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Abstract 23 

Speech processing often occurs amidst competing inputs from other modalities, e.g., listening to 24 

the radio while driving. We examined the extent to which dividing attention between auditory 25 

and visual modalities (bimodal divided attention) impacts neural processing of natural 26 

continuous speech from acoustic to linguistic levels of representation. We recorded 27 

electroencephalographic (EEG) responses when human participants performed a challenging 28 

primary visual task, imposing low or high cognitive load while listening to audiobook stories as a 29 

secondary task. The two dual-task conditions were contrasted with an auditory single-task 30 

condition in which participants attended to stories while ignoring visual stimuli. Behaviorally, 31 

the high load dual-task condition was associated with lower speech comprehension accuracy 32 

relative to the other two conditions. We fitted multivariate temporal response function encoding 33 

models to predict EEG responses from acoustic and linguistic speech features at different 34 

representation levels, including auditory spectrograms and information-theoretic models of 35 

sublexical-, word-form-, and sentence-level representations. Neural tracking of most acoustic 36 

and linguistic features remained unchanged with increasing dual-task load, despite unambiguous 37 

behavioral and neural evidence of the high load dual-task condition being more demanding. 38 

Compared to the auditory single-task condition, dual-task conditions selectively reduced neural 39 

tracking of only some acoustic and linguistic features, mainly at latencies >200 ms, while earlier 40 

latencies were surprisingly unaffected. These findings indicate that behavioral effects of bimodal 41 

divided attention on continuous speech processing occur not due to impaired early sensory 42 

representations but likely at later cognitive processing stages. Crossmodal attention-related 43 

mechanisms may not be uniform across different speech processing levels. 44 
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 Introduction  45 

Speech processing often occurs amidst competing inputs from other sensory modalities, e.g., 46 

listening to the radio while driving. In such situations, listeners must allocate attention across 47 

modalities to effectively select the most relevant information within a modality. This raises the 48 

question of whether and how dividing attention between modalities (e.g., audition and vision; 49 

bimodal divided attention) affects the processing of natural continuous speech. 50 

Resource-based theoretical frameworks have been invoked to scaffold the understanding 51 

of mechanisms governing crossmodal attention (Wahn & König, 2017). Two contrastive 52 

resource-based accounts (modality-specific versus supramodal) yield different hypotheses 53 

regarding the effects of bimodal divided attention on continuous speech processing. Per the 54 

modality-specific account, each sensory modality is allocated a limited pool of attentional 55 

resources, and these pools of attentional resources operate independently of each other (Alais et 56 

al., 2006; Arrighi et al., 2011; Duncan et al., 1997; Keitel et al., 2013; Parks et al., 2011; Porcu et 57 

al., 2014). In contrast, per the supramodal account, different sensory modalities share a central, 58 

limited pool of attentional resources. The availability of resources to one modality is inversely 59 

related to the amount of resources used by other modalities (Broadbent, 1958; Ciaramitaro et al., 60 

2017; Klemen et al., 2009; Macdonald & Lavie, 2011; Molloy et al., 2015).  61 

Empirical evidence regarding bimodal divided attention effects on speech processing 62 

primarily comes from experimenter-constrained tasks (e.g., Gennari et al., 2018; Kasper et al., 63 

2014; Mattys et al., 2009, 2014; Mattys & Palmer, 2015; Mattys & Wiget, 2011). Many studies 64 

have shown the detrimental effects of bimodal divided attention on the acoustic processing of 65 

simplified, controlled speech stimuli (e.g., syllable or single words) (Gennari et al., 2018; Mattys 66 

et al., 2014; Mattys & Palmer, 2015; Mattys & Wiget, 2011), which is consistent with the 67 
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supramodal account of attention. Speech processing entails mapping acoustic features into 68 

linguistic representations of increasing complexity (Brodbeck & Simon, 2020; Hickok & 69 

Poeppel, 2007), raising the question of how bimodal divided attention affects linguistic 70 

representations beyond acoustic processing. Behavioral studies with simple speech stimuli 71 

indicate that reduced acoustic processing under bimodal divided attention may lead to 72 

compensatory changes manifested by increased reliance on higher-order linguistic knowledge 73 

during auditory lexical perception (Mattys et al., 2009). However, to date, there is a lack of a 74 

systematic and holistic analysis of divided attention-related changes across different levels 75 

(acoustic-to-linguistic) of natural continuous speech processing, which is distinctly different 76 

from processing simple speech stimuli (Gaston et al., 2022; Hamilton & Huth, 2020). 77 

Here, we assessed electroencephalography (EEG) to provide a systematic and holistic 78 

analysis of the acoustic and linguistic processing of continuous speech (Brodbeck & Simon, 79 

2020; Gillis et al., 2022). The continuous speech paradigm uses the multivariate temporal 80 

response function approach (Crosse et al., 2016; Ding & Simon, 2012) to predict neural 81 

responses from a combination of hypothesis-driven acoustic and linguistic properties of 82 

continuous speech. The predictive power of each speech property is used to quantify the 83 

corresponding processing levels (Brodbeck & Simon, 2020; Gillis et al., 2022). The spectro-84 

temporal acoustic properties included envelope-based spectrogram and acoustic onset 85 

spectrogram. The linguistic properties included measures of informativeness (surprisal and 86 

entropy) based on the information-theoretic framework (Brodbeck et al., 2018). Prior work 87 

suggests that both acoustic and linguistic representations are strongly modulated by selective 88 

attention, within the auditory modality and across modalities. Attentional effects are 89 
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disproportionality more robust on the linguistic representations than acoustic-based 90 

representations (Brodbeck et al., 2018, 2020).  91 

Here we integrated the continuous speech paradigm with an audiovisual dual-task 92 

paradigm to examine the effects of bimodal divided attention on the acoustic and linguistic 93 

processing of continuous speech. In the dual-task paradigm, participants performed a challenging 94 

primary visuospatial task that imposed low or high cognitive load while listening to audiobook 95 

stories as a secondary task. The two dual-task conditions were contrasted with an auditory 96 

single-task condition in which participants attended to the story while ignoring visual stimuli. 97 

We hypothesized that compared to the auditory single-task condition, dual-task conditions would 98 

lead to reduced acoustic and linguistic representations of continuous speech, especially at high 99 

cognitive load. However, we hypothesized that linguistic representations may be affected to a 100 

relatively greater extent based on evidence from the literature on selective attention. These 101 

hypotheses are aligned with the supramodal account of crossmodal attention.  102 

Materials and Methods 103 

Experimental design  104 

Bimodal divided attention was manipulated via a dual-task paradigm. Specifically, participants 105 

performed a primary visuospatial n-back task of varying (high or low) cognitive load (Jaeggi et 106 

al., 2007) while listening to continuous speech as a secondary task. We designated the visual task 107 

as the primary task to maximize the chance of observing the bimodal divided attention effects on 108 

continuous speech processing. The cognitive load of the dual-task paradigm was manipulated via 109 

3- and 0-back tasks on the visuospatial stimuli (blue squares; Figure 1A and 1B). The dual-task 110 

conditions were contrasted with an auditory single-task condition (Figure 1C), in which 111 
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participants explicitly attended to the auditory stimuli while ignoring the visual stimuli. To 112 

obtain a behavioral measure for the auditory task, participants were instructed to respond to two 113 

multiple-choice comprehension questions on the story segments at the end of each trial. Detailed 114 

task instructions are presented in the section on Experimental procedure. 115 

Each task condition consisted of 15 trials of visual stimuli paired with 15 unique story 116 

segments and were presented in separate blocks. The order of the story segments was fixed and 117 

identical across participants in order to maintain the continuity of the storyline. The order of task 118 

conditions was counterbalanced across participants. Each trial of visual stimuli ended later than 119 

the corresponding story segment. Such offset gaps were not significantly different across task 120 

conditions [F(2, 42) = .01, p = .99]. The experiment was controlled with E-Prime 2.0.10 121 

(Schneider et al., 2002). 122 

 123 

[Fig 1 about here] 124 

 125 

Figure 1. Trial design illustrations for (A) high load dual-task (3-back visual ask), (B) low load 126 

dual-task (0-back visual task), and (C) auditory single-task condition. In the two dual-task 127 

conditions, the primary task was to respond to the visual stimuli and the secondary task was to 128 

attend to auditory stimuli (story segments of about 60 seconds). In the high load condition (A), 129 

participants responded only when the current blue square matched the one 3 positions back 130 

(examples highlighted in red squares). In the low load condition (B), participants responded only 131 

when the current blue square matched the first square in each trial (highlighted in the red square). 132 

In the auditory single-task condition (C), participants were instructed to attend to the auditory 133 
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stimulus and ignore the visual stimuli. At the end of each trial, participants responded to two 134 

multiple-choice comprehension questions for the story segments. ISI: interstimulus interval. 135 

 136 

Participants 137 

Adult native American English speakers (N = 18) were recruited from the Austin, Texas, 138 

community. Data from one participant were excluded due to technical problems. Data from 139 

another participant were excluded because their story comprehension accuracy was lower for the 140 

auditory single-task condition (66.67%) than the two dual-task conditions (73.37% for low load 141 

and 76.67% for high load). We interpreted this result as that this participant did not understand or 142 

follow the task instructions. The final sample consisted of sixteen participants (18 to 23 years 143 

old; 11 females, five males; 14 right-handed and two left-handed). The sample size was selected 144 

based on prior work examining the effects of bimodal attention on the neural processing of 145 

speech stimuli (e.g., Gennari et al., 2018; Kasper et al., 2014). Previous studies have shown that 146 

music training can influence speech processing (e.g., Bidelman & Alain, 2015). Therefore, we 147 

recruited only participants without a history of or significant formal music training (<= four 148 

years of continuous training, not currently practicing). All participants had normal air and bone-149 

conduction audiometric thresholds, defined as <= 20 dB hearing level for octave frequencies 150 

from 0.25 to 8 kHz. The thresholds were measured via an Interacoustics Equinox 2.0 PC-Based 151 

Audiometer. Additional inclusion criteria are as follows: no history of psychological or 152 

neurological disorders, no use of neuropsychiatric medication, and having normal or corrected-153 

to-normal vision. Before the experiment, all participants provided written, informed consent. 154 

Participants received monetary compensation for their participation. The Institutional Review 155 

Board at the University of Texas at Austin approved the experimental protocols. 156 
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Stimuli and apparatus 157 

The stimuli were composed of visual and auditory materials. The visual stimuli (Figure 1) were 158 

blue squares at one of eight loci around a white fixation cross in the center of a black screen, 159 

adapted from Jaeggi et al. (2007). The duration for individual squares was 500 ms, and the 160 

interval between consecutive squares was 2500 ms. Twenty-three squares were included in a 161 

trial, lasting 69 seconds. The stimuli were displayed on a VIEWPixx/EEG LCD monitor with a 162 

scanning LED-backlight design [29.1 cm (height) × 52.2 cm (width); display resolution: 1920 × 163 

1080; refresh rate: 120 Hz] at an ~110 cm distance from participants’ eyes. 164 

The auditory stimuli were English audiobook stories selected from a classic work of 165 

fiction, Alice’s Adventures in Wonderland (Chapters 1-7, http://librivox.org/alices-adventures-in-166 

wonderland-by-lewis-carroll-5). The audiobook was narrated by an adult male American English 167 

speaker at a sampling rate of 22.05 kHz. The chapters were divided into 45 segments (each ~60 168 

seconds long). Each segment began where the story ended in the previous segment. In each 169 

segment, silent periods of more than 500 ms were shortened to 500 ms. The story stimuli were 170 

presented diotically via insert earphones (ER-3; Etymotic Research, Elk Grove Village, IL) to 171 

the participants at a 70 dB sound pressure level. A trial of visual stimuli (23 blue squares) was 172 

presented concurrently with each story segment, with the segment beginning later (3 seconds 173 

after the onset of the visual trial) and ending earlier relative to the visual trial. 174 

Experimental procedure 175 

High and low load dual-task 176 

The cognitive load of the dual-task conditions was manipulated via the visual task. For the high 177 

load condition, the visual task required participants to respond when the current blue square 178 

matched the one three-position back in the sequence (i.e., 3-back task, Figure 1A). For the low 179 
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load condition, the visual task required participants to respond when the current blue square 180 

matched the first square in the sequence (i.e., 0-back task, Figure 1B). We randomized the 181 

location of the first square across trials. Matched squares were treated as targets, and unmatched 182 

ones were non-targets. Note that targets could appear only starting from the fourth square in the 183 

sequence for a given trial in the 3-back task. In other words, targets would be among the last 20 184 

squares in the sequence on a given trial. We designed the 0-back task to match that. Six of the 185 

last 20 squares were set as targets for both task conditions, and the remaining 14 were non-186 

targets. The target locations were randomized across trials.  187 

Participants responded to the targets by pressing buttons on a game controller. 188 

Participants were told that speed and accuracy were equally important. Participants were 189 

required to rest their fixations on a white cross in the middle of the screen. To encourage 190 

engagement, accuracy feedback on the visual task was displayed after their responses. The 191 

number of button presses was not significantly different between 3- and 0-back visual tasks 192 

[t(15) = .96, p = .36]. After the visual task, participants responded to two multiple-choice 193 

comprehension questions for the auditory stories. Participants had unlimited time to respond to 194 

the story questions. No feedback was provided after their responses. 195 

Critically, to manipulate the priority of the auditory and visual tasks, participants were 196 

instructed to focus primarily on the visual task and attend to the auditory stimulus as a secondary 197 

task. They were explicitly told that their data could not be used if their performance on the visual 198 

task was poor. 199 

Auditory single-task 200 

In this condition, participants were instructed to focus on the story segments and ignore the 201 

visual stimuli (Figure 1C). Participants were required to keep their eyes open and rest their 202 
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fixations on a white cross in the middle of the screen. At the end of each trial, participants 203 

responded to two multiple-choice questions to assess their comprehension of the story segments. 204 

Participants had unlimited time to respond to questions. Visual feedback about the accuracy of 205 

the story question was displayed following their responses.  206 

Electrophysiological data acquisition and preprocessing 207 

Acquisition 208 

The experiment was conducted in a dark, acoustically shielded booth. Participants were seated in 209 

a comfortable chair during tasks. Electroencephalography (EEG) data were recorded using the 210 

Easycap recording cap (www.easycap.de) with 64 actiCAP active electrodes (Brain Products, 211 

Gilching, Munich, Germany) at a sampling rate of 5 kHz. The electrode locations were 212 

determined according to the extended 10-20 system (Oostenveld & Praamstra, 2001), with a 213 

common ground at the Fpz electrode site and TP9 as the reference. The electrode impedances 214 

were below 20 kΩ.  215 

The EEG data were acquired using BrainVision actiCHAmp amplifier (Brain Products, Gilching, 216 

Munich, Germany) linked to BrainVision Pycorder software 1.0.7. 217 

Preprocessing 218 

The EEG data were preprocessed offline in MNE-Python (Gramfort et al., 2013), and the 219 

deconvolution analysis was implemented with the Eelbrain package (Brodbeck et al., 2021). The 220 

data were re-referenced to the average of the electrodes TP9 and TP10, and then band-pass 221 

filtered from 1 to 15 Hz using a zero-phase overlap-add finite impulse response filter (hamming 222 

window) with default settings in MNE-Python. Independent component analysis was applied to 223 

EEG data combined across the three task conditions in individual participants using the 224 
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extended-infomax algorithm. Artifact-related components (mainly ocular artifacts) were 225 

identified according to the topographical distribution and time course via visual inspection and 226 

then removed. After that, the EEG data were segmented into epochs that were time-locked to the 227 

onsets of corresponding story segments, and then downsampled to 100 Hz. The maximum 228 

possible duration of the epochs was set to 61 seconds.  229 

Assessing neural tracking of visual and auditory stimuli 230 

To assess the neural representation of speech, we used the multivariate temporal response 231 

function (mTRF) approach (Crosse et al., 2016; Ding & Simon, 2012). In this approach, the EEG 232 

signal is predicted using time-delayed multiple regression. We first generated several visual, 233 

acoustic, and linguistic models (see below). Each model was used to define several predictor 234 

variables, each implementing a specific linking hypothesis for predicting brain activity from the 235 

corresponding model. We then tested the predictive power of different combinations of predictor 236 

variables to evaluate which acoustic and linguistic models are associated with predictive power 237 

for the EEG data. Each predictor variable thus operationalizes a hypothesis that EEG responses 238 

are modulated by a given property of the speech signal, which would indicate neural 239 

representations arising from a corresponding acoustic or linguistic model. Figure 2 displays an 240 

example of each predictor variable. In the following paragraphs, we provide more detailed 241 

descriptions.  242 

[Fig 2 about here] 243 

 244 

Figure 2. An excerpt of raw EEG responses from all 64 electrodes (top row) and the predictor 245 

variables (subsequent rows) used to model the EEG responses. Note that visual predictors consist 246 
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of a separate one-dimensional array with impulses for onsets and offsets of the blue squares. 247 

They are combined into a single predictor in this example for illustration purposes. 248 

 249 

Visual model 250 

Because the visual stimuli were temporally sparse, visual responses were modeled analogously 251 

to a visual evoked potential. The visual predictor was a one-dimensional time series with an 252 

impulse at the onsets and offsets of the blue squares. We did not separate predictors for targets 253 

and non-targets because this study was not intended to explore differences in neural processing 254 

of visual targets and non-targets, and thus there were not enough targets to estimate stable 255 

responses. 256 

Acoustic model 257 

The acoustic model was designed to assess EEG responses related to representations of acoustic 258 

spectro-temporal features. All acoustic predictors were derived from 256-band gammatone-based 259 

spectrograms of the speech stimuli, with cut-off frequencies from 0.02 to 5 kHz. The 256-band 260 

spectrograms were downsampled to 1 kHz and scaled with an exponent of 0.6. A spectrogram 261 

predictor was then created by summing the 256-band spectrograms in eight logarithmically 262 

spaced frequency bands. In addition, an onset spectrogram predictor was defined to detect and 263 

control for representations of acoustic edges. These were generated using an auditory edge 264 

detection model (Brodbeck et al., 2020; Fishbach et al., 2001) and applied to each frequency 265 

band of the 256-band spectrograms. The onsets across these 256 bands were also summed into 266 

eight logarithmically spaced frequency bands to generate 8-band onset spectrogram predictors.  267 

Linguistic models 268 
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Linguistic processing was assessed using information-theoretic models. These models assume 269 

that listeners maintain predictive models of speech, which can be linked to brain activity through 270 

surprisal and entropy measures (Brodbeck et al., 2018). Previous work suggests that listeners 271 

maintain multiple such predictive models, differing in complexity, in parallel (Brodbeck et al., 272 

2022). The predictive models were all defined over phoneme sequences, determined for each 273 

stimulus via forced alignment using the Montreal Forced Aligner (MFA) (McAuliffe et al., 274 

2017). The predictors based on the specific information-theoretic models (described in 275 

subsequent sections) all consisted of time series with an impulse of variable size at each 276 

phoneme onset. In order to provide a control for responses related to linguistic segmentation, two 277 

additional predictors were included: A word onset predictor with a unit (value of 1) impulse at 278 

the onset of each word-initial phoneme and a phoneme onset predictor with a unit impulse at the 279 

onsets of all other phonemes. 280 

Sublexical model. The sublexical model assumes that listeners predict upcoming 281 

phonemes or speech sounds based on a local context, consisting of only a few preceding sounds. 282 

To implement such a model, all sentences from the SUBTLEX-US corpus (Keuleers et al., 2010) 283 

were transcribed into phoneme sequences without word boundary markers,  and a 5-gram model 284 

(Heafield, 2011) was trained on these phoneme sequences. This model was then applied to the 285 

experimental stimuli to compute a probability distribution over phonemes at each phoneme 286 

position, conditional on the four preceding phonemes. This distribution was used to calculate a 287 

sublexical surprisal predictor (the surprisal of encountering phoneme ���  at position k in the 288 

stimulus is ����� ������|
�������, and a sublexical entropy predictor (the entropy at 289 

phoneme position ���  reflects the uncertainty about what the next phoneme, �����, will be 290 

� ∑ ������� � ph|
������log�������� � ph|
�������
����	
	�

�� . Surprisal is a measure of 291 
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the amount of new information provided by a stimulus; a response to sublexical surprisal is thus 292 

evidence that listeners integrate information on a sublexical level. A response to entropy 293 

additionally suggests that listeners create a probabilistic expectation about future input before 294 

encountering the phoneme (Pickering & Gambi, 2018). A response to either of those predictors 295 

would provide evidence that listeners maintain a sublexical language model. 296 

Word-form model. The word-form model aims to predict the surface form of the word 297 

that is currently being heard, but without access to any information preceding the word. To 298 

implement this model, a phonological lexicon was generated by combining pronunciations from 299 

the MFA English dictionary and the Carnegie Mellon University Pronouncing Dictionary 300 

(http://www.speech.cs.cmu.edu/cgi-bin/cmudict). The word-form model was implemented based 301 

on the cohort model of word recognition (Brodbeck et al., 2018; Marslen-Wilson, 1987). Each 302 

word was assigned a prior probability based on its count frequency in the SUBTLEX corpus 303 

(Keuleers et al., 2010), substituting a count of 1 for missing words. For each word in the speech 304 

stimuli, the cohort model was then implemented by starting with the complete lexicon and, for 305 

each subsequent phoneme of the word, incrementally removing words that were not compatible 306 

with that phoneme in that position. The changing probability distribution over the lexicon was 307 

then used to define two predictors, each with a value at each phoneme position: phoneme 308 

surprisal (log inverse of the posterior probability of the phoneme given the preceding phonemes) 309 

and cohort entropy (Shannon entropy over all words currently in the cohort, 310 

∑ ������|
����������������|
�������	����
���� ). This model implements the hypothesis that 311 

listeners recognize words using a probabilistic model that takes into account all the information 312 

since the last word boundary (i.e., where the word started), but that does not further take into 313 

account any context when considering possible word forms as candidates. 314 
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Sentence model. The sentence model is very similar to the word-form model, with the 315 

only difference being that the prior expectation for each word is modulated by the sentence 316 

context. To implement this, a lexical 5-gram model (Heafield, 2011) was trained on the whole 317 

SUBTLEX-US database (Keuleers et al., 2010). This 5-gram model was used to set the prior 318 

probability for each word in the lexicon based on the preceding four words before applying the 319 

procedure described for the word-form model above. The same two linking hypotheses were 320 

used to define predictor variables (phoneme surprisal and cohort entropy). The sentence model 321 

implements the hypothesis that listeners use a wider context including multiple words, when 322 

modulating their phoneme-by-phoneme perception and expectations. 323 

Estimation of neural tracking  324 

We used forward encoding mTRF models to predict EEG responses from the predictors 325 

described above. The mTRF models were fitted to the EEG responses at individual electrodes 326 

using the boosting algorithm implemented in the Eelbrain toolbox (Brodbeck et al., 2021). The 327 

predictive power of the mTRF models was evaluated by how accurately they could predict EEG 328 

responses from novel trials of the same condition. This was quantified through the z-transformed 329 

Pearson’s correlation coefficient between predicted and actual EEG responses (i.e., prediction 330 

accuracy). Higher prediction accuracy indicates better neural tracking of the corresponding 331 

predictor. 332 

The mTRFs were estimated separately for each subject and condition using a 5-fold 333 

cross-validation strategy. First, the trials were divided into 5 test sets. For each test set, EEG 334 

responses were predicted from the average of 4 mTRF models, estimated from the remaining 4 335 

datasets, each with 3 of the remaining 4 sets serving as training data, and one as validation set. 336 

The mTRFs were generated from a basis of 50 ms Hamming windows with stimulus-EEG lag 337 
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from -100 to 500 ms (window center). The mTRFs were estimated jointly for all predictors with 338 

coordinate descent to minimize the ℓ1 error. After each step, the change in error was evaluated in 339 

the validation set, and if there was an increase in error, the TRF for the predictor responsible for 340 

the change was frozen (in its state before the change). This continued until the whole mTRF was 341 

frozen. A single measure of prediction accuracy (fisher z-transformed correlation between 342 

predicted and measured response, see above) was calculated after concatenating the predicted 343 

responses from the 5 test sets. For analysis of the response functions, the mTRFs were averaged 344 

across all the test sets. For the visual predictor, the TRFs to onsets and offsets were combined for 345 

an effective response function with lags from -100 to 1000 ms relative to visual stimulus onset 346 

(because the visual stimulus always lasted exactly 500 ms). 347 

To estimate the neural tracking of a given predictor (or a combination of predictors), we 348 

calculated the change in prediction accuracy (i.e., Δz) when the predictor(s) of interest was(ere) 349 

removed from the full model that included all the visual, acoustic, and linguistic predictors. This 350 

procedure tests for variability in the responses that can be uniquely attributed to the predictor(s) 351 

under investigation and cannot be explained by any other predictors. Such a strong test is 352 

warranted because different properties of natural, connected speech tend to be correlated in time. 353 

Note that the analysis of the mTRFs themselves could not implement such strict control, and thus 354 

we cannot exclude the possibility that response functions include components that are 355 

confounded with other, correlated speech features. For this reason we focus our interpretation on 356 

tests of predictive power more than mTRF comparisons. 357 

Statistical analysis 358 

All statistical analyses, if unspecified, were implemented in the R software (version 4.2.1; Team, 359 

2022).  360 
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First, we examined the effect of task condition (auditory single-task, or low or high load 361 

dual-task) on behavioral performance, and neural visual, acoustic, and linguistic processing 362 

separately. A paired T-test (two-sided), or one- or two-way repeated-measures analysis of 363 

variance (ANOVA), whichever was appropriate, was performed with an alpha level of .05. The 364 

reported p values of those analyses were adjusted using the False Discover Rate (FDR) method 365 

(Benjamini & Hochberg, 1995). We also calculated effect sizes [Cohen’s d for T-tests and partial 366 

eta squared (η2
p) for ANOVAs] and Bayes Factors (BF). The Bayes Factors were computed 367 

using appropriate functions from the R package ‘BayesFactor’ (version 0.9.12.4.4; Morey et al., 368 

2022). Post hoc analysis, if necessary, was performed using paired T-tests (two-sided). FDR-369 

corrected p values, effect sizes (Cohen’s d), and Bayes Factors (BF) were reported. More 370 

analysis details are provided in the following paragraphs. 371 

Behavioral performance was quantified by three measures, including the accuracy and 372 

reaction time (RT) for the visual task and the accuracy for the auditory task. Visual accuracy was 373 

calculated as the difference in hit rates (i.e., correctly responding to a target) and false alarm 374 

rates (i.e., identifying a non-target as being a target). Visual RT was calculated as the median RT 375 

for hits only (Jaeggi et al., 2007; Snodgrass & Corwin, 1988). Auditory accuracy was calculated 376 

as the percentage of correctly answered story questions. 377 

The extent of neural visual processing was determined using a mass-univariate analysis, 378 

comparing the predictive power (z) between the full model and a model missing the visual 379 

predictor. For this, we averaged the prediction accuracy for visual predictors across task 380 

conditions at individual electrodes and tested whether the averaged difference in prediction 381 

accuracy (∆z) was greater than zero using a mass-univariate, one-sample T-test (one-sided). This 382 

was implemented in the Eelbrain package. The mass-univariate test was a cluster-based 383 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 30, 2022. ; https://doi.org/10.1101/2022.10.29.514344doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.29.514344
http://creativecommons.org/licenses/by/4.0/


 
 

 

 

permutation test, using a t-value equivalent to uncorrected p ≤ 0.05 as the cluster-forming 384 

threshold. A corrected p-value was computed for each cluster based on the cluster-mass statistic 385 

in a null distribution from 10,000 permutations (or a complete set of all possible permutations, in 386 

cases where this was fewer than 10,000) (Maris & Oostenveld, 2007). We reported the largest t 387 

value from the cluster, i.e., tmax, as an estimate of effect size (Brodbeck et al., 2018). Neural 388 

acoustic and linguistic processing were analyzed in the same manner.  389 

We followed each of these analyses by examining the extent to which task conditions 390 

modulated neural tracking of individual predictors, or subsets of predictors. To this end we used 391 

the significant cluster from the mass-univariate analysis as region of interest (ROI) to extract ∆z 392 

values averaged across the electrodes in the cluster, but for each condition separately. Regarding 393 

neural acoustic processing, we examined the spectrogram and onset spectrogram predictors 394 

separately. Regarding neural linguistic processing, we conducted three sets of analyses to 395 

examine individual linguistic predictors. First, a two-way repeated-measures ANOVA was 396 

performed to examine the effects of context levels (sublexical, word-form, and sentence) and 397 

task condition on prediction accuracy. Second, a two-way repeated-measures ANOVA was 398 

performed to examine the effects of predictor type (entropy and surprisal) and task condition on 399 

prediction accuracy. Third, a one-way repeated-measures ANOVA was performed to examine 400 

the effect of task condition on the prediction accuracy of word onsets. Further, if a significant 401 

effect of task condition was observed from any of those analyses, we conducted follow-up 402 

analyses to examine whether task conditions eliminated neural tracking of the corresponding 403 

predictor(s) by testing whether the prediction accuracy at individual task conditions was greater 404 

than zero using one-sample T-tests (one-sided). 405 
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Finally, we examined the effect of task conditions on the mTRFs from predictors which 406 

showed significant task conditions effects on prediction accuracy. The predictors include visual 407 

predictors, onset spectrogram, three context levels (sublexical, word-form, and sentence), and 408 

two predictor types (entropy and surprisal). We calculated the global field power (GFP) of 409 

mTRFs across the corresponding ROI from the above analyses of prediction accuracy. We then 410 

compared the GFP of mTRFs between task conditions using mass-univariate paired T-tests (two-411 

sided). The mTRF analyses were implemented in the Eelbrain package with default parameters 412 

except for the analysis time window. For visual predictors, we concatenated the mTRFs for 413 

visual onsets and offsets to analyze the response to visual stimuli as a whole. For the onset 414 

spectrogram, we averaged the mTRFs across the eight frequency bands. The analysis time 415 

window was 0 to 1000 ms for visual predictors and 0 to 450 ms for auditory predictors.  416 

Results 417 

 418 

Table 1 summarizes the key findings regarding the effect of task condition on behavioral 419 

performance, and neural visual, acoustic, and linguistic processing. 420 

Table 1. Task Effects on Continuous Speech Processing 421 

Type Measure Key Result 

Behavioral 

Visual accuracy Low load > High load 

Visual RT Low load < High load  

Auditory Accuracy Auditory single-task = Low load > High load 

    

Neural (Δz) 

Visual Auditory single-task < Low load < High load 

Acoustic 
Gammatone spectrogram  No significant task effect 

Onset spectrogram Auditory single-task > Low load = High load 
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Linguistic 

Sublexical, word-form, 
and sentence context  

Auditory single-task > Low load = High load 

Entropy and surprisal 
Entropy: Auditory single-task > Low load = High load 

Surprisal: Auditory single-task > Low load = High load  

Word onset No significant task effect 

Divided attention and visual load impair behavioral performance 422 

Figure 3A and 3B display the accuracy and RT of the visual task for individual participants. 423 

Compared to the low load (0-back) condition, the high load (3-back) condition was associated 424 

with lower accuracy [low load: mean = 99.54% (SD = 0.82) vs. high load: mean = 63.31% (SD = 425 

21.85), t (15) = 6.60, p < .001, Cohen’s d = 1.65, BF = 2.59 × 103] and slower RT [low load: 426 

mean = 453.11 ms (SD = 67.54) vs. high load: mean = 785.24 ms (SD = 233.41), t (15) = -5.33, p 427 

< .001, Cohen’s d = 1.33, BF = 330.30]. These results confirmed that the manipulation of 428 

cognitive load in the visual task was successful. 429 

 430 

[Fig 3 about here] 431 

 432 

Figure 3. Behavioral performance on visual and auditory tasks. (A) Accuracy on the low load 433 

(0-back) and high load (3-back) visual tasks, which was calculated as the difference in hit rates 434 

(i.e., correctly responding to a target) and false alarm rates (i.e., identifying a non-target as being 435 

a target). (B) Reaction time (RT) on the low load (0-back) and high load (3-back) visual tasks, 436 

which was calculated for hits only. (C) Accuracy on the auditory task, which was calculated as 437 

the percentage of correctly answered story questions. Individual lines in (A) to (C) denote 438 

individual participants (n = 16). (D) Correlation between the change in auditory accuracy [i.e., 439 
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(low load – high load)/low load] and the change in visual RT [i.e., (high load – low load)/low 440 

load]. The gray line is the linear regression line. N.s. p > .05, *** p < .001. 441 

 442 

 443 

Figure 3C displays the auditory task accuracy for individual participants. The mean 444 

accuracy was 88.96% (SD = 5.93) in the auditory single-task condition, 84.58% (SD = 11.86) in 445 

the low load dual-task condition, and 65.63% (SD = 12.75) in the high load dual-task condition. 446 

The effect of task condition was significant [F(2,30) = 36.59, p < .001; η2
p
 = .71, BF = 6.75 × 447 

106]. Post hoc analysis revealed that auditory task accuracy was significantly lower in the high 448 

load dual-task condition compared to the other two conditions: vs. auditory single-task, t (15) = 449 

7.38, p < .001, Cohen’s d = 1.84, BF = 8.31 × 103; vs. low load dual-task, t (15) = 6.34, p < .001, 450 

Cohen’s d = 1.58, BF = 1.70 × 103. The auditory task accuracy was not significantly different 451 

between auditory single-task and low load dual-task conditions [t (15) = 1.75, p = .10, Cohen’s d 452 

= 0.44, BF = 0.88].  453 

Further, we examined the relationship between visual and auditory task performance 454 

during the dual-task conditions. The change in auditory accuracy [i.e., (low load – high load)/low 455 

load] was negatively correlated with the change in visual RT [i.e., (high load – low load)/low 456 

load] (Spearman’s ρ = - .46, uncorrected p = .038, one-sided; Figure 3D), such that listeners who 457 

slowed down more on the visual task from low to high load conditions tended to have a smaller 458 

drop in auditory accuracy. The change in auditory accuracy was not significantly correlated with 459 

the change in visual accuracy (Spearman’s ρ = - .29, uncorrected p = .28, one-sided). 460 

These results demonstrate that divided (vs. selective) attention and increasing visual load 461 

impair behavioral visual and auditory performance.  462 
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Neural tracking of visual stimuli is strongly modulated by divided 463 

attention and visual load 464 

To assess neural tracking of visual stimuli, we focused on the predictive power of visual 465 

predictors while controlling for all speech-related predictors (acoustic and linguistic). Adding 466 

predictors for visual stimuli to a model including only speech predictors significantly improved 467 

its predictive power (prediction accuracy averaged across task conditions; tmax = 12.93, p < .001), 468 

providing evidence for neural tracking of visual stimuli. The cluster-based test resulted in a 469 

single significant cluster that spread across all electrodes, with the largest effects on parietal and 470 

occipital electrodes (Figure 4A).  471 

 472 

[Fig 4 about here] 473 

 474 

Figure 4. Neural tracking of visual stimuli across task conditions. Visual stimuli were 475 

associated with a robust response, which further increased with task-relevance and -load. (A) 476 

Topography showing the increase in prediction accuracy (Δz) due to visual predictors, which 477 

was significantly above zero in a single cluster encompassing the highlighted (yellow) 478 

electrodes. (B) Prediction accuracy across task conditions. Blue lines denote individual 479 

participants: Thicker lines indicate higher prediction accuracy for the high vs. low load 480 

condition, and thinner lines indicate lower accuracy for the high vs low load condition. Red 481 

asterisks denote p values for comparison between conditions. Error bars denote the 95% within-482 

subject confidence interval (Loftus & Masson, 1994). (C) Global field power (GFP) of the visual 483 

temporal response functions (TRFs). Visual stimuli lasted from 0 to 500 ms. Shaded areas denote 484 

within-subject standard errors around the mean (for color labels see panel B). Horizontal lines 485 

denote time windows in which TRFs were significantly different between conditions. (D) 486 
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Topographies of selected times in panel C (grey vertical lines). A-ST: auditory single-task, Lo-487 

DT: low load dual-task, Hi-DT: high load dual-task. ** p < .01, *** p < .001. 488 

 489 

 490 

Importantly, the predictive power of the visual predictors was modulated by task 491 

condition [F(2,30) = 46.10, p < .001, η2
p
 = .76, BH = 6.09 × 107]. As shown in Figure 4B, the 492 

high load dual-task condition was associated with the highest predictive power (mean = 0.075, 493 

SD = 0.029), followed by the low load dual-task condition (mean = 0.053, SD = 0.022), and 494 

lowest for the auditory single-task condition (mean = 0.020, SD = 0.012): high load dual-task vs. 495 

auditory single-task, t(15) = 9.52, p < .001, Cohen’s d = 2.38, BF = 1.50 × 105; high load dual-496 

task vs. low load dual-task, t(15) = 3.34, p = .005, Cohen’s d = .84, BF = 10.7; low load dual-497 

task vs. auditory single-task, t(15) = 6.64, p < .001, Cohen’s d = 1.66, BF = 2.72 × 103. Together, 498 

these results suggest that neural tracking of visual stimuli was successively enhanced with 499 

increasing load of the visual task.  500 

We analyzed mTRFs to further clarify how the difference in model predictive power was 501 

reflected in brain responses. Visual mTRFs can be conceptualized as evoked responses to the 502 

visual stimuli. Consistent with results for prediction accuracy, the mTRFs were also modulated 503 

by the task condition (Figure 4C). The high load dual-task condition showed larger mTRF 504 

amplitudes than the auditory single-task condition from 0 to 680 ms (p < .001) and the low load 505 

dual-task condition from 190 to 380 ms (p < .001). The mTRF amplitudes for the low load dual-506 

task condition were larger than the auditory single-task condition from 70 to 210 ms (p = .009) 507 

and from 260 to 600 ms (p < .001). 508 
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Divided attention, but not visual load, reduces late neural tracking 509 

of acoustic features 510 

The acoustic predictors significantly contributed to model prediction beyond the visual and 511 

linguistic predictors in a cluster that spread across almost all electrodes, with maxima at temporal 512 

sites (tmax = 12.00, p < .001; Figure 5A). As expected, these results provide evidence for robust 513 

neural tracking of acoustic properties of speech.  514 

 515 

[Fig 5 about here] 516 

 517 

Figure 5. Neural tracking of acoustic information across task conditions. (A) Increase in 518 

prediction accuracy (Δz) due to acoustic predictors of speech (gammatone and onset 519 

spectrogram), which was significantly above zero in a cluster encompassing the highlighted 520 

(yellow) electrodes. Blue dots denote individual participants. (B) Prediction accuracy across task 521 

conditions for acoustic predictors, i.e., combined gammatone and onset spectrogram. (C) and (D) 522 

Prediction accuracy across task conditions for gammatone spectrogram and onset spectrogram 523 

separately. Topographies highlight electrodes (yellow) with prediction accuracy that was 524 

significantly above zero. Black asterisks denote p values for testing against (above) zero at 525 

individual conditions. (B) to (D) Blue lines denote individual participants: Thicker lines indicate 526 

lower accuracy for high vs. low load condition, and thinner lines indicate higher accuracy for 527 

high vs. low load condition. Red asterisks denote p values for comparison between conditions. 528 

Error bars denote 95% confidence interval. (E) and (F) Global field power (GFP; top) of mTRFs 529 

and related topographies (bottom) for gammatone and onset spectrogram. The mTRFs were 530 

averaged across the eight frequency bands. Shaded areas denote within-subject standard errors 531 

around the mean. Horizontal lines denote time windows in which mTRFs were significantly 532 
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different between conditions. Topographies are shown for selected times indicated in GFPs (grey 533 

vertical lines). A-ST: auditory single-task, Lo-DT: low load dual-task, Hi-DT: high load dual-534 

task. * p < .05, ** p < .01, *** p < .001. 535 

 536 

 537 

 538 

The prediction accuracy for acoustic predictors was modulated by task condition [F(2,30) 539 

= 14.83, p < .001, η2
p
 = .50, BF = 581.38; Figure 5B]. Post hoc analysis showed that the 540 

prediction accuracy significantly dropped in the two dual-task conditions compared to the 541 

auditory single-task condition [vs. low load dual-task, t(15) = 3.84, p = .002, Cohen’s d = 0.96, 542 

BF = 25.60; vs. high load dual-task, t(15) = 4.78, p < .001, Cohen’s d = 1.20, BF = 130.60]. The 543 

prediction accuracy was not significantly different between the dual-task conditions [t(15) = .77, 544 

p = .45, Cohen’s d = 0.19, BF = 0.33]. These results suggest that neural tracking of acoustic 545 

information was reduced when directing attention from one task (auditory) to two tasks (visual 546 

and auditory).  547 

Then, we assessed whether the effect of task condition could be attributed to specific 548 

acoustic predictors. The two acoustic predictors both independently contributed to overall model 549 

prediction (gammatone spectrogram: tmax = 6.08, p < .001, Figure 5C; onset spectrogram: tmax = 550 

9.91, p < .001, Figure 5D). The effect of task condition on the prediction accuracy was 551 

significant for onset spectrogram [F(2,30) = 4.93, p = .033, η2
p
 = 0.25, BF = 4.17] but not for 552 

gammatone spectrogram [F(2,30) = .70, p = .59, η2
p
 = 0.04, BF = 0.26]. Post hoc analysis 553 

revealed that the prediction accuracy for onset spectrogram significantly dropped in the two 554 

dual-task conditions compared to the auditory single-task condition [vs. low load dual-task, t(15) 555 
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= 2.61, p = .030, Cohen’s d = 0.65, BF = 3.14; vs. high load dual-task, t(15) = 2.89, p = .030, 556 

Cohen’s d = 0.72, BF = 4.94]. The prediction accuracy was not significantly different between 557 

the dual-task conditions [t(15) = - .79, p = .44, Cohen’s d = 0.20, BF = 0.34]. 558 

Considering the modulation by task condition, we further examined whether divided 559 

attention eliminated neural tracking of onset spectrogram. The prediction accuracy at individual 560 

task conditions was significantly above zero (all uncorrected ps < .001, Cohen’s d > 1.20, BF > 561 

256.40; Figure 5D), suggesting that directing attention from one task to two tasks did not 562 

eliminate the neural tracking of acoustic onsets.  563 

Finally, we examined the effect of task condition on the mTRFs for the onset 564 

spectrogram (Figure 5F). mTRFs to a continuous stimulus like the auditory spectrogram can be 565 

conceived of as evoked responses to an elementary event in the stimulus (i.e., the impulse 566 

response). The mTRF amplitudes in the auditory single-task condition were larger compared to 567 

the high load dual-task condition from 200 to 260 ms (p = .003). Further, a visual inspection of 568 

the mTRFs from individual subjects revealed two relatively reliable peaks at about 56 (P1) and 569 

152 (P2) ms. Latencies of these peaks were not significantly different across conditions [56 ms: 570 

F(2,30) = .65, uncorrected p = .94, η2
p
 = 0.004; 152 ms: F(2,30) = .62, uncorrected p = .54, η2

p
 = 571 

0.04]. 572 

In sum, acoustic tracking was very similar across conditions, with only a slight reduction 573 

in the tracking of acoustic onsets in the divided attention tasks, compared to the single task. This 574 

difference was likely explained by a reduction in a relatively late response component, starting at 575 

200 ms.  576 
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Divided attention, but not visual load, reduces late tracking of 577 

linguistic information 578 

The linguistic predictors significantly contributed to model prediction beyond the visual and 579 

acoustic predictors (tmax = 4.95, p < .001; Figure 6A). The cluster-based test indicated that the 580 

effect of linguistic predictors was primarily observed for temporal-central electrodes. These 581 

results provide evidence for neural tracking of linguistic properties of speech.  582 

 583 

[Fig 6 about here] 584 

 585 

Figure 6. Neural tracking of linguistic information across task conditions. (A) Increase in 586 

prediction accuracy (Δz) due to linguistic predictors of speech (word onsets, phoneme onsets, 587 

sublexical surprisal and entropy, word-form surprisal and entropy, and sentence surprisal and 588 

entropy), which was significantly above zero across highlighted (yellow) electrodes in the 589 

topography. Blue dots denote individual participants. (B) Prediction accuracy for combined 590 

linguistic predictors across conditions. Blue lines denote individual participants: Thicker lines 591 

indicate lower accuracy for high vs. low load condition, and thinner lines indicate higher 592 

accuracy for high vs. low load condition. Red asterisks denote p values for comparison between 593 

conditions. (C) Prediction accuracy for three context levels (sublexical, word-form, and 594 

sentence) across conditions. Each level includes entropy and surprisal predictors. (D) Global 595 

field power (GFP; top) of mTRFs and related topographies (bottom) for each context level. The 596 

mTRF GFPs were averaged across entropy and surprisal. (E) Prediction accuracy for entropy and 597 

surprisal. Each predictor includes the three context levels. (F) GFP of mTRFs and related 598 

topographies for entropy and surprisal. (B), (C), and (E) Error bars denote 95% confidence 599 

interval. (D) and (F) Shaded areas denote standard errors around the mean. Horizontal lines 600 
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denote time windows in which the mTRFs were significantly different between task conditions. 601 

Topographies are shown for selected times indicated in GFPs (grey vertical lines). A-ST: 602 

auditory single-task, Lo-DT: low load dual-task, Hi-DT: high load dual-task. * p < .05, *** p < 603 

.001. 604 

  605 

 606 

 607 

The prediction accuracy for linguistic predictors was modulated by task condition 608 

[F(1.41, 21.15) = 6.66, p = .029, η2
p

 = 0.31, BF = 10.82; Figure 6B]. The prediction accuracy 609 

significantly dropped in the two dual-task conditions compared to the auditory single-task 610 

condition [vs. low load dual-task, t(15) = 2.83, p = .029, Cohen’s d = 0.71, BF = 4.49; vs. high 611 

load dual-task, t(15) = 2.61, p = .029, Cohen’s d = 0.65, BF = 3.16]. The prediction accuracy was 612 

not significantly different between the two dual-task conditions [t(15) = -1.80, p = .091, Cohen’s 613 

d = 0.45, BF = 0.95]. These results suggest that neural tracking of linguistic information was 614 

reduced when directing attention from one task to two tasks. 615 

Next, we conducted three sets of analyses to assess whether the effect of task condition 616 

could be attributed to specific linguistic properties.  617 

Task effects appear to be similar across different context levels  618 

The first analysis focused on the three context levels (sublexical, word-form, and sentence). Each 619 

level independently contributed significantly to model prediction (sublexical: tmax = 5.22, p < 620 

.001; word-form: tmax = 3.92, p < .001; sentence: tmax = 4.98, p < .001; Figure 6C). A two-way 621 

repeated-measures ANOVA showed that the interaction between context level and task condition 622 

was not significant [F(2.55, 38.18) = 1.19, p = .40, η2
p
 = 0.073, BF = 0.19]. The main effect of 623 
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context level was not significant [F(2,30) = .32, p = .77, η2
p
 = 0.021, BF = 0.08]. But the main 624 

effect of task condition was significant [F(1.2,18.01) = 8.46, p = .021, η2
p
 = 0.36, BF = 1.40 × 625 

103]. Post hoc analysis showed that the prediction accuracy was significantly reduced from the 626 

auditory single-task condition to the low load [t(15) = 2.90, p = .016, Cohen’s d = 0.73, BF = 627 

5.08] and high load dual-task conditions [t(15) = 4.27, p = .002, Cohen’s d = 1.07, BF = 54.63]. 628 

But the prediction accuracy was not significantly different between the low and high load dual-629 

task condition[t(15) = 1.02, p = .32, Cohen’s d = 0.26, BF = 0.40]. Further, we found similar 630 

patterns of results when restricting the two-way repeated-measures ANOVA analysis to the dual-631 

task conditions. In sum, patterns of task condition effects observed for linguistic predictors 632 

appeared to be similar across the different linguistic models. 633 

Considering the modulation by context level and task condition, we further examined 634 

whether divided attention eliminated neural tracking of any of these predictors. The prediction 635 

accuracies for all predictors at individual task conditions were significantly above zero (all 636 

uncorrected ps < .03, Cohen’s d > 0.53, BF > 1.51).  637 

Regarding mTRFs, the effect of task condition was not significant for sublexical or word-638 

form context but was for sentence context (Figure 6D). The mTRF amplitude of sentence context 639 

in the auditory single-task condition was larger compared to the low load dual-task condition 640 

from 400 to 430 ms (p = .036). Topographies suggest that this is due to a broadly distributed 641 

more negative component in the single task condition.  642 

Initial response peaks to linguistic features appear relatively early. This is consistent with 643 

previous results (Brodbeck et al., 2022) and might be partly because forced alignment, which 644 

was used to determine phoneme timing, does not take into account coarticulation effects. Some 645 
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information about upcoming phonetic features might thus have systematically precede the 646 

estimates of phoneme onset times we used. 647 

Neural tracking of surprisal might increase with visual load 648 

The second analysis focused on entropy and surprisal. The two predictors independently 649 

contributed significantly to model prediction (entropy: tmax = 5.51, p < .001; surprisal: tmax = 650 

3.91, p = .001; Figure 6E). A two-way repeated-measures ANOVA showed that the interaction 651 

between predictor type (entropy vs. surprisal) and task condition was not significant [F(1.32, 652 

19.86) = 1.29, p = .40, η2
p
 = 0.079, BF = 0.31]. The main effect of predictor type was not 653 

significant [F(1,15) = .31, p = .65, η2
p
 = 0.02, BF = 0.23]. But the main effect of task condition 654 

was significant [F(1.35,20.2) = 9.85, p = .011, η2
p
 = 0.40, BF = 890.10]. Post hoc analysis 655 

showed that, when averaging across surprisal and entropy, the prediction accuracy was 656 

significantly reduced from the auditory single-task condition to the low load [t(15) = 3.28, p = 657 

.008, Cohen’s d = 0.82, BF = 9.56] and high load dual-task conditions [t(15) = 4.11, p = .003, 658 

Cohen’s d = 1.03, BF = 40.91]. Numerically, the prediction accuracy was improved from the low 659 

load to high load dual-task condition, but this difference was not significant [t(15) = 1.27, p = 660 

.22, Cohen’s d = 0.32, BF = 0.51].  661 

Because of theoretical predictions of enhanced reliance on linguistic representations 662 

during higher visual task load (see Introduction and Discussion), we further restricted the two-663 

way repeated-measures ANOVA analysis to the dual-task conditions. The interaction between 664 

predictor type and task condition was significant [F(1,15) = 5.75, uncorrected p = .03 (FDR-665 

corrected p = .063), η2
p
 = 0.28, BF = 1.23]. There was no significant main effect of predictor type 666 

[F(1,15) = 1.92, p = .33, η2
p
 = 0.11, BF = 0.40] or task condition [F(1,15) = 1.62, p = .36, η2

p
 = 667 

0.097, BF = 0.79]. Post hoc analysis showed that for entropy, the prediction accuracy was not 668 
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different between the dual-task conditions [t(15) = .10, p = .92, Cohen’s d = 0.03, BF = 0.26]. 669 

But for surprisal, the prediction accuracy was significantly improved from the low load to high 670 

load dual-task condition [t(15) = 2.20, uncorrected p = .044, Cohen’s d = 0.55, BH = 1.66]. 671 

Considering the modulation by predictor type and task condition, we further examined 672 

whether divided attention eliminated neural tracking of entropy or surprisal. The prediction 673 

accuracies for both predictors at individual task conditions were significantly above zero (all 674 

uncorrected ps < .01, Cohen’s d > 0.66, BF > 3.36), except for the surprisal predictors at the low 675 

load dual-task condition (uncorrected p = .059, Cohen’s d = 0.41, BF = 0.78). 676 

Regarding mTRFs, the mTRF amplitude of entropy in the low load dual-task condition 677 

was smaller than the high load dual-task condition from 160 to 200 ms (uncorrected p = .037). 678 

The mTRF amplitude of surprisal in the low load dual-task condition was smaller compared to 679 

the auditory single-task condition from 380 to 430 ms (uncorrected p = .012). We did not 680 

observe a significant effect of task load, although the mTRF to surprisal during high visual load 681 

was numerically stronger than low load from 200 ms onwards. 682 

Divided attention or visual load does not affect neural tracking of word onsets 683 

The third set of analysis focused on word onset. This predictor independently contributed 684 

significantly to model prediction (tmax = 4.51, p < .001; Figure 7A). But the effect of task 685 

condition on prediction accuracy was not significant [F(2,30) = .07, p = .93, η2
p
 = 0.005, BF = 686 

0.17; Figure 7B].  687 

 688 

[Fig 7 about here] 689 

 690 
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Figure 7. Neural tracking of word onsets across task conditions. (A) Topography showing 691 

the increase in prediction accuracy (Δz) due to word onsets, which was significantly above zero 692 

across highlighted (yellow) electrodes. (B) Prediction accuracy across conditions. Blue lines 693 

denote individual participants: Thicker lines indicate higher accuracy for the high vs. low load 694 

condition, and thinner lines indicate lower accuracy for the high vs low load condition. Error 695 

bars denote 95% within-subject confidence interval (Loftus & Masson, 1994). (C) Global field 696 

power (GFP) of mTRFs. Shaded areas denote within-subject standard error around the mean. (D) 697 

Topographies of selected times in panel C (grey vertical lines). * p < .05, ** p < .01. 698 

 699 

Taken together, results suggest that directing attention from one task to two tasks may 700 

reduce but does not eliminate the neural tracking of linguistic features of speech. However, 701 

increasing visual load does not lead to a further reduction. On the contrary, an increasing load of 702 

the dual task might even be associated with enhanced neural tracking of phoneme surprisal. 703 

However, this effect should be interpreted with care because the effect was not significant when 704 

analyzing all linguistic predictors as a group or after correction for multiple comparisons. 705 

Discussion  706 

We examined the extent to which bimodal divided attention influences acoustic and linguistic 707 

representations of natural continuous speech. Compared to unimodal auditory speech processing, 708 

the visual tasks affected acoustic onsets (but not the acoustic spectrogram, Figure 5D) and 709 

linguistic representations related to predictive processing (but not to lexical segmentation, Figure 710 

6E). Surprisingly, we did not find evidence of further reduction (at any processing level) with 711 

increased visual (dual) task load, despite unambiguous behavioral and neural evidence of the 712 

high load task as being more demanding (Figures 3 and 4).   713 
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Locus of effects of bimodal divided attention on continuous speech 714 

processing 715 

We noted a striking dissociation between the impact of the dual-task on behavioral performance 716 

in the speech comprehension task, and a relative lack of impact on neural speech processing. 717 

Behaviorally, the dual-task load clearly impacted listeners’ ability to answer auditory 718 

comprehension questions. However, neural tracking of acoustic and linguistic speech features 719 

was affected only at late response components, and remained largely unchanged with varying 720 

dual-task load. This neural and behavioral dissociation suggests that bimodal divided attention 721 

largely only impacts late, post-perceptual processes of continuous speech processing. The 722 

significant and unchanged responses related to predictive processing using the sentence context 723 

suggest that listeners could track multi-word sequences regardless of dual-task load. We posit 724 

that the decreased behavioral performance originates from higher-order cognitive processes that 725 

are not adequately described by probabilistic word-sequence models, such as semantic 726 

integration and memory formation. 727 

Previous behavioral research has suggested that increased dual-task load is associated 728 

with reduced acoustic sensitivity during speech recognition (Mattys et al., 2014; Mattys & 729 

Palmer, 2015; Mattys & Wiget, 2011). In our data, the dual-task did not alter early acoustic 730 

responses and only had subtle effects on later (> 200 ms) responses (see Figures 5E and 5F). This 731 

suggests that the effect of bimodal divided attention may not be on basic acoustic representations 732 

per se, but on secondary acoustic analysis stages or on how these representations are accessed 733 

and used by higher-order processes.  734 
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Implications for resource-based accounts 735 

A common framework for understanding effects under dual-task paradigms is resource-based 736 

(Wahn & König, 2017). When two tasks draw from a limited pool of shared resources, increased 737 

load in one task is associated with poorer performance in another task. Such a hypothesis is often 738 

referred to as the supramodal account of crossmodal attention (Broadbent, 1958; Ciaramitaro et 739 

al., 2017; Klemen et al., 2009; Macdonald & Lavie, 2011; Molloy et al., 2015). In contrast, if the 740 

increased load in one task does not affect a corresponding decrease in another, the two modalities 741 

can draw on separate resource pools. Such a hypothesis is consistent with a modality-specific 742 

account of crossmodal attention (Alais et al., 2006; Arrighi et al., 2011; Duncan et al., 1997; 743 

Keitel et al., 2013; Parks et al., 2011; Porcu et al., 2014). 744 

Here, we observed a reduction in neural tracking of speech acoustic and linguistic 745 

features under bimodal divided attention, consistent with previous studies demonstrating 746 

detrimental effects of bimodal divided attention for simplified speech stimuli such as syllables 747 

(Gennari et al., 2018), words (Kasper et al., 2014), and sentences (Salo et al., 2015). In 748 

conjunction with the co-occurring improved neural tracking of visual stimuli, this finding 749 

appears to suggest a tradeoff between attending to the auditory versus visual modalities. Hence, 750 

these results appear to align with the supramodal hypothesis of the dual-task effects that the 751 

auditory and visual tasks of our study draw on a limited pool of shared resources (Broadbent, 752 

1958; Ciaramitaro et al., 2017; Klemen et al., 2009; Macdonald & Lavie, 2011; Molloy et al., 753 

2015). 754 

However, a supramodal hypothesis of the dual-task effects does not seem to fit other key 755 

results from our study. First, the impact of bimodal divided attention is specific to certain 756 

features of the speech signals: we found bimodal attention effects for acoustic onsets but not 757 

acoustic envelope representations, and for predictive linguistic processing, indexed through 758 
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information-theoretic variables, but not lexical segmentation, indexed through the word-onset 759 

predictors. In each case, the impact of divided attention is not a generally reduced representation 760 

but is restricted to only specific response components in the response time courses (the mTRFs). 761 

Furthermore, a resource-based account would suggest that when the visual load is further 762 

increased, available resources for speech representations should further decrease, which is not 763 

what we observed. Instead, adding a visual task exacted a cost on neural speech representations, 764 

but this cost did not scale with the task load. In contrast to these neural effects, task load did 765 

affect behavioral performance on the auditory task. These divergent results may require an 766 

explanation involving different resource pools (Wahn & König, 2017). For example, there may 767 

be a resource pool for sensory processing, which is sensitive to divided attention but not task 768 

load, thus, is relatively modality-specific. There may be a second resource pool, which is 769 

sensitive to task load and affects higher-order story comprehension, thus, is relatively 770 

supramodal.  771 

Selective versus divided attention on speech processing 772 

Previous studies on continuous speech processing have shown that selective attention within and 773 

between modalities strongly modulates neural processing of both acoustic and linguistic features 774 

of continuous speech, and the attentional effects seem to be even stronger for linguistic 775 

processing (Brodbeck et al., 2018; Broderick et al., 2018; Ding et al., 2018; Kiremitçi et al., 776 

2021; Vanthornhout et al., 2019; Yahav & Golumbic, 2021). Specifically, neural tracking of 777 

acoustic features is reduced and delayed but not eliminated for unattended speech, but the 778 

tracking of linguistic features is virtually abolished. A parsimonious null hypothesis, consistent 779 

with the notion of a shared resource pool, is that speech representations during divided attention 780 
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ought to be halfway between attended and ignored speech. Our results suggest that this is not the 781 

case. 782 

First, certain speech features (e.g., acoustic spectrogram and word onsets) that have been 783 

shown in prior work to be modulated by selective attention are insensitive to bimodal divided 784 

attention. Second, unlike prior work demonstrating differential selective attention effects on the 785 

relative balance of acoustic vs. linguistic processing, we did not observe a greater reduction in 786 

linguistic processing than acoustic processing with the manipulation of divided attention. The 787 

neural tracking of both feature classes is reduced but not eliminated. Third, for those features 788 

showing modulation by divided attention, we did not observe any delay in the neural responses 789 

as reflected in the mTRFs (Figures 5 and 6). Fourth, the effect of divided attention emerged 790 

largely at later stages (after ~200 ms) with the earlier latencies relatively unaffected. Thus, the 791 

effect of bimodal divided attention on neural continuous speech processing appears to be feature-792 

specific and occurs relatively late in processing.  793 

These differences indicate that selective and divided attention are subserved by distinct 794 

mechanisms. Relative to selective attention, bimodal divided attention tasks may be associated 795 

with additional recruitment of frontal regions that interact with sensory cortices (Gennari et al., 796 

2018; Johnson & Zatorre, 2006; Loose et al., 2003). A stronger engagement of frontal regions 797 

has been associated with poorer task performance (Gennari et al., 2018; Johnson & Zatorre, 798 

2006). These neural findings appear to align with the argument that the costs of bimodal divided 799 

attention may come from limitations of executive control to coordinate processes related to two 800 

tasks rather than a competition for shared sensory resources (Katus & Eimer, 2019; Loose et al., 801 

2003). The differential effects of selective and divided attention on continuous speech processing 802 

suggest that the costs of selective attention are more likely to originate from ‘filter’ mechanisms 803 
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(Broadbent, 1958; Lachter et al., 2004) that pass task-relevant signals but block task-irrelevant 804 

others, instead of the re-allocation of shared resources. Nevertheless, future studies are needed to 805 

elucidate mechanisms underlying differences in continuous speech processing between selective 806 

and divided attention.   807 

Increased responses to surprisal with dual-task load  808 

We found that increasing visual load increased responses to phoneme surprisal, but not entropy. 809 

This effect was statistically only seen after excluding the auditory single-task condition and 810 

should thus be interpreted with care, but it is consistent with several extant findings. The 811 

dissociation between entropy and surprisal is consistent with recent evidence that these two 812 

processes may reflect different neural processes (Gaston et al., 2022). Neural responses 813 

associated with surprisal may reflect prediction errors that signal the difference between 814 

predicted and observed phonemes. Such prediction error signals may be boosted when attention 815 

is directed to the speech stimuli (e.g., auditory single-task; Auksztulewicz & Friston, 2015; 816 

Smout et al., 2019) or when attention to the speech stimuli is directed away to demanding 817 

crossmodal tasks (e.g., high-load visual tasks; Xie et al., 2018). The increased response to 818 

surprisal might also reflect a shift toward more reliance on linguistic representations during 819 

speech processing when resources for auditory processing were constrained under divided 820 

attention of higher load (Mattys et al., 2009; Mattys & Wiget, 2011).  821 

Neural tracking of word onsets was not affected by divided attention 822 

Tracking of word onsets might reflect lexical segmentation (Sanders et al., 2002; Sanders & 823 

Neville, 2003) and, along with other linguistic features, is strongly affected by selective attention 824 

(Brodbeck et al., 2018). It has been suggested that neural responses to word onsets reflect the 825 
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dynamic allocation of attention to time windows that contain word onsets (Astheimer & Sanders, 826 

2009). However, our results indicate that tracking of word onsets is robust to manipulations of 827 

attentional load by adding a visual task and increasing dual-task load. This suggests that the 828 

word-onset attention effect may draw on a relatively unshared resource pool, or that the word-829 

onset responses reflect a more mechanistic aspect of lexical segmentation. 830 

Conclusion 831 

This study demonstrates a striking dissociation between the impact of dual-task load on 832 

behavioral speech comprehension performance and a relative lack of impact on time-locked 833 

neural representations of continuous speech. The behavioral effects of bimodal divided attention 834 

on continuous speech processing occur not due to impaired early sensory representations but 835 

likely at later cognitive processing stages.  836 

 837 
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