Abstract
The newly emerged SARS-CoV-2 Omicron BQ.1.1, XBB.1, and other sublineages have accumulated additional spike mutations that may affect vaccine effectiveness. Here we report neutralizing activities of three human serum panels collected from individuals 1-3 months after dose 4 of parental mRNA vaccine (post-dose-4), 1 month after a BA.5-bivalent-booster (BA.5-bivalent-booster), or 1 month after a BA.5-bivalent-booster with previous SARS-CoV-2 infection (BA.5-bivalent-booster-infection). Post-dose-4 sera neutralized USA-WA1/2020, BA.5, BF.7, BA.4.6, BA.2.75.2, BQ.1.1, and XBB.1 SARS-CoV-2 with geometric mean titers (GMTs) of 1533, 95, 69, 62, 26, 22, and 15, respectively; BA.5-bivalent-booster sera improved the GMTs to 3620, 298, 305, 183, 98, 73, and 35; BA.5-bivalent-booster-infection sera further increased the GMTs to 5776, 1558,1223, 744, 367, 267, and 103. Thus, although BA.5-bivalent-booster elicits better neutralization than parental vaccine, it does not produce robust neutralization against the newly emerged Omicron BA.2.75.2, BQ.1.1, and XBB.1. Previous infection enhances the magnitude and breadth of BA.5-bivalent-booster-elicited neutralization.
Competing Interest Statement
X.X. and P.-Y.S. have filed a patent on the reverse genetic system. X.X., J.Z., and P.-Y.S. received compensation from Pfizer for COVID-19 vaccine development. Other authors declare no competing interests.
Footnotes
Correct one error in the figure.