
A representative Performance Assessment of
Maximum Likelihood based Phylogenetic

Inference Tools
Dimitri Höhler1, Julia Haag1, Alexey M. Kozlov1, and Alexandros Stamatakis1,2

1Computational Molecular Evolution group, Heidelberg Institute for Theoretical Studies, Heidelberg, Germany
2Institute for Theoretical Informatics, Karlsruhe Institute of Technology, Karlsruhe, Germany

Abstract

Summary: The evaluation of phylogenetic inference tools is
commonly conducted on simulated and empirical sequence
data alignments. An open question is how representative
these alignments are with respect to those, commonly
analyzed by users. Based upon the RAxMLGrove database,
it is now possible to simulate DNA sequences based on more
than 70,000 representative RAxML and RAxML-NG tree
inferences on empirical datasets conducted on the RAxML
web servers. This allows to assess the phylogenetic tree in-
ference accuracy of various inference tools based on realistic
and representative simulated DNA alignments. We simulated
20,000 MSAs based on representative datasets (in terms
of signal strength) from RAxMLGrove, and used 5,000
datasets from the TreeBASE database, to assess the inference
accuracy of FastTree2, IQ-TREE2, and RAxML-NG. We
find that on quantifiably difficult-to-analyze MSAs all of
the analysed tools perform poorly, such that the quicker
FastTree2, can constitute a viable alternative to infer trees.
We also find, that there are substantial differences between
accuracy results on simulated and empirical data, despite
the fact that a substantial effort was undertaken to simulate
sequences under as realistic as possible settings.
Contact: Dimitri Höhler, dimitri.hoehler@h-its.org

Introduction

The field of phylogenetic inference deals with the problem
of inferring hypotheses about the evolutionary relationships
of species, mainly based on molecular sequence data. The
inferred hypotheses are typically presented in the form of
phylogenetic trees. There exist multiple approaches and opti-
mality criteria to address this problem, such as distance based
approaches (e.g., Neighbor Joining (NJ) (1)), Maximum Par-
simony (MP) (2), Maximum Likelihood methods (ML) (3)
or Bayesian inference methods (BI) (4–8). At present, the
vast majority of phylogenetic analyses are conducted via ML
and BI methods that both rely on the phylogenetic likelihood
function that comprises an explicit stochastic model of se-
quence evolution. The inference of ML optimal trees is com-
putationally hard (9) due to the super-exponential increase
of possible unrooted binary tree topologies as a function of
the number of taxa/sequences in the tree. Hence, there exists

a plethora of inference tools which deploy different heuris-
tic search strategies to find a tree with a good likelihood.
Some of the most widely used tools are FastTree2 (10), IQ-
TREE2 (11, 12), and RAxML-NG (13).
To assess the accuracy of the inferred trees and the perfor-
mance of the respective heuristics, comparisons against alter-
native tools are typically based upon a combination of empir-
ical and simulated datasets. The results of such performance
assessments may deviate depending on the datasets used. To
the best of our knowledge, there does not exist a standard-
ized approach or set of benchmark data to assess and com-
pare these tools. Instead, simulations and empirical datasets
are conducted and selected predominantly in an ad hoc man-
ner. Typical informal selection criteria for empirical datasets
are the number of sites, the number of sequences (taxa), and
the percentage of gaps or missing data in the datasets (see,
for example, the respective papers describing FastTree2, IQ-
TREE2, and RAxML-NG).
We examined the papers of the aforementioned analysis tools
as well as a study comparing FastTree and RAxML (14)
to determine the criteria deployed to select the respective
benchmarking datasets. Then, we queried the RAxMLGrove
database (15)(RG) for datasets satisfying these criteria. We
found that at most 27% of datasets present in RG satisfy those
criteria (see Table 1) and observe that the criteria do not ap-
pear to be representative if the data typically being analyzed.
Related work assessing the inference accuracy of
RAxML (16) and FastTree (17) has been conducted by
Liu et al. (14). The authors used 1,800 simulated and
10 empirical datasets and concluded, that RAxML (the
predecessor of the re-designed code RAxML-NG that
implements essentially the same algorithm) generally
outperforms FastTree in terms of topological accuracy on
smaller datasets, but that the differences diminish on large
datasets with respect to the number of taxa. We make a
similar observation for the updated versions of the two
ML tools based upon around 5,000 empirical datasets
from TreeBase. Further, we can characterize and classify
these datasets in a systematic manner by predicting their
difficulty scores via the Pythia (18) tool. Pythia assigns
values between 0 (easy/strong signal) and 1 (difficult/weak
signal). Here, difficulty essentially quantifies the signal
strength in the data. Zhou et al. (19) perform a large-scale
analysis of ML-based methods on 19 empirical datasets with
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up to 200 taxa and partially thousands of genes. They find,
that RAxML and IQ-TREE perform similarly in terms of
topological accuracy on single-gene datasets, while FastTree
performs substantially worse. In our study, we confirm this
result for empirical datasets (composed of single- and ca.
10% multi-gene data) with a difficulty score below 0.7.
The key contribution of our work is that we deploy empiri-
cal and simulated DNA data that representatively covers at
least 75% of the data in the two databases (TreeBase and
RAxMLGrove). We assess accuracy by means of the inferred
tree topologies, the ML scores, and their statistical plausibil-
ity (i.e., whether the trees differ significantly from the best-
known tree).
We did not include amino-acid (AA) datasets here
to reduce the computational burden and CO2 footprint
of our analyses. We conducted our experiments us-
ing a Snakemake (20) pipeline, which is available at
https://github.com/angtft/PhyloSmew. This pipeline can be
easily extended by additional phylogenetic inference tools
and will thus contribute to conducting accuracy inference
studies in a more standardized way.

Materials and Methods

In this section, we first briefly describe the RAxMLGrove
database (15) that we use for simulating Multiple Sequence
Alignments (MSAs). Then, we describe the methods for se-
lecting and simulating datasets. We undertake an effort to
create realistic simulated MSAs, especially in terms of realis-
tic gap patterns, and we evaluate this attempt in the respective
Section on simulation quality. Then, we briefly describe our
selection strategy of empirical datasets from the TreeBASE
database (21).

RAxMLGrove Database. Throughout our experiments, we
extensively use the RAxMLGrove (RG) database. RG con-
tains anonymized phylogenetic trees inferred by users of
RAxML/RAxML-NG web servers at the San Diego Super-
computer Center (22) and the SIB Swiss Institute of Bioin-
formatics (https://raxml-ng.vital-it.ch) with their respective
inferred model parameters and program execution logs.
At present, RG comprises more than 70,000 datasets and
is continously growing. The RAxMLGroveScript repos-
itory (https://github.com/angtft/RAxMLGroveScripts) pro-
vides functionality for simple data access using an SQLite-
database with a corresponding Python script (henceforth
called RGS). In addition to dataset queries based on a set
of dataset characteristics (e.g., the number of taxa, or branch
length variance of the tree), RGS provides the generate
option to download datasets and generate simulated MSAs
based on the estimated model parameters of that dataset.
The simulations are conducted by executing Dawg (23) or
AliSim (24). Since simulation is the main RGS functionality
of interest in this work, we briefly list and describe the con-
tents of one such downloaded simulated dataset, after using
the generate command, in Table 2.

Simulated Data. We generate simulated data based on the
RG database, version 0.7. As our goal is to assess ML tool
inference behavior for representative datasets, we proceeded
as follows to select the datasets for our analysis:

1. For the sake of simplicity, we only selected trees in-
ferred on DNA alignments under the General Time Re-
versible (GTR) (25) model.

2. We selected datasets from the 95-percentiles of the
number of taxa and number of site patterns (i.e., the
numbers of unique sites in an MSA) distributions re-
spectively, that is, datasets with a number of taxa < 470
and a number of patterns < 18,764. Thereby, we omit-
ted computations on excessively large datasets, which
can be considered as outliers.

3. We initially sorted the datasets by their site patterns per
taxa ratio and subsequently divided them into 20,000
buckets. From every bucket, we randomly selected one
dataset as a representative of that bucket.

4. For every representative, we simulated one MSAs us-
ing the corresponding RGS functionality, which we de-
scribe in more detail below.

Under these criteria, we selected 20,000 DNA datasets repre-
senting more than 80% of overall RG data in terms of signal
strength (approximated by patterns/taxa ratio) and simulated
MSAs based on the inferred ML trees and their respective
inferred model parameters.
During the simulation process, we encountered the problem
of simulating MSAs with gaps. To simulate MSA gaps in a
realistic way, the RG entry ’OVERALL_GAPS’ that reflects
the number of gaps in the original empirical MSA is not suffi-
cient. According to Haag et al. (18), the fraction of gaps in an
MSA, does not have a substantial impact on dataset difficulty.
Thus, one possibility is to avoid gaps in simulations and to
solely execute the tests on MSAs without gaps. However,
this induces another problem. While the mere gap fraction
does not constitute a reliable difficulty predictor, the specific
occurrence pattern of simulated gaps via an appropriate simu-
lated insertion/deletion process affects the number of distinct
site patterns in the MSA. In turn, this affects the resulting dif-
ficulty, as the difficulty is correlated with the patterns/taxa ra-
tio (see Figure 1). In our initial experiments, we observed dif-
ferences exceeding 20% between the number of site patterns
in the simulated MSAs without an insertion/deletion process
and the number of patterns in the respective RG entries.
We used AliSim (24) to simulate MSAs for our experi-
ments. For simulating gaps, AliSim offers the --indel and
--indel-size parameters. The --indel parameter is
a user-specified rate for generating insertions and deletions
(so-called indels) at sites during the sequence simulation pro-
cess. The indel lengths are drawn from distributions, which
can be specified using the --indel-size parameter. Cur-
rently, AliSim supports the Geometric, Negative Binomial
(NB), Zipfian, and Lavalette distributions originally proposed
in (26), which can be separately set and selected for the inser-
tion and deletion process. Different distributions also need to
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Source Selection criteria Results Representation
DNA RG - 73,786 100%
here: RG (sim) < 470 taxa, < 18,764 patterns 65,211 88%
IQ-TREE (11) 200-800 taxa, #sites / #taxa ≤ 4, #gaps ≤ 70% 8,339 11%
FastTree2 (10) (emp) 500-239,882 taxa, 65-1,287 sites 1,154 2%
FastTree2 (10) (sim) 250-5,000 taxa 8,091 11%
RAxML-NG (13) (emp) 36-1,879 taxa, 18,328-37,350,521 sites 4,391 6%
RAxML vs FastTree (14) (sim) ≥ 1,000 taxa 1,471 2%
RAxML vs FastTree (14) (emp) 117-27,643 taxa 20,233 27%

Table 1. Criteria for selecting empirical (emp) and simulated (sim) DNA datasets analyzed in different publications and the respective proportion of dataset diversity in
RAxMLGrove that they cover.

File name Description
tree_best.newick RAxML/RAxML-NG generated ML tree. We use this tree as our reference "true tree" in

the simulated data experiments
tree_dict.json Contains the complete RGS entry for the current dataset
iqt.pr_ab_matrix Binary presence/absence matrix that reflects the presence/absence of gene sequences for

partitioned MSAs
assembled_sequences.fasta Simulated MSA (concatenated per-partition MSAs)

Table 2. Files created by the RGS command generate

Fig. 1. Predicted TreeBASE MSA difficulty with Pythia of 1,000 randomly selected
datasets in correlation to the patterns/taxa rate (logarithmic x-axis).

be parameterized differently (e.g., mean and variance for in-
del sizes for the Negative Binomial distribution). Thus, even
if we use the same distribution for insertions and deletions,
we need to set a total of 6 parameters, that is, the insertion and
deletion rates as well as the respective means and variances
of the insertion and deletion sizes to parameterize the NB
distribution. An additional complication is that the sequence
length parameter used by some simulators (e.g., AliSim) only
defines the sequence length of the single starting sequence on
which the simulation is then carried out along the tree. Thus,
when gaps are introduced during the simulation process, the
overall MSA length will typically exceed the seed/root se-
quence length.

Under the assumption, that a simulation under the ‘correct’
settings for these 6 parameters will result in a simulated MSA
where the differences between the number of sites, number
of patterns, and gap percentage of RG entries and simulated
MSAs are minimal, we can define an evaluation function d
to quantify how well the simulated MSA matches the origi-
nal MSA. Let sorig,porig,gorig and ssim,psim,gsim be the

number of sites, number of patterns, and fraction of gaps in
the RG entries and the simulated MSAs, respectively. Fur-
ther, let w1,w2,w3 be arbitrary, yet constant weights. We
can then define d as follows:

d = w1
abs(sorig −ssim)

sorig

+w2
abs(porig −psim)

sorig

+w3abs(gorig −gsim)

(1)

Since it is unclear, how to set these parameters such as
to minimize d for a given simulated dataset, we resorted
to Bayesian optimization (27–29), using the Python library
skopt (30), and implemented the Bayesian Optimized iNdel
seeKer (BONK) in RGS. Given w1,w2,w3, a scaling factor
cseq , insertion and deletion size distributions, and a maxi-
mum number of optimization rounds nopt, BONK uses the
optimizer to iteratively explore the indel rates and size distri-
butions to minimize d for the simulated MSA. For the sake
of simplicity, we arbitrarily chose (preliminary tests indicated
no apparent reason to choose one distribution over another)
the NB distribution for both, insertion, and deletion sizes. We
use cseq to define the sequence length range for the root se-
quence. As stated above, the length of the root sequence has
to be chosen as a function of the gaps being inserted to min-
imize the difference between sorig and ssim. The length in-
terval is defined as [sorig × (1 − csim),sorig × (1 + csim)].
Preliminary experiments have also shown that, apart from
nopt, the minimization of d is strongly affected by the val-
ues of w1,w2,w3. These weights penalize some property
differences more than others, and since the number of sites,
number of patterns, and gaps are correlated, it appears that
choosing these weights is not trivial.
Thus, we deployed a second optimizer (results not shown) to
optimize the weights with respect to the average d of sim-
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Mean Median
sequence length (no gaps) 0.00 0.00
patterns (no gaps) 0.19 0.15
gaps (no gaps) 0.13 0.08
sequence length (after opt) 0.01 0.00
patterns (after opt) 0.06 0.02
gaps (after opt) 0.14 0.10

Table 3. Normalized (absolute) MSA property differences between RG entries and
simulated MSAs. We compare the trivial (no gap insertion) with the optimized sim-
ulation using BONK.

ulations based on random subsets of datasets from RG. We
found that w1 = 9,w2 = 10,w3 = 1, cseq = 0.7 worked suf-
ficiently well, and used these weights for all our simulations
with BONK.
After implementing BONK, we discovered SpartaABC (31,
32), a tool which uses the Approximate Bayesian Computa-
tion method (33, 34) to estimate the indel rates and sizes of a
given MSA. The authors use a far more sophisticated distance
function than d, overall comprising 27 features. Since the
original MSAs are not available in RG, we cannot compute
their proposed distance function and include SpartaABC into
RGS. Thus, our simulations were conducted with BONK.
However, we followed the suggestions regarding SpartaABC
(and references to empirical studies) and made adjustments
to BONK: We set the explored indel intervals to [0.0, 0.05],
switched to the Zipfian distribution for indel sizes, and set the
explored interval of the corresponding a shape parameter to
[1.001, 2].
In addition to the aforementioned procedures, we also
use the presence/absence matrices for partitioned datasets,
when available in RG. A presence/absence matrix is a 2-
dimensional binary matrix denoting the presence of informa-
tion (sequence data) for taxon k at partition l. If there is no
sequence data for taxon k at partition l we set M [k, l] := 0,
and M [k, l] := 1 otherwise. After the simulation process, we
therefore remove per-partition sequences from the MSA ac-
cording to M . This is conducted before calculating d, such
that the optimizer is aware of the gaps introduced by M .

Simulation Quality. We evaluated our BONK method for gap-
aware simulations by comparing the absolute differences be-
tween the properties (i.e., number of sites, number of site pat-
terns, and gap proportion) of the simulated MSA and the re-
spective RG database entry. We show the normalized differ-
ences in Table 3. In the worst case, that is, when the optimizer
is not able to find parameters improving upon trivial simula-
tions, we obtain an MSA without gaps. On average, we are
able to simulate MSAs with properties which are closer to
those of the RG entries than under trivial simulations without
an indel model in terms of pattern numbers. However, due to
the weights in our distance function, the difference in the gap
proportions remained roughly the same - with the difference,
that we now often insert more gaps than necessary.
We further compared the difficulty of the simulated and origi-
nal MSAs using Pythia (18). For this, we randomly selected a
subset of 989 TreeBASE DNA datasets (note that the original
empirical MSAs are required for difficulty prediction, which

Mean Median Stdev
(1) no gaps 0.0799 0.0510 0.0892
(2) AliSim mimick 0.1052 0.0657 0.1138
(3) BONK 0.0868 0.0518 0.0955
(4) (shortened) SpartaABC 0.0881 0.0535 0.0980

Table 4. Absolute differences in difficulty between the original (empirical) MSAs
and the simulated MSAs (based on 1000 datasets from TreeBASE, selected from
95-percentiles of taxa and site pattern numbers).

are available in TreeBASE but not in RG), using the same
size-based dataset selection criteria as in the preceding ex-
periments, inferred a RAxML-NG tree using 50 parsimony
and 50 random starting trees under the GTR+Γ model and
used the inferred best-found tree, and model, to conduct the
following distinct MSA simulations: (1) AliSim simulation
without any indels; (2) AliSim simulation with the so-called
mimicking function, which uses a specifiable (original) MSA
to first infer a tree, then simulate an MSA, and subsequently
superimpose the gap pattern from the original MSA to the
simulated one; (3) BONK; (4) the SpartaABC tool, albeit
with modifications to its internal pipeline. In SpartaABC, we
removed the realignment step and reduced numbers of de-
fault burn-in and optimization rounds (1,000/10,000 instead
of 10,000/100,000 respectively) to reduce the overall com-
putational time, as some of the MSAs required more than
24 hours for a single indel rate inference. After the analy-
sis, we used the suggested indel parameters by SpartaABC to
simulate 10 MSAs with AliSim and selected the MSA with
the lowest distance (as defined in SpartaABC) to the original
MSA. We are fully aware that we do not fully utilize the ca-
pabilities of the SpartaABC algorithm, but we include it here
to provide an intuition of how this method could perform in
terms of difficulty matching, since it might be a valuable ad-
dition to the RGS simulation procedure.

In Table 4, we observe the following: Overall, there are small
absolute differences between (1), (3), and (4). One might ar-
gue that the differences of these three approaches fall within
the margin of error of the difficulty prediction. Surprisingly,
inserting no gaps at all yields the difficulty prediction that
is closest to the original difficulty, albeit the number of pat-
terns more closely matches the original when using (3) in-
stead of (1), and the gap proportion errors of (1) and (3) with
respect to the original are similar. (1) and (3) do not require
additional information about the underlying MSA, other than
the properties already available in RG. Method (3) requires
nopt = 100 steps, which means that it is at least 100 times
slower than the single MSA simulation conducted by method
(1). Method (4) requires an a priori computation of the gap
features for the SpartaABC distance function. This could
potentially be included into a future RG release, as it re-
quires little additional memory to store these data and does
not expose the original MSA to the public (i.e., it can di-
rectly be computed on the respective web-servers before be-
ing stored in RG). Method (2) is probably the most intuitive
approach. Here, the distance d is negligible on average (data
not shown). This method performs worst in terms of diffi-
culty differences. We believe that different sites can have
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different importance for the inference (this seems at least to
be true for empirical data (35)), which a gap insertion by su-
perimposing gaps does not take into account. Method (2)
also requires the complete original MSA (if using the default
AliSim mimick function) or at least the gap matrix of the
original MSA to be available (if using the already inferred
best tree and model present in RG).

Empirical Data. We conducted experiments on 5,000 MSAs
selected from TreeBASE (21). The dataset filtering criteria
and the subsequent selection of representative datasets are
analogous to the criteria for selecting simulated data from
RG: We selected datasets from the 95-percentiles of number
of taxa and site patterns, that is, datasets with a number of
taxa < 214 and a number of site patterns < 3,475. Mul-
tiple datasets contained sequences which were completely
empty/undetermined. As these sequences cannot be placed
onto a tree in any meaningful way, and the ML inference tools
handle completely undetermined sequences differently (e.g.,
IQ-TREE2 terminates instantly, RAxML-NG does not, but
inserts such sequences at random), we excluded datasets con-
taining completely undetermined sequences from the analy-
ses. During the experiments, 4 datasets containing ambigu-
ous character encodings were excluded, since IQ-TREE2 in-
correctly attempts to analyze them as AA datasets (if our
interpretation of the log file is correct) and terminates with
an error (this issue has already been reported by a user in
the IQ-TREE Google Group). Furthermore, 2 datasets were
excluded as they triggered assertions in RAxML-NG to fail
during the tree search process. Overall, more than 75% of
the datasets diversity (in terms of pattern/taxa ratio) in Tree-
BASE were covered.

Evaluation Pipeline. We implemented our experimental
workflow via a Snakemake (20) pipeline. The datasets were
selected, prepared, and generated as described above. The
main steps of the pipeline are the following (also, see Fig-
ure 2):

1. Query the database for datasets, sort the results based
on the number of taxa by the number of site patterns
ratio, and split the results into n buckets

2. Randomly pick a dataset from each bucket

3. Run the FastTree2, IQ-TREE2, and RAxML-NG infer-
ences under the General Time Reversible (GTR) sub-
stitution model in combination with the Γ model of rate
heterogeneity. To obtain parsimony trees, select the
parsimony trees with the highest log likelihood (LnL)
score from the set of inferred RAxML-NG parsimony
starting trees. Then, use the tree evaluation function
of RAxML-NG (which optimizes branch lengths and
model parameters while keeping the tree fixed) on all
inferred trees to obtain a consistent and comparable
LnL score

4. Compute pairwise Robinson-Foulds distances (36) and
LnL-differences between the true trees or best-known

ML trees (on empirical data) and the inferred ML trees
and run the topological significance tests of IQ-TREE2
on the complete set of trees (including the true tree)

5. Plot accuracy statistics

For the tree inferences, we used the respective default
parameters to reduce the complexity of the experimental
setup:

RAxML-NG

raxml-ng --msa assembled_sequences.fasta
--model GTR+G --prefix [prefix]
--seed [seed] --threads 4
--force perf_threads

For partitioned datasets we substituted "–model GTR+G"
with "–model [partition_file]" as all original partition files
were available for empirical datasets. For simulated datasets,
RG contains per-partition substitution model and MSA
length parameters, based on which RGS simulates the MSAs
and generates the partition files.

IQ-TREE2

iqtree2 -s assembled_sequences.fasta
-m GTR+G -nt 4
--prefix [prefix]

For partitioned datasets, we appended "-p [partition_file]".

FastTree2

FastTreeDbl -gtr -gamma
-nt assembled_sequences.fasta

To the best of our knowledge, FastTree2 does not support par-
titioned analyses and therefore all analyses were conducted
on unpartitioned MSAs. We could not evaluate some of the
FastTree2 trees via RAxML-NG as they contained multifur-
cations. In that case, we resolved the multifurcations at ran-
dom prior to LnL evaluation.

Results and Discussion
We evaluated the tree inference accuracy via the Robinson-
Foulds (RF) distance (36) (as implemented in RAxML-
NG) as well as Quartet-distances (37) (implemented in
tqDist (38)), and log-likelihood (LnL) differences. We fur-
ther applied statistical significance tests (as implemented in
IQ-TREE2) using the RELL method (39), including Boot-
strap Proportion, Expected Likelihood Weights (40), and the
Approximately Unbiased Test (41). We used the topolog-
ical distances and LnL score comparisons to compare the
true (simulated data) or best-known (empirical data) ML trees
with the inferred trees. In absence of a true tree for the em-
pirical datasets, we executed a more thorough RAxML-NG
search (100 independent tree searches, using 50 parsimony
and 50 random starting trees) to find the tree with the best-
known LnL score. If one of the other inference tools inferred
a tree with a higher LnL, we re-defined that tree as the "true"

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 1, 2022. ; https://doi.org/10.1101/2022.10.31.514545doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.31.514545
http://creativecommons.org/licenses/by-nc-nd/4.0/


Fig. 2. Flowchart of the conducted experiments on simulated and empirical data.

tree with the best-known LnL score. In the statistical tests,
we compared the number of times the inferred trees passed
the tests with 95% confidence (compared to the best-known
tree). We will refer to trees passing at least one test as plau-
sible trees. If a tree t1 passes more tests than tree t2, we refer
to t1 as being more plausible than t2.

After the analysis, we divided the results into 5 buckets based
on the estimated MSA tree inference difficulty computed by
Pythia (18).

Figure 4 shows the results of these experiments on empirical
data. We excluded Quartet distances from the plots for the
sake of readability, as they do not provide any additional in-
sights (see Supplement for plots with quartet distances). Gen-
erally, there is a trend for inference accuracy to decrease and
become more variable (spread-wise) with increasing diffi-
culty. This also shows that the difficulty measure is meaning-
ful in practice. In terms of LnL scores, RAxML-NG finds the
trees with best LnL scores on average at all difficulty levels,
IQ-TREE finds the second-highest scores, and parsimony and
FastTree2 yield trees with substantially lower scores. The
ML scores, as evaluated by RAxML-NG, of parsimony- and
FastTree2-based inferences tend to be relatively close to each
other. For MSAs exhibiting low (< 0.2) and high (> 0.8) dif-
ficulty levels, the absolute LnL differences to the best-known
tree in the majority of our experiments are in the single digit
(log likelihood units) range (see Figure 3).

We observe a trend of increasing RF-distances for every tool
with increasing difficulty. On average, RAxML-NG finds the
tree that is closest to the true or best-known tree on datasets
with a difficulty below 0.8. IQ-TREE2 is a close second. On

MSAs exhibiting a high degree of difficulty, the differences
between all analyzed tools appear to be negligible.
With respect to the statistical tests, IQ-TREE2 consistently
finds the largest number of plausible trees. It even infers more
plausible trees than obtained via the 100 independent tree
inferences conducted with RAxML-NG to identify a best-
known ML tree. RAxML-NG is second on all datasets with
respect to the number of plausible trees inferred up to a diffi-
culty level of 0.8. On extremely difficult (hopeless) datasets,
in analogy to the topological differences, the average number
of plausible ML trees inferred with RAxML-NG is roughly
on par with the RAxML-NG parsimony starting trees and
phylogenies inferred via FastTree2.
The results on simulated data based on RG (using our ad hoc
BONK method) data, and the conclusions drawn, are mostly
consistent with the results from empirical data in terms of
LnL differences and numbers of passed statistical tests. We
note, that all tools are able to find trees with higher LnL val-
ues than the true tree in some cases. This is not surprising as
the ML model is consistent when the number of sites goes to
infinity.
For RF- (and Quartet-, see Supplement) distances, however,
we observe no substantial differences between RAxML-NG,
IQ-TREE2, and FastTree2. This stands in an unexpected con-
trast to the results on empirical data. We explore this ques-
tion briefly in the respective Section on differences between
simulated and empirical data. Parsimony trees perform con-
sistently worse in terms of RF-distances than all other tools
and methods.
Overall, we observe, that for datasets at or above a certain dif-
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Fig. 3. Absolute log-likelihood (LnL) score differences (log scale) from the best-known ML tree on TreeBASE data.

Fig. 4. Relative log-likelihood (LnL) score differences, and RF-distances to the best-known ML tree, and numbers of passed statistical tests of all inferred trees on empirical
TreeBASE datasets. "RAxML-NG-100" denotes the tree inferred by conducting 100 tree searches using RAxML-NG.
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Fig. 5. Relative log-likelihood (LnL) score differences, and RF-distances to the true tree, and numbers of passed statistical tests of all inferred trees on simulated MSAs with
RAxMLGroveScripts (BONK method).

ficulty level (mostly above 0.8), the inference tools become
less reliable in reconstructing the true tree and the accuracy
differences between various inference tools recede. At these
difficulty levels, users should be alarmed and be extremely
cautious regarding the subsequent post-analyses and inter-
pretation of the trees. For instance, a small SARS-CoV-2
dataset already exhibits a difficulty of 0.84. Approaches to
interpreting and summarizing inference results on such dif-
ficult datasets are outlined in Morel et al. (42), for instance.
We also note, that at least for datasets exhibiting low (easy)
and high (hopeless) difficulties, it might be reasonable to re-
duce the number of independent tree searches conducted with
RAxML-NG. This is because the performance differences
between the default search on 20 starting trees and the search
on 100 distinct starting trees under all metrics deployed here
appear to be negligible. In cases, where excessive inference
times become an issue, one can also switch to less accurate,
yet substantially faster alternatives, such as FastTree2 or even
parsimony (e.g., using the fast dedicated parsimony program
TNT (43)), without deteriorating the - already low - average
inference accuracy.

Differences between simulated and empirical data. We
noticed an unexpected difference between simulated and em-
pirical data in terms of the RF- (and Quartet-) distances be-
tween the inferred trees and true trees. There exist several
potential explanations for this difference. Apart from the fact
that inference and simulation models only represent simpli-
fied approximations of real evolutionary processes, we ob-
serve, that the value distributions of taxon numbers, number

of sites and patterns as well as gap percentages are surpris-
ingly different between TreeBASE and RG (p ≪ 0.05 in the
two-sample Kolmogorov-Smirnov (KS) test).
Another reason might be our method of gap generation in the
simulated MSAs. To assess, whether this constitutes an issue,
we conducted an additional set of experiments on simulated
data, but this time generated based on TreeBASE meta-data.
In contrast to RG, we were able to utilize the original empir-
ical MSA with its corresponding gap patterns. Thus, we first
simulated gapless MSAs based on the best-known ML trees
(which we also used as reference trees in the empirical tests)
and their inferred ML model parameters. Then, we used the
gap patterns of the original MSAs and directly superimposed
them onto the simulated MSAs. Afterwards, we conducted
the same experiments as described above.
This time, both, LnL differences, and topological distances
exhibit little variation between the tools, and do not appear to
be informative (see Supplement). The observations from the
statistical tests are consistent with the previously observed
results on simulated RAxMLGrove and empirical TreeBASE
data.
Thus, it is less likely that our method for generating realistic
gap patterns explains the differences we observe between em-
pirical and simulated datasets. Since we use buckets to group
datasets by difficulty, the different difficulty distributions of
simulated RG and TreeBASE data (see Figure 6) can also not
serve to explain the distinct behavior. Possibly, there is some
yet unknown dataset property which we (and the difficulty
prediction of Pythia) are not aware of.
Another possible explanation for the discrepancy between re-
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Fig. 6. Difficulty distributions of TreeBASE MSAs and simulated RGS MSAs.

sults might be a bias towards the more thorough RAxML-NG
and IQ-TREE2 tools by defining the "true" tree as the best-
known ML tree for the experiments on empirical datasets.
We investigated that possibility by conducting an additional
experiment on the simulated data. This time, we followed a
similar approach as in the empirical data analysis: Out of the
set of inferred trees (per dataset), as described before, plus
an additional tree obtained via an additional 100 RAxML-
NG inferences, we determined the tree with the highest LnL.
Then, we computed the RF distances of every inferred tree
by the inference tools to the best-known tree based on the
LnL score instead of the true tree (see Figure 7). This time,
we observe, that the results on simulated data resemble those
on empirical data shown in Figure 4. Thus, we confirm that
there is a bias introduced by comparing the topology of the
inferred trees to the tree with the highest LnL. Note, how-
ever, that the RF-distance differences between FastTree2 and
RAxML-NG are not as high as in Figure 4. So there are still
other not yet understood differences between experiments on
empirical and simulated data.
Overall, we believe, that more research is required regarding
the evaluation of tree inference tools. The main focus of ML
inference tools is to find trees with the highest LnL score.
The main idea of making use of an ML tool, however, is to
estimate real evolutionary relationships (the "ground truth")
between species. According to our experiments on simulated
data, the ability to find trees with high LnL scores does not
necessarily correlate with the ability to infer trees which are
topologically close to the ground truth. Therefore, one might
question the purpose of running thorough ML optimizations
with RAxML-NG or IQ-TREE2 on "common" MSAs instead
of inferring a substantially faster (10) evolutionary hypothe-
sis with FastTree2.

Conclusion. We analyzed the tree inference accuracy of the
three widely used phylogenetic inference tools RAxML-NG,
IQ-TREE2, and FastTree2 on representative empirical as well
as simulated DNA data from TreeBASE and RAxMLGrove
respectively. We selected the datasets such that, with respect
to their characteristics, they represent the most commonly an-
alyzed datasets by practitioners.
First, we observed a discrepancy between our results on em-

Fig. 7. RF differences to best-known ML tree instead of the true tree that we used
to simulate the MSAs. "RAxML-NG-100" denotes the tree inferred by conducting
100 tree searches using RAxML-NG.
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pirical and simulated MSAs, although the simulated MSAs
were generated based on empirical parameter distributions.
Therefore, more research is required on generating more re-
alistic synthetic datasets that behave like empirical datasets.
Second, we observed a bias in the topological tests when in-
ferred trees are compared to the tree with the best LnL score
instead of the true tree. When topological reconstruction tests
(using the RF distance, for instance) are being conducted on
empirical data, one might try to estimate the true tree with the
best-known LnL tree, since the true tree (the "ground truth")
is usually unknown. Our experiments on simulated data sug-
gest, that such topological tests can favor the more thorough
LnL optimization algorithms. This is an issue to consider
when designing and interpreting empirical tests. Since there
are no standardized benchmarks, we believe that one should
critically assess the evaluation criteria that are typically used
for performance assessment. As a first step into this direc-
tion, we introduce and make available an easy-to-use Snake-
make benchmarking pipeline. This pipeline can help to rou-
tinely analyze the accuracy of phylogenetic inference tools in
a more standardized manner, under the assumption that Tree-
BASE and RAxMLGrove comprise a representative sample
of commonly analyzed datasets.
Third, we observed that with increasing difficulty level, as
predicted by Pythia, the accuracy of all analyzed tools dete-
riorates and the differences in accuracy between these tools
diminish. This confirms that Pythia implements a meaningful
measure for quantifying dataset difficulty in practice. Hence,
we recommend applying Pythia before conducting phyloge-
netic analyses.
Finally, we find that on empirical datasets exhibiting a high
difficulty level (difficulty above 0.8), all analyzed tools can
essentially be used interchangeably. This means that lengthy
computations could – and we would argue should – be
avoided on such difficult or "hopeless" datasets. More specif-
ically, one should critically assess the necessity of compute-
and CO2-intensive ML optimization routines, as they are per-
formed by RAxML-NG and IQ-TREE2, especially consider-
ing the fact, that – due to possible biases in the evaluation on
empirical data – it is not entirely clear, how much more ac-
curate these tools are compared to faster competitors. There-
fore, we propose the development of adaptable and flexible
heuristic search algorithms that can dynamically take into ac-
count the degree of difficulty and the properties of the dataset
being analyzed. Hence, the time has come to critically reflect
on and rethink the design of heuristic phylogenetic search al-
gorithms, for "What falleth, that shall one also push! [...]
And him whom ye do not teach to fly, teach I pray you-to fall
faster!" (44).

Acknowledgements

We thank Benoit Morel for helpful discussions, and we thank
Antonis Rokas for helpful feedback on this manuscript.

Funding

This work was funded by the Klaus Tschira Foundation.

Bibliography
1. Naruya Saitou and Masatoshi Nei. The neighbor-joining method: a new method for recon-

structing phylogenetic trees. Molecular biology and evolution, 4(4):406–425, 1987.
2. Walter M Fitch. Toward defining the course of evolution: minimum change for a specific tree

topology. Systematic Biology, 20(4):406–416, 1971.
3. Joseph Felsenstein. Evolutionary trees from dna sequences: a maximum likelihood ap-

proach. Journal of molecular evolution, 17(6):368–376, 1981.
4. Shuying Li, Dennis K Pearl, and Hani Doss. Phylogenetic tree construction using markov

chain monte carlo. Journal of the American statistical Association, 95(450):493–508, 2000.
5. Bob Mau and Michael A Newton. Phylogenetic inference for binary data on dendograms

using markov chain monte carlo. Journal of Computational and Graphical Statistics, 6(1):
122–131, 1997.

6. Bob Mau, Michael A Newton, and Bret Larget. Bayesian phylogenetic inference via markov
chain monte carlo methods. Biometrics, 55(1):1–12, 1999.

7. Bruce Rannala and Ziheng Yang. Probability distribution of molecular evolutionary trees:
a new method of phylogenetic inference. Journal of molecular evolution, 43(3):304–311,
1996.

8. Ziheng Yang and Bruce Rannala. Bayesian phylogenetic inference using dna sequences: a
markov chain monte carlo method. Molecular biology and evolution, 14(7):717–724, 1997.

9. Sebastien Roch. A short proof that phylogenetic tree reconstruction by maximum likelihood
is hard. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 3(1):92–94,
2006.

10. Morgan N Price, Paramvir S Dehal, and Adam P Arkin. FastTree 2–approximately
maximum-likelihood trees for large alignments. PloS one, 5(3):e9490, 2010.

11. Lam-Tung Nguyen, Heiko A Schmidt, Arndt Von Haeseler, and Bui Quang Minh. IQ-TREE:
a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies.
Molecular biology and evolution, 32(1):268–274, 2015.

12. Bui Quang Minh, Heiko A Schmidt, Olga Chernomor, Dominik Schrempf, Michael D Wood-
hams, Arndt Von Haeseler, and Robert Lanfear. Iq-tree 2: new models and efficient meth-
ods for phylogenetic inference in the genomic era. Molecular biology and evolution, 37(5):
1530–1534, 2020.

13. Alexey M Kozlov, Diego Darriba, Tomáš Flouri, Benoit Morel, and Alexandros Stamatakis.
RAxML-NG: a fast, scalable and user-friendly tool for maximum likelihood phylogenetic in-
ference. Bioinformatics, 35(21):4453–4455, 05 2019. ISSN 1367-4803. doi: 10.1093/bioinf
ormatics/btz305.

14. Kevin Liu, C Randal Linder, and Tandy Warnow. Raxml and fasttree: comparing two meth-
ods for large-scale maximum likelihood phylogeny estimation. PloS one, 6(11):e27731,
2011.

15. Dimitri Höhler, Wayne Pfeiffer, Vassilios Ioannidis, Heinz Stockinger, and Alexandros Sta-
matakis. RAxML Grove: an empirical phylogenetic tree database. Bioinformatics, 38(6):
1741–1742, 12 2021. ISSN 1367-4803. doi: 10.1093/bioinformatics/btab863.

16. Alexandros Stamatakis. RAxML version 8: a tool for phylogenetic analysis and post-analysis
of large phylogenies. Bioinformatics, 30(9):1312–1313, 01 2014. ISSN 1367-4803. doi:
10.1093/bioinformatics/btu033.

17. Morgan N Price, Paramvir S Dehal, and Adam P Arkin. Fasttree: computing large minimum
evolution trees with profiles instead of a distance matrix. Molecular biology and evolution,
26(7):1641–1650, 2009.

18. Julia Haag, Dimitri Höhler, Ben Bettisworth, and Alexandros Stamatakis. From easy to
hopeless - predicting the difficulty of phylogenetic analyses. bioRxiv, 2022. doi: 10.1101/20
22.06.20.496790.

19. Xiaofan Zhou, Xing-Xing Shen, Chris Todd Hittinger, and Antonis Rokas. Evaluating fast
maximum likelihood-based phylogenetic programs using empirical phylogenomic data sets.
Molecular biology and evolution, 35(2):486–503, 2018.

20. Felix Mölder, Kim Philipp Jablonski, Brice Letcher, Michael B Hall, Christopher H Tomkins-
Tinch, Vanessa Sochat, Jan Forster, Soohyun Lee, Sven O Twardziok, Alexander Kanitz,
et al. Sustainable data analysis with snakemake. F1000Research, 10, 2021.

21. W. H. Piel, L. Chan, M. J. Dominus, J. Ruan, R. A. Vos, and V. Tannen. TreeBASE v. 2: A
Database of Phylogenetic Knowledge. e-BioSphere 2009, 2009.

22. MA Miller, W Pfeiffer, and T Schwartz. Creating the CIPRES Science Gateway for inference
of large phylogenetic trees. Gateway Computing Environments Workshop, 2010, 1–8, 2010.

23. Reed A Cartwright. DNA assembly with gaps (Dawg): simulating sequence evolution. Bioin-
formatics, 21(Suppl_3):iii31–iii38, 2005.

24. Nhan Ly-Trong, Suha Naser-Khdour, Robert Lanfear, and Bui Quang Minh. Alisim: A fast
and versatile phylogenetic sequence simulator for the genomic era. Molecular Biology and
Evolution, 39(5):msac092, 2022.

25. Simon Tavaré et al. Some probabilistic and statistical problems in the analysis of dna se-
quences. Lectures on mathematics in the life sciences, 17(2):57–86, 1986.

26. William Fletcher and Ziheng Yang. INDELible: A Flexible Simulator of Biological Sequence
Evolution. Molecular Biology and Evolution, 26(8):1879–1888, 05 2009. ISSN 0737-4038.
doi: 10.1093/molbev/msp098.

27. Harold J Kushner. A new method of locating the maximum point of an arbitrary multipeak
curve in the presence of noise. 1964.

28. AG Zhilinskas. Single-step bayesian search method for an extremum of functions of a single
variable. Cybernetics, 11(1):160–166, 1975.

29. Jonas Mockus, Vytautas Tiesis, and Antanas Zilinskas. The application of bayesian meth-
ods for seeking the extremum. Towards global optimization, 2(117-129):2, 1978.

30. Tim Head, Manoj Kumar, Holger Nahrstaedt, Gilles Louppe, and Iaroslav Shcherbatyi.
scikit-optimize/scikit-optimize, October 2021.

31. Eli Levy Karin, Dafna Shkedy, Haim Ashkenazy, Reed A Cartwright, and Tal Pupko. Inferring
rates and length-distributions of indels using approximate bayesian computation. Genome
biology and evolution, 9(5):1280–1294, 2017.

32. Gil Loewenthal, Dana Rapoport, Oren Avram, Asher Moshe, Elya Wygoda, Alon Itzkovitch,
Omer Israeli, Dana Azouri, Reed A Cartwright, Itay Mayrose, et al. A probabilistic model for
indel evolution: differentiating insertions from deletions. Molecular biology and evolution, 38
(12):5769–5781, 2021.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 1, 2022. ; https://doi.org/10.1101/2022.10.31.514545doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.31.514545
http://creativecommons.org/licenses/by-nc-nd/4.0/


33. Donald B Rubin. Bayesianly justifiable and relevant frequency calculations for the applied
statistician. The Annals of Statistics, pages 1151–1172, 1984.

34. Simon Tavaré, David J Balding, Robert C Griffiths, and Peter Donnelly. Inferring coales-
cence times from dna sequence data. Genetics, 145(2):505–518, 1997.

35. Andreas WM Dress, Christoph Flamm, Guido Fritzsch, Stefan Grünewald, Matthias Kruspe,
Sonja J Prohaska, and Peter F Stadler. Noisy: identification of problematic columns in
multiple sequence alignments. Algorithms for Molecular Biology, 3(1):1–10, 2008.

36. David F Robinson and Leslie R Foulds. Comparison of phylogenetic trees. Mathematical
biosciences, 53(1-2):131–147, 1981.

37. George F Estabrook, FR McMorris, and Christopher A Meacham. Comparison of undirected
phylogenetic trees based on subtrees of four evolutionary units. Systematic Zoology, 34(2):
193–200, 1985.

38. Andreas Sand, Morten K. Holt, Jens Johansen, Gerth Stølting Brodal, Thomas Mailund, and
Christian N. S. Pedersen. tqDist: a library for computing the quartet and triplet distances
between binary or general trees. Bioinformatics, 30(14):2079–2080, 03 2014. ISSN 1367-
4803. doi: 10.1093/bioinformatics/btu157.

39. Hirohisa Kishino, Takashi Miyata, and Masami Hasegawa. Maximum likelihood inference
of protein phylogeny and the origin of chloroplasts. Journal of Molecular Evolution, 31(2):
151–160, 1990.

40. Korbinian Strimmer and Andrew Rambaut. Inferring confidence sets of possibly misspecified
gene trees. Proceedings of the Royal Society of London. Series B: Biological Sciences, 269
(1487):137–142, 2002.

41. Hidetoshi Shimodaira. An Approximately Unbiased Test of Phylogenetic Tree Selection.
Systematic Biology, 51(3):492–508, 05 2002. ISSN 1063-5157. doi: 10.1080/1063515029
0069913.

42. Benoit Morel, Pierre Barbera, Lucas Czech, Ben Bettisworth, Lukas Hübner, Sarah Lut-
teropp, Dora Serdari, Evangelia-Georgia Kostaki, Ioannis Mamais, Alexey M Kozlov, et al.
Phylogenetic analysis of sars-cov-2 data is difficult. Molecular biology and evolution, 38(5):
1777–1791, 2021.

43. Gonzalo Giribet. TNT: Tree Analysis Using New Technology. Systematic Biology, 54(1):
176–178, 02 2005. ISSN 1063-5157. doi: 10.1080/10635150590905830.

44. Friedrich Wilhelm Nietzsche. The Complete Works of Friedrich Nietzsche: Thus spake
Zarathustra, tr. by Thomas Common. 1909, volume 11. TN Foulis, 1909.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 1, 2022. ; https://doi.org/10.1101/2022.10.31.514545doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.31.514545
http://creativecommons.org/licenses/by-nc-nd/4.0/

