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Abstract 19 

Complex traits differ in their genetic architectures, and these differences can affect polygenic 20 

score performance. Examining 177 complex traits from the UK Biobank, we first identified pairs 21 

of traits that have trait-associated SNPs in shared genomic regions. We then compared and 22 

contrasted three aspects of genetic architecture (SNP heritability, trait-specific recombination 23 

rates, and a novel metric of polygenicity) with three aspects of polygenic score performance 24 

(correlations between predicted and actual trait values, portability of genetic predictions, and 25 

divergence across populations). Although highly heritable traits tended to be easier to predict, 26 

heritability was largely uninformative with respect to the portability of genetic predictions. By 27 

contrast, there was a positive relationship between trait-specific recombination rates and the 28 

portability of genetic predictions. Analyzing 100kb bins, we used Gini coefficients to quantify the 29 

extent that SNP heritability is unequally distributed across the genome. Polygenic score 30 

performance was largely independent of Gini – traits with more Mendelian architectures need not 31 

be easier to predict. By contrast, Gini coefficients were negatively correlated with the prevalence 32 

of binary traits. We also found that binary traits were more difficult to predict than quantitative 33 

traits. Interestingly, lifestyle and psychological traits tend to have low heritability, low Gini 34 

coefficients, as well as poor predictability and portability across populations. Because of this, our 35 

results caution against the application of polygenic scores to traits like general happiness, alcohol 36 

frequency, and average income, especially when polygenic scores are applied to individuals who 37 

have an ancestry that differs from the original source population.  38 
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Introduction 39 

Recent years have seen an explosive growth in our understanding of the genetics of complex 40 

traits.1-3 Large datasets, such as the UK Biobank,4 have facilitated the genetic analysis of complex 41 

traits, and to date over 6000 genome-wide association studies (GWAS) have yielded over 42 

425,000 associations.5 Despite these discoveries, major knowledge gaps still exist.6 How can the 43 

field go beyond mere catalogs of statistical associations? One way that GWAS results can be 44 

leveraged is to infer the genetic architecture of complex traits. A second downstream application 45 

of GWAS involves generating polygenic predictions of complex traits and hereditary disease risks.  46 

Genetic architecture refers to the distribution of allelic effects, their interactions, and how 47 

segregating genetic variation contributes to differences in traits across individuals.7 The genetic 48 

architectures of complex traits can be described by lists of trait-associated loci, their frequencies, 49 

and allele-specific effect sizes. The relative importance of genetic and environmental effects 50 

varies by trait, and this can be quantified via estimates of SNP heritability (h2SNP).8; 9 An additional 51 

aspect of genetic architecture involves the extent to which trait-associated SNPs are found in high 52 

or low recombination regions of the genome. These differences are particularly relevant to traits 53 

which are due to a small (i.e., < 100) number of genes, since patterns of linkage disequilibrium 54 

impact the ability of SNPs to tag causal variants and for GWAS findings to replicate across 55 

populations.10 Traits can also vary in their polygenicity.11; 12 On one extreme are traits which have 56 

a Mendelian genetic architecture, like cystic fibrosis.13 On the other extreme are highly polygenic 57 

traits like height.14 Importantly, polygenicity can act as a confounding factor in GWAS analyses.15 58 

Recently, an omnigenic model has been proposed - whereby traits have a set of core genes, but 59 

most of the heritability can be explained via indirect effects that are due to gene regulatory 60 

networks.16 Consistent with the omnigenic model, causal variants for anthropometric and blood 61 

pressure traits have been found throughout the human genome.17 Despite an awareness of the 62 
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multiple ways that traits can differ, many aspects of genetic architecture have yet to be quantified 63 

in a comprehensive way. 64 

GWAS findings can be used to generate polygenic scores (PGS), called polygenic risk 65 

scores in the context of hereditary diseases.18 These scores enable traits to be predicted from 66 

genetic information, and they are commonly calculated by summing allele doses across all trait-67 

associated loci and weighting by effect sizes.19-21 Although the clinical utility of risk scores has 68 

received a significant amount of attention during the past few years, many PGS yield only modest 69 

case prediction accuracy and show weak correlations between predicted and actual trait values 70 

(R2 < 0.1).22-24 Even within the same ancestry, PGS accuracy can vary due to socio-economic 71 

status and genotype-environment interactions.25; 26 These issues are even more pronounced 72 

when genetic predictions are applied to populations that have different ancestries than the original 73 

discovery population.27-29 For example, predictions of anthropomorphic and blood-related traits 74 

generated from UK Biobank data perform better when applied to British individuals than Japanese 75 

individuals, while predictions generated from Biobank Japan data perform better when applied to 76 

Japanese individuals than British individuals.23 In a landmark study of over 200 traits from the UK 77 

Biobank, Privé et al. found that the portability of genetic predictions is reduced in proportion to the 78 

genetic distance from the original discovery population.30 In addition, the predicted values of 79 

complex traits can vary between populations. These shifts in PGS distributions can either be due 80 

to ascertainment bias31-33 or due to actual differences in traits.34; 35 Although thousands of PGS 81 

have been generated to date,24 multiple knowledge gaps exist: Are there particular types of traits 82 

that are hard to predict from genetic data? Which traits have PGS that differ the most across 83 

populations? 84 

 Here, we leveraged polygenic score weights of 177 traits from the UK Biobank to quantify 85 

how different aspects of genetic architecture affect PGS performance. We first identified pairs of 86 

traits that are influenced by shared genomic regions. We then compared and contrasted three 87 
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aspects of genetic architecture (SNP heritability, trait-specific recombination rates, and 88 

polygenicity) with three aspects of PGS performance (correlations between predicted and actual 89 

trait values, portability of genetic predictions, and how much PGS distributions diverge across 90 

populations). Finally, we identified suites of traits that have similar genetic architectures and PGS 91 

performance. Notably, binary as well as lifestyle and psychological traits were difficult to predict 92 

with genetic data, while also having PGS that generalize poorly across populations. 93 

 94 

 95 

Materials and methods 96 

PGS weights for 177 complex traits 97 

Our paper builds upon the PGS weights previously generated by Privé et al.30 To our knowledge, 98 

this prior study contains the largest number of traits with multi-ancestry PGS performance metrics. 99 

After correcting for sex, age, deprivation index, and 16 principal components (PCs), Privé et al. 100 

used lasso penalized regression36 to generate PGS from 391,124 British-ancestry individuals of 101 

European descent from the UK Biobank.30 We restricted our analyses to 177 traits that had 102 

publicly available PGS weights, SNP heritability, and PGS accuracy statistics. We also required 103 

that binary traits have a prevalence above 1% in the UK Biobank. These traits were grouped into 104 

four categories: 55 biological measures (including blood phenotypes), 50 diseases, 24 105 

lifestyle/psychological traits, and 48 physical measures (such as height and weight). A total of 68 106 

of binary and 109 quantitative traits were analyzed here. A full list of traits, as well as summary 107 

statistics of genetic architecture and PGS performance, can be found in Supplemental Table S1 108 

of our paper. 109 

  110 
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Genetic variance contributions 111 

We leveraged effect size and allele frequency information to identify the most important trait-112 

associated SNPs. Specifically, alleles with large effect sizes and minor allele frequencies close to 113 

50% contribute more to the heritable variation of a trait than alleles with small effect sizes and 114 

minor allele frequencies close to zero. As described in earlier work,37; 38 the contribution of a SNP 115 

to the total genetic variance of a trait under Hardy-Weinberg equilibrium and an additive polygenic 116 

model is given by:  117 

𝑔𝑣𝑐 = 2 × 𝛽! × 𝑝 × (1 − 𝑝) 118 

where gvc refers to the genetic variance contribution, β is effect size per allele copy, and p is the 119 

frequency of the reference allele in a given population. We recreated eight of the ancestry groups 120 

found in the UK Biobank using the procedure described in Note A of Privé et al.30: UK (i.e., British), 121 

Poland, Italy, Iran, India, China, Caribbean, and Nigeria. This data was them used to calculate 122 

ancestry-specific allele frequencies and gvc values for each trait-associated SNP.  123 

 124 

Traits with shared genetic architectures 125 

To enable comparisons between the genetic architectures of different traits, we divided the human 126 

genome into non-overlapping 100kb bins and summed the gvc for every SNP in each bin. We 127 

opted for a bin-based approach because pleiotropic loci can have different lead SNPs for different 128 

traits, and these lead SNPs need not be in linkage disequilibrium. We forced-ranked 100kb bins 129 

to find the top 100 genomic bins with the largest summed gvc for the UK ancestry group, i.e., the 130 

top 100 genomic gins for each trait. We then generated a 177x177 similarity matrix, where each 131 

element is the count of the number of top 100 bins shared by a pair of traits. This similarity matrix 132 

was then used to generate undirected network graphs using the igraph package in R. Graphs 133 

were generated for multiple thresholds (5, 10, 15, and 20 overlapping bins). Argo Lite39 was used 134 
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to generate an interactive visualization of the graph resulting from a threshold of 10 overlapping 135 

bins. 136 

 137 

Quantifying three aspects of genetic architecture: heritability, recombination rates, and 138 

polygenicity 139 

SNP heritability (h2SNP) estimates for each trait were previously calculated by Privé et al.30 using 140 

LDpred2-auto.40 141 

We used the high-resolution recombination map from deCODE41 to calculate trait-specific 142 

recombination rates. Liftover was used to convert this recombination map from GRCh38 to 143 

GRCh37 coordinates, as PGS weights used the GRCh37 build. For each trait, we focused on 144 

SNPs located in the 100 bins with the largest summed gvc for the UK ancestry group. We 145 

then calculated the local arithmetic mean recombination rate for 100kb genomic windows 146 

centered around each trait-associated SNP (50kb to either side). We then weighted each 147 

SNP by gvc to calculate the arithmetic mean recombination rate for each trait, which we 148 

denote as R (units: cM per Mb). 149 

We quantified whether traits have Mendelian or polygenic architectures using a novel 150 

application of Gini coefficients. These coefficients have typically been used in economics to 151 

calculate wealth or income inequality,42 and they range between zero (maximum equality) and 152 

one (maximum inequality). Here, we used Gini coefficients to quantify the extent that summed 153 

gvc is evenly distributed among the top 100 genomic bins for each trait. Focusing on the top 100 154 

genomic bins maximizes the dynamic range of Gini coefficients for the 177 traits analyzed in this 155 

study (see Supplemental Information). For traits that had fewer than 100 bins with significant 156 

SNPs, the remaining bins were padded with values of zero so that Gini coefficient calculations 157 
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always consisted of 100 elements. Gini coefficients were calculated using the following equation, 158 

which requires that bins are sorted by gvc in ascending order: 159 

𝐺"##,%& =
∑ (2𝑖 − 𝑛 − 1) × 𝑔𝑣𝑐',%&(
')"

𝑛 × ∑ 𝑔𝑣𝑐',%&(
')"

 160 

where n = 100 and gvci,UK is the summed genetic variance contribution of the ith bin using allele 161 

frequencies from the UK ancestry group. Using https://github.com/oliviaguest/gini as a guide, we 162 

implemented a computationally efficient R script that uses the above equation to compute Gini 163 

coefficients for each trait. An examination of the robustness of Gini coefficients to the source of 164 

PGS weights, different numbers of 100kb bins, and choice of ancestry group can be found in the 165 

Supplemental Information. 166 

 167 

Quantifying three aspects PGS performance: accuracy, portability, and divergence 168 

Here, PGS accuracy refers to how well genetic predictions work when individuals are ancestry-169 

matched to the original training set (i.e., British individuals from the UK). For each trait, partial 170 

correlations between predicted and actual trait values for Privé et al.’s UK ancestry group (rUK) 171 

were used to quantify PGS accuracy.30 These partial correlations were generated using the 172 

residuals of actual trait values vs. PGS after correcting for the following covariates: age, sex, birth 173 

date, deprivation index, and population structure (16 PCs).30 This statistic was calculated using 174 

genome-wide PGS weights. 175 

 Partial correlations between predicted and actual trait values were obtained for the seven 176 

other ancestries,30 which were then used to derive a portability index that quantifies how PGS 177 

accuracy diminishes with increased genetic distance from the original training population. For 178 

each trait and ancestry group, PGS accuracy relative to the UK ancestry group was found by 179 

dividing the partial correlation between predicted and actual trait values for each ancestry group 180 

by the partial correlation for the UK ancestry group. Similarly, as per Privé et al.,30 the geometric 181 
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mean position of each ancestry group in 16-dimensional PC space was used to obtain the 182 

Euclidean genetic distance between each ancestry group and the UK ancestry. For each trait, 183 

relative PGS accuracy was plotted against genetic distance to the UK ancestry group, and linear 184 

regression was used to quantify PGS portability. We define the slope of the regression line for 185 

each trait (m) as the portability index of that trait. Regression lines were required to pass through 186 

the UK datapoint (0,1). Noisy PGS accuracy statistics can cause some traits to have slopes above 187 

0. When this occurred, we manually set m = 0, i.e., perfect portability. Because estimates of m 188 

are noisy for individual traits, we restricted our analyses of trait portability to sets of traits. 189 

We also developed a summary statistic that quantifies how much PGS distributions have 190 

diverged across populations. For computational efficiency, SNPs in the top 100 genomic bins with 191 

the largest summed gvc were used to calculate PGS distributions for each of the eight UK Biobank 192 

ancestries described above. Plink 1.9 was used to convert genetic data into an R-readable matrix 193 

of the number of effect alleles. Numbers of individuals for each ancestry group in the UK Biobank 194 

were down-sampled to 1,234 - the smallest number of samples in any one ancestry group. PGS 195 

scores were calculated by summing across all L trait-associated SNPs in the top 100 genomic 196 

bins for each trait, and weighting by allele dose (dj,k) and effect size (Bk): 197 

𝑃𝐺𝑆* = 3𝑑*,+𝛽+

,

+)"

 198 

where j indexes each individual and k indexes each trait-associated SNP. We then generated 199 

PGS distributions for each ancestry group and all 177 traits. Because PGS are calculated by 200 

summing the effects of multiple independent SNPs, these distributions tend to normally 201 

distributed. We then log-transformed the F-statistic from a one-way ANOVA to derive a metric (D) 202 

which quantifies population-level shifts in PGS distributions for each trait: 203 

𝐷 = 𝑙𝑜𝑔"#𝐹 204 
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where F refers to the ratio of between-ancestry group variability to within-ancestry group 205 

variability. We note that meaningful comparisons of D statistics for different traits require that 206 

same number of individuals from each ancestry group were analyzed for each trait, as was the 207 

case in our study design. 208 

 209 

Comparisons between different aspects of genetic architecture and PGS performance 210 

Our manuscript focuses on three summary statistics of genetic architecture (h2SNP, R, G100,UK) and 211 

three summary statistics of PGS performance (rUK, m, and D) for each trait. To compare different 212 

aspects of genetic architecture and PGS performance, we obtained a linear best fit for each pair 213 

of summary statistics, generating correlation coefficients and p-values. Because 15 pairwise 214 

comparisons were made, a False Discovery Rate (FDR)43 adjustment was applied to each p-value 215 

using the p.adjust() command in R. Note that the Benjamini-Hochberg FDR procedure can cause 216 

p-values to clump. 217 

We also assessed how distributions of six summary statistics (h2SNP, R, G100,UK, rUK, m, 218 

and D) vary for different types of traits. First, we compared the summary statistic distributions of 219 

binary traits with the distributions of quantitative traits. We then compared the summary statistic 220 

distributions of quantitative lifestyle/psychological traits with the distributions of other quantitative 221 

traits. Wilcoxon rank sum tests44 were used for these summary statistic comparisons, and FDR-222 

adjusted p-values were used to correct for multiple comparisons. For binary traits, we also 223 

compared summary statistics of genetic architecture and PGS performance to the log10 224 

prevalence of each trait in the UK Biobank, generating Pearson’s correlation coefficients and 225 

FDR-adjusted p-values for each comparison. 226 

Principal component analysis (PCA) was used to identify traits with similar summary 227 

statistics. Specifically, we applied the prcomp() function in R on a 177x6 array containing genetic 228 
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architecture and PGS performance summary statistics for all traits. This approach was repeated 229 

for all quantitative traits using a 109x6 array of summary statistics. PCA plots used a modified 230 

version of the ggbiplot package in R, with 68% probability ellipses (+/- one standard deviation) 231 

shown for different types of traits. 232 

 233 

                                                                                        Figure 1. Constellations of traits with 234 

shared genetic architectures. Here, we 235 

focused on the top 100 genomic bins for 236 

each trait. (A) Histogram of the number of 237 

100kb bins shared between all possible 238 

pairs of traits. (B) Networks of traits with 239 

shared genetic architectures. Each node 240 

is a different trait, and coloring indicates 241 

trait group. Edges link pairs of traits that 242 

have at least 10 overlapping bins out of 243 

the top 100 bins for each trait, as inferred 244 

by summed gvc. Distances between 245 

separate networks are arbitrary. 246 

 247 

 248 

 249 

 250 

 251 

 252 

Results 253 

Overlap between the genetic architectures of different traits 254 

Which traits have heritable variation in the same regions of the genome? To answer this question, 255 

we divided the genome into 100kb bins and examined whether the top 100 bins for each trait 256 
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overlapped with other traits. In general, most pairs of traits share a small number of 100kb bins 257 

(1.96 mean shared bins in Figure 1A). Overlap tended to be greater for pairs of traits in the same 258 

trait group (Figure S1). For example, traits associated with biological measures shared a mean of 259 

7.03 bins. The traits with the most overlap between one another were two body weight traits (log 260 

water mass and log fat free mass, sharing 94 of their top 100 bins). The 100kb bin associated 261 

with the most traits was chr2:27,700,001-27,800,000 (hg19) with overlap in 48 of the 177 traits. 262 

This genomic region includes GCKR (Glucokinase Regulator), a gene integral to glucose 263 

metabolism and abundantly expressed in the liver.45 264 

Overlapping 100kb bins reveal networks of connected traits. Here, we focused on pairs of 265 

traits that overlap in at least 10 of their top 100 genomic bins (Figure 1B). Networks generated 266 

from other overlap thresholds can be seen in Figure S2. An interactive data visualization that 267 

includes the names of all traits can be found at: https://tinyurl.com/y2pmpx8a. In Figure 1B, the 268 

network with the greatest number of nodes contains 86 traits. Subnetworks within this large 269 

structure correspond to urine, blood pressure, erythrocyte, platelet, leukocyte, inflammation, skin 270 

and hair, body size, and blood pressure traits. Interestingly, the nodes at which these subnetworks 271 

connect to the central mass are biologically intuitive. For instance, hypertension, diastolic blood 272 

pressure and systolic blood pressure have deep interconnectedness with edges extending to 273 

coronary atherosclerosis, which in turn, connects to blood metabolite traits like cholesterol, 274 

apolipoprotein B, and lipoprotein A. Figure 1B also reveals smaller networks of interconnected 275 

traits. For example, diseases of the lower GI tract cluster together, as do traits associated with 276 

ECG intervals. We note that our bin-based approach was able to reconstitute similar clusters of 277 

correlated traits as found via cross-trait LD-Score regression46 and linear mixed models.47 278 

However, while trait networks reveal the shared genetic architecture between traits, we note that 279 

they do not capture other aspects of the genetic architecture of complex traits, such as heritability, 280 

polygenicity, and local recombination rates.   281 
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 282 

 283 

Figure 2. Examples of trait-level differences in polygenicity, portability, and divergence. 284 

Gini coefficients, represented here by G100,UK, quantify the relative polygenicity of different traits. 285 

Lorenz curves of the top 100 genomic bins for two traits are shown here. (A) Time spent watching 286 

television or using a computer has a highly polygenic architecture. (B) Celiac disease/gluten 287 

sensitivity has a more Mendelian architecture. Portability statistics, represented here by m, 288 

quantify how well genetic predictions generalize to different ancestry groups. (C) Predictions of 289 

hemoglobin concentration have low portability. (D) Predictions of total bilirubin have high 290 

portability. Divergence statistics, represented here by D, quantify the extent that PGS distributions 291 

differ across ancestry groups. (E) PGS distributions for benign neoplasms of the colon have a 292 

high amount of overlap. (F) PGS distributions for skin color are highly divergent. 293 

 294 

Novel metrics of genetic architecture and polygenic score performance 295 

We used a novel application of Gini coefficients to quantify the polygenicity of complex traits. A 296 

low Gini coefficient indicates that the genetic variance of a trait tends to be equally distributed 297 
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among different SNPs, with fully polygenic traits having Gini coefficients of zero. By contrast, a 298 

high Gini coefficient indicates that a large portion of a trait’s genetic variance is explained by a 299 

small set of SNPs, with fully Mendelian traits having Gini coefficients of one. Across the 177 traits 300 

analyzed here, Gini coefficients (G100,UK) ranged from 0.149 to 0.988. Traits with the lowest and 301 

highest Gini coefficients are shown in Table 1. Lorenz curves can be used to visualize how Gini 302 

coefficients summarize differences in gvc distributions for complex traits. An example of a more 303 

polygenic trait is “time spent watching television or using the computer” (G100,UK = 0.197, Figure 304 

2A). An example of a more Mendelian trait is celiac disease/gluten sensitivity (G100,UK = 0.981, 305 

Figure 2B). We note that traits with large Gini-coefficients also tend to have a larger proportion of 306 

their summed gvc in the top 100 bins (Figure S3). In addition, the rank orders of Gini coefficients 307 

were largely robust to: the method used to obtain PGS weights (Figure S4), whether Gini 308 

coefficients were generated from the top SNPs or the top genomic bins (Figure S5), the number 309 

of genomic bins that were examined (Figure S6), and choice of ancestry group (Figure S7); see 310 

Supplemental Information for additional details.  311 

Another aspect of PGS performance is the portability of results across different 312 

populations. For each trait, we plotted the relative PGS accuracy for different ancestry groups, 313 

applied a linear model, and used the slope (m) to quantify the portability of genetic predictions. If 314 

m = 0, genetic predictions work equally well for each ancestry group. By contrast, strongly 315 

negative slopes (m < 0) indicate increasingly poor predictive power relative to the UK ancestry 316 

group. Here, we use two examples to illustrate how genetic predictions of complex traits can differ 317 

in their portability. Hemoglobin concentration has a low portability statistic (m = -0.00157, Figure 318 

2C). By contrast, total bilirubin concentration has a high portability statistic (m = -0.00042, Figure 319 

2D). For the 177 traits analyzed in this study, m ranged from -0.00489 to 0 (see Table S1 for a 320 

full list). 321 
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Our paper also includes a novel metric of PGS divergence across populations (D). This 322 

metric was calculated by examining PGS distributions for eight different ancestries and converting 323 

F statistics from a one-way ANOVA to a log10 scale. D statistics near zero arise when ancestry-324 

specific PGS distributions have similar means; higher values of D statistics arise when ancestry-325 

specific PGS distributions have different means. Because of this, D statistics can be used to 326 

quantify ancestry-specific shifts in PGS distributions. Lists of the most and least divergent traits 327 

are shown in Table 2 and Table S1. An example of a trait with minimal PGS divergence is benign 328 

neoplasm of the colon (D = 1.03, Figure 2E). An example of a trait with substantial divergence 329 

between ancestries is skin color (D = 3.62, Figure 2F). Values of D statistics range between 1.03 330 

to 3.62 for the 177 traits analyzed here.  331 

 332 

Table 1. Traits with the lowest and highest 333 

Gini coefficients  334 

Rank Trait G100,UK 

1 Overall health rating 0.149 

2 Neuroticism score 0.168 

3 Ever smoked 0.179 

4 Plays computer games 0.187 

5 Time spent watching television or 
using computer 0.197 

... ... ... 

173 Superficial cellulitis and abscess 0.951 

174 Hair color (natural before greying) 0.959 

175 Other biliary tract disease 0.977 

176 Diagnosed with celiac disease or 
gluten sensitivity 0.981 

177 Allergy/adverse effect of penicillin 0.988 

Higher values of G100,UK are indicative of traits 335 

with more mendelian architectures.  336 

Table 2. Traits with the lowest and highest 337 

divergence statistics 338 

Rank Trait D 

1 Benign neoplasm of the colon 1.03 

2 Urinary calculus 1.21 

3 Sodium in urine 1.22 

4 Myopia diagnosis 1.24 

5 High light scatter reticulocyte 
count 1.26 

... ... ... 

173 Albumin 3.12 

174 Use of sun/UV protection 3.28 

175 Hair color (natural, before greying) 3.51 

176 Ease of skin tanning 3.57 

177 Skin color 3.62 

Higher values of D are indicative of traits that 339 

have PGS distributions that differ more 340 

across between groups.341 
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 342 

 343 

 344 
 345 

Figure 3. Comparisons between different aspects of genetic architecture and PGS 346 

performance. Each scatterplot corresponds to a different pair of summary statistics, and each 347 

datapoint corresponds to a different complex trait. All comparisons and p-values use FDR-348 

adjusted Wilcoxon rank sum tests. Statistically significant results are shown in bold. Summary 349 

statistics for all 177 traits can be found in Supplemental Table S1. 350 

  351 
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Comparisons between different aspects of genetic architecture 352 

SNP heritabilities, Gini coefficients, and trait-specific recombination rates capture different 353 

aspects of genetic architecture (upper left part of Figure 3). We found that highly heritable traits 354 

were not any more or less likely to have SNPs in high recombination regions of the genome (r = 355 

-0.033, p = 0.790). Similarly, h2SNP was largely independent of polygenicity, as quantified by G100,UK 356 

(r = -0.022, p = 0.826). Although there was no linear relationship between trait-specific 357 

recombination rates and Gini coefficients (r = -0.087, p = 0.339), we note that a plot of R vs G100,UK 358 

yields a distinctive triangular pattern (Figure 3). This pattern arises because highly polygenic traits 359 

tend to have recombination rates that resemble the genome-wide mean, since those traits’ 360 

recombination rates are averaged across the entire genome, while traits with more Mendelian 361 

architectures can potentially be enriched for SNPs in either high or low recombination regions of 362 

the genome. For example, genetic variants associated with Apolipoprotein B tend to be found in 363 

high recombination regions of the genome (R = 2.87 cM/Mb), and genetic variants associated 364 

with allergy/adverse effect of penicillin tend to be found in low recombination regions (R = 0.293 365 

cM/Mb). The low correlations seen here underscore the fact that no single metric can summarize 366 

the genetic architecture, while each metric yields important insights in understanding the genetics 367 

of complex traits. 368 

 369 

Comparisons between different aspects of polygenic score performance 370 

Complex traits vary in multiple aspects of PGS performance: accuracy, portability, and divergence 371 

(lower right part of Figure 3). We found that PGS accuracy and portability were positively 372 

correlated (r = 0.258, p = 0.003). An example of a trait with high PGS accuracy and high portability 373 

is mean platelet volume (rUK = 0.603, m = -00103). An example of a trait with low PGS accuracy 374 

and low portability is general happiness (rUK = 0.0697, m = -0.00388). Portability statistics are 375 
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noisier for traits that are hard to predict in British individuals from the UK. Because of this, values 376 

of m are highly variable when rUK is close to zero. We note that divergence and portability 377 

statistics are negatively correlated, although this trend does not quite reach statistical significance 378 

(r = -0.185, p = 0.052). This pattern can arise from a combination of ascertainment bias and allele 379 

frequency differences between populations.31 There were no broad trends when trait divergence 380 

was compared to PGS accuracy (r = 0.101, p = 0.339). Collectively, these results indicate that 381 

PGS performance is largely trait-specific.  382 

 383 

Relevance of genetic architecture to polygenic score performance 384 

How do SNP heritabilities, trait-specific recombination rates, and polygenicity relate to PGS 385 

accuracy, portability and divergence? Although not all combinations of genetic architecture and 386 

PGS performance yielded clear associations, a few notable patterns can be seen in Figure 3. As 387 

expected, traits with a high SNP heritability tended to have a high PGS accuracy (r = 0.726, p = 388 

4.56 x 10-29). We note that heritability refers to the proportion of phenotypic variance that is due 389 

to genetic effects in a single population (i.e., it is a population-specific concept). This suggests 390 

that h2SNP estimates may not be that informative about how well predictions generalize across 391 

populations. Indeed, SNP heritabilities were largely uninformative about the portability of 392 

polygenic predictions (r = 0.103, p = 0.339). SNP heritabilities were also non-informative about 393 

the divergence of predicted trait values (r = 0.088, p = 0.339). By contrast, traits with SNPs in high 394 

recombination regions of the genome tended to have genetic predictions that were more portable 395 

across populations, i.e., there was a positive correlation between trait-specific recombination rates 396 

and portability (r = 0.357, p = 8.19 x 10-6). However, trait-specific recombination rates were largely 397 

uninformative with respect to PGS accuracy (r = 0.116, p = 0.313) and divergence (r = -0.125, p 398 

= 0.290). Gini coefficients were largely uncorrelated with PGS accuracy, portability, and trait 399 

divergence (Figure 3). This means that traits with more Mendelian, i.e., simpler, genetic 400 
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architectures need not be easier to predict. An additional complication is that rare binary traits 401 

tend to have large G100,UK statistics, while lifestyle and psychological traits tend to have small 402 

G100,UK statistics (see below). Rare binary traits are difficult to predict, as are lifestyle/psychological 403 

traits, which helps explain why Gini coefficients and PGS performance appear to be independent 404 

in our study. 405 

 406 

 407 
 408 

Figure 4. Characteristics of binary traits. All p-values use FDR-adjusted Wilcoxon rank sum 409 

tests. Statistically significant results are shown in bold. (A) Distributions of summary statistics for 410 

binary vs. quantitative traits. (B) Prevalence of binary traits in the UK Biobank vs. six different 411 

summary statistics of genetic architecture and PGS performance. 412 

 413 

Summary statistics differ for binary and quantitative traits  414 

One natural way to classify traits is whether they are binary or quantitative (the latter including 415 

both ordinal and continuous traits). We note that all the disease traits analyzed in our study are 416 

binary. In addition, the statistical power to detect genetic associations differs for binary and 417 

quantitative traits.48 Both of these details can affect estimates of genetic architecture and PGS 418 

performance. Indeed, we observed differences in the summary statistics of binary and quantitative 419 
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traits (Figure 4A). On average, binary traits tended to have a lower SNP heritability than 420 

quantitative traits (p = 4.07 x 10-9). However, binary traits were not any more likely than 421 

quantitative traits to have Mendelian architectures (p = 0.648 for G100,UK comparisons). This 422 

pattern can occur if binary traits arise from polygenic effects that exceed a threshold.49 Focusing 423 

on different aspects of PGS performance, we found that PGS accuracy was much lower for binary 424 

traits than quantitative traits (p = 2.23 x 10-23). For example, partial correlations between predicted 425 

and actual trait values were lower for hypertension (rUK = 0.188) than for systolic blood pressure 426 

(rUK = 0.255). Binary traits also had a wider range of portability statistics than quantitative traits 427 

(Figure 4A). Finally, we note that divergence statistics were similar for binary and quantitative 428 

traits. A PCA plot generated from six summary statistics of genetic architecture and PGS 429 

performance also demonstrates that binary traits have different profiles than quantitative traits 430 

(Figure S8). 431 

To further explore the genetic architectures and PGS performance of binary traits, we 432 

examined whether rare or common traits have different properties than quantitative traits. We 433 

plotted each summary statistic against the log10-transformed prevalence of binary traits within the 434 

UK Biobank dataset (Figure 4B). For five of these summary statistics there was no linear trend. 435 

By contrast, we found that Gini coefficients were negative correlated with prevalence (r = -0.581, 436 

p = 1.24 x 10-6), indicating that rarer complex traits appear to have more Mendelian architectures. 437 

This pattern aligns with previously published findings that rare diseases tend to have a Mendelian 438 

architecture.50; 51 The low G100,UK statistics of rare traits may be due to limited statistical power to 439 

identify trait-associated alleles.52 However, we note that rUK statistics are largely independent of 440 

the prevalence of binary traits (Figure 4B), i.e., PGS accuracy is not appreciably different for rare 441 

or common traits. This suggests that the relationship between Gini coefficients and prevalence is 442 

due to the underlying biology, rather than a statistical artifact.  443 
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 444 

Figure 5. Lifestyle and psychological traits have different genetic profiles than other 445 

quantitative traits. (A) Distributions of summary statistics for quantitative lifestyle and 446 

psychological traits vs. other quantitative traits. (B) PCA plot generated from six summary 447 

statistics of genetic architecture and PGS performance (h2SNP, R, G100,UK, rUK, m, and D). Arrows 448 

indicate higher values of each summary statistic in PCA space. All traits shown here are 449 

quantitative, and trait names are colored by trait group. Ellipses indicate 68% (+/- one standard 450 

deviation) confidence intervals.  451 
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Limitations of polygenic scores for lifestyle and psychological traits 452 

We also examined whether summary statistics of lifestyle and psychological traits differed from 453 

other quantitative traits. Examples of these complex behavioral traits include alcohol frequency, 454 

chronotype, educational attainment, happiness, neuroticism, and water intake. Overall, there are 455 

noticeable differences in the genetic architecture and PGS performance of different types of 456 

quantitative traits (Figure 5A). On average, lifestyle and psychological traits have lower SNP 457 

heritabilities than other quantitative traits (p = 4.00 x 10-5). This pattern is consistent with the 458 

importance of environmental effects for behavioral traits. Low heritability also has a knock-on 459 

effect of reducing the effectiveness of polygenic predictions. Indeed, we found that PGS accuracy 460 

was much lower for lifestyle and psychological traits (p = 1.11 x 10-5). Furthermore, we note that 461 

there was a clear lack of lifestyle and psychological traits with high rUK statistics (Figure 5A). 462 

Genetic predictions of lifestyle and psychological traits were also less portable than other 463 

quantitative traits (p = 1.68 x 10-5). We note that lifestyle and psychological traits also tended to 464 

have low G100,UK statistics, a result which can only occur if trait-associated loci have been found 465 

in many parts of the genome. This suggest that the poor PGS performance of these traits is not 466 

simply a byproduct of a lack of GWAS hits. Other comparisons yield only modest differences: 467 

lifestyle and psychological traits were slightly more likely to have SNPs in low recombination 468 

regions of the genome (p = 0.012), and no appreciable differences were observed when we 469 

compared D statistics for different types of quantitative traits. Taken together, Figure 5A reveals 470 

that genetic predictions of lifestyle and psychological traits are severely limited given our present 471 

knowledge of the genetic basis of these traits.  472 

 A PCA plot generated from six summary statistics of genetic architecture and PGS 473 

performance further demonstrates that lifestyle and psychological traits have different profiles 474 

than other quantitative traits (Figure 5B). Arrows in this plot indicate regions of PCA space that 475 

are associated with higher values of each summary statistic, recapitulating our earlier findings: 476 
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higher heritability is associated with higher PGS accuracy, and traits that are due to SNPs in high 477 

recombination regions of the genome tend to have more portable predictions. We also note that 478 

the arrows for portability and divergence point in different directions. Lifestyle and psychological 479 

traits form a noticeable cluster in the small region of PCA space pertaining to lower Gini, 480 

heritability, prediction, and portability statistics. By contrast, biological measures and physical 481 

measures occupy larger and more centralized regions of PCA space, which reflects that these 482 

two trait groups are more varied in their genetic architecture and PGS performance. An outlier 483 

among lifestyle and psychological traits is sunscreen use, most likely due to its overlap with 484 

physical measures like skin color and skin tanning. 485 

 486 

 487 

Discussion 488 

Overall, we found that complex traits have a broad range of genetic architectures, which 489 

contributes to differences in PGS performance. Our results indicate that highly heritable traits are 490 

easier to predict when individuals are ancestry-matched to the original GWAS cohort – a finding 491 

that consistent with expectations from statistical genetics.53 However, SNP heritability is largely 492 

uninformative when it comes to the portability of genetic predictions. By contrast, we found that 493 

traits with SNPs in high recombination regions of the genome tend to have genetic predictions 494 

that generalize well across populations. This suggests that linkage disequilibrium and the ability 495 

of PGS variants to tag narrow genomic regions may be important for PGS portability. 496 

Shifts in PGS distributions are due to allele frequency differences between populations. 497 

Because of this, one might expect to find greater divergence for high Gini traits than for low Gini 498 

traits. The reasoning here is that allele frequency differences at different SNPs can average out 499 

if traits are highly polygenic. However, summary statistics of trait divergence (D) were largely 500 

independent of Gini coefficients (G100,UK). This suggests that other phenomena like natural 501 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 31, 2022. ; https://doi.org/10.1101/2022.10.29.514295doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.29.514295
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
Page 24 

selection54 and ascertainment bias31 are drivers of ancestry-specific shifts in PGS distributions. 502 

Indeed, hair and skin color, which are among the most divergent traits in our study, have 503 

previously been implicated in scans of selection.55 We also note that natural selection can erode 504 

the portability of polygenic predictions.56; 57 505 

Our polygenicity analyses shed light on the omnigenic model. Gini coefficients varied 506 

substantially across traits, and many traits had high Gini-coefficients. Furthermore, this pattern 507 

was not an artifact of focusing on the top 100 genomic bins (see Figure S6). Our results 508 

demonstrated that genetic architectures are often trait-specific, and that core genes can 509 

potentially make outsized contributions to SNP heritability. That said, the omnigenic model 510 

proposes that genetic effects cascade through cellular regulatory networks, as expression of core 511 

genes ends up affecting gene expression at other genes.16 Because existing GWAS have 512 

generally yielded low-hanging fruit,6 these indirect effects might be one reason why many PGS 513 

poorly predict complex traits. It also might explain why transcriptional risk scores can potentially 514 

outperform genetic risk scores.58 When large well-powered GWAS are conducted on diverse 515 

cohorts, rare family-specific or ancestry-specific variants are more likely to identified. Genetic 516 

associations involving these private alleles are unlikely yield portable predictions. Indeed, a height 517 

GWAS of 5.4 million individuals found that SNP heritability clusters in genomes, and that out-of-518 

sample prediction accuracy was lower for individuals who did not have European ancestry.59 519 

There is also evidence that pruning sets of trait-associated SNPs can lead to improved PGS 520 

performance among diverse populations.60 521 

Finally, we mention that PGS are not immune to controversy – especially when it comes 522 

to lifestyle and psychological traits. Some have envisioned a world where PGS for educational 523 

attainment might be used inform the allocation of resources to those who have the most need.61 524 

This has spurred intense debate about both efficacy of polygenic predictions for behavioral traits 525 

and whether they should be used in a public policy setting.62; 63 Others have gone a step further 526 
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and advocated using PGS to screen embryos for cognitive traits,64 a position that has received 527 

well-warranted criticism.65; 66 Regardless of the specific trait, there are major challenges to 528 

polygenic screening of embryos.67-69 Polygenic predictions of complex behavioral traits are 529 

particularly problematic. As seen in Figure 5A, lifestyle and psychological traits are difficult to 530 

predict,  which means that any downstream applications of PGS for these traits would be deeply 531 

flawed. This issue is particularly acute when PGS are applied to populations that have ancestries 532 

that differ from the original GWAS population, given their low portability. Ultimately, genetic 533 

predictions of traits like alcohol intake, general happiness, income, or educational attainment in 534 

non-European populations should be treated with extreme skepticism; racist claims about the 535 

supposed intellectual superiority of any particular ancestry are genetically untenable. 536 

 537 

Conclusion  538 

We note that the summary statistics examined here are not exhaustive. Going forward, future 539 

studies will be able to explore additional aspects of genetic architecture and PGS performance. 540 

For example, some traits are highly canalized, while others show evidence of substantial PGS-541 

by-environment interactions.70 Epistatic interactions also contribute to the genetic architecture of 542 

complex traits, and this information can be incorporated into predictive models.71 Finally, we note 543 

that PGS generated from multi-ancestry cohorts are more likely to yield portable predictions.72 544 

Nevertheless, we still expect there to be a significant limitations to the genetic prediction of 545 

complex behavioral traits.  546 
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