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Abstract 
 
Ca2+/calmodulin-dependent protein kinase II (CaMKII) is a key modulator of excitatory 
synaptic transmission, gene expression, learning and memory. Mutations in the 
CAMK2A gene, which encodes CaMKIIa and is highly expressed in multiple regions in 
the forebrain, have been recently linked to neurodevelopmental disorders such as 
autism spectrum disorder (ASD) and intellectual disability (ID). Our lab generated and 
characterized a knock-in (KI) mutant mouse with a glutamate-183 to valine (E183V) 
CaMKIIa mutation detected in several children diagnosed with ASD or ID. The E183V 
mutation reduces CaMKIIa activity and expression levels but the contributions of these 
two changes to the ASD-related behavioral phenotypes of these mice are unclear. 
Therefore, we performed side-by-side comparisons of the behavioral phenotypes of 
CaMKIIa E183V-KI mice with two other mutant mouse lines with either a complete loss 
of CaMKIIa expression (CaMKIIa Null mice) or reduced kinase activity (due to a 
threonine-286 to alanine mutation that abrogates autophosphorylation at this site) with 
no significant change in expression levels (CaMKIIa T286A-KI mice). In all three lines, 
homozygous mutant mice displayed increased stereotypic jumping behavior and 
hyperactivity, without alterations in anxiety or social interactions. Interestingly, 
homozygous mutant mice in all three lines also displayed a substantial reduction in 
tactile sensitivity using the Von Frey filament test. Together, these data suggest that 
reductions of either CaMKIIa expression or activity in mice disrupted normal motor and 
sensory functions.  
 
Keywords: CaMKII, autism, autophosphorylation, sensory, social, anxiety, stereotypic 
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Introduction 
 

Ca2+/calmodulin-dependent protein kinase (CaMKII) is a serine/threonine kinase 
that is encoded by four mammalian genes (CAMK2A, CAMK2B, CAMK2G, CAMK2D in 
humans) 1-3. A single CaMKII subunit contains catalytic, regulatory and association 
domains. In the basal state, the regulatory domain interacts with the catalytic domain to 
block the active site and suppress kinase activity 4,5. This interaction is disrupted by 
Ca2+/calmodulin binding to the regulatory domain, exposing the ATP- and substrate-
binding sites to activate the kinase 6-8. Self-oligomerization of the association domain 
forms the dodecameric hub of a holoenzyme, facilitating efficient autophosphorylation 
between adjacent activated subunits in the regulatory domain (at Thr286 in CaMKIIa; 
Thr287 in other isoforms) 9-12. Thr286/287 autophosphorylation prevents the regulatory 
domain from interacting with the catalytic domain following Ca2+/calmodulin dissociation, 
resulting in autonomous (Ca2+-independent) CaMKII activity 13-15.  

 
Given abundant evidence that CaMKII is a critical regulator of the synaptic 

processes that underlie learning and memory 16-18, it is perhaps surprising that 
mutations in the CAMK2A, CAMK2B and CAMK2G genes were only recently linked to 
neurodevelopmental and neurological disorders, including autism spectrum disorder 
(ASD), intellectual disability (ID) and epilepsy 19-22. Non-synonymous mutations in the 
catalytic, regulatory, and association domains have been functionally characterized to 
varying extents 19,21-26. Our lab characterized a unique ASD-linked de novo CAMK2A 
mutation, encoding a glutamate-183 to valine (E183V) substitution in the catalytic 
domain of the CaMKIIa isoform, which is abundantly expressed in many parts of the 
forebrain. This same mutation was later identified in other children with ID or ASD 20,26. 
In vitro studies showed that the E183V mutation severely reduced CaMKIIa kinase 
activity, Thr286 autophosphorylation and binding to multiple CaMKII-associated proteins 
(CaMKAPs). Expression of E183V-CaMKIIa in cultured hippocampal neurons disrupted 
dendritic outgrowth and dendritic spine formation, and reduced excitatory synaptic 
transmission. Moreover, homozygous mice with the CaMKIIa E183V knock-in mutation 
(E183V-KI mice) displayed ASD-related behavioral phenotypes: impaired social 
interactions, repetitive behaviors, and hyperactivity. However, in addition to the loss of 
kinase activity and Thr286 autophosphorylation, CaMKIIa expression was substantially 
reduced in E183V-KI mice. As a result, ASD-related behaviors in CaMKIIa E183V-KI 
mice may be due to reductions of CaMKIIa expression and/or activity.  

 
While reduction or loss of CaMKIIa expression and/or activity in mice generally 

alters synaptic plasticity and behavior, some differences in phenotypes have been 
reported. For example, loss of CaMKIIa expression resulted in enhanced short-term 
plasticity, while complete or partial loss of CaMKIIa activity did not impact short-term 
plasticity 27-29. Moreover, loss of CaMKIIa expression or activity impaired spatial 
memory, but visually guided memory remained intact when CaMKIIa activity, but not 
expression, was abolished 16,30. In addition, the functional impact of losing CaMKIIa 
expression or activity may be brain region specific 30,31.  For example, hippocampal-
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dependent memory, such as contextual memory, appears to require CaMKIIa activity, 
while amygdala-dependent cued fear memory may not 30. However, some of the 
variability in these reported phenotypes may arise from differences in the strain 
background and/or housing conditions of Camk2a mutant mice tested. These issues 
can only be resolved by making side-by-side comparisons of the Camk2a mutant mice. 
 

Here, we report side-by-side phenotypic comparisons of CaMKIIa Null mice that 
lack CaMKIIa expression, CaMKIIa T286A-KI mice with reduced autonomous CaMKIIa 
activity due to a lack of Thr286 autophosphorylation, and CaMKIIa E183V-KI mice with 
reduced CaMKIIa expression and CaMKIIa activity. We compare social, motor, and 
sensory behaviors, hyperactivity and anxiety. We found that all three mouse lines have 
similar impairments in motor behaviors and sensory functions, but no substantial 
impairments in social functions and anxiety. Moreover, the paws of all three mouse lines 
displayed robust tactile hyposensitivity in the Von Frey filament test. 

 
Materials and Methods 
 
Animals 
Mice (2-5 mice) were housed in standard cages with paper bedding on a 12-
hour light/dark cycle (light: 6:00 A.M. to 6:00 P.M.) with food and water ad libitum. 
CaMKIIa E183V-KI mice (MGI: 5811610) were described previously 26, and were 
backcrossed at least six times to a C57BL/6J (B6) background for the current studies. 
CaMKIIa Null mice also were previously described 32 and backcrossed to a B6 
background. CaMKIIa T286A-KI mice (MGI:2158733) 33 also were on a B6 background. 
Genotyping was performed before and after behavioral testing. Genotyping assays for 
CaMKIIa Null and T286A mice were previously described 32,34. Primers used to 
genotype the CaMKIIa E183V-KI mice are as follows:  

forward, 5′- TATACCTGTCTGCTGGTCCCAGTCTGG -3′,  
reverse, 5′- CGTACGGGTCCTTCCTCAGCACTT -3′ for WT; 
and forward, 5′-GACACCTGGATACCTCTCCCCAGTG -3′,  
reverse, 5′-GAGGAGCAGGAGAGGAGAGATGAC-3′ for KI.  
We tested 2-3 cohorts of the three CaMKIIa mutant mouse lines, with each 

cohort containing the random mixture of male and female mice of each genotype 
generated using a standard HETXHET breeding strategy. Behavioral tests were 
performed between the ages of 7 and 18 weeks of age in the order listed below, with 
the exception that some data included in figures 3 (3-chamber social test) and 7 (Von 
Frey filament test) were obtained using naïve mice, as described below. The 
experimenter was blinded to genotypes during testing.  

All mouse experiments were approved by the Vanderbilt University Institutional 
Animal Care and Use Committee and were performed in accordance with the National 
Institutes of Health Guide for the care and use of laboratory animals. 
 
Novel open-field locomotor activity (7-14 weeks) 
Naïve mice were placed in the center of a 27 x 27 cm open-field chamber housed in 
sound- attenuating case (Med Associates) for a 60-min. period. The center zone of the 
open-field box was pre-defined (19.05 x 19.05 cm) in the Activity Monitor software (Med 
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Associates; RRID:SCR_014296), which recorded infrared beams breaks as movements 
in the center and outer zones in the x-, y-, and z-dimensions.  
 
Elevated plus maze (7-16 weeks) 
The four arms of the maze were approximately 5-cm wide and elevated approx. 2 feet 
from the floor. The open arms had a 0.5 cm lip to prevent the mouse from falling 
whereas the walls of closed arms were 20-30 cm tall. Mice were placed at the 
intersection of the arms and permitted to explore freely for 10 min while being 
videotaped from above. Mouse behavior was tracked and measured using ANY-maze 
software (Stoelting; RRID:SCR_014289). The position of the mouse was scored based 
on the location of the head and trunk of the test mouse in the open arms, closed arms, 
or center of the maze (Stoelting).  
 
Light-Dark box (8-18 weeks) 
The open-field chambers described above were divided into light and dark zones using 
a black Plexiglass insert measuring 13.5 x 27 cm. The test was started by placing mice 
in the light side of the chamber and giving them 10 mins to explore the light and dark 
zones of the box, as pre-defined using the Activity Monitor software (Med Associates). 
In addition, the software recorded infrared beams breaks in the x-, y-, and z- dimensions 
as movements in the pre-defined zones.  
 
Three-chambered test (10-18 weeks)  
Social exploration was measure in a clear polycarbonate apparatus, covered with white 
paper towel to block visual cues, with 4-inch sliding gates separating three 7 x 9-inch 
chambers. Both side chambers contained an inverted metal wire pencil cup in one 
corner. There were two phases to the testing: (1) A 10 min habituation session allowed 
the test mouse to freely explore all three chambers with empty wire cups in both 
positions. (2) After guiding the test mouse into the center chamber, a WT stranger 
mouse of the same sex was placed under one of the two metal cups. The test mouse 
was then allowed to freely explore all three chambers for 10 min. Mouse behavior was 
videotaped from above and measured using ANY-maze software (Stoelting). 
Interactions with the stranger mouse cup and the empty wire cup were scored as the 
amount of time the head and trunk of the test mouse was located within 2 cm of the 
appropriate wire cup. Mice from an initial cohort were excluded from the final analysis 
due to a technical error with the choice of stranger mice, and additional naïve mice were 
tested; there was no obvious difference in phenotypes between naïve mice and mice 
that experienced the prior behavioral tests, so the data were pooled for inclusion in the 
final Figure 3. 
 
Von Frey filament test (7-13 weeks) 
Mice were acclimated to a 10 X 14 cm chamber with a wire floor for 1 hr. Filaments of 
various diameters were pressed against the plantar surface of the foot, bending to 
produce a constant application force from 0.01 to 10 mN. Filaments were tested in 
ascending order until a foot withdrawal response was observed. This process was 
repeated three times on alternating hind paws (twice on one paw and once on 
contralateral hind pawpaw). For each mouse, the average of the three readings was 
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calculated to determine the average force required to evoke a paw withdrawal. 
Additional data obtained using naïve mice were included in the final figure 7 because 
there was no obvious difference in phenotypes compared with mice that experienced 
the prior behavioral tests. 
 
Data analysis and statistics. A ROUT test was used to identify outliers. The D'Agostino 
& Pearson and Shapiro-Wilk tests were used to test for normality. Statistical analyses of 
normally-distributed data used a paired t-test, one-way analysis of variance (ANOVA), 
or repeated measures two-way ANOVA (GraphPad Prism 9.2.0, LaJolla, CA, USA; 
RRID:SCR_002798), as described in the figure legends. A Kruskal-Wallis test was used 
to test data that was not normally distributed. If ANOVAs revealed significant variation 
between groups, Bonferroni, Dunn’s, or Tukey post hoc test was performed for pair-wise 
comparisons of multiple groups, as recommended in Prism (see figure legends). P 
values of < 0.05 were considered statistically significant. The results of selected 
statistical comparisons are cited in the text or figure legends and complete Prism 
outputs from all statistical tests are reported in supplementary table 1. All data are 
plotted as the mean ± SEM with super-imposed values for individual mice shown in a 
scatter plot. 
 
Results 
 
Stereotypic phenotypes 

CaMKIIa E183V-KI homozygous (HOM) mice on a mixed background exhibited 
sustained and robust increases in jumping and rearing behaviors when monitored for 30 
min in the open field test 26. Therefore, we compared jumping behaviors of wild-type 
(WT), heterozygous (HET) or HOM mice from the three CaMKIIa mutant mouse lines 
using the open-field test. HOM CaMKIIa E183V-KI (E183V-KI) mice on the pure B6 
background displayed an enhanced jumping phenotype over the total 60 min test period 
(Fig 1A). Likewise, HOM CaMKIIa Null and CaMKIIa T286A-KI (Null and T286A-KI, 
respectively) mice exhibited increased total jumping compared to WT littermates (Fig 
1B-C). More detailed comparison of jumping behavior in 5 min time blocks revealed that 
the jumping behavior of WT and HET mice from all three lines progressively decreased 
during the 60 min test. HOM mice from all three lines displayed increased jumping 
during the first 5-10 min of the test, but the jumping behaviors of HOM E183V-KI and 
Null mice were more persistent and remained elevated compared to WT and HET 
littermates throughout the test. In contrast, jumping behavior of HOM T286A-KI 
decreased over time, and was not significantly different from WT or HET littermates 
during the last 10 min of the test (Fig 1D-F). These data suggest a reduction in 
CaMKIIa expression or activity is sufficient to induce a repetitive, stereotypic jumping 
behavior, where a complete loss of both activity and expression results in a somewhat 
more severe phenotype. 

 
Hyperactivity 

We next assessed the total distance traveled by each mouse line in the novel 
open-field test. HOM mice from all three mutant lines covered a significantly greater 
total distance over the 60 min test period relative to WT and HET littermates (Fig 2A-C). 
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More detailed analysis of activity across the test period revealed that distances travelled 
by HOM mice in each line were significantly higher than distances traveled by HET and 
WT littermates during the initial 5-10 min of the test. Moreover, distances travelled by 
the three genotypes in each mouse line progressively decreased during each 
successive 5 min period, as expected due to habituation of the mice to the chambers. 
However, HOM CaMKIIa Null remained significantly hyperactive relative to WT and 
HET littermates throughout the 60 min test, whereas HOM E183V-KI and HOM T286-KI 
mice were significantly hyperactive relative to WT and HET littermates mostly during the 
first 20-30 min (Fig 2D-F).Taken together, these data suggest that decreasing CaMKIIa 
expression or activity is sufficient to induce hyperactivity, but that hyperactivity is 
somewhat more pronounced and persistent when both expression and activity are 
completely lost. 
 
Social exploratory behavior 

Next, we assessed social interaction using the three-chamber social test (3CST), 
which is widely used to characterize social phenotypes for ASD mouse models 35,36. 
During the habituation phase, none of the mice distinguished between two empty wire 
cups (Fig 3A-C). During the test phase, WT, HET, and HOM E183V-KI mice spent 
significantly more time exploring the wire cup containing the mouse as opposed to the 
empty cup (Fig 3D). Similarly, WT and HET Null and T286A-KI mice spent significantly 
more time exploring the wire cup containing the mouse as opposed to the empty cup. In 
contrast, there was not a significant difference in the time that HOM Null and T286A-KI 
mice spent exploring the two cups (Fig 3E-F). Interestingly, a significant increase in the 
total distance traveled was observed for  HOM E183V-KI, Null, and T286A-KI mice 
during the test phase compared to WT and HET littermates (Fig 3G-I), but there was no 
difference in the number of entries into the chambers containing an empty wire cup or a 
wire cup with a mouse underneath for WT, HET, or HOM amongst the three mouse 
lines (data not shown). These data confirm the hyperactivity of all three CaMKIIa mouse 
lines that was observed in the open-field test, and indicate that this hyperactivity 
correlates with a modest reduction in social exploration, at least in the CaMKIIa NULL 
and T286A-KI mice. Thus, reductions of CaMKIIa expression and/or activity has a 
modest impact on social exploratory behavior. 

 
Anxiety-related phenotypes 

As an initial assessment of potential anxiety phenotypes in CaMKIIa mutant 
mice, we measured the amount of time spent in the center of the novel open-field arena. 
During the first 10 mins, HET and HOM E183V-KI mice spent less time in the center of 
the arena compared to WT littermates (Fig 4A), which is indicative of increased anxiety. 
HOM Null and T286A-KI mice, but not their HET littermates, spent less time in the 
center compared to WT mice (Fig 4B-C). However, the phenotypes appeared to change 
as the mice habituated to the open field arena.  During the last 10 min in the open field 
arena, HET and HOM E183V-KI mice spent a similar amount of time in the center as 
their WT littermates (Fig 4D). Similarly, HOM Null mice spend an equal amount time in 
the center as their WT littermates, whereas HET Null mice spent more time in the center 
compared to WT and HOM littermates (Fig 4E), indicative of reduced anxiety. 
Moreover, HOM T286A-KI mice also spent more time in the center compared to WT and 
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HET littermates (Fig 4F). These data suggest that there is a complex time-dependent 
relationship between the reductions of CaMKIIa activity and/or expression in these three 
mouse lines and anxiety in a novel environment. 
 

To provide more insight into the relationship between Camk2a and anxiety, mice 
were tested for 10 min using an elevated plus maze (EPM). HOM E183V-KI, Null and 
T286A-KI mice spent significantly more time in the open arms of the maze than their 
WT or HET littermates, with a corresponding significant decrease in time spent in the 
closed arms (Fig 5A-C). In addition, HOM E183V-KI, Null and T286A-KI made 
significantly more entries into the open arm of the maze compared to their WT or HET 
littermates (Fig 5D-F). Moreover, HOM E183V-KI, Null and T286A-KI travelled a greater 
distance in the open arm of the maze compared to their WT or HET littermates (Fig 5G-
I). Taken together, the EPM data indicate that HOM CaMKIIa mutant mice from all three 
lines have reduced anxiety, in contrast to their apparent anxiety during the first 10 min 
of the open field test. 

 
A light-dark box test was then used to further explore the relationship between 

Camk2a and anxiety phenotypes, again with a 10 min test period. There were no 
significant differences in the amount of time that WT, HET and HOM E183V-KI or 
T286A-KI mice spent in the light or dark areas of the box (Figs 6A, 6C). However, HOM 
Null mice spent slightly, but significantly, more time on the light side compared to WT 
mice, indicative of mildly reduced anxiety (Fig 6B). Moreover, we found no difference in 
the number of transitions between the light and dark side within any of the CaMKIIa 
mouse lines (Fig 6D-F). In addition, HOM E183V-KI traveled a significantly greater 
distance in both the light and dark sections of the box than their littermates (Fig 6G). 
HOM Null mice also traveled a significantly greater distance in the light section of the 
box than their WT littermates. In contrast, there were no significant differences in the 
distance traveled by any genotype of the T286A-KI mice (Fig 6H-I). Taken together, the 
light-dark box data indicate that the complete loss of CaMKIIa activity and expression in 
CaMKIIa Null mice results in a modest decrease of anxiety-related behaviors, but this is 
not phenocopied in E183V-KI or T286A-KI mice. 
 
Tactile phenotypes 

Since several ASD mouse models exhibit abnormal tactile responses 37,38, we 
used the von Frey filament test to assess tactile responsiveness of our CaMKIIa mutant 
mouse lines. More force (thicker filaments) was required to elicit paw withdrawal 
responses in HOM E183V-KI, Null and T286A-KI mice compared to WT and HET 
littermates (Fig 7A-C). This data show that loss of CaMKIIa activity or expression is 
sufficient to blunt responses to tactile input. 
 
Discussion 
 

In this study, we compared the impact of different loss of function Camk2a 
mutations on mouse behavioral phenotypes often considered to be related to human 
ASD symptoms 36,39. First, we found that reductions in CaMKIIa expression or activity 
are sufficient to increase stereotypic jumping behavior and hyperactivity. Second, we 
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found that a reduction in CaMKIIa activity and expression impact social exploration with 
only mild effects on anxiety-related behaviors. Finally, we found that decreases in 
CaMKIIa expression or activity reduce sensitivity to peripheral tactile input. Taken 
together, these results show that normal CaMKIIa expression and/or activity is essential 
for normal motor, social, and sensory functions.  

 
While ASD symptoms typically include social interaction deficits and stereotypic 

behaviors, there is also a variable spectrum of co-morbidities, often including 
generalized hyperactivity 39,40. Several ASD mouse models also exhibit hyperactivity 
and stereotypic behaviors, especially in novel environments 41,42. In the novel open field 
test, all three Camk2a mutant mouse lines exhibit increases in both stereotypic behavior 
(jumping; Fig 1) and overall locomotor activity (Fig 2). Interestingly, the severity of these 
two phenotypes depends to some degree on the severity of the Camk2a mutation. The 
jumping phenotype is more robust and persistent following the complete loss of 
CaMKIIa protein and activity in HOM CaMKIIa Null mice compared to HOM E183V-KI 
or T286A-KI mice. Similarly, the increased motor activity of HOM Null mice persists for 
at least 60 min in the open-field test, whereas the increased motor activity of HOM 
T286A-KI and E183V-KI mice is only evident during the first ~30 min of the novel open 
field test. Thus, a reduction of only CaMKII activity modestly enhances stereotypic 
jumping and locomotor activity when combined with the stress associated with entering 
a novel environment, whereas the complete loss of CaMKIIa expression and activity 
significantly enhances these phenotypes.  

 
 Many ASD mouse models display a range of social interaction deficits 35,36,43. 
However, WT, HET and HOM E183V-KI mice exhibited normal social exploratory 
behavior in the 3CST (Fig 3). HOM Null and T286A-KI mice failed to exhibit a significant 
preference for social interactions, although there was a trend for a social interaction 
preference in both lines. Taken together, the current data indicate only mild, if any, 
impairments in social preferences in the three Camk2a mutant mouse lines on a B6 
strain background. However, our prior studies of E183V-KI mice on a mixed background 
detected significant social deficits, and female T286A-KI mice, which were also on a 
mixed background, were reported to exhibit significant social interaction phenotypes 
26,44. However, analysis  of sex revealed any differences for any Camk2a mutant mouse 
(data not shown). The different genetic background of the mice used in these studies 
may affect the severity of social interaction deficits. Moreover, it is worth noting that 
other studies have shown that increasing or decreasing CaMKIIa expression alters 
aggressive behaviors in mice 45-47, perhaps also impacting social behaviors. Taken 
together, these data indicate that CaMKII mutations have relatively subtle effects on 
social behaviors that may depend on the strain of mice used. 
 
 Initial novel open-field testing indicated that HOM mice in all three Camk2a 
mutant lines spent less time in the center of the arena during the first 10 min of the trials 
(Fig 4), which is typically interpreted as an increase in anxiety. In addition, increased 
jumping behavior of these mice (Fig 1) could be interpreted as a sign of increased 
anxiety (i.e., a need to escape). While increased anxiety is typically associated with 
reduced exploratory activity 36, HOM mice in all three lines exhibited increased overall 
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motor activity (Fig 2). Moreover, the novelty-induced stress of the open-field arena may 
have contributed to the apparent anxiety because the decrease in center time was not 
detected during the last 10 min (of the 60 min trial). In fact, there was an increased 
center time for HOM T286A-KI mice during the last 10 min, and also a trend for 
increased center time with HOM E183V-KI mice, indicative of reduced anxiety.  
 

To provide greater clarity about possible anxiety-related phenotypes, we also 
tested Camk2a mutant mice in the EPM and light-dark box. However, these studies 
provided conflicting insight into the role of CaMKIIa in anxiety. In the EPM, WT mice, as 
well as HET littermates from all three lines spent 3-8 times more time in the closed arm 
vs. the open arm. HOM mice from all three lines spent significantly more time in the 
high-risk open arms than their WT or HET littermates (Fig 5). In fact, HOM Null and 
T286A-KI mice failed to display any preference for the closed arms (closed/open time 
ratio 1.1 and 0.9, respectively), and the closed/open time ratio for HOM E183V-KI mice 
was significantly reduced relative to WT or HET littermates (E183V-KI closed/open arm 
time ratios: WT, 8.2 ± 1.5; HET, 6.3 ± 1.0; HOM, 2.8 ± 0.5; p= 0.0001by 1-way ANOVA).  
In contrast to the apparently decreased anxiety of all three HOM mice in the EPM, the 
light-dark box revealed more modest, if any, anxiety phenotypes. In fact, only HOM Null 
mice displayed a significant change in preference for the light zone in the box relative to 
WT littermates, indicative of a mild decrease in anxiety, with no significant effects of the 
other Camk2a mutations on light-dark preference (Fig 6). Interestingly, the EPM also 
revealed significant increases of distances covered exploring high risk area (i.e. open 
arm) for HOM mice from all three lines, and this increase of high-risk exploration was 
confirmed for E183V-KI and Null mice in the light-dark box. In fact, before the EPM was 
complete, some HET and HOM mice would jump off the open arm, resulting in their 
exclusion from the analyses. A similar phenomenon was observed in pilot studies using 
an elevated zero maze (data not shown). Taken together, these data indicate that all 
three of these Camk2a mutations increase exploratory and impulsive behaviors, which 
may be misinterpreted as changes in anxiety in some testing paradigms.  

 
Alterations in various forms of sensory perception are another common co-

morbidity of ASD 48,49, and several ASD mouse models display altered tactile sensitivity 
37,38. Previous studies of Camk2a Null and T286A-KI mice revealed alterations in the 
sensitivity to whisker stimulation 50-52. Here we used the von Frey filament test to show 
for the first time that reduced CaMKIIa expression and/or activity in any of the three 
Camk2a mutant mouse lines lead to a substantial loss of tactile sensitivity in the paw 
(Fig 7). Moreover, the sensitivity to a nociceptive electric foot shock was also shown to 
be increased by the loss of CaMKIIa expression 45, and CaMKIIa has been linked to the 
development of chronic peripheral pain conditions such neuropathic and inflammatory 
pain 53-56. While von Frey filaments do not appear to induce nociceptive responses, it 
will be interesting to investigate the role of CaMKIIa in responses to more noxious 
stimuli, such as foot shock or heat. 

 
Conclusion 
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The current findings add to the diversity of mouse behavioral phenotypes that 
result from global genetic disruptions of CaMKIIa activity or expression. This diversity is  
not surprising given that CaMKIIa is widely expressed in many, but not all, parts of the 
forebrain, as well as in cerebellar Purkinje cells and spinal cord. Since prior studies 
have shown that one or more of these Camk2a mutation can disrupt normal excitatory 
synaptic transmission in the hippocampus, cortex, striatum, cerebellum and other brain 
regions, it seems likely that the diverse behavioral phenotypes observed here and in 
prior studies result from abnormal glutamate receptor function and synaptic plasticity in 
one or more brain regions. Further studies are required to reveal the relative 
contributions of disrupted synaptic function in specific brain regions to the behavioral 
phenotypes of CaMKIIa mutant mice. 
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Legend 
Figure 1. Stereotypic jumping during open-field testing of the three Camk2a mutant mouse lines. 
A-C: Total jumps in 60 min (mean ± SEM). 
E183V-KI (A): Kruskal-Wallis, P=0.012; Dunn’s post hoc analysis.  
Null (B): 1-way ANOVA, P<0.0001; Bonferroni’s post hoc analysis. 
T286A-KI (C): 1-way ANOVA, P=0.0008; Bonferroni’s post hoc analysis. 
Symbols for panels A-C indicate P ≤ 0.05 for *, P ≤ 0.01 for **, and P ≤ 0.001 for ***.  
D-F: Number of jumps in 5 min time windows (mean ± SEM) across the 60 min open-field test. All data 
analyzed with a 2-way repeated-measures ANOVA and Tukey's post hoc analysis 
E183V-KI (D): interaction, F (22, 627) = 1.347, P=0.1337; genotype, F (2, 57) = 5.919, P=0.0046; time, F 
(11, 627) = 33.39, P<0.0001. 
Null (E): interaction, F (22, 616) = 1.962, P=0.0056; genotype, F (2, 56) = 18.15, p<0.0001; time, F (11, 
616) = 7.966, P<0.0001. 
T286A-KI (F): interaction, F (22, 506) = 1.069, P=0.3768; genotype, F (2, 46) = 8.400, P=0.0008; time, F 
(11, 506) = 32.69, P<0.0001 
Symbols for individual time points in panels D-F indicate P < 0.05 for: †, WT vs HET; *, WT vs HOM; ‡, 
HET vs HOM. 
Numbers of WT, HET and HOM mice, respectively, were: E183V-KI: 20, 24, 16. Null: 18, 16, 25. T286A-
KI: 16, 18, 15. 
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Figure 2. Distances travelled during open-field testing of the three Camk2a mutant mouse lines. 
A-C: Total distance traveled in 60 min (mean ± SEM). 
E183V-KI (A): Kruskal-Wallis P=0.0074; Dunn’s post hoc analysis. 
Null (B): 1-way ANOVA P<0.0001; Bonferroni’s post hoc analysis 
T286A-KI (C): 1-way ANOVA P=0.0043; Bonferroni’s post hoc analysis. 
Symbols panels A-C indicate P≤0.05 for *, P≤0.01 for **, and P≤0.0001 for ****.  
D-F: Distances traveled in 5 min time windows (mean ± SEM). All data analyzed using a 2-way repeated-
measures ANOVA with Tukey's post hoc analysis. 
E183V-KI (D): interaction, F (22, 627) = 1.178, P=0.2608; genotype, F (2, 57) = 3.342, P=0.0424; time, F 
(11, 627) = 110.1, P<0.0001. 
Null (E): interaction, F (22, 616) = 1.867, P=0.0097; genotype, F (2, 56) = 29.87, P<0.0001; time, F (11, 
616) = 77.11, P<0.0001. 
T286A-KI (F): interaction, F (22, 506) = 2.025, P=0.0040; genotype, F (2, 46) = 6.146, P=0.0043; time, F 
(11, 506) = 66.29, P<0.0001. 
Symbols for individual time points in panels D-F indicate P < 0.05 for: †, WT vs HET; *, WT vs HOM; ‡, 
HET vs HOM. 
Numbers of WT, HET and HOM mice, respectively, were: E183V-KI: 20, 24, 16. Null: 18, 16, 25. T286A-
KI: 16, 18, 15. 
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Figure 3. Social exploration by the three Camk2a mutant mouse lines in the 3CST.  
A-C. Times (mean ± SEM) spent exploring the left (L) versus the right(R) chamber for CaMKIIa E183V-KI 
(A), Null (B), and T286A-KI (C) mice. Panels A-F analyzed using a 2-way repeated-measures ANOVA 
with Bonferroni’s post hoc analysis. 
E183V-KI (A): interaction, F (2, 49) = 0.2152, P=0.8072; genotype, F (2, 49) = 7.258, P=0.0017; chamber, 
F (1, 49) = 0.4556, P=0.5029. 
Null (B): interaction, F (2, 32) = 1.093, P=0.3474; genotype, F (2, 32) = 14.58, P<0.0001; chamber, F (1, 
32) = 2.379, P=0.1328. 
T286A-KI (C): interaction, F (2, 32) = 1.437, P=0.2525; genotype, F (2, 32) = 0.5982, P=0.5558; chamber, 
F (1, 32) = 0.05761, P=0.8118. 
D-F. Times (mean ± SEM) spent closely interacting with an empty wire pencil cup (E) versus an identical 
cup sheltering a novel mouse (M) for CaMKIIa E183V-KI (D), Null (E), and T286A-KI (F) mice.  
E183V-KI (D): interaction, F (2, 49) = 4.220, P=0.0204; genotype, F (2, 49) = 1.593, P=0.2136; chamber, 
F (1, 49) = 65.58, P<0.0001. 
Null (E): interaction, F (2, 32) = 3.744, P=0.0346 ; genotype, F (2, 32) = 1.481, P=0.2427; chamber, F (1, 
32) = 41.89, P<0.0001. 
T286A-KI (F): interaction, F (2, 32) = 0.5436, P=0.5859; genotype, F (2, 32) = 1.151, P=0.3290; chamber, 
F (1, 32) = 19.63, P=0.0001. 
G-I. Distance traveled (mean ± SEM) for CaMKIIa E183V-KI (G), Null (H), and T286A-KI (I) mice. 
E183V-KI (A): Kruskal-Wallis, P=0.0025; Dunn’s post hoc analysis.  
Null (B): Kruskal-Wallis, P=0.0004; Dunn’s post hoc analysis. 
T286A-KI (C): 1-way ANOVA, F (2, 32) = 11, P=0.0003; Bonferroni’s post hoc analysis 
Symbols indicate P≤0.05 for *, P≤0.01 for **, P≤0.001 for ***and P≤0.0001 for ****.  
Numbers of WT, HET and HOM mice, respectively, were: E183V-KI: 20, 9, 23. Null: 9, 8, 18. T286A-KI: 
16, 8, 11.  
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Figure 4. Center time during open-field testing of the three Camk2a mutant mouse lines.  
A-C: Time in center during the first 10 mins (mean ± SEM). 
E183V-KI (A): 1-way ANOVA, P=0.0006; Bonferroni’s post hoc analysis.  
Null (B): 1-way ANOVA, P<0.0001; Bonferroni’s post hoc analysis. 
T286A-KI (C): 1-way ANOVA, P<0.0001; Bonferroni’s post hoc analysis. 
D-F: Time in center during the last 10 mins (mean ± SEM). 
E183V-KI (D): 1-way ANOVA, P=0.0431; Bonferroni’s post hoc analysis.  
Null (E): 1-way ANOVA, P=0.0074; Bonferroni’s post hoc analysis. 
T286A-KI (F): 1-way ANOVA, P=0.0003; Bonferroni’s post hoc analysis. 
Symbols indicate P≤0.05 for *, P≤0.01 for **, P≤0.001 for ***and P≤0.0001 for ****. 
Numbers of WT, HET and HOM mice, respectively, were: E183V-KI: 20, 24, 16. Null: 18, 16, 25. T286A-
KI: 16, 18, 15. 
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Figure 5. Anxiety-related behaviors during EPM testing of the three Camk2a mutant mouse lines.  
A-C: Times spent (mean ± SEM) on the open and closed arms (open and closed bars, respectively) of the 
EPM for CaMKIIa E183V-KI (A), Null (B), and T286A-KI (C) mice. All data analyzed using a 2-way 
repeated-measures ANOVA with Tukey's post hoc analysis. 
E183V-KI (A): interaction, F (2, 60) = 11.04, P<0.0001;genotype, F (2, 60) = 2.472, P=0.0930; arm, F (1, 
60) = 331.5,P<0.0001. 
Null (B): interaction, F (2, 59) = 24.77, P<0.0001; genotype, F (2, 59) = 8.685, P=0.0005; arm, F (1, 59) = 
71.87, P<0.0001. 
T286A-KI (C):interaction, F (2, 30) = 34.51, P<0.0001; genotype, F (2, 30) = 1.021, P=0.3723; arm, F (1, 
30) = 77.38, P<0.0001. 
D-F: Numbers of entries (mean ± SEM) onto the open and closed arms of the EPM for CaMKIIa E183V-
KI (D), Null (E), and T286A-KI (F) mice. 
E183V-KI (D): interaction, F (2, 60) = 2.860, P=0.0651; genotype, F (2, 60) = 12.66, P<0.0001; arm, F (1, 
60) = 72.28, P<0.0001. 
Null (E): interaction, F (2, 59) = 9.900, P=0.0002; genotype, F (2, 59) = 3.954, P=0.0245; arm, F (1, 59) = 
26.77, P<0.0001. 
T286A-KI (F): interaction, F (2, 30) = 20.03, P<0.0001; genotype, F (2, 30) = 6.382, P=0.0049; arm, F (1, 
30) = 24.82, P<0.0001. 
G-I: Distances traveled (mean ± SEM) on the open and closed arms of the EPM for CaMKIIa E183V-KI 
(G), Null (H), and T286A-KI (I) mice. 
E183V-KI (G): interaction, F (2, 60) = 1.008, P=0.3710; genotype, F (2, 60) = 15.99, P<0.0001; arm, F (1, 
60) = 299.4,P<0.0001. 
Null (H): interaction, F (2, 59) = 6.944, P=0.0020; genotype, F (2, 59) = 15.79, P<0.0001; arm, F (1, 59) = 
150.6, P<0.0001. 
T286A-KI (I): interaction, F (2, 30) = 10.87, P=0.0003; genotype, F (2, 30) = 14.31, P<0.0001; arm, F (1, 
30) = 75.54, P<0.0001. 
Numbers of WT, HET and HOM mice, respectively, were: E183V-KI: 20, 29, 15. Null: 16, 21, 25. T286A-
KI: 9, 12, 12. 
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Figure 6. Anxiety-related behaviors during light-dark (LD) testing of the three Camk2a mutant 
mouse lines.  
A-C: Times spent (mean ± SEM) on the light or dark sides (open and filled bars, respectively) of the LD 
box for CaMKIIa E183V-KI (A), Null (B), and T286A-KI (C) mice. Panels A-C and G-I analyzed using a 2-
way repeated-measures ANOVA with Tukey's post hoc analysis 
E183V-KI (A): interaction, F (2, 45) = 0.6832, P=0.5101; genotype, ,F (2, 45) = 505.8, P<0.0001; 
chamber, F (1, 45) = 94.79, P<0.0001.  
Null (B): interaction, F (2, 26) = 14.66, P<0.0001; genotype, F (2, 26) = 0.000, P>0.9999; chamber, F (1, 
26) = 349.8, P<0.0001. 
T286A-KI (C): interaction, F (2, 22) = 2.833, P=0.0804; genotype, F (2, 22) = 8.827, P=0.0015; chamber, 
F (1, 22) = 18.66, P=0.0003. 
D-F: The numbers of entries (mean ± SEM) into the light or dark sides during the LD test for CaMKIIa 
E183V-KI (D), Null (E), and T286A-KI (F) mice. 
E183V-KI (D): Kruskal-Wallis, P = 0.1712.  
Null (E): 1-way ANOVA, F (2, 26) = 1.2, P=0.3185. 
T286A-KI (F): Kruskal-Wallis, P = 0.8710. 
G-I: Distance traveled (mean ± SEM) on the light or dark sides of the LD box for CaMKIIa E183V-KI (G), 
Null (H), and T286A-KI (I) mice. All data analyzed using a 2-way repeated-measures ANOVA with 
Tukey's post hoc analysis. 
E183V-KI (G):interaction, F (2, 45) = 1.341, P=0.2718; genotype, F (2, 45) = 10.22, P=0.0002; chamber, 
F (1, 45) = 115.3, P<0.0001. 
Null (H): interaction, F (2, 26) = 0.1718, P=0.8431; genotype, F (2, 26) = 4.540, P=0.0204; chamber, F (1, 
26) = 75.90, P<0.000. 
T286A-KI (I): interaction, F (2, 22) = 1.136, P=0.3393; genotype, F (2, 22) = 1.813, P=0.1868; chamber, F 
(1, 22) = 20.84, P=0.0002. 
Numbers of WT, HET and HOM mice, respectively, were: E183V-KI: 20, 12, 16. Null: 8, 7, 14. T286A-KI, 
7, 10, 8. 
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Figure 7. Tactile sensitivity of the three Camk2a mutant mouse lines in the VFF test.  
A-C: Force required to evoke paw withdrawal (mean ± SEM).  
E183V-KI (A): Kruskal-Wallis, P=0.0010 with Dunn’s post hoc analysis  
Null (B): Kruskal-Wallis, P=0.0021 with Dunn’s post hoc analysis  
T286A-KI (C): 1-way ANOVA, P=0.0026 with Bonferroni’s post hoc analysis 
Numbers of WT, HET and HOM mice, respectively, were: E183V-KI: 22, 38, 24. Null: 13, 6, 14. T286A-KI: 
15, 12, 13. 
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