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Abstract

Alzheimer’s Disease (AD) is a neurodegenerative condition associated with extra- and intra-neuronal accu-
mulation of two misfolded proteins, namely Amyloid-Beta (Af) and tau. In this paper, we study the effect of
these proteins on neuronal activity, with the aim of assessing their individual and combined impact on neuronal
processes. The technique uses a whole-brain dynamic model to find the optimal parameters that best describe
the effects of AB and tau on the excitation-inhibition balance of the local nodes. Our experimental results
show a clear dominance of the neuronal activity of AB over tau in the early disease stages (Mild Cognitive
Impairment), while tau dominates over Af in the latest stages (AD). Our findings identify a crucial role for A and
tau in contributing to complex neuronal dynamics and demonstrate the viability of using regional distributions of
neuropathology to define models of large-scale brain function in AD. Our study provides further insight into the
dynamics and complex interplay between these two proteins among themselves and with the regional neural
activity, opening the path for further investigations on biomarkers and candidate therapeutic targets in-silico.
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1. Introduction

Alzheimer’s Disease (AD) is a neurodegenerative disease that affects first the medial temporal lobe and the limbic system, and
most areas of the neocortex at later disease stages [1, 2, 3]. The disease can remain asymptomatic for years but ultimately
leads to progressive impairment of memory and other cognitive domains, neuropsychiatric symptoms and, ultimately, to severe
impairment in all body functions. This results in both a huge loss of quality of life of affected people and caregivers and high
costs for the society at large. Minor cognitive deficits with little influence on activities of daily living with, are defined as mild
cognitive impairment (MCI). In the typical disease course, the deficits extend later on to other cognitive domains as, e.g., speech
and spatial orientation. When the cognitive impairment is severe enough to affect the activities of daily living, the disease is
usually referred to as dementia (due to AD) [4].

AD pathogenesis is associated with several interlinked pathomechanistic processes, from genomics to connectomics,
including the Notch-1 pathway, neurotransmitters, polygenetic factors, neuroinflammation, and neuroplasticity [5]. However,
the accumulation of misfolded proteins within the brain is considered as the pathological hallmark of AD: namely extracellular
accumulation of Amyloid-beta (Af), forming what are known as senile plaques; and intraneuronal aggregation of the
microtubule protein tau, called neurofibrillary tangles [6]. In general, it is known that Af plaques and tau tangles spread
independently through the brain as the disease progresses [7]. Both proteins are currently considered as biomarkers that are
used in the diagnostic classification of AD [6]. Although a plethora of treatment strategies has been examined in the last
decades, the neuronal degeneration itself, as well as the cognitive decline cannot be currently stopped by any treatment, AD is
therefore still considered as incurable. Treatments for removal of Af (e.g., with Adacanumab and Lecanemab) are currently
discussed in light of inconclusive effects on halting disease progression [8]. Even more, in spite of the large body of research
devoted to the study of AD, many aspects regarding AD pathophysiology and the role of Af and tau in the disease process
are still incompletely understood [9, 10, 11]. While several studies have shown abnormal brain network function at various
stages of AD [6, 12, 13], the relationship between pathology (i.e., Af and tau) and associated brain dysfunction has not been
described in great detail [10].

Regarding brain dysfunction, several ex-vivo (human) and animal studies have seen a disruption in excitation/inhibition
(E/) balance (i.e., the relative contributions of excitatory and inhibitory synaptic inputs corresponding to a neuronal event,
such as a response evoked by sensory stimulation) in the form of hyperexcitability consequence of the disruption of glutamate
reuptake, also disrupting cognition-related cortical activity and contributing to intellectual decline in AD [12, 13]. Change et
al. [14] showed tau affects excitatory and inhibitory neurons differently, and that its ablation decreases the baseline activity
of excitatory neurons, while modulating the intrinsic excitability and axon initial segments of inhibitory neurons, promoting
network inhibition. In this line, Bi and co-workers [15] hypothesized that A produces alterations to the GABAergic system
contributing to impairing GABAergic function and thus producing synaptic hyperexcitation, leading to E/I imbalance and
AD pathogenesis. Petrache et al. [16] found a decrease in canonical synaptic signaling mechanisms first affecting the lateral
entorhinal cortex in combination with synaptic hyperexcitation and severely disrupted E/I inputs onto principal cells, and a
reduction in the somatic inhibitory axon terminals in the lateral entorhinal cortex compared with other cortical regions. Recently,
Lauterborn and coauthors [17] studied the synaptic disturbances in E/I balance in forebrain circuits by assessing anatomical and
electrophysiological synaptic E/I ratios in post-mortem parietal cortex samples of AD patients, revealing significantly elevated
E/I ratios.

While interesting results regarding E/I imbalance were derived ex-vivo (in humans), studies in-vivo regarding E/I imbalance
in AD are lacking, as the activity of excitatory vs. inhibitory neuronal populations cannot be directly measured using
neuroimaging. Most works focusing on whole-brain dynamics studied different measures of brain activation patterns, e.g., from
its connectivity, but were not informative regarding the role of excitatory vs. inhibitory neuronal populations [18, 19, 20, 21, 22].
To disentangle mechanistic contributions of separate neuronal populations, whole-brain dynamic models can contribute to
analyze collective properties of the brain [23, 24, 25], such as the fMRI signal [26, 27, 28, 29]. To understand the complex
interplay between pathophysiological processes and brain activity (i.e., the fMRI signal), models might become even more
informative when incorporating heterogeneity of brain dynamics in brain regions, based on empirical data [30, 31, 32].

Earlier work specifically on AD using whole-brain simulations focused only on linking global and local brain dynamics to
individual differences in cognitive performance scores from different subject conditions [18]. Demirtag [20] et al. studied the
effect of heterogeneity of local synaptic strengths on a large-scale dynamical circuit model of human cortex in healthy subjects,
showing that heterogeneity significantly improved the fitting of fMRI resting-state functional connectivity, and was able to
capture sensory-association organization of multiple fMRI features. Following this approach, recent work by Stefanovski
and co-authors [21] focused on the connection of Af with neural function in The Virtual Brain (TVB) platform [33], using a
network of interconnected (through the corresponding structural connectivity matrix) Jansen-Rit models [34], addressing the
phenomenon of hyperexcitability in AD, examining how A3 burden modulates regional Excitation-Inhibition balance, leading
to local hyperexcitation with high Af loads in the model, reproducing what has been previously observed in experimental
studies. The resulting simulated local field potentials improved previous diagnostic classifications between AD and controls [22].
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However, all these works study the effect of a single burden, namely A, on the brain neuronal dynamics, while the work
we present here focuses mostly on the interplay of both burdens, i.e., Af and tau, assessing their relative impacts on these
dynamics.

The main objective of this paper is to use whole-brain modeling techniques to study the impact of both Af and tau on the
dynamics of the regional behaviors in AD. As such, we used our results to discern the impact of each protein in isolation and
in combination, being able to assess their relative weights on contributing to abnormal brain activity. We use the Balanced
Dynamic Mean Field (BEI) model [31], where local neuronal dynamics of each region evolve according to a dynamic mean
field model derived from the behavior of interacting excitatory and inhibitory populations. We will show in this work a clear
dominance of the effects of A over tau in the earlier stages of the disease (Mild Cognitive Impairment, MCI), and a dominance
of protein tau over the ones of Af on the function of the brain dynamics in advanced stages (manifest dementia).

2. Methods Overview

Model Creation: Figure la presents an overview of our overall analysis strategy, and the details could be found in the
Methods Section. We make use of MRI and positron emission tomography (PET) from the Alzheimer’s Disease Neuroimaging
Initiative (ADNI). In summary, we use diffusion MRI to generate the structural connectomes of healthy controls (HC), mild
cognitive impairment (MCI) and Alzheimer’s Disease (AD) subjects. We use task-free resting-state functional MRI to fit a
whole-brain model in which the local neuronal dynamics of each brain region evolves according to the dynamic mean field
model by Deco et al. [31], which is then connected to a spontaneous blood-oxygenation-level-dependent (BOLD) dynamics.
We refer to this model as the Balanced Excitation-Inhibition (BEI) model, which can be thought of as a homogeneous reference
against which we evaluate the performance of our heterogeneous AD model. A and tau distributions are derived from AV-45
and AV-1451 PET from ADNI. For the heterogeneous model, we incorporate regional heterogeneous distributions of the main
proteins involved in AD, namely A3 and tau, as first order multiplicative polynomials for each burden and for each type of
population (excitatory/inhibitory) into the local gain parameter M ;). Fitting the model to empirical fMRI data allows us to
evaluate which effect of AB and tau to the different populations can mechanistically explain the observed behaviors.

Model Fitting: For both of our models, homogeneous and heterogeneous, we assume that all diffusion MRI-reconstructed
streamline fibers have the same conductivity and thus the coupling between different brain areas is scaled by a single global
parameter, G. We first tune the G parameter of the BEI model to adjust the strength of effective coupling in the model and
identify the brain’s dynamic working-point by fitting the model to three empirical properties that are estimated from the
empirical fMRI data:

* the Pearson correlation between model and empirical estimates of static (i.e., time-averaged) functional connectivity
estimated across all pairs of brain regions (FC);

* similarity in sliding-window functional connectivity dynamics (swFCD);

* the KS distance between a set of dynamic functional connectivity matrices (also called coherence connectivity matrix [35])
built from the average BOLD time series of each ROI, which were Hilbert-transformed to yield the phase evolution of
the regional signals (phFCD).

We then fit the coefficients for the two burdens, for excitatory and inhibitory populations, with a global optimization algorithm,
within directional bounds obtained from previous clinical observations (see below, in Section 5.7).

Result Evaluation: We evaluate the quality of the results in two ways. First, we shuffle the input burdens, and compare the
result of performing the simulation with

¢ the optimized parameters with shuffled burdens.
* the optimized parameters with original (i.e., not shuffled) burdens.

¢ the homogeneous BEI model.

Second, we examine the relevance of each type of burden by optimizing them in isolation of each other (i.e., zeroing the other
one out), and comparing the results. The full comparisons include both burdens in isolation, both burdens simultaneously, and
with the homogeneous (i.e., BEI) model. See Figure 1b.

3. Results

We used diffusion MRI to generate a the Structural Connectomes of 17 healthy control (HC) subjects, 9 mild cognitive
impairment (MCI) subjects and 10 subjects with Alzheimer’s Disease (AD) from ADNI, which are mostly the same participants
as used by Stefanovski et al. [21] and Triebkorn et al. [22]. See Table 1.
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Diagnosis n (female) Meanage o©  Min. age Max. age Mean MMSE oyysg  Min. MMSE  Max. MMSE

AD 10 (5) 72.0 9.6 55.9 86.1 213 6.8 9 30
HC 17 (10) 70.8 43 63.1 78.0 29.3 0.7 28 30
MCI 9(3) 68.8 5.8 57.8 76.6 27.4 1.5 25 30

Table 1. Epidemiological information of the population used in this study.

3.1 Fitting the Homogeneous Model

As a first step, we evaluated the capability of the homogeneous BEI model to reproduce empirical properties of resting-state FC
data. To this end, we fitted the global coupling parameter, G, without considering heterogeneity by setting all regional gain
parameters Mg ;) = 1 [36, 31]. Then, we evaluated the ability of the model to reproduce three different properties of empirical
resting-state fMRI recordings: edge-level static FC, swFCD, and phFCD (see Methods for further details.) The results of this
analysis are shown in Figure 2A. To remove differences across subjects related to age, we considered averaged values across
subjects over the healthy control group, and took an equivalent number of simulated trials with the same duration as the human
experiments (see Methods). Following previous research [37, 38, 32] fitting the phFCD better captures the spatiotemporal
structure of the fMRI data, being a stronger constraint on the model. Indeed, where FC fits are consistently high across a broad
range of G values, phFCD yields a clear global optimum at G = 3.1. Thus, we choose to use phFCD for all further analysis.

3.2 Introducing Ap and tau heterogeneity

Once the global coupling parameter has been found, we can introduce the regional heterogeneity in the distributions of A3
and tau, and study how their introduction leads to a better representation of neural dynamics, i.e., improves the fitting of
phFCD. Spatial maps for each form of protein burden used in our modeling are shown in Figures 2G (for Af) and 2H (for tau)
for one particular individual. For some individuals, (mainly HC subjects, e.g., as subject 003_S_6067 in the ADNI database,
with p =0.92, p < 0.001) the Af and tau distributions are strongly correlated, while for others the two maps show a weaker
correlation (e.g., subject 036_S_4430, with p = 0.10, p = 0.04.) This observation indicates that each protein burden introduces
a different form of biological heterogeneity to the benchmark BEI model, and thus should be modeled separately in our
simulations.

We introduce these kinds of heterogeneity by modulating the regional gain functions M ;) at the optimal working point
of the homogeneous BEI model found at the previous stage (G = 3.1), through the bias and scaling parameters introduced
above, denoted b% 5 and sk s for AP, and bE and s£ for tau, all for the excitatory case, and similarly for the inhibitory case
with superscript I. We perform a search in parameter space with constraints introduced from experimental observations,
see Section 5.7, to find the optimal working point for the two protein burdens simultaneously, which results in an 8-degree
of freedom optimization, which is reduced to six degrees due to the constraints. For the optimization we used Bayesian
optimization algorithm using Gaussian Processes, see Section 5.10. We can also perform a simplified search, limited to
the two-variable bi B and sg p space, i.e., the inhibitory bias and scaling of the A influence on inhibitory neuron parameters
(Equation 9). In this case, the 2D optimization results show a decreasing the neuronal activity with increasing A concentration,
confirming previous results [21]. On average, for each group of subjects, we got the results shown numerically in Table 2.

Cohort bf B sf B bt st bg B sg B
AD | 0.2(05) | 23(1.2) | -0.4(0.6) | -2.6(0.8) | 0.2(0.6) | -2.5(0.8)
MCI | 0.4(0.7) | 1.7(1.5) | -0.5(0.5) | -2.8 (0.7) | -0.1 (0.8) | -2.1(1.2)
HC | 0.1(0.8) | 1.7(0.9) | -0.5(0.6) | -2.8 (1.0) | 0.3(0.6) | -3.1(1.0)

Table 2. Resulting averaged parameters from the optimization procedure. In parenthesis, the respective standard deviations.

These results can be seen visually at Figure 3. This figure shows that there is a clear regime in which all three empirical
properties are fitted well by the model, particularly for the values shown above, where a fitting of phFCD of 0.13 is achieved for
the AD subjects, while the reference homogeneous value is equal to 0.5.

3.3 Analysis of burden impact

For the optimal parameter values resulting from model fitting, we simulated each dynamical model 10 times for each subject to
account for the inherent stochastic nature of the models and compute the respective measures of model fit. Figure 4 shows
the distributions of fit statistics across runs for the homogeneous and the heterogeneous model for the different cohorts. In
addition, we show results for a null ensemble of models in which the regional burden values were spatially shuffled to generate
surrogates with the same spatial autocorrelation as the empirical data. Across the benchmark property to which the data were
fitted —phFCD-—, the models taking into account the regional burden heterogeneity perform better than the homogeneous
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model (all pass the Mann-Whitney U rank test on two independent samples with p < .0005). We also find a consistent gradient
of performance across all benchmarks, with the heterogeneous model performing best, and the homogeneous model showing
the poorest performance. For each benchmark metric, the performance of the heterogeneous model was better than all other
models (in all cases p < .06). Also, it must be noted that the differences in fit statistics between models are significant, as
shown in Figure 4. For example, for the AD cohort, the correlation of the median phase FCD between the fitted model and
empirical data showed r < 0.1 for the heterogeneous model, and r =~ 0.2 for the BEI model. In all subject groups, the difference
between these two models is clear, with p < 0.0005.

Finally, we performed an analysis comparing the impact of each type of burden, in isolation or together, onto the simulation
results. In Figures 2D-2F we can see these results for the different cohorts, for Af and tau, A alone, tau alone and finally the
homogeneous BEI model, added for reference. As we can see, with respect to the homogeneous model, the best performance is
systematically obtained by the combined action of both Af and tau, giving a value with p < 0.0004 in all cases. However, for
each cohort, each protein shows to play a different role in the development of the disease. For AD subjects, the effect of A on
the optimal combined result is small, with a p < 0.0005, while the influence of tau alone has a p value that does not allow us to
distinguish between its effect and the combined effect of both proteins (p = 0.172), implying a clear dominance of tau over A3
in this stage of the disease. Also, with respect to the homogeneous BEI model, tau presents p < 0.005, while A alone shows a
much higher value (p = 0.339), not allowing us to clearly distinguish between these two models. In the case of the MCI cohort,
in Figure 2E, we can observe that the effect of Af alone clearly gives the major contribution to the final combined fitting, rather
than tau, with a p < 0.0003 between all cases. Finally, in the HC case in Figure 2D, the effects of the Af and tau proteins are
close to the homogeneous BEI model, with Af3 presenting a somewhat higher prevalence than tau. However, it is noticeable
that the differences between this case and the previous one are small, showing that Af already plays an important role even in
HC subjects.

4. Discussion

In this paper we studied the influence of the regional variability of two pathological proteins, namely Af and tau, on cortical
activity and E/I balance in the context of AD. The incorporation of such heterogeneous patterns of neuropathology into
whole-brain models of neuronal dynamics has been made possible by the availability of in-vivo quantitative PET imaging. We
have shown that the heterogeneous model incorporating both types of neuropathological burdens more faithfully reproduces
empirical properties of dynamic FC than the standard model with fixed and homogeneous parameters. Our findings highlight a
central role of both types of burden on the regional neuronal dynamics in AD, supporting the hypothesis of hyper excitation in
AD, and the crucial role of E/I balance. Regarding their influence on brain activity, our results have shown a dominance of Af3
influence on neural dynamics in earlier stages of AD (i.e., MCI) and even in healthy controls, while the tau influence plays
a larger role in later stages. These key findings highlight their prominent role in contributing to the abnormal brain activity
patterns in the course of AD [39].

4.1 How does burden heterogeneity shape neuronal dynamics?

We introduced burden heterogeneity into our dynamical model by modifying the regional excitability of local population
activity. We achieved this by modifying each region’s gain response function M; of inhibitory and excitatory populations, in
accordance with previous works exploring the effect of regional parameters on E/I balance [32], thus focusing on how the
interaction of neuronal populations contributes to neuronal dynamics (i.e., FC or FCD) and their relative impacts over time. Our
approach is different from the work by Stefanovski et al. [21], where the AP burden was used to modulate regional E/I balance
by negatively modulating the inhibitory time constant, increasing excitatory activity and producing a higher output of the
pyramidal cell populations, resulting in a local hyperexcitation with high A loads. However, as seen in Methods, our results
confirm their findings with respect to the behavior of the A burden in early stages of the disease, resulting in a net increase of
the excitatory activity with increased A burden. There are other approaches available to introduce heterogeneity, such as
an adjustment of the inter-node connectivity to fit empirical and simulated FCs [40]; or variations of within- and inter-area
connectivity [41]. However, based on the empirical evidence that the interplay of both burdens, A} and tau, severely disrupt
normal neuronal function, we decided to model their direct effect on the E/I balance.

In this paper we have chosen to incorporate heterogeneity into the model by modulating population gain response functions
HED since local variations in the E/I balance will affect the net excitability of the population, which in turn is captured by
the gain function parameter, M;. We thus assume that changes in regional gain are the common final pathways of different
neuropathology-related pathomechanisms which might have an influence on specific neuronal populations or interaction
between populations.

In particular, we introduced regional variations of M; as the product of linear terms consisting of a constant (bias), and
a scaling factor. This introduced eight degrees of freedom, which we could narrow down to six due to constraints based
on previous literature [11], which helped to considerably reduce the search space. In sum, our model was created based
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the assumptions that Af leads to GABAergic interneuron dysfunction and impaired glutamate reuptake, while tau leads to
educed synaptic neurotransmitter release in excitatory cells. This amount of degrees is substantially less than used in other
models [41, 40], making a fast parameter optimization feasible. For the optimization we used Bayesian optimization using
Gaussian Processes (see Methods), because of the many minima that could trap traditional optimization methods.

4.2 Evaluating Af and tau impact

A large body of scientific literature focused on linking global and local brain dynamics to individual differences in cognitive
performance scores [18], showing that patients with AD and MCI show less variation in neuronal connectivity during resting-
state [42], and even presented benchmarks for predictive models for resting-state fMRI, revealing biomarkers of individual
psychological or clinical traits [19]. However, the pattern of neuronal connectivity alterations has been incompletely understood.
More recent work focus on the effect of Af on hyperexcitability, addressing the fact that this protein modulates regional E/I
balance, resulting in local hyperexcitation with high loads [21]. To our knowledge, no prior study has evaluated both types of
neuropathological burden, Af and tau, simultaneously.

As explained in Methods, we compared the impact of each type of burden, in isolation or interacting, onto neural dynamics.
We found that the model fitting optimum is systematically obtained by the interaction of both burdens. Also, we have found
that for each condition (i.e., HC, MCI or AD), each protein has a different impact on the disease. In the case of AD, Af has a
small impact on the combined result, while tau alone had almost all of the impact, showing its dominance over Af3. Also, in
comparison to the homogeneous BEI model, in we observed that tau is clearly distinguishable, but Af is not. Taken together,
these results imply that we cannot distinguish between the effect on brain activity of both proteins together vs. the effect of tau
alone, while the effect of Af is clearly distinguishable from the combined effect. As a consequence, this allows us to conclude
that the impact of tau in this stage (AD) of the disease is clearly dominant over AB. In MCI, the influence of Af alone is clearly
dominant over tau, see Figure 2E. Finally, when studying the effect of both proteins in the HC case, we can observe that the
effect of the A and tau proteins is close to the homogeneous BEI model, with A presenting a relatively higher influence than
tau. The influence of Af both in MCI patients as well as in HC shows that A3 leads to a measurable change in brain dynamics,
independent of existing cognitive impairment, in elderly subjects. Despite our findings from model fitting, we acknowledge
that we only observe the current influence of Af vs. tau in different disease stages in a cross-sectional cohort. Longitudinal
examinations might also replicate the abundant evidence in the literature [11] that both proteins interplay a toxic feedback loop
which is the ultimate responsible (perhaps among other factors) of the development of the disease.

Our analysis shows that edge-level measures of static FC offer loose constraints for model optimization, showing comparably
high fit statistics across a broad range of values of the global coupling parameter. In contrast, fitting to dynamical functional
connectivity shows a clear optimum, mirroring similar results reported previously [43, 32]. We can conclude that fitting models
to both static and dynamic properties is thus important for identifying an appropriate working point for each model.

Across all these properties, we observe that the model that incorporates the heterogeneous burden loads provides a better
match to the data than the homogeneous BEI model, which does not incorporate a fitting of the gain response function of
inhibitory and excitatory populations to the data. This shows that constraining regional heterogeneity by the protein burdens
yields a more faithful replication of empirical phFCD. The superiority of our model using heterogeneous, empirically estimated
parameters, suggests that regional heterogeneity plays a significant role in shaping the effects of Alzheimer’s disease on
spontaneous BOLD-dynamics. However, as we already mentioned, it must be noted that the differences in fit statistics between
models are significant. These results suggest that these empirical fit statistics have good capacity to tease apart dynamical
differences between models, which gives the opportunity to disentangle the influence of different pathomechanisms in vivo.

We observe that, in all cases, the bias parameters for the different burdens (Figure 3) are approximately O in all cases,
thus indicating that the influence of the bias parameters with respect to the homogeneous model can be ignored, reducing
computational complexity. The respective scaling parameters take non negligible values, showing a linear relationship between
A and tau on neural dynamics. In our model, in earlier stages of the disease (i.e., MCI) Af has a higher scaling parameter
than tau, suggesting a higher contribution to the E/I imbalance. In later stages, we observe the opposite, which might indicate
that tau burden is more closely related to neuronal dysfunction in these stages, which replicates our results regarding the model
fitting using different types of heterogeneous models. We acknowledge that on a pathophysiological level there is a strong
interplay between Af and tau and further (causal) research is needed to clearly discern the role each protein plays in the
generation of neuronal dysfunction.

In summary, in this paper we have presented a whole-brain computational model connecting the main protein burdens,
namely A} and tau, with the different stages of AD and in HC. The results we obtained not only reproduce previous research
regarding E/I imbalance in AD, but also shed further light on the relative impact of each type of burden during different disease
stages, opening new avenues to focus research efforts. As a general conclusion, our study shows that whole-brain modeling
enables research on disease mechanisms in-vivo, demonstrating its potential to produce improved diagnostics and help in the
discovery of new treatments.
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5. Methods

5.1 Participants

Empirical data were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.
edu), which is a longitudinal multi-site study designed to develop biomarkers for Alzheimer’s disease (AD) across all stages.
The inclusion criteria for AD patients was the NINCDS-ADRDA criteria, which contains only clinical features [4], and a
MMSE score below 24. For both HC and MCI, the inclusion criteria were a MMSE (Mini Mental State Examination) score
between 24-30, as well as age between 55-90 years. Also, for MCI, participants had to have a subjective memory complaint
and abnormal results in another neuropsychological memory test. Imaging and biomarkers were not used for the diagnosis.

5.2 Data Acquisition and Processing

All the data in this study were previously used in Stefanovski et al. [21] work, so we will present here an abridged version of
the processing performed on the original data and refer to the original work for the details. All images used in this study were
taken from ADNI-3, using data from Siemens scanners with a magnetic field strength of 3T.

5.2.1 Structural MRI

For each included participant, we created a brain parcellation for our structural data using FLAIR, following the minimal
preprocessing pipeline [44] of the Human Connectome Project (HCP) using Freesurfer! [45], FSL [46, 47, 48] and connectome
workbench?. Therefore, we used TI MPRAGE, FLAIR and fieldmaps for the anatomical parcellation. We then registered the
subject cortical surfaces to the parcellation of Glasser et al. [49] using the multimodal surface matching (MSM) tool [50]. In
this parcellation, there were 379 regions: 180 left and 180 right cortical regions, 9 left and 9 right subcortical regions, and 1
brainstem region.

5.2.2 PET Images
For AB, we used the version of AV-45 PET already preprocessed by ADNI, using a standard image with a resolution of 1.5mm
cubic voxels and matrix size of 160 x 160 x 96, normalized so that the average voxel intensity was 1 and smoothed out using
a scanner-specific filter function. Then, a brainmask was generated from the structural preprocessing pipeline (HCP) and
used to mask the PET image. On the other hand, to obtain the local burden of Af3, we computed the relative intensity to the
cerebellum. We received in each voxel a relative A burden which is aggregated according to the parcellation used for our
modeling approach. Subcortical region PET loads were defined as the average SUVR in subcortical gray matter (GM). With the
help of the connectome workbench tool, using the pial and white matter surfaces as ribbon constraints, we mapped the Cortical
GM PET intensities onto individual cortical surfaces. Finally, using the multimodal Glasser parcellation we derived average
regional PET loads.

For tau, we also used ADNI’s preprocessed version of AV-1451 (Flortaucipir) following the same acquisition and processing,
resulting in a single relative tau value for each voxel. Then, these values were also aggregated to the selected parcellation, also
following the already mentioned steps. The final average regional tau loads were obtained in the Glasser parcellation.

5.2.3 DWI
Individual tractographies were computed only for included HC participants, and they were averaged to a standard brain template
(see below). Preprocessing was mainly done with the MRtrix3 software package?.

In particular, the following steps were performed: First, we denoised the DWI data [51], followed by motion and eddy
current correction®. Then, B1 field inhomogeneity correction (ANTS N4), followed by a brainmask estimation from the
DWI images. Next, we normalized the DWI intensity for the group of participants, which was used to generate a WM
response function [52], and created an average response function from all participants. Next, we estimated the fiber orientation
distribution and the average response function [53] using the subject normalized DWI image, to finally generate a five tissue
type image. Finally, we used the iFOD2 algorithm [54] and the SIFT2 algorithm [55] to get the weighted anatomical constrained
tractography [56], to end up merging all information into the Glasser connectome, resulting in a structural connectome (SC).

5.2.4 fMRI
With respect to the processing of the fMRI data, the images were initially preprocessed in FSL FEAT and independent
component analysis—based denoising (FSLFIX) following a basic pipeline [21]. Time courses for noise-labeled components,
along with 24 head motion parameters, were then removed from the voxel-wise fMRI time series using ordinary least squares
regression.

"https://surfer.nmr.mgh.harvard.edu/fswiki/FreeSurferMethodsCitation
2https://www.humanconnectome.org/software/connectomefworkbench
3http://www.mrtrix.org
‘https://mrtrix.readthedocs.io/en/latest/dwi_preprocessing/dwipreproc.html
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The resulting denoised functional data were spatially normalized to the MNI space using Advanced Normalization Tools
(version 2.2.0). Mean time series for each parcellated region were then extracted, and interregional FC matrices were estimated
using Pearson correlations between each pair of regional time series. Dynamic FC matrices were also calculated for the
empirical data, as outlined below.

5.3 Generation of a Standard Brain Template
As previously done [21], we average the SCs of all HC participants, using an arithmetic mean

=

Cu=(Y C)/n=(C1+Co+...+Cp)/n

i=1

wherein Cy, is the averaged SC matrix, n is the number of HC participants and C; is the individual SC matrix.

However, as matrices in this context are large (i.e., 379 regions), the average input to any given node can be too large for the
DMF, making fitting and processing in general more difficult. Thus, we discarded the traditional normalization of dividing the
matrix elements by its maximum, and used a slightly different approach, instead. First, we added one and applied the logarithm
to every entry, as IC = log(Cy, + 1). Then, we computed the maximum input any node could receive for a unitary unit input
current, maxNodelnput = max;(Y.;(IC; ;)), and finally we normalized by 0.7 x IC/maxNodelnput, where 0.7 was chosen to be
a convenient normalization value. Observe that this constant is actually multiplying another constant G in the model which we
fit to empirical data, so its actual value can safely be changed.

In Figure 5 we can find the SC matrix and organization graph, where we can observe that the general characteristics of
physiological SCs such as symmetry, laterality, homology, and subcortical hubs are maintained in the averaged connectome.
The election of the averaged SC allowed to control all factors (e.g., atrophy), which matched our objective of simulating the
activity from both healthy and “pathogenic” modifications by A3 and tau.

5.4 Balanced Excitation-Inhibition (BEI) model

In this work we used the Dynamic Mean Field (DMF) model proposed by Deco et al. [31], which consists of a network model
to simulate spontaneous brain activity at the whole-brain level. In this model, each node represents a brain area and the links
represent the white matter connections between them. In turn, each node is a reduced representation of large ensembles of
interconnected excitatory and inhibitory integrate-and-fire spiking neurons (80% and 20% neurons, respectively), to a set of
dynamical equations describing the activity of coupled excitatory (E) and inhibitory (/) pools of neurons, based on the original
reduction of Wong and Wang [58]. In the DMF model, excitatory synaptic currents, /(E), are mediated by NMDA receptors,
while inhibitory currents, I(I), are mediated by GABA4 receptors. Both neuronal pools are reciprocally connected, and the
inter-area interactions occur at the excitatory level only, scaled by the structural connectivity Cy; (see Section 5.2.1).

To be more specific, the DMF model is expressed by the following system of coupled differential equations:
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Here, the last two equations should add, when integrating, an uncorrelated standard Gaussian noise term with an amplitude of
o6 = 0.01nA (using Euler-Maruyama integration). In these equations, A is a parameter that can be equal to 1 or 0, indicating
whether long-range feedforward inhibition is considered (A = 1) or not (A = 0).

As mentioned, the DMF model is derived from the original Wong and Wang model [58] to emulate resting-state conditions,
such that each isolated node displays the typical noisy spontaneous activity with low firing rate (H'Z) ~ 3Hz) observed in
electrophysiology experiments, reusing most of the parameter values defined there. We also implemented the Feedback
Inhibition Control (FIC) mechanism described by Deco et al. [31], where the inhibition weight, J,,, was adjusted separately for
each node n such that the firing rate of the excitatory pools H (E) remains clamped at 3Hz even when receiving excitatory input
from connected areas. Deco et al. [31] demonstrated that this mechanism leads to a better prediction of the resting-state FC and
to a more realistic evoked activity. We refer to this model as the balanced excitation-inhibition (BEI) model. Although the local
adjustments in this model introduce some degree of regional heterogeneity, the firing rates are constrained to be uniform across
regions so we consider this BEI model as a homogeneous benchmark against which we evaluate more sophisticated models that
allow A and tau to affect intrinsic dynamical properties across regions.

Following the Glasser parcellation [44], we considered N = 379 brain areas in our whole-brain network model. Each area n
receives excitatory input from all structurally connected areas into its excitatory pool, weighted by the connectivity matrix,
obtained from dMRI (see Section 5.2.3). Furthermore, all inter-area E-to-E connections are equally scaled by a global coupling
factor G. This global scaling factor is the only control parameter that is adjusted to move the system to its optimal working
point, where the simulated activity maximally fits the empirical resting-state activity of healthy control participants. Simulations
were run for a range of G between 0 and 5.5 with an increment of 0.05 and with a time step of 1 ms. For each G, we ran 200
simulations of 435 s each, in order to emulate the empirical resting-state scans from 17 participants. The optimum value found,
for the phF'CD observable, is for G = 3.1. See Figure 2A.

5.5 Simulated BOLD signal

Once we have obtained the simulated mean field activity, we need to transform it into a BOLD signal we used the generalized
hemodynamic model of Stephan et al. [59]. We compute the BOLD signal in the k-th brain area from the firing rate of the
excitatory pools H (E), such that an increase in the firing rate causes an increase in a vasodilatory signal, s, that is subject
to auto-regulatory feedback. Blood inflow f; responds in proportion to this signal inducing changes in blood volume v; and
deoxyhemoglobin content g;. The equations relating these biophysical variables are:

sk
dt
dfi
dt
A% g @)

dt
dqk _ a
dt P k Vi

=051 43— ksg —y(fi — 1)

with finally
B =vo [ki(1 —qi) + k(1 - %Z) +k3(1—w)

being the final measured BOLD signal.
We actually used the updated version described later on [59], which consists on introducing the change of variables Z = Inz,
which induces the following change for z = f}, vi and gy, with its corresponding state equation dz = F(z), as:

dz _dln(z) dz F(z)

dt  dz dt  z

which results in z(¢) = exp(3(¢)) always being positive, which guarantees a proper support for these non-negative states, and
thus numerical stability when evaluating the state equations during evaluation.

5.6 AjB-Tau model:

In our heterogeneous model, Af and Tau are introduced, at the formulae for the neuronal response functions, HED (excita-

(EJD)

tory/inhibitory), into the gain factor M, "’ for the k-th area as

ME = (l—i—bgﬁ —I—SfﬁAﬁk)(l—&-bf—i-sftauk) 8)
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= (14bjyp + 54 g ABK) (1 + b + siraw) )

(E; )

where b (A

(E.)

(AB.7) are the respective scaling factors.

These are the 8 (from which actually only 6 are needed as tau only affects excitatory neurons [60], see next section) parameters
that we will optimize for each subject individually.

are the excitatory/inhibitory Af and tau bias parameters, while s

5.7 Constraints
Based on previous neuroscientific experiments [11], we included constraints on the direction of effect of AB and tau (i.e.,
inhibitory vs. excitatory influence). We introduced the following constraints:

* AP produces inhibitory GABAergic interneuron dysfunction [61, 62], thus we can infer that sg g < 0.
* AP produces impaired glutamate reuptake [61, 62], so we can introduce the bound sﬁ B > 0.

* Tau appears to target excitatory neurons [60], so we can safely consider that 5%, = 5L = 0.

* Tau binds to synaptogyrin-3, reducing excitatory synaptic neurotransmitter release [63], thus s£ < 0.

Although the interplay between A and tau is not completely known [11], but there is evidence that A promotes tau
by cross-seeding [64, 65], thus the cross term factors (i.e., the ones resulting from the multiplication of Af and tau scaling
parameters) play a crucial role to elucidate the final impact of the combined burden.

5.8 Observables

edge-centric FC The static edge-level FC is defined as the N x N matrix of BOLD signal correlations between brain areas
computed over the entire recording period (see Figure 5). We computed the empirical FC for each human participant and for
each simulated trial, as well as for the group-averages SC matrix of the healthy cohort. All empirical and simulated FC matrices
were compared by computing the Pearson correlation between their upper triangular elements (given that the FC matrices are
symmetric).

swFCD The most common and straightforward approach to investigate the temporal evolution of FC is the sliding-window
FC dynamics (swFCD) [66, 67, 68, 69, 70, 43]. This is achieved by calculating the correlation matrix, FC(t), restricted to a
given time-window (¢ —x : # 4+ x), and successively shifting this window in time resulting in a time-varying FCy 7 matrix
(where N is the number of brain areas and 7 the number of time windows considered). Here, we computed the FC over a sliding
window of 30 TRs (corresponding approximately to 1.5 minutes) with incremental shifts of 3 TRs. This FCD matrix is defined
so that each entry, (FCD(ty, ty)) corresponds to the correlation between the FC centered at times ¢, and the FC centered at #,. In
order to compare quantitatively the spatio-temporal dynamical characteristics between empirical data and model simulations,
we generate the distributions of the upper triangular elements of the FCD matrices over all participants as well as of the FCD
matrices obtained from all simulated trials for a given parameter setting. The similarity between the empirical and model FCD
distributions is then compared using the KS distance, Dk, allowing for a meaningful evaluation of model performance in
predicting the changes observed in dynamic resting-state FC. However, the fundamental nature of the swFCD technique implies
the choice of a fixed window length, which limits the analysis to the frequency range below the window period, so the ideal
window length to use remains under debate [71, 72, 73, 74, 75].

phFCD In an attempt to overcome the limitations of the sliding-window analysis, a few methods were proposed to estimate
the FC(t) at the instantaneous level. For instance, phase Functional Connectivity Dynamics (phFCD) consists in computing
the phase coherence between time series at each recording frame [76, 77, 78, 35]. In brief, the instantaneous BOLD phase
of area n at time ¢, 6,(¢), is estimated using the Hilbert transform. Given the phase, the angle between two BOLD signals is
given by their absolute phase difference: ©,, = |6,(¢) — 6,(¢)|. Then, the phFCD(t) between a pair of brain areas n and p is
calculated as:

phFCDnp(t) = cos(®np(t)),n,pe N=1,...,N

with N the number of brain regions considered in the parcellation used.
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5.9 2D Aj Optimization

We can use our model to verify the results by Stefanovski et al. [21] by limiting our analysis to the parameters of Af3 at the
inhibitory level (i.e., the inhibitory bias b/{‘ and scaling sf4 parameters only, defined in Equation 9). This way, we can replicate,
up to a certain degree, the results from that paper, being limited by the fact that we use a different model, based on the BEI
model instead of the Jansen-Rit model [34]; a different expression for the burden, i.e., a linear approximation instead of a
sigmoid; different units, etc. See Figure 3. By analyzing the obtained data at the optimal fit, the same behavior of decreasing
the neuronal activity of inhibitory neurons with the scaling parameter Sﬁx B corresponding to an increase in A} concentration,
can be observed, as shown in Figure 6.

5.10 Full Optimization

To efficiently optimize the 6-dimensional function described before for the three bias and scaling values, we used a Bayesian
optimization algorithm using Gaussian Processes (GP), which approximates the function using a multivariate Gaussian. In
particular, our implementation uses the gp_optimize method from the scikit-optimize Python library, which uses a GP kernel
between the parameters to obtain the covariance of the function values. With this information, the algorithm chooses the next
parameter to evaluate by selecting the acquisition function over the Gaussian prior.

Data and code availability statement

All code for implementing computational models and reproducing our results is available at https://github.com/
dagush/WholeBrain
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