
 anti-correlated for gene/cell-type scores while the radial and punctate scores are positively 
 correlated. e) To test whether peripheral localization patterns were driven artifactually by 
 incorrect cell boundary calling, the cell boundary locations were computationally shrunk by a 
 factor of 0.8 in the x and y direction, discarding spots that fell outside the new boundaries. In 
 both the BICCN MOp and Vizgen Brainmap datasets, a Pearson correlation coefficient of 
 greater than 0.85 was observed between the shrunk and original median gene/cell-type 
 periphery scores. f) SPRAWL scores are not conflated with cell size g) Similar fractions of 
 gene/cell-types are significant between the different datasets and metrics. 
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 Supplemental figure 2:  Vizgen Liver Showcase scores  are highly correlated between 
 replicates. a) The Vizgen Liver showcase dataset provides spatial information for 2 mouse 
 livers with 2 slices each. Cell annotation data was not provided in the Vizgen Liver Showcase, 
 instead clusters produced from off-the-shelf Leiden clustering (python scanpy package) were 
 used as pseudo cell-types. All four datasets were combined without reference to biological or 
 technical replicate by first normalizing the read counts per cell, identifying highly variable 
 genes, reducing to the first 10 principle components (b) and then computing a neighbor graph 
 with n = 40 which resulted in 100 clusters which had similar number of cells from each animal 
 c). As well as having high Pearson correlation coefficient between mice (d), the technical 
 replicates were highly correlated within both Liver 1 (e) and Liver 2 (f). 
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 Supplemental Figure 3:  ReadZS detects Tabula Sapiens  Lung differential 3’ UTR length 
 Timp3 and decrease in Timp3 expression throughout culture a) ReadZS detects statistically 
 significant 3’ UTR length differences in the human Timp3 3’ UTR across endothelial cell-types 
 from the Tabula Sapiens consortium datasets. The eCDF plot below the gene annotation 
 shows slight variation in read buildup over all cell-types below which individually show 
 read-density. HuR binding sites from PAR-CLIP are shown above the Timp3 gene structure 
 diagram. The last track shows high vertebrate sequence conservation throughout the UTR. b) 
 Normalized expression of Timp3 against Actin and Gapdh show decreasing expression of 
 Timp3 throughout increasing culture direction in all tissue compartments. 
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 Supplemental Figure 4:  Computationally predicted miRNA  binding sites in the 3’ UTRs of 
 Slc32a1, Cxcl4, and Nxph1 and additional 3’ UTR correlated genes a) Subset of 
 computationally predicted 3’ UTRs from the miRWalk database for Asic4, Slc32a1, and Nr2f2 
 indicate a potential mechanism of regulation for 3’ UTRs of different lengths. b) Three genes 
 Ubash3b, Igfbp4, and Wipf3 show significant negative correlation between various SPRAWL 
 metrics and estimated 3’ UTR length. 
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 Supplemental figure 5:  SPRAWL scores do not correlate  with presence of signal recognition 
 peptide, but do correlate with nuclear enrichment: a) Genes encoding signal recognition 
 peptides do not have significantly differential SPRAWL scores while b) genes such as Wipf3 
 and Slc30a3 have significantly lower peripheral scores in cell-types with higher nuclear 
 expression. Satb2 shows the opposite unexpected correlation. 
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 Supplemental figure 6:  qPCR primer efficiencies for  Timp3 3’ UTR were estimated by using 
 2-fold cDNA dilutions of the same 6-hour timepoint sample. Of the two proximal and two distal 
 primer pairs, only proximal primer 1 had low efficiency at 81.9%. The remaining three primers 
 showed nearly perfect 100% efficiency, where a cDNA dilution of 2X resulted in a critical 
 threshold value increase of 1. Dots indicate CT readings of technical replicates done in 
 triplicate with shaded regions between them. Dashed lines indicate 100% efficiency curves. 
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