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Abstract 

 

Hawksbill sea turtles (Eretmochelys imbricata) from the Hawaiian archipelago form a small, 

genetically isolated, population consisting of only a few tens of individuals breeding annually. 

Most females nest on the island of Hawai’i, but little is known about the demographics of this 

rookery. This study used genetic relatedness, inferred from 135 microhaplotype markers, to 

determine breeding sex-ratios, estimate female nesting frequency, and assess relationships 

between individuals nesting on different beaches. Samples were collected during the 2017 

nesting season and final data included 13 nesting females and 1,002 unhatched embryos, 

salvaged from 41 nests, 13 of which had no observed mother. Results show that most females 

used a single nesting beach laying 1-5 nests each. From female and offspring alleles the paternal 

genotypes of 12 breeding males were reconstructed and many showed high relatedness to their 

mates. Pairwise relatedness of offspring revealed one instance of polygyny but otherwise suggest 

a 1:1 breeding-sex ratio. Relatedness analysis and spatial-autocorrelation of genotypes indicate 

non-random mating among complexes of nesting beaches, for both sexes, suggesting strong natal 

philopatry. Nesting complexes also showed unique patterns of inbreeding and outbreeding across 

loci, further indicating that Hawaiian hawksbill turtles have demographically discontinuous 

nesting populations at a fine spatial scale. 
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Introduction 

 

It is increasingly recognized that the maintenance of a population’s size and corresponding 

genetic diversity is necessary for its long-term persistence (Luque et al. 2016; Hoban et al. 2020; 

Kardos et al. 2021). Population decline often results in a significant loss of genetic diversity that 

leads to a cascade of detrimental effects such as inbreeding depression (Keller and Waller 2002; 

Reed et al. 2002; O’Grady et al. 2006; Jamieson and Allendorf 2012; Caballero et al. 2017; 

Hoban et al. 2020), loss of adaptive potential (Pinsky and Palumbi 2014; Hoffman et al. 2017), 

and a reduced capacity for population recovery (Hughes and Stachowicz 2004; Walsh et al. 

2006; Worm et al. 2006; Johnson et al. 2016). For populations that remain small and isolated for 

prolonged periods of time the risk of extinction is high (Kardos et al. 2021). 

Most sea turtle populations worldwide have been dramatically reduced in size from 

historical levels, and virtually all still face challenges to persistence posed by a variety of human-

related impacts (Hamann et al. 2010; Wallace et al. 2011; Riskas et al. 2016; Jensen et al. 2018). 

The alarming rate of sea turtle decline has prompted several decades of conservation effort that 

has resulted in some cases of meaningful population recovery (Chaloupka et al. 2008; Hamilton 

et al. 2015; Valdivia et al. 2019; Pritchard et al. 2022), suggesting that proper management can 

reverse negative trends and help ensure long-term persistence. However, not all populations have 

responded well to conservation protections and it is currently unclear what role genetic diversity 

may play in the ability of some sea turtle populations to rebound after experiencing demographic 

bottlenecks (Komoroske et al. 2017). 

The hawksbill turtle (Eretmochelys imbricata) is a circumtropically distributed marine 

reptile with nesting colonies scattered across the Atlantic and Indo-Pacific. In the past their 

numbers have dwindled for many of the same reasons as other sea turtle species but also for 
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being disproportionately targeted by the international shell trade, which is illegally ongoing in 

many countries (LaCasella et al. 2021). Some hawksbill populations have shown signs of recent 

recovery (Hamilton et al. 2015; Valdivia et al. 2019) in response to management interventions, 

but others continue to decline despite efforts to protect their remaining numbers (Bell et al. 

2020). Currently, E. imbricata is listed as endangered under the US Endangered Species Act 

(ESA; NMFS and USFWS 2013), and as critically endangered by the IUCN Red List (Mortimer 

and Donnelly 2008). 

 In the Hawaiian archipelago, hawksbill turtles are described as rare and their resident 

population is thought to include less than 100 adult females, with only 5-26 nesting annually 

(van Houtan et al. 2012; van Houtan et al. 2016; Gaos et al. 2021). The population may also be 

predominantly female, as only 1 in 5 strandings in Hawaii are male (Brunson et al. 2022). Field 

surveys of nesting activity have been conducted since the 1980s with varying levels of effort, and 

predictive modeling based on these data suggests a recent uptick in the number of nesting 

females (Gaos et al. 2021). Nevertheless, the population remains extremely small, even though 

hawksbills have had endangered species status in the United States since 1970 

(https://www.federalregister.gov/citation/35-FR-8491). 

 Given the vulnerability of Hawaiian hawksbill turtles, due to their chronically low 

abundance, and the fact that they harbor unique mitochondrial genetic diversity for this species 

(Gaos et al. 2020), there is motivation to better understand the conservation needs of this 

population. Monitoring these turtles is difficult, however, because in addition to being one of the 

smallest sea turtle populations in the world (van Houtan et al. 2016) nesting also takes place at 

multiple remote and hard-to-access beaches, most of which are located along the southern coast 

of Hawai’i Island (Gaos et al. 2021). Consequently, many nests are discovered with unknown 
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mothers and field efforts have been unable to confidently census nesting females. A consequence 

of these uncertainties is that the mating system of Hawaiian hawksbills, and their operational 

breeding sex ratios are unknown. 

 One way to fill demographic information gaps for Hawaiian hawksbill turtles is with 

genetic relatedness analysis. Using genetic markers, it is possible to infer parent-offspring 

relationships between known nesting females and nests where the mother is unidentified (Frey et 

al. 2013; 2014) and obtain a more complete population census. The genetic relationships of 

offspring within and among nests also indicate patterns of paternity, and can be used to obtain 

information on mating systems and breeding sex ratios (Stewart and Dutton 2011; 2014a; Lasala 

et al. 2018). In this study, an amplicon-based array of single nucleotide polymorphisms (SNPs), 

and small nucleotide insertion-deletion (indel) markers, was developed to capture population-

specific variation in Hawaiian hawksbill turtles and to estimate pairwise genetic relatedness. The 

data presented hereafter provide insight into the basic reproductive biology of a precariously 

endangered population of sea turtles, and also show that such studies can yield unexpected 

results with importance to conservation management. 

 

Methods 

 

Sample collection and study design 

 

Tissue samples from nesting females were collected during the 2017 breeding season at five 

nesting beaches located along the southern coast of Hawai’i island. Samples consisted of a skin 

biopsy (~ 0.5 cm2) taken from the neck or shoulder. Tissue was stored in a high-salt solution for 

transport. Offspring tissue collections were flippers of dead embryos salvaged from 41 nests 

(Table 1) after live hatchlings had vacated the nesting chamber. For thirteen of these nests the 
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mother was not observed during nesting and is unknown. Ten females from the 2018 nesting 

season were included in this study to act as control samples for assigning mothers to nests. 

Female Hawaiian hawksbills are not known to nest in consecutive years (Gaos et al. 2021), so it 

is presumed that these off-year individuals could not have been the unidentified mothers and thus 

serve as negative controls. Inconel flipper tags (National Band & Tag, Newport, KY, USA) and 

Passive Integrated Transponder (PIT; Avid, Norco, CA, USA) tags were applied to all female 

turtles encountered to confirm and track identity during the nesting seasons. 

 

Marker development 

 

Because the power of genetic relatedness improves more with increased marker polymorphism 

and heterozygosity than the total number of markers (Sefc and Koblmüller 2009), this study 

sought to develop a panel of 100-300 polyallelic microhaplotype loci (see Gattepaille and 

Jakobsson 2012; McKinney et al. 2017; Baetscher et al. 2018) to capture genetic variation 

specific to Hawaiian hawksbill turtles. Candidate loci for a PCR-amplicon array were chosen 

from double-digested restriction site associated DNA sequences (ddRADseq; Peterson, Weber, 

Kay, Fisher, and Hoeskstra, 2012) from 18 Hawaiian hawksbills. Individual DNA concentrations 

were normalized to 500ng and samples were digested with two independent sets of two enzymes: 

set one (library 1) included EcoR1 and Sph1, and set two (library 2) included MluC1 and Sph1. 

Genomic fragments between 400-600bps were excised from a 2% Agarose gel. All other details 

of the library preparations were performed as in Peterson et. al (2012). Libraries were sequenced 

on an Illumina MiSeq sequencing platform using a paired-end approach and a 600 cycle 

sequencing kit. The pipeline STACKS v1.34 (Catchen et al. 2013) was used to demultiplex raw 

reads and identify allelic variants, requiring a minimum stack depth of 4(m), a distance of 4(M) 
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allowed between stacks, and a distance of 4(n) allowed between catalog loci. A total of 63,610 

unique genomic segments were found, of which 2,439 held at least two SNPs for at least 5 

individuals. Loci were also screened for the density of polymorphisms at 100-300 bp intervals. 

Three hundred and seventeen genomic segments were randomly selected from the remaining 

Stacks loci for amplicon design, and PCR primers were designed for 259 of the candidate loci 

using FastPCR software (Kalendar et. al, 2017). Following 4 rounds of panel optimization, and 

the removal of paralogous sequences, 229 loci remained in the final panel. 

 

DNA extraction, PCR amplification, and DNA sequencing 

 

Genomic DNA was extracted from tissue using a sodium chloride extraction (modified from 

Miller et al. 1988). Extracted DNA concentrations were normalized to 10 ng/ul. A total of 1,242 

individuals were included for PCR amplification and sequencing, plus 180 replicates to assess 

genotyping consistency, and one negative control with no template DNA for every 96-well plate. 

 The Genotyping-in-Thousands by Sequencing protocol (GT-seq) of Campbell et al. 

(2015) was used to generate sequence data for genotype calling. An initial multiplex PCR 

containing locus-specific primers with Illumina (Illumina, Inc., San Diego, CA) priming sites for 

229 amplicons was performed, followed by a second PCR to add Illumina adapters with indexes. 

Amplicon DNA concentrations were normalized across samples following PCR 2, using 

SequalPrep™ Normalization Plate Kits (Thermo Fisher Scientific), and pooled for a purification 

step performed using Agencourt ® AMPure ® XP magnetic beads to size select PCR products 

for sequencing. Each purified pool was quantified by Qubit Fluorometer (Thermo Fisher 

Scientific), and then by qPCR with the Illumina Library Quantification Kit (Kapa Biosystems). 

Pools were normalized to 4nM and pooled together. The library was sequenced on an Illumina 
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Nextseq 500 using a single-end approach and a 150-cycle sequencing kit. All other details of the 

thermal cycling and library preparation are as in Campbell et al. (2015). 

 

 

Data processing, SNP genotyping, and microhaplotying 

 

Adapter sequences, and base-pairs with a Phred quality score < 15, were trimmed from fastq 

reads using the program FASTP v. 0.23.1 (Chen et al. 2018). Sequences smaller than 90 bp after 

trimming were also excluded. Trimmed reads were then aligned to a fasta reference using the 

program BOWTIE2 v. 2.3.4.1 (Langmean and Salzburg 2012). Alignments were then sorted and 

indexed using SAMBAMBA v. 0.7.1 (Tarasov et al. 2015) while requiring a mapping quality 

score of ≥ 20. Sample alignments with fewer than 10,000 mapped reads were determined to have 

suboptimal amplicon sequencing depth and were excluded from further processing. 

To reduce software biases introduced during genotyping (see Huwang et al. 2015; Ni et 

al. 2015; Sandmann et al. 2017; Ros-Freixedes et al. 2018) and improve genotyping accuracy 

(Jasper et al. 2022), variant calling was performed independently using three programs: 

BCFTOOLS v. 1.9 (Danecek et al. 2021), FREEBAYES v. 1.3 (Garrison and Marth 2012), and 

GATK-HC v. 3.8 (McKenna et al. 2010). Sensitivity was maximized for all three callers by 

accepting low alternate allele fractions (FREEBAYES), applying read fractions to individual 

rather than pooled samples (BCFTOOLS), and disabling pruning algorithms (GATK-HC). 

Called variants were reduced to their simplest components using the vcfallelicprimitives script 

from VCFLIB (Garrison et al. 2021). To minimize the tradeoff between genotyping sensitivity 

and accuracy, variants with low genotyping fidelity were identified using sequencing replicates 

and discarded if they had mismatched allele calls in > 7% of replicate sample pairs. In addition, 

variants were discarded if they weren’t identified by at least 2 out of the 3 variant callers, or had 
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> 5.5% allelic mismatches among callers. The 7 and 5.5% mismatch thresholds were chosen 

after viewing histograms of allelic mismatches and making a qualitative determination about the 

level of genotyping noise (from unavoidable PCR and sequencing errors) that should be tolerated 

as normal (Supplementary Fig. 1). The custom R functions that performed the mismatch 

comparisons are available online (github.com/jh041/loc_gen_acc). SNPs and small indels that 

were robust to genotyping errors were then filtered for minor allele frequency and missing data 

using VCFTOOLS v. 0.1.16 (Danacek et al. 2011). Any variants with a minor allele frequency 

less than 0.01 were removed. Another experimental version of the data was also produced that 

required a minor allele frequency threshold of 0.05 and only allowed binary SNPs. Filtering for 

missing data followed an iterative approach, gradually decreasing missing data allowances from 

80% to 30% for both loci and individuals. Variants from the three callers were filtered separately 

and not combined into a single data set until after microhaplotyping. 

Microhaplotyping was performed using the R package MICROHAPLOT v. 1.0.1 

(https://github.com/ngthomas/microhaplot) that uses both genotype calls and mapped reads to 

produce short phased haplotypes of all genetic variation found on each PCR amplicon. 

Additional filtering parameters were applied to microhaplotypes using MICROHAPLOT’s R 

Shiny app., including a minimum total microhaplotype read depth of 12, and an initial minimum 

allelic ratio of 0.50 (the minor microhaplotype allele must have a depth at least one half that of 

the major allele). Afterwards, the allelic ratios were refined for each amplicon locus individually 

by examining the relative depths of alleles for homo and heterozygous microhaplotype calls. The 

acceptable allele ratio for a homozygous call was never more than 0.09. The acceptable allele 

ratio for a heterozygous call was never less than 0.20. A minimum fraction of 0.7 

microhaplotypes with acceptable allelic ratios across all individuals was required for each 
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amplicon. If any individual had more than two possible microhaplotypes for the same locus 

(possibly indicating DNA contamination) the locus or sample was either removed, or noisy low-

frequency microhaplotypes were excluded. At this point, microhaplotype calls arising from the 

FREEBAYES, BCFTOOLS, and GATK_HC outputs were combined into a single data set. 

Microhaplotype loci were removed from the analysis if more than 7% of allele calls were 

mismatched with replicate samples. Linkage among amplicon microhaplotypes (LD) and 

departures from Hardy-Weinberg expectations (HWE) were assessed using the program 

GENEPOP (Rousset 2008) and GENODIVE v. 3.05 (Meirmans 2020) adjusting p-values for 

multiple hypothesis testing using the method of Benjamini and Hochburg (1995). 

 

Genetic diversity and relatedness analysis 

 

Genetic diversity statistics for our samples, including heterozygosity and G-statistics, were 

calculated for the final dataset using GENODIVE. Pairwise relatedness coefficients (r) were 

computed for all turtles with the R package RELATED v. 1.0 (Pew et al. 2015) using sample 

allele frequencies as reference points for the calculation of allelic states. The analysis is sensitive 

to genetic stratifications and linkage disequilibrium (Oliehoek et al. 2006), therefore, if two loci 

were shown to be in linkage disequilibrium then one of them was removed before relatedness 

analysis, and a number of different sample subsets were experimentally used to explore the 

sensitivity of the analysis to changes in the sample reference. The relative performances of the 

different relatedness estimators available from RELATED were evaluated using the native 

simulation modules for this package, generating 100 simulated genotypes each of four 

relatedness classifications (Parent-offspring, full-sibling, half-sibling, and unrelated). The 

estimator with the best correlation between simulated and inferred coefficients across all 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 1, 2022. ; https://doi.org/10.1101/2022.10.30.514389doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.30.514389
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

relatedness classes was then used to compute r for the empirical data. Final analysis was run with 

1,000 bootstrap replicates to generate 95% confidence intervals for each pairwise value, and used 

an error-rate parameter of 0.02 for each locus. Inbreeding was set to “allowed.” 

Pairwise relatedness was also inferred using the R package CKMRsim v. 0.1 (Anderson 

2022), which uses a pseudo-likelihood approach and Monte Carlo pedigree simulations to model 

relatedness based on data-specific allele frequencies. In theory, this approach is less sensitive 

than relatedness coefficients to structures in the sample allele frequencies, because these become 

incorporated into the model, but power is still compromised by linkage disequilibrium between 

loci (Baetshcer et al. 2018). The results of this analysis were validated with 10,000 simulated 

genotype pairs of each relatedness type, generated using CKMRsim’s model framework. 

Simulated data was used to determine expected type-I and type-II error rates and baseline ranges 

of log-likelihood ratios for the following relatedness tests: parent-offspring vs. unrelated, full-

sibling vs. unrelated, half-sibling vs. unrelated, and full-sibling vs. half-sibling. This analysis was 

also run with an assumed 2% error rate per locus. 

Lastly, relatedness analysis was performed in COLONY v. 2.0.6.6 (Jones and Wang 

2010), which differs from the other relatedness analyses by inferring the full pedigree likelihood 

of all samples simultaneously, instead of relying on pairwise inferences of relatedness. This 

analysis also uses pedigree information to assess genotyping error rates for each locus and 

reconstruct the pedigrees of unknown parents, such as the unsampled male hawksbill sires in this 

study. The paternal genotypes imputed from COLONY2 analysis were incorporated into all 

previously mentioned analyses as additional samples. Inbreeding and polygamy was allowed in 

the analysis. COLONY2 also estimates the effective population size (Ne) of the breeding 

population using the sibship assignment method (Wang 2009). 
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Due to small population size, a strong signal of background inbreeding was suspected for 

Hawaiian hawksbill turtles, which can confound the accuracy of standard pairwise relatedness 

metrics (Brustad and Egeland 2019; Vigeland 2020). Though some of the used relatedness 

calculations have methods to reduce inbreeding biases implicit in the data (e.g. COLONY2), 

whether these were sufficient for the target population was not known a priori. However, 

because there were known relationships in our data (i.e. observed nesting females and offspring, 

full-sibling nestmates) we relied on relatedness inferences between these individuals to 

determine if inbreeding was adversely impacting relatedness estimates. 

 

Spatial patterns of genetic variation 

In addition to relatedness inferences, several methods available in the R package ADEGENET 

(Jombart et al. 2011) were used to assess spatial allelic patterns using multivariate statistics that 

do not assume loci are in linkage equilibrium, or in Hardy-Weinberg proportions, and which are 

not sensitive to signals of selection or inbreeding. First, the data from 2017 nesting females and 

reconstructed paternal genotypes were clustered according to a K-means clustering algorithm, 

using 20 principal components as predictors. Discriminant Analysis of Principal Components 

(DAPC: Jombart et al. 2010) was then used to give a multivariate ordination of genetic 

differentiation based on these clusters. Finally, whether there was any positive spatial 

autocorrelation of genotypes among nesting sites was assessed using a spatial principal 

components analysis (Jombart et al. 2008). All individuals were georeferenced with latitude and 

longitude coordinates corresponding to nesting beaches where their offspring were born, with a 

slight amount of jitter added to avoid replicate coordinates. Statistical support for the result was 

determined using a Monte Carlo procedure (the global rtest included in the ADEGENET 
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package) and 1,000 permutations. The p-value of this test indicates the proportion of permuted 

statistics that exceed or are equal to the maximum observed value. 

 

Results 

Data processing, and genetic diversity 

The mean number of raw, unmapped fastq DNA sequence reads per turtle was 366,235. Out of 

1,422 raw fastq files, 257 were discarded for having less than 10,000 mappable reads, leaving 

1,165 for analysis. The mean number of mapped reads across 1,165 samples was 271,490. The 

mean sequencing depth of PCR amplicons in the multiplex ranged from 22 to 7,500, with most 

having depths between 300 and 500. Of the 1,165 mapped samples 140 were replicates used to 

assess the consistency of genotype calls. The final data included 1,002 offspring from 41 nests, 

13 adult females from the 2017 breeding season (Table 1), and 10 control females from the 2018 

breeding season. 

The three variant calling software programs each returned different numbers of raw SNP 

and indel DNA polymorphisms (BCFTOOLS = 1,839, FREEBAYES =  971, and GATK = 766). 

A total of 2,201 variants were detected by all programs. After removing variants with poor 

genotyping consistency across replicate samples and between variant calling programs, and 

filtering for missing data, there were 281, 202, and 256 variants from each of the callers, 

respectively. Only one of the final variants was an indel. Binary SNPs made up 85-98% of the 

other variants with the rest being trinary or quaternary SNPs. The final mean numbers of variants 

per PCR amplicon were 1.66, 1.72, and 1.58, for each of the callers respectively (Supplementary 

table 1). Preliminary analyses using only binary SNPs and a minor allele frequency threshold of 

0.05 returned results consistent with the final data set that included all variant types. 
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A total of 170 PCR amplicons from all three callers were used for microhaplotyping and 

135 final microhaplotype loci passed all filtering parameters, including linkage disequilibrium. 

The mean number of microhaplotype alleles per locus was 2.61, and the maximum number of 

alleles was seven (Fig. 1a). The mean missing data across all markers was 0.5% (Fig. 1b). The 

mean genotyping consistency of the final marker panel across replicate samples was 97.7%, and 

only two microhaplotype loci needed to be removed for having less than 93% consistency. 

Genotyping error rates estimated by COLONY2 suggest that the mean allelic drop rate across all 

markers was 3.5% (95% c.i = 1.77% - 6%), and the mean rate of all other errors was 0.4% (Fig. 

1c,d). Estimated allelic drop rates were associated with the amount of missing data in each locus. 

Patterns of genetic diversity differed between nesting complexes, especially across the 

southern point of the island (South Point) separating the ‘Āpua and Kamehame complexes in the 

east from the Pōhue complex in the west (Fig. 2a), with some loci having fixed alleles across this 

divide. Heterozygosity and allele frequencies were positively correlated for most loci between 

east and west nesting complexes, but not GIS values (Fig. 3). The locus-specific GIS values for 

both the east and west nesting complexes ranged between -0.7 and 0.7, with mean values falling 

below zero in both cases, and being significantly different from zero after 1,000 bootstrap 

replicates (Fig. 3c). In spite of many extreme GIS values, departures from HWE were not 

statistically supported for any locus when both nesting complexes were analyzed jointly. 

 

Relatedness analysis 

The best method-of-moments relatedness estimator for our data was that of Lynch and Ritland 

(1999), being over 94% correlated with the simulated levels of relatedness, and is hereafter 

referred to as r. The r distributions of known pairwise parent-offspring and full-sibling 
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relationships from this study overlapped with simulated ranges but empirical r values tended to 

be lower than simulated data (Fig. 4). Changing the reference allele frequencies (by including or 

excluding offspring, 2018 nesters, or only using allele frequencies from the same nesting 

complex) did little to alleviate the skew. Nevertheless, whenever mean r was low the upper 95% 

confidence limit was helpful as a secondary measure for comparing pairwise relatedness to 

simulation expectations (Fig. 4). 

Log-likelihood ratios for known parent-offspring and full-sibling relationships were 

approximated by simulated distributions (Fig. 5). In general, methods-of-moments and 

likelihood-based relatedness methods were in strong agreement with each other, and both were 

concordant with COLONY2 results. Every nesting female with a known nest was correctly 

identified by all three analyses as the mother of the offspring (Table 1). Likewise, offspring from 

nests with an unknown mother had clear parentage with a single candidate female in all but two 

cases (Table 1). The only exceptions were nests Pohue-24 and -25, where COLONY2 indicated 

mother-159 as the best mother for both with only 68.7% confidence, and the other methods were 

equally inconclusive. However, nest Pohue-25 is known to have been laid by mother-160, which 

was not sampled for this study but may be closely related to mother-159. 

Given that nests Pohue-24 and -25 were likely laid by the same turtle, our data indicate 

14 nesting females were responsible for the 41 sampled nests. Nesting females laid 1-5 nests 

with the mean being 2.9 (Table 1). Mother-157 was the only female to use multiple nesting sites 

within the same nesting complex, with two nests at ‘Āwili beach and one at Pōhue beach. 

Paternal genotype reconstructions in COLONY2 indicate that there were 12 breeding 

males for 13 breeding females, with father P07 having mated with mother-119 and mother-176 

(Table 1; Fig. 2b). Examination of pairwise relatedness between the offspring of these two 
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nesting females corroborates this, indicating that they are half-siblings. Therefore, the 

operational breeding sex ratio for Hawaiian hawksbill turtles in 2017 appears to be near parity, 

with some female bias in the Pōhue nesting complex. There was no evidence of any half-sibling 

relationships among any of the nestmates, and no indication of polyandry during the 2017 

breeding season. Mean estimates of Ne from COLONY2 were 8 and 16 for non-random and 

random mating scenarios respectively. The upper and lower 95% confidence bounds for Ne 

ranged from 4 to 34 across all estimates. 

One unexpected result from the pairwise relatedness coefficients was that mean r for all 

the nesting females was noticeably less than the mean r values for the east and west nesting 

complexes individually. Closer inspection revealed that turtles breeding on opposite sides of 

South Point, both males and females, tended to be more related to each other than to turtles 

nesting across the point (Fig. 2b). Many breeding pairs also had high pairwise r values between 

them, especially from the ‘Āpua and Kamehame nesting complexes (Table 1). These data 

indicate that breeding individuals are mating non-randomly across the study area, and that 

inbreeding is not avoided when unrelated mates are available at other nearby breeding areas. 

 

Spatial patterns of genetic variation 

The K-means clustering algorithm implemented in ADEGENET correctly split nesting females 

and inferred paternal genotypes between eastern and western nesting complexes, corroborating 

genetic diversity indices and relatedness analysis, and suggesting that these genetic differences 

are biologically meaningful. Genetic differences may also separate the eastern ‘Āpua and 

Kamehame nesting complexes, the latter of which was poorly sampled in the current study, but 

the available data indicate that the strongest genetic differentiation divides Hawai’i Island 
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nesting turtles across South Point (Fig. 2). In terms of population structure, the G’ST value 

between the eastern and western turtles was 0.036, p < 0.005; G’’ST was 0.061, p < 0.005; and 

Jost’s D was 0.027, p < 0.005. When only the twelve most polymorphic microhaplotype loci, 

with four or more alleles, were assessed for population structure the indices were: G’ST = 0.062, 

G’’ST = 0.152, Jost’s D = 0.06, with all values being statistically supported at p < 0.005. In both 

sPCA and DAPC analysis a significant portion of the conserved genetic variance was spatially 

segregated across South Point (Fig. 3c). Thus, both male and female Hawaiian hawksbill turtles 

appear to exhibit strong natal philopatry and are sorting geographically according to nesting 

complex. 

 

Discussion 

Though all sea turtles exhibit natal homing behaviors, genetic evidence shows variation among 

species, populations, and individuals in nesting site fidelity (Jensen et al. 2013). Female 

leatherback turtles (Dermochelys coriacea), for example, are not as strictly philopatric as other 

species (Thorson et al. 2012), and individuals display a range of nesting behaviors with some 

laying nests over 400 km apart in a single nesting season (Stewart et al. 2014b). Hawksbill 

females, in contrast, are among the more faithful of sea turtles to their natal nesting areas (Bowen 

et al. 2007; Monzón-Argüello et al. 2011; Gaos et al. 2016; Soanes et al. 2022), but many 

populations are genetically connected through male-mediated gene flow, particularly when 

rookeries are located along the same coastline (Phillips et al. 2014; Levasseur et al. 2019; see 

also Roden et al. in review). Compared to what has been reported for hawksbills in other parts of 

the world, the level of genetic differentiation observed among Hawaiian nesting complexes was 

high and unexpected. 
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Not only was there significant genetic population structure detected within the study area, 

but relatedness analysis revealed that both males and females appear to be mating assortatively 

by nesting complex (Fig. 2). The coastline distance between complexes (< 100 km) is trivial 

compared to the dispersal capabilities of an adult sea turtle, therefore, Hawaiian hawksbills 

appear to breed with other members of their same complex even when other mating opportunities 

are available. Contrasting signals of inbreeding and outbreeding among complexes at each locus 

(Fig. 3c) indicate that these results are not unique to the 2017 nesting season alone, because this 

pattern would require generations to form and would return mean GIS values to zero after one 

generation of random mating. Population structure (G’ST) is likely exacerbated by small 

population size, but also indicates that there is limited longer-term genetic exchange. More data 

will be needed to make sense of the distinct east-west inbreeding patterns, but one explanation 

could be that Hawaiian hawksbill nesting colonies are currently trying to balance tradeoffs 

between inbreeding and outbreeding depression (Edmands 2007). 

Inbreeding and outbreeding depression require an association between genetic diversity 

and reproductive fitness. In sea turtles, one measure of this fitness is likely the successful hatch 

rate of eggs. In the present study all sampled offspring were unsuccessful hatches, and the rate of 

successful hatches was assessed from empty egg shells in the nest chamber (data not shown). 

These data from the 13 females included in this study were not large enough for robust statistical 

analysis, but a study by Phillips et al. (2017) that was able to sample 95 nesting hawksbill 

females from the Seychelles, and their offspring, found evidence of both positive and negative 

correlations between multi-locus heterozygosity and hatching success, which suggests tension 

between inbreeding and outbreeding depression. Future studies of Hawaiian hawksbills, and 

other threatened populations of marine turtles, should pay closer attention to the relationship 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 1, 2022. ; https://doi.org/10.1101/2022.10.30.514389doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.30.514389
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

between genetic diversity and reproductive success, this being an aspect of their biology that is 

poorly understood but consequential for favorable conservation outcomes (Komoroske et al. 

2017). 

For breeding units as small as the nesting complexes of Hawaiian hawksbill turtles, even 

infrequent gene flow between them may be enough to prevent the loss of genetic diversity and 

stave off the worst effects of inbreeding (Whitlock et al. 2000; Whitley et al. 2015; Kardos et al. 

2021; Sachdeva et al. 2022). This is because in a subdivided population random genetic drift will 

cause alleles to equilibrate differently in the different subunits, and the smallest subunits will 

experience the strongest genetic drift (Slatkin 1987). Gene flow between population subunits 

with different drift loads can yield substantial heterosis benefits, which are maximized when 

population sizes are small and migration between them is low (Whitlock et al. 2000). A loosely 

connected metapopulation of small breeding units would also theoretically be able to purge 

deleterious alleles more effectively, and potentially be more stable than a single randomly mating 

population with the same number of individuals (Sachdeva et al. 2022). Testing such a 

hypothesis for sea turtles would be difficult, but this could help explain why some populations 

appear perpetually small but steady over extended periods of time. 

The mating system of Hawaiian hawksbills may also be important for genetic load 

management in this small population. This is because assortative mating within breeding groups 

can allow lineages to purge deleterious mutations more efficiently, in a similar fashion as 

subdivided populations (Muralidhar et al. 2022). In other parts of the world, hawksbill breeding 

sex ratios can be heavily female biased, presumably due to a limited supply of males in small 

populations (Gaos et al. 2018), but the Hawaiian rookeries have even fewer breeding individuals 

than elsewhere and a nearly 1:1 sex ratio, notwithstanding that females may outnumber males 
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4:1 overall in the archipelago (Brunson et al. 2022). Therefore, it cannot be ruled out that 

Hawaiian hawksbills are highly selective in their mate choices, even within nesting complexes 

(Fig. 2b; Table 1; see next section). 

Because of the demographic discontinuity between nesting complexes there could in 

reality be multiple mating systems, and differences in breeding sex ratios, within the Hawaiian 

hawksbill metapopulation. At the outset of this research this degree of population complexity 

was not anticipated and more samples will be needed to elaborate on the patterns uncovered in 

this work. For example, more turtles from the Kamehame complex are required to determine 

genetic structure with nearby ‘Āpua (Fig. 2), and there are other nesting areas in the main 

Hawaiian islands that could be genetically and demographically unique. Most nesting sites not 

on the island of Hawaii are extremely low-density, having less than two nests laid annually, but 

one rookery on the island of Molokai has at least as many nesting females as any of the Hawaii 

Island nesting complexes (Gaos et al. 2021). Samples from multiple breeding seasons are also 

needed to better understand mating systems and female nesting behavior within and between 

complexes. 

 

Skew in estimates of pairwise relatedness 

The genetic drift and mating system that determine the level of structure between two 

populations also determine the level of relatedness between two individuals, thus genetic 

population structure and genetic relatedness are two different aspects of the same variation (Weir 

and Goudet 2017). Just as measures of population structure can be seen as coancestry averages 

between the individuals in populations (Karhunen and Ovaskainen 2012), relatedness is a 

measure of coancestry between two individuals (Rousset 2002). The inextricable connection 
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between genetic structure and genetic relatedness means that patterns in one are relevant to 

patterns in the other. 

An overabundance of negative relatedness coefficients was observed for unrelated 

Hawaiian hawksbill turtles, and the r values of many related individuals were also depressed 

compared to distributions simulated under optimal conditions (Fig. 4). For the purposes of 

distinguishing related turtles from unrelated ones this skew is just noise, because all relatedness 

methods were able to correctly identify known relationships, regardless. But given the degree of 

inbreeding revealed by this study the skew deserves further exploration because negative 

pairwise r values are expected for samples that are outbred (have fewer loci that are identical-by-

descent) relative to the reference allele frequencies (Wang 2014; 2017). 

One source of skew in the data could be genetic structure in the reference allele 

frequencies, which can negatively bias relatedness estimates (Oliehoek et al. 2006; Wang 2017). 

Significant genetic structure was found between nesting complexes, but the skew in r values 

persisted even when the reference was generated exclusively from the same nesting complex. For 

the eastern nesting complexes, structure between Kamehame and ‘Āpua could be partly 

responsible, but the western Pōhue complex was also affected so other hidden structures could 

exist in the data. Family structures embedded within nesting complexes (or even nesting 

beaches) that create groups of highly related individuals could be the distortion. More data is 

required to determine if there could also be assortative mating within nesting complexes, as well 

as between them. 

Relatedness coefficients can also be underestimated when the same samples for which 

relatedness is being estimated are used to estimate reference allele frequencies (Wang 2014, 

2017). The strength of the bias is proportional to the number of samples included, on the order of 
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1/N where N is the number of samples. Therefore, when only the adult turtles in this study are 

used to generate the references we can expect the strength of the downward bias to be between 

0.04 and 0.08. When including hatchlings, which theoretically have the same allele frequencies 

as their parents, the strength of the bias is between 0.01 and 0.001. Neither scenario fully 

explains the observed skew, though using hatchlings for the references might exacerbate 

negative biases due to family structures in the data. 

Two more things that could be causing pairwise relatedness coefficients to be 

downwardly biased are selection and genetic admixture in the population founders (Wang 2014; 

Goudet et al. 2018). Balancing selection and purifying selection acting on different parts of the 

genome could be creating noise in pairwise relatedness estimates (Oliehoek et al. 2006), and the 

experimental loci do not necessarily need to be closely linked to the targets of selection because 

inbreeding is expected to reduce the rate of homologous recombination, creating large linkage 

blocks that are passed from generation to generation (Keller and Waller 2002; Charlesworth 

2003). It is also plausible that hawksbills in the Hawaiian Islands are descended from multiple 

source populations, and if so then pedigrees would coalesce further back in time, creating a much 

deeper true reference relative to the present-day sample allele frequencies. How various 

population-level processes, such as inbreeding, are affecting pairwise relatedness estimates in 

hawksbill turtles would be clearer with more loci and a better understanding of the genomic 

architecture (see Kardos et al. 2015). Currently there is no genome sequence for E. imbricata, 

however, a Hawaiian hawksbill turtle was recently selected by the Vertebrate Genomes Project 

(vertebrategenomesproject.org) to represent this species as the reference genome, and this 

assembly will enable future research to explore the genomic complexity of this precariously 

small and non-randomly mating population. 
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Tables and Figures: 

Table 1: Hawaiian hawksbill turtle nests from 2017, with the observed mother, inferred mother 

from parentage analysis, probability of maternity, the ID of the paternal genotype constructed 

from offspring genotypes, and the estimated relatedness coefficient between the mating pair 

(Lynch and Ritland 1999). Inferred mothers marked with an asterisk were not fully supported by 

all analyses. Note: no genetics sample of mother-160 was available for this study.  

 

Nest Nesting 
complex 

Number of 
hatchlings 

Observed 
Mother 

Inferred 
Mother 

Prob. Paternal 
Genotype ID 

Mating 
pair r 

Apua-01 ‘Āpua 26 153 153 1.000 P01 0.25 

Apua-02 ‘Āpua 46 153 153 1.000 P01 0.25 

Apua-03 ‘Āpua 4 155 155 1.000 P02 0.14 

Apua-06 ‘Āpua 27 153 153 1.000 P01 0.25 

Apua-07 ‘Āpua 33 none 153 1.000 P01 0.25 

Apua-08 ‘Āpua 80 158 158 1.000 P03 0.24 

Apua-09 ‘Āpua 55 154 154 1.000 P04 0.15 
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Apua-10 ‘Āpua 12 155 155 1.000 P02 0.14 

Apua-11 ‘Āpua 30 153 153 1.000 P01 0.25 

Apua-12 ‘Āpua 37 none 158 1.000 P03 0.24 

Apua-14 ‘Āpua 42 155 155 1.000 P02 0.14 

Apua-15 ‘Āpua 98 none 158 1.000 P03 0.24 

Apua-16 ‘Āpua 23 none 158 1.000 P03 0.24 

Halape-01 ‘Āpua 79 none 85 1.000 P06 0.28 

Halape-02 ‘Āpua 10 85 85 1.000 P06 0.28 

Halape-03 ‘Āpua 79 85 85 1.000 P06 0.28 

Pohue-01 Pōhue 4 none 119 0.991 P07 0.27 

Pohue-02 Pōhue 4 151 151 1.000 P09 -0.06 

Pohue-03 Pōhue 31 152 152 1.000 P10 -0.05 

Pohue-04 Pōhue 6 119 119 0.991 P07 0.27 

Pohue-05 Pōhue 13 71 71 1.000 P11 0.0 

Pohue-06 Pōhue 37 76 76 1.000 P07 0.07 

Pohue-07 Pōhue 17 151 151 1.000 P09 -0.06 

Pohue-08 Pōhue 17 152 152 1.000 P10 -0.05 

Pohue-09 Pōhue 8 none 157 1.000 P05 0.09 

Pohue-10 Pōhue 21 119 119 0.991 P07 0.27 

Pohue-11 Pōhue 51 76 76 1.000 P07 0.07 

Pohue-12 Pōhue 17 71 71 1.000 P11 0.0 

Pohue-13 Pōhue 1 151 151 1.000 P09 -0.06 

Pohue-15 Pōhue 22 152 152 1.000 P10 -0.05 

Pohue-17 Pōhue 19 71 71 1.000 P11 0.0 

Pohue-18 Pōhue 11 151 151 1.000 P09 -0.06 

Pohue-19 Pōhue 26 76 76 1.000 P07 0.07 

Pohue-20 Pōhue 24 none 76 1.000 P07 0.07 
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Pohue-21 Pōhue 13 152 152 1.000 P10 -0.05 

Pohue-24 Pōhue 12 none 159* 0.687 P12 -0.04 

Pohue-25 Pōhue 6 160 159* 0.687 P12 -0.04 

Awili-01 Pōhue 56 none 157 1.000 P05 0.09 

Awili-02 Pōhue 63 none 157 1.000 P05 0.09 

Koloa-01 Kamehame 19 none 110 1.000 P08 0.27 

Koloa-02 Kamehame 25 none 110 1.000 P08 0.27 

 
 

  

Figure 1: Descriptive statistics for 135 microhaplotye loci from 1,026 hawksbill turtles. A) Alleles 

per locus. B) The proportion of missing data per locus. C) Estimated allelic dropout rate per 

locus. D) Estimated rate of other errors per locus. 

 

 
 

 

 

 

Figure 2: A) Map of the study area and the three nesting complexes. Photo credit: John B. 

Horne B) Relatedness network. Nodes represent nesting mothers and the inferred genotypes of 

their mates, reconstructed from hatchling microhaplotype loci. Edges are multi-dimensionally 

scaled pairwise relatedness values (1 - r). Edges smaller than r = 0 are omitted. C) Interpolated 
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map of individual scores from spatial principal coordinates analysis. Inserts depict the relative 

contributions of each eigenvalue to the spatial autocorrelation of genetic variation. 

 

 
 

Figure 3: Population genetic comparisons of the Pohue nesting complex vs. the ‘Āpua and 

Kamehame nesting complexes: A) observed heterozygosity, B) allele frequency, C) the 

inbreeding coefficient GIS of nesting females and inferred paternal male genotypes. 
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Figure 4: Boxplots showing the ranges of pairwise relatedness values (Lynch & Ritland 1999) 

for full-siblings, half-siblings, parent-offspring pairs, and unrelated individuals. Simulated ranges 

were calculated from 100 simulated pairs for each relationship type. Observed ranges of parent-

offspring and full-sibling relatedness are from individuals with known relationships. Mean and 

95% confidence intervals were produced after 1,000 bootstrap replicates. 
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Figure 5: Kernel density plots of log-likelihood ratios for four different relationship comparisons. 

Top row: the expected log-likelihood ratio distributions for parent-offspring, full-sibling, and half-

sibling pairs compared to unrelated individuals, from 10,000 simulated individuals for each 

category. Bottom row: observed log-likelihood ratios for each category. Distributions of parent-

offspring and full-sibling ratios are from individuals with known relationships. 
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Supplementary table 1a: Data filtering: Raw genotyping results for 229 Hawksbill PCR 

amplicons from 1,032 Hawaiian Hawksbill turtles, plus 137 replicates. 

 

Variant caller FreeBayes BCFtools GATK 

Raw variants 971 1839 766 

Raw binary SNPs 696 1274 686 

Raw tri and quaternary SNPs 235 268 19 

Raw indels 40 297 61 

Raw PCR amplicons 224 229 220 

Mean raw variants per PCR amplicon 4.33 8.03 3.48 

 
 

 

Supplementary table 1b: Data filtering: Variants with genotyping error rates of less than 7% 

(not including missing data). Error rates were calculated from mismatch tallies across 137 

replicate sample pairs. 

 

Variant caller FreeBayes BCFtools GATK 

Mean raw allelic mismatches 13.02 12.87 9.04 

Median raw allelic mismatches 4 3 4 

Variants with < 7% genotyping error rate 496 612 429 

PCR amplicons with < 7% genotyping error rate 186 204 194 

Binary SNPs remaining 306 441 402 

Tri and quaternary SNPs remaining 161 93 15 

Indels remaining 29 78 12 

Mean variants per PCR amplicon 2.67 2.81 2.21 
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Supplementary table 1c: Data filtering: Low-error genotype variants from each caller that were 

also called by at least one other caller. Also, variants with less than 5.5% mismatched allele 

calls between callers across 137 replicate sample pairs. 

 

Variant caller FreeBayes BCFtools GATK 

Low-error variants identified by > 2 callers 272 348 273 

Low-error PCR amplicons identified by > 2 
callers 

138 174 161 

Variants called with < 5.5% errors between 
callers 

256 337 274 

PCR amplicons called with < 5.5% errors 
between callers 

128 163 151 

Binary SNPs remaining 209 290 261 

Tri and quaternary SNPs remaining 42 35 7 

Indels remaining 5 12 6 

Mean variants per PCR amplicon 2.00 1.97 1.82 

 
 

 

Supplementary table 1d: Data filtering: Variants remaining after filtering for > 30% missing 

data and a minor allele frequency < 0.01. 

 

Variant caller FreeBayes BCFtools GATK 

Total variants 202 281 256 

Total PCR amplicons 117 169 162 

Binary SNPs 175 254 247 

Tri and quaternary SNPs 25 23 4 

Indels 2 4 5 

Mean variants per PCR amplicon 1.72 1.66 1.58 
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Supplementary table 1e: Data filtering: Microhaplotype calls before and after filtering. The 

filtration requirements were: a minimum sequence depth of 12, minimum heterozygote allelic 

ratio of 0.25, maximum homozygote allelic ratio of 0.09, and callable microhaplotypes in at least 

70% of individuals. 

 

Variant caller FreeBayes BCFtools GATK Total 

Total microhaplotype loci 117 169 162 170 

Filtered microhaplotype loci 88 120 122 145 

Mean microhaplotye alleles per 
locus 

2.59 2.64 2.53 2.61 

Max microhaplotype alleles per 
locus 

6 7 6 - 

 
 

Supplementary figure 1: Histogram distributions of mismatches among genotype calls. Top 

row: mismatching single-locus genotype pairs across 137 replicate samples. Bottom row: 

mismatching single-locus genotypes across all variants called by two calling algorithms. 

Variants with mismatches exceeding the blue line thresholds (7% top, 5.5% bottom) were 

removed from the data sets. 
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