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Fig. 3. Absolute log-likelihood (LnL) score differences (log scale) from the best-known ML tree on TreeBASE data.

Fig. 4. Relative log-likelihood (LnL) score differences, and RF-distances to the best-known ML tree, and numbers of passed statistical tests of all inferred trees on empirical
TreeBASE datasets. "RAXML-NG-100" denotes the tree inferred by conducting 100 tree searches using RAXML-NG.
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Fig. 5. Relative log-likelihood (LnL) score differences, and RF-distances to the true tree, and numbers of passed statistical tests of all inferred trees on simulated MSAs with

RAXMLGroveScripts (BONK method).

ficulty level (mostly above 0.8), the inference tools become
less reliable in reconstructing the true tree and the accuracy
differences between various inference tools recede. At these
difficulty levels, users should be alarmed and be extremely
cautious regarding the subsequent post-analyses and inter-
pretation of the trees. For instance, a small SARS-CoV-2
dataset already exhibits a difficulty of 0.84. Approaches to
interpreting and summarizing inference results on such dif-
ficult datasets are outlined in Morel et al. (42), for instance.
We also note, that at least for datasets exhibiting low (easy)
and high (hopeless) difficulties, it might be reasonable to re-
duce the number of independent tree searches conducted with
RAXML-NG. This is because the performance differences
between the default search on 20 starting trees and the search
on 100 distinct starting trees under all metrics deployed here
appear to be negligible. In cases, where excessive inference
times become an issue, one can also switch to less accurate,
yet substantially faster alternatives, such as FastTree2 or even
parsimony (e.g., using the fast dedicated parsimony program
TNT (43)), without deteriorating the - already low - average
inference accuracy.

Differences between simulated and empirical data. We
noticed an unexpected difference between simulated and em-
pirical data in terms of the RF- (and Quartet-) distances be-
tween the inferred trees and true trees. There exist several
potential explanations for this difference. Apart from the fact
that inference and simulation models only represent simpli-
fied approximations of real evolutionary processes, we ob-
serve, that the value distributions of taxon numbers, number

of sites and patterns as well as gap percentages are surpris-
ingly different between TreeBASE and RG (p < 0.05 in the
two-sample Kolmogorov-Smirnov (KS) test).

Another reason might be our method of gap generation in the
simulated MSAs. To assess, whether this constitutes an issue,
we conducted an additional set of experiments on simulated
data, but this time generated based on TreeBASE meta-data.
In contrast to RG, we were able to utilize the original empir-
ical MSA with its corresponding gap patterns. Thus, we first
simulated gapless MSAs based on the best-known ML trees
(which we also used as reference trees in the empirical tests)
and their inferred ML model parameters. Then, we used the
gap patterns of the original MSAs and directly superimposed
them onto the simulated MSAs. Afterwards, we conducted
the same experiments as described above.

This time, both, LnL differences, and topological distances
exhibit little variation between the tools, and do not appear to
be informative (see Supplement). The observations from the
statistical tests are consistent with the previously observed
results on simulated RAXMLGrove and empirical TreeBASE
data.

Thus, it is less likely that our method for generating realistic
gap patterns explains the differences we observe between em-
pirical and simulated datasets. Since we use buckets to group
datasets by difficulty, the different difficulty distributions of
simulated RG and TreeBASE data (see Figure 6) can also not
serve to explain the distinct behavior. Possibly, there is some
yet unknown dataset property which we (and the difficulty
prediction of Pythia) are not aware of.

Another possible explanation for the discrepancy between re-
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Fig. 6. Difficulty distributions of TreeBASE MSAs and simulated RGS MSAs.

sults might be a bias towards the more thorough RAXML-NG
and IQ-TREE?2 tools by defining the "true" tree as the best-
known ML tree for the experiments on empirical datasets.
We investigated that possibility by conducting an additional
experiment on the simulated data. This time, we followed a
similar approach as in the empirical data analysis: Out of the
set of inferred trees (per dataset), as described before, plus
an additional tree obtained via an additional 100 RAXML-
NG inferences, we determined the tree with the highest LnL.
Then, we computed the RF distances of every inferred tree
by the inference tools to the best-known tree based on the
LnL score instead of the true tree (see Figure 7). This time,
we observe, that the results on simulated data resemble those
on empirical data shown in Figure 4. Thus, we confirm that
there is a bias introduced by comparing the topology of the
inferred trees to the tree with the highest LnL. Note, how-
ever, that the RF-distance differences between FastTree2 and
RAXML-NG are not as high as in Figure 4. So there are still
other not yet understood differences between experiments on
empirical and simulated data.

Overall, we believe, that more research is required regarding
the evaluation of tree inference tools. The main focus of ML
inference tools is to find trees with the highest LnL score.
The main idea of making use of an ML tool, however, is to
estimate real evolutionary relationships (the "ground truth")
between species. According to our experiments on simulated
data, the ability to find trees with high LnL scores does not
necessarily correlate with the ability to infer trees which are
topologically close to the ground truth. Therefore, one might
question the purpose of running thorough ML optimizations
with RAXML-NG or IQ-TREE2 on "common" MSAs instead
of inferring a substantially faster (10) evolutionary hypothe-
sis with FastTree2.

Conclusion. We analyzed the tree inference accuracy of the
three widely used phylogenetic inference tools RAXML-NG,
IQ-TREEZ2, and FastTree2 on representative empirical as well
as simulated DNA data from TreeBASE and RAXMLGrove
respectively. We selected the datasets such that, with respect
to their characteristics, they represent the most commonly an-
alyzed datasets by practitioners.

First, we observed a discrepancy between our results on em-
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Fig. 7. RF differences to best-known ML tree instead of the true tree that we used
to simulate the MSAs. "RAXML-NG-100" denotes the tree inferred by conducting
100 tree searches using RAXML-NG.
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pirical and simulated MSAs, although the simulated MSAs
were generated based on empirical parameter distributions.
Therefore, more research is required on generating more re-
alistic synthetic datasets that behave like empirical datasets.
Second, we observed a bias in the topological tests when in-
ferred trees are compared to the tree with the best LnL score
instead of the true tree. When topological reconstruction tests
(using the RF distance, for instance) are being conducted on
empirical data, one might try to estimate the true tree with the
best-known LnL tree, since the true tree (the "ground truth")
is usually unknown. Our experiments on simulated data sug-
gest, that such topological tests can favor the more thorough
LnL optimization algorithms. This is an issue to consider
when designing and interpreting empirical tests. Since there
are no standardized benchmarks, we believe that one should
critically assess the evaluation criteria that are typically used
for performance assessment. As a first step into this direc-
tion, we introduce and make available an easy-to-use Snake-
make benchmarking pipeline. This pipeline can help to rou-
tinely analyze the accuracy of phylogenetic inference tools in
a more standardized manner, under the assumption that Tree-
BASE and RAxMLGrove comprise a representative sample
of commonly analyzed datasets.

Third, we observed that with increasing difficulty level, as
predicted by Pythia, the accuracy of all analyzed tools dete-
riorates and the differences in accuracy between these tools
diminish. This confirms that Pythia implements a meaningful
measure for quantifying dataset difficulty in practice. Hence,
we recommend applying Pythia before conducting phyloge-
netic analyses.

Finally, we find that on empirical datasets exhibiting a high
difficulty level (difficulty above 0.8), all analyzed tools can
essentially be used interchangeably. This means that lengthy
computations could — and we would argue should — be
avoided on such difficult or "hopeless" datasets. More specif-
ically, one should critically assess the necessity of compute-
and COz-intensive ML optimization routines, as they are per-
formed by RAXML-NG and IQ-TREE2, especially consider-
ing the fact, that — due to possible biases in the evaluation on
empirical data — it is not entirely clear, how much more ac-
curate these tools are compared to faster competitors. There-
fore, we propose the development of adaptable and flexible
heuristic search algorithms that can dynamically take into ac-
count the degree of difficulty and the properties of the dataset
being analyzed. Hence, the time has come to critically reflect
on and rethink the design of heuristic phylogenetic search al-
gorithms, for "What falleth, that shall one also push! [...]
And him whom ye do not teach to fly, teach I pray you-to fall
faster!" (44).
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