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Abstract 
Design and natural evolution of protein sequences can be profoundly impacted by the extent of 

epistasis between mutations. For most proteins and sets of residues, it’s unclear how much epistasis 

there is. Here, we measure the effect of combinatorial variants at ten positions in the antitoxin 

ParD3 on its ability to neutralize its cognate toxin. Using this and two additional datasets, we show 

that a site-wise independent model without epistasis can explain virtually all of the combinatorial 

mutation effects. This model can be trained on few random observations and still predict 

combinatorial variant effects not observed during training. We then develop an unsupervised 

strategy to design functional and diverse protein sequences without experimental variant effect 

measurements by using a site-wise independent model trained on structural databases. Such 

independent approaches could enable the combinatorial design of therapeutically relevant binding 

proteins with desired binding properties with few or no observations. 
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Introduction 
Understanding how substitutions in proteins manifest in functional changes is both a fundamental 

as well as applied protein engineering problem. The extent to which multiple mutations combine 

to result in functional changes can dramatically impact possible future mutational trajectories in 

natural evolution, as well as engineering of therapeutic proteins of interest, such as antibodies. For 

example, it’s possible that the negative effect of a single mutation can only be tolerated in the 

presence of another enabling mutation, thereby constraining the possible subsequent mutational 

trajectories1–3. Conceptually, specific dependencies between mutations can cause ‘rugged’ fitness 

landscapes, in which Darwinian selection for fitness-increasing mutations does not necessarily 

result in globally optimal binders4–6 (Fig. 1a). On the other hand, if multiple mutations combine 

without specific dependencies between each other, the sequence-fitness function will result in a 

convex function (Fig. 1a) on which selection can act more efficiently. 

 

Epistasis – the non-additive effect of two or more mutations – can be defined in multiple ways 

depending on the null expectation of how mutations combine7. One null expectation is additivity 

in the observed functional dimension, such as the measured growth rate or fitness effects of the 

variants (Fig. 1). Using this expectation, there are many examples of proteins in which mutations 

pervasively act non-additively8,9. However, the non-additive effect of mutations along this 

observed dimension can often be explained by a ‘global epistasis’ models7,9–11. Here, the null 

expectation for the effect of combined mutations consists of independent, additive mutations 

effects along an unobserved dimension, which are then transformed through a nonlinear function 

to give rise to non-additive effects in the observed variable7,9,11–18 (Fig. 2a). In this way, saturating 

effects, such as maximal growth rates of the cell, sigmoid binding curves and limitations to assay 

sensitivity can be captured. Using this null model, a second definition of epistasis is possible, 

where deviations from this new nonlinear, independent expectation form the set of specific 

epistatic interactions between mutations. Such models have been shown to ‘explain away’ many 

of the previously epistatic, but non-specific mutation effects without adding additional parameters, 

suggesting that such models are more parsimonious for explaining observed mutation effects7. 

 

To study the importance of epistasis in governing protein function, we study a bacterial ParE3-

ParD3 toxin-antitoxin system from Mesorhizobium opportunistum. When the antitoxin ParD3 is 
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a

Fig. 1: Predictive fitness function reveals the local fitness landscape and enable assessment of sequence design 
models.
a, Local fitness landscapes can be conceptualized as simple convex functions arising from independent site-wise residue 
preferences (left) vs. complicated epistatic functions with dependence between residues (right).
b, Learning supervised fitness functions from experimental high-throughput variant measurements. The functional form of the 
fitness function, f(), can be learned by fitting to observed data. This enables predicting unobserved mutation effects and 
revealing the shape of the fitness functions.
c, Unsupervised sequence design models learned from structural and sequence databases are used to design synthetic 
sequences. The designed sequences can be assessed for function based on the oracle function, f(), from b, revealing 
strategies for sequence design without requiring experimental observations. 

b
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co-expressed with the toxin ParE3 in Escherichia coli, only cells containing functional ParD3 are 

able to neutralize the toxin and proliferate. The in vivo function of thousands of antitoxin variants 

can be read out in bulk by following the variant frequencies over time using high-throughput 

sequencing19–21. Here, we measure random combinatorial variant effects at ten positions of the 

antitoxin ParD3 (Fig. 1b left). We discover that combinatorial variant effects in this and two other 

existing datasets can be explained by models which do not incorporate specific epistasis but only 

the residue site-wise amino acid preferences. These models consist of a linearly increasing number 

of parameters (20*n +1, where n is the number of mutated residues) to explain an exponentially 

growing number of combinatorial variant effects (20n). This model can be trained accurately on 

few observed sequences, and be used as an ‘oracle fitness function’ to predict unobserved variant 

effects at these positions. Given the performance of such non-epistatic, but supervised models, we 

then devise a strategy to design functional and diverse protein variants that do not require any 

measurements by using an independent model trained on structural databases (Fig. 1c). 

Collectively, our findings illustrate the power of independent models in understanding protein 

evolution and suggest a concrete strategy to design protein binders with few or no variant effect 

measurements. 
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Results 
High-throughput in vivo measurement of combinatorial variant effects at ten binding 

residues of the antitoxin ParD3 illuminates the functional set of antitoxin variants 

To understand to which degree mutations depend on each other, we first set out the generate a 

dataset in which ten positions of the antitoxin ParD3 are randomly mutated and assayed for 

neutralization of the cognate toxin ParE3 (Fig. 2a). Cells containing different antitoxin variants are 

grown in bulk, and only those cells that contain functional antitoxin variants that neutralize the 

toxin can proliferate. The change in frequency of each antitoxin variant is followed via high-

throughput sequencing over time (Fig. 2a). These variant effect measurements correlate with 

orthogonal growth rate measurements and have shown high reproducibility between biological 

replicates19–21. While previous studies have examined the effect of random mutations at three or 

four antitoxin positions only, we apply this assay to measure the effect of combinatorial variants 

at ten positions in the antitoxin, containing 7,923 unique amino acid variants and 2,615 truncated 

antitoxins. We calculate the growth rate score of each variant as the normalized log read ratio 

before and after selection, and find good separation between truncated and wild-type antitoxin 

variant effects (Fig. 2b). This assay shows high reproducibility between separate biological 

replicates (Pearson r: 0.93, Fig. 2c). As expected, the distribution of fitness effects shifts towards 

loss of function as more substitutions are introduced, with the majority of functional variants 

achieving at least half-maximal toxin neutralization when fewer than three substitutions are present 

(Fig. 2d-e, Fig. S1). As additional substitutions are introduced, the fraction of such functional 

variants decreases faster than exponentially (Fig. 2e, left). Using this maximum likelihood estimate 

of the fraction of functional variants and considering the total number of possible mutations at 

each mutation distance, we estimate that there are ~3x1010 sequences – out of a possible 

2010~10^13 - that achieve half-maximal neutralization when these ten positions are mutated (Fig. 

2e, right). 

 
A nonlinear, independent model explains most combinatorial variant growth rate effects 

in the antitoxin ParD3. 
We then set out to understand how well observed combinatorial variant effects can be explained 

by considering only site-wise amino acid preferences but no specific dependencies between 
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a

Fig. 2: High-throughput measurement of combinatorial variant effects at ten binding residues of the antitoxin ParD3 
on neutralizing the cognate toxin ParD3.
a, Ten binding residues (AT: L48, D52, I53, R55, L56, F74, R78, E80, A81, R82; n=10,658) of the antitoxin ParD3 were 
randomized (shown space-filled on PDB ID:5CEG), transformed into cells containing wild-type toxin ParE3, and the growth of 
individual antitoxin variants followed by high-throughput sequencing over time to calculate the normalized log read ratio 
(growth rate, GR) for each variant. Antitoxin variants that are able to bind and neutralize the toxin will show higher growth 
rates.
b, The distribution of measured growth rate values for all antitoxin variants, wild-type antitoxin, and truncated antitoxins is 
shown.
c, The reproducibility of growth rate values between two biological replicates.
d, The distribution of antitoxin variant growth rate effects split across the number of substitutions from the wild-type antitoxin 
sequence.
e, The fraction of antitoxin variants that reach half-maximal growth rate values as a function of substitution distance (left), and 
the resulting estimated total number of antitoxin variants that reach half-maximal neutralization at a given substitution 
distance (right).
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mutated residues. We first fit a nonlinear, independent model (Fig. 3a) to a dataset from Ding et 

al.19. Here, an exhaustive combinatorial set of antitoxin ParD3 variants at three residues (D61, K64 

and E80) was assayed for neutralization of the cognate wild-type toxin ParE3 (Fig. 3b, left) as 

above. This dataset shows almost perfect reproducibility between separate biological replicates 

(Pearson r: 0.99). The independent model infers site-wise preference parameters (20*3+1 = 61 

parameters), sums these inferred parameters and passes them through a nonlinear sigmoid function 

to predict two orders of magnitude more combinatorial variant effects (20*20*20=8,000 amino 

acid) (Fig. 3a). Strikingly, such a model predicts combinatorial variant effect almost perfectly 

(Pearson r: 0.99, explained variance R2: 98%) with small deviations from the predicted growth 

rates. This suggests that mutations at these three non-contacting residues act independently without 

specific dependencies between each other, enabling the precise and rational tuning of variant 

neutralization strengths by considering only the site-wise amino acid preferences. 

 

To test whether such independent models can perform well when more than three residues are 

mutated, we also examined a dataset from Aakre et al.21 in which four partially contacting antitoxin 

positions (L59, W60, D61, K64) are combinatorially mutated (n=9,194 amino acid variants, 

Pearson r = 0.99 between biological replicates, Fig. 3b middle), as well as the dataset generated in 

this study, in which ten partially contacting antitoxin residues are randomly mutated (n=7,923 

amino acid variants; Pearson r = 0.93 between biological replicates; Fig. 3b, right). The site-wise 

independent model predicts observed combinatorial variant effects well, both for the four position 

library (Pearson r: 0.98, explained variance R2: 94%) as well as the ten position library (Pearson 

r: 0.91, explained variance R2: 83%). This is achieved with a significantly smaller number of 

parameters than combinatorial observations (four position library: 4*20+1=81 parameters to 

explain 9,194 combinatorial variants; ten position library: 10*20+1 = 201 parameters to explain 

7,923 combinatorial variants). 

 

These results indicate that a site-wise independent model with much fewer parameters than 

observations is sufficient to explain almost all combinatorial variant effects among three non-

contacting residues, and as well as predict combinatorial variant effects when four or ten partially 

contacting residues are mutated in the antitoxin ParD3. 
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Few observations are sufficient to predict unobserved combinatorial mutation effects. 
Since we were able to explain a large number of combinatorial variant effects using few 

independent parameters, we next asked whether a smaller subset of random observations is 

sufficient to infer these site-wise preferences. We repeated inference of the site-wise preferences 

of the nonlinear model using smaller random subsets of the total observed dataset (n=8), and 

evaluated these models on predicting the fitness effect of combinatorial variants in the complete 

dataset. Indeed, a much smaller number of random observations is sufficient to explain the 

majority of combinatorial mutation effects well (Fig. 4a-c). For the three position library, 100 or 

200 random combinatorial variant effect measurements were sufficient to achieve high correlation 

(Pearson r:0.92 and 0.98, respectively) between the observed and predicted combinatorial variants 

(Fig. 4a).   

 

We also tried to estimate how well the ten position, site-wise independent model trained on ~8,000 

antitoxin variants can predict the possible 2010 possible combinatorial variants. To do so, we 

inferred parameters from a random 90% subset of the total observed combinatorial variants, and 

tested the predictive accuracy of the model on the remaining 10% of observed variants. The 

correlation between predicted and measured held-out test variants is high (train set Pearson r: 

0.916±0.001, test set Pearson r: 0.900±0.011, Fig. 4d). This suggests that this model can be used 

as an ‘oracle fitness function’ to predict the effect of unobserved combinatorial variants at these 

ten positions. 

 

Site-wise preferences can be affected by contacting residues. 
We next asked whether site-wise preferences of these mutated binding residues can be changed by 

contacting residues. To do so, we examined the combinatorial variant effects in the three position 

(antitoxin residues D61, K64 and E80) library measured for neutralization of ten different single 

amino acid substitutions in the ParE3 toxin (data from Ding et al.19). We fit separate nonlinear, 

independent models to the antitoxin library in each toxin variant background. The inferred site-

wise antitoxin preferences were almost perfectly correlated across 9 out of 10 toxin backgrounds, 

in which toxin substitutions do not contact any of the mutated antitoxin residues (Fig. S2b-c), but 

deviated in the background of toxin E87M (Fig. S2d). Inspection of the site-wise preferences 

reveals deviations particularly for antitoxin residue K63, which is found to be directly contacting 
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Fig. 4: Few observed sequences are required to predict combinatorial mutation effects, and enable generalization to 
unobserved variants.
a-c,The nonlinear, additive model was trained on a subset of combinatorial variants, and then used to predict the combinatori-
al mutation effects in the entire dataset for the 3 position (a), 4 position (b) or 10 position library (c). The pearson correlation 
coefficient, r, between predicted and observed variant effects is indicated vs. the number of subsampled observations used to 
infer the site-wise amino acid preferences. Errorbars represent standard deviations from different subsampled numbers 
(n=8).
d, The nonlinear, additive model was trained on a random 90% subset of the combinatorial library data and then used to 
predict the remaining 10% of data. The mean pearson correlation coefficients and standard deviations between predicted and 
observed mutation effects is indicated (n=8).
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the toxin E87M position on the crystal structure (Fig. S2a). This result suggests that the site-wise 

preferences can be altered by directly contacting residues surrounding a particular amino acid.  

 

An independent, unsupervised model trained on structural microenvironments around a residue 

can generate diverse and functional sequences. 

Is it possible to predict combinatorial variant effects without measurements? We hypothesized that 

the three-dimensional structural environment around a particular amino acid could be sufficient to 

learn site-wise amino acid preferences, and that these scores alone could be used to predict 

combinatorial variant effects. To test this, we trained a graph neural network that learns rotation 

equivariant transformations (RES model from Jing et al.22) to predict the identity of a masked 

amino acid from its structural, atom-level 3D environment across non-redundant structures from 

the Protein Database (PDB) (test accuracy = 52.8%, compared to ~5% for random guess, Fig. 5a, 

training and testing dataset from Townshend et al.23). We then predicted the amino acid preference 

at each of the mutated antitoxin residues given their respective structural environments (Fig. 5b), 

and summed these amino acid preferences to predict combinatorial variants effects. This strategy 

is able to predict observed mutation effects modestly well (three position library: Pearson r=0.72, 

four position library: Pearson r=0.45, ten position library: Pearson r=0.57; Fig. S3).  

 

We then assessed whether this independent model trained on structural information alone is able 

to design diverse and functional sequences. Given these site-wise amino acid preference scores, 

we used a Boltzmann energy function to sample sequences (n=500) at various temperatures, t, to 

control the diversity of the generated sequences. We then assessed the predicted growth rate effect 

of these sequences using the above supervised ten residue oracle function, as well as the diversity 

of generated samples by calculating the number of mutations between sampled sequences and with 

respect to the wild-type sequence. At temperature t=1.5, this strategy generated 91 unique 

sequences of which ~70% are predicted by the oracle fitness function to achieve half-maximal 

fitness. These sequences showed an average of 6.7 substitutions between samples and 5.6 with 

respect to the wild-type antitoxin (Fig. 5c). Inspecting the generated sequences shows that multiple 

different substitutions can occur at each position (Fig. 5d). 
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Fig. 5: An unsupervised, site-wise independent model trained on structural microenvironments can generate viable 
and diverse sequences.
a, Schematic of training the RES model (Jing et al., Townshend et al.) to predict amino acid preferences from structural 
environments.
b, Workflow for designing protein sequences using the antitoxin structure. Microenvironments around residues of interest are 
extracted and fed into the RES model to generate variant preferences for each position. These preferences are then used to 
sample variants from a Boltzmann energy function.
c, Generated sequences (n=91 unique sequences, temperature = 1.5) from the RES model are evaluated for their growth 
rate effects, and their sequence diversity between generated sequences as well as to the wild-type sequence for the 10 
position library.
d, Sequence logo of the unique generated sequences from the RES model (panel c).
e, Comparison of generated sequences from the RES model vs. other state-of-the-art sequence design models in terms of 
the fraction of generated sequences predicted to be functional, their diversity and distance from wild-type antitoxin as the 
sampling temperature is varied.
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How well does this site-wise independent, unsupervised strategy compare to ones that consider 

dependencies between residues? To test this, we compared generated sequences from this 

independent model learned on structural information against sequences designed from two models  

that also consider the sequence context in an autoregressive manner (proteinMPNN from Dauparas 

et al.24, Ingraham et al.25; ESM-IF from Hsu et al.26). For each model, we sampled sequences at a 

range of temperatures and assessed the sampled sequences for the fraction that is predicted to be 

functional by the ‘oracle fitness function’, as well as their diversity. We find that the simple 

Boltzmann sampler using the site-wise scores of the RES model outperforms both these models 

for generating functional sequences that diverge from each other and with respect to the wild-type 

antitoxin sequence (Fig. 5e). 

 

These results indicate that sampling from a site-wise independent, unsupervised model is sufficient 

to generate functional and diverse sequences at these ten antitoxin residues, and can even 

outperform autoregressive sampling strategies. 
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Discussion 
We were able to explain most combinatorial variant effects on the native in vivo function of the 

antitoxin ParD3 by considering only site-wise amino acid preferences with no specific dependence 

between residues. As a result, few observations are required to infer a linearly increasing number 

of site-wise preferences to predict an exponentially exploding number of variant effects in this 

antitoxin across three combinatorial variant datasets. The high correlation between predicted and 

observed variant effects is especially striking for the dataset in which three non-contacting 

positions are randomized. Here, an unprecedented 98% of the observed combinatorial variant 

effects can be explained. This is enabled by low noise of this dataset, which has almost perfect 

correlation between biological replicates.  

 

Using a few thousand observations, we were able to fit a site-wise independent model to estimate 

the prediction error for the unobserved, remaining possible ~2010»1013 combinatorial protein 

variant effects at ten positions of the antitoxin. By considering the noise in this predictor, we 

estimate that there are at least ~1.7x1010 combinatorial variants at these ten positions that achieve 

half-maximal neutralization of the toxin ParE3 (see Methods), similar to the empirical estimate of 

3x1010 functional sequences above (Fig. 2). Similar to Ogden et al.27, this supervised model itself 

could be used to design functional sequences for further experimental validation, but we leave this 

for future work. 

 

The lack of specific dependencies between mutations also motivated successful strategies to 

generate functional and diverse sequences without assay-specific observations. In this case, simple 

sampling and modeling approaches that learn amino acid preferences from structural environments 

outperform approaches that do incorporate dependencies between residues. Future efforts to 

exploit such independent models could focus not just on improving the inference of site-wise 

preferences, but also the weighting of different residue contributions. For example, it is known 

that particular residues can be differentially important in contributing to binding, including the 

antitoxin ParD3 Tryptophan 60 residue19. In our sampling strategy, equal weighting of site-wise 

amino acid preferences performed well, but it’s possible that unequal weighting and scaling of 

site-wise preferences could further improve prediction of combinatorial variant effects.  
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It remains to be seen to what extent such independent residue approaches are successful for other 

proteins or selective functions, as well as the number and specific set of mutated residues 

considered. It is clear that the choice of residues is critical, since many high-order epistatic terms 

are required to explain combinatorial variant effects among particular chromophore residues of 

GFP9, but not when random mutations throughout the protein are introduced10. The site-wise 

preferences from the three position library of the antitoxin can be altered by mutations in 

contacting positions, suggesting that the choice of non-contacting binding residues could be a 

defining factor leading to the lack of specific dependencies between residues. Since such 

supervised, site-wise independent models trained on measured variant effects can perform well in 

explaining combinatorial variant datasets7,28, and generate unobserved functional sequences10,27,29 

across other proteins, we expect that our unsupervised strategy to design sequences without 

measurements could also enable the rational design of therapeutically relevant proteins.  
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Material and Methods 

 

Bacterial strains, vectors and media 

E. coli TOP10 strains were grown at 37 °C in M9L medium (1x M9 salts, 100 µM CaCl2, 0.4% 

glycerol, 0.1% casamino acids, 2 mM MgSO4, 10% v/v LB). Antibiotics were used as follows: 50 

µg/ml carbenicillin, 20 µg/ml chloramphenicol in liquid media, and 100 µg/ml carbenicillin, 30 

µg/ml in agar plates. The toxins ParE3 was carried as before8 on the pBAD33 vector (chlorR 

marker, ML3302 for wild-type ParE3) with expression repressed or induced with 1% glucose and 

L-arabinose at indicated concentrations, respectively, and the antitoxin ParD3 was carried on the 

pEXT20 vector (carbR marker, ML3296) with expression induced by IPTG21. 

 

High-throughput measurement of protein variant effects. 

To measure the combinatorial variant effects in the antitoxin at ten residues, we constructed two 

sublibaries: one in which five residues are randomized, and one in which an additional five 

positions are randomized. In this way, we can guarantee the presence of sufficient number of 

variants with five or less substitutions, given the curse of dimensionality, in which random 

sampling at ten positions will generate a distribution of variants for which most will have a high 

number of substitutions. 

Library construction 

Both the ten position and five position libraries were constructed using a 2-step overlap-extension 

PCR protocol30. We first used primers DDP704+DDP142 and DDP705+DDP141 to introduce five 

randomized positions in the wild-type antitoxin pEXT20-parD3 plasmid ML3296 (PCR cycling 

was: 30 sec. at 98°C; 20 cycles of: 10 sec. at 98°C, 20 sec. at 55°C, 1 min. at 72°C; 2 min. at 72°C, 
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hold at 4°C; using KAPA). The PCR products were pooled, diluted 1:100 and amplified using the 

outer primers DDP141+DDP142 to generate full length, mutated antitoxin sequence. On this PCR 

product, we then used the primers DDP700+DDP142 and DDP705+DDP141 to introduce the next 

five randomized positions, and used the above strategy to generate full length antitoxin ParD3 gene 

with 10 positions randomized. We then cloned both the five and ten position randomized PCR 

product into the pEXT20 vector using restriction digests with SacI-HF and HindIII-HF (NEB) and 

ligation using T4 DNA ligase (NEB at 16 ºC for 16 hours with a 1:3 molar ratio of insert to vector. 

Ligations were dialyzed on Millipore VSWP 0.025 µm membrane filters for 90 minutes before 

electroporating into TOP10 cells, made using the protocol from Warren31 (2mm cuvettes at 2.4kV). 

Cells were recovered in 1ml SOC for 1 hour. We propagated each library with at least 500,000 

transformants, checked by spot plating 1:10 serial dilutions of recovered cells on LB/carb/chlor/1% 

glucose plates. We grew OD600 ~ 0.5 at 37 °C in M9L/carb/chlor/1% glucose, spun down (8000G, 

5 minutes) and resuspended in 5ml M9L/carb/chlor/1%glucose/20% glycerol for storage at -80 °C. 

We then made these cells electrocompetent in replicate for each library using the above protocol31, 

and transformed dialyzed wild-type toxin ParE3 into these cells. Cells were propagated with at 

least 500,000 transformants, and grown up to OD~0.6, before spinning down (8000G, 5 minutes)  

and resuspending in 5ml M9L/carb/chlor/1%glucose/20% glycerol. Cells were aliquoted into 1ml 

tubes and flash frozen in liquid nitrogen for storage.  

High-throughput variant effect measurement 

On the day of growth rate measurements, aliquots from two separate transformations were thawed 

and recovered in 50 ml M9L/carb/chlor/1% glucose at 30 °C for 3 hours. Subsequently, glucose 

was removed by washing 4 times with M9L, and cells were ready for growth rate measurement. 

Growth rate measurements were then performed as described previously19. Briefly, washed cells 
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were resuspended in 250ml M9L/carb/chlor/IPTG to induce antitoxin expression, and toxin 

expression induced after 100 minutes by adding arabinose. Cells were diluted 1:10 with pre-

warmed media when their OD600 reached ~0.3 to keep them in exponential growth throughout the 

duration of the experiment. 50ml of the cultures were sampled at the time of toxin induction, and 

10 hours after. These cells were miniprepped, and a high-input (200 ng plasmid DNA), low cycle 

(14 rounds) PCR reaction performed to isolate amplicons of interest using primers DDP643-

645/DDP648-651/DDP654-657 to introduce Illumina multiplexing indices and adapters. We then 

gel purified and sequenced these library amplicons as described previously19. We then performed 

sequencing using 250 basepair paired end reads using a Novaseq SP flowcell. 

Analysis of high-throughput sequencing data 

Paired-end reads were processed as described previously19. Briefly, paired-end sequencing reads 

were merged using FLASH 1.2.1132. Merged reads were quality filtered based on their phred-score 

using vsearch 2.13.033, with the following arguments: vsearch --fastq_filter {0} --fastq_truncqual 

20 --fastq_maxns 3 --fastq_maxee 0.5 --fastq_ascii 33 --fastaout {1}.fasta. Reads were 

subsequently filtered for having defined mutations at the desired sites only, and the frequency of 

each variant at each timepoint was counted. We then calculated a log-read ratio for all variants 

with at least three reads pre- and post-selection, and normalized between 0 and 1 given the log 

read ratio of truncated and wild-type antitoxin variants. 

Nonlinear, independent modeling of combinatorial variant effects. 

We used a nonlinear site-wise model implemented in Tensorflow 2 to model combinatorial variant 

effects as before19. We used one-hot encoding of amino acid variants as a predictor and fit weights 

associated with each unobserved single amino acid mutant substitution as well as one additional 

bias parameter. The linear sum of these weights is passed through a sigmoid function to predict 
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the normalized growth rate effect between zero and one for each combinatorial variant in both the 

five and ten position library. We used the Adam optimizer with a 0.1 learning rate to minimize the 

mean squared error of predicted to measured normalized log read ratios for each variant for several 

hundred epochs, until the training error stabilized.  

 

Inference of site-wise preferences from subsampled variant effect measurements and estimation 

of generalization error. 

To test how well models trained on few observations can predict the total observed variant datasets, 

we retrained the above models on a subset of data eight times, and tested their performance on the 

full dataset. In order to estimate the generalization error of prediction for unobserved variants, we 

split the training dataset into 90% training data and assessed the correlation between predicted and 

observed effects in the remaining 10% of test data. We repeated this procedure eight times. We do 

not consider a validation set since there are no hyperparameters to be optimized. We also do not 

filter our test or train set for less represented amino acids, as done in other studies10 to enable 

prediction of all possible amino acid variants. We do not estimate the generalization error for either 

the three or four position library due to the nature of the observations. The three position library 

contains measurements for all combinatorial variant, leaving no additional variants to generalize 

to. For the four position library, only a subset of amino acid variants at each position were assayed. 

Hence, this model cannot be expected to generalize to variants that contain amino acids that have 

not been observed. 

 

Estimating the total number of functional variants 
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We estimate the total number of functional antitoxin sequences with at least half-maximal 

neutralization of the toxin using two ways orthogonal approaches, with both approaches predicting 

about 1010 functional sequences. The first estimate is based on the empirically measured 

distribution of fitness effects (Fig. 2). Here, we calculate the fraction of sampled sequences that 

are measured to be functional at each mutation distance from the wild-type sequence, and multiply 

this fraction by the total number of sequences that exist at this mutation distance. The total number 

of functional variants is the sum of all variants at each mutation distance. This approach assumes 

that the sampled sequences are a representative sample of all possible random mutations at each 

mutation distance, and does not consider the noise in the estimate of the fraction of functional 

sequences. For example, there are no functional sequences among the set of variants that show 

seven substitutions, likely due to the lower number of variants sampled at this mutation distance. 

To address these issues, we also use the supervised, ten position oracle function to estimate the 

total number of functional sequences. Here, we generate one million random synthetic 

combinatorial variants, and ask the oracle function to predict what fraction of these variants 

reaches half-maximal fitness, p(predicted GR>0.5). We then estimate the fraction of true positive 

predictions, p(observed GR>0.5|predicted GR>0.5), by sampling with replacement the observed 

variants, for which observed and predicted growth rate data are available, to match the distribution 

of predicted growth rates for the synthetic sequences. Then we calculate the fraction of these 

subsampled observed variants with GR>0.5 among variants with predicted GR>0.5. Finally, we 

multiply these two fractions (p(predicted GR>0.5) and p(observed GR>0.5|predicted GR>0.5)) to 

estimate the fraction of synthetic variants that are both predicted and observed to be functional, 

p(observed GR<0.5, predicted GR>0.5). We then multiply this probability by the total number of 

possible variants (2010) to estimate a lower bound on the total number of functional sequences. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 1, 2022. ; https://doi.org/10.1101/2022.10.31.514613doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.31.514613
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Unsupervised protein variant scoring and generation 

We trained the RES classifier model as described previously34. Briefly, the RES model is trained 

on predicting the amino acid identity of a masked residue given a median of ~500 surrounding 

atoms, excluding hydrogens, from the protein database (PDB). Importantly, the training and test 

set are split according to domain-level structural CATH topology23,25, and training examples are 

down-sampled to the least common amino acid to prevent biased learning of the classifier. The 

trained model achieves around 53% accuracy on the held-out test set, similar to what was achieved 

previously34. 

To score combinatorial variants, we fed the structural environments surrounding each mutated 

antitoxin residue to the RES model and obtained classifier scores for each amino acid at these 

positions. We then summed the classifier scores to result in a combinatorial variant effect 

prediction. 

To sample from the RES model, we converted these site-wise amino acid scores into probabilities 

using the Boltzmann distribution (%('()*+	'-).)	0	1
!"#$%&	"($)	*(&+,

- ). We then normalized these 

probabilities at each site. Using equal weighting between sites, we sampled 500 random sequences 

at varying temperatures (t Î {0.1, 0.5,0.7,1,1.5,2,2.25,2.5,2.75,3,4,5}) and deduplicated the 

sampled sequences for evaluation. 

Model weights and sampling strategies for proteinMPNN and ESM-IF followed previous 

studies24,26. For proteinMPNN, we generated 30 sequences at each temperature (t Î {0.1, 0.3, 0.5, 

0.7, 0.8, 0.9, 1, 1.1, 1.2, 1.3, 1.4, 1.5}). For ESM-IF, we generated 100 sequences and deduplicated 

these variants at each temperature (t Î {0.1, 0.3, 0.5, 0.7, 0.8, 0.9, 1, 1.1, 1.2, 1.3, 1.4, 1.5}). We 

then evaluated the growth rate effects of generated variants using the supervised oracle function 
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trained on the ten position library data, which is estimated to have low generalization error when 

predicting unobserved variant effects (Fig. 3). In order to compare these sampled sequences fairly 

between models, we subsampled the number of unique generated variants for the RES and ESM-

IF model to 30, which is the number of unique sequences sampled across most temperatures for 

the proteinMPNN model. 

Code availability 

Custom scripts will be available at: https://github.com/ddingding/coevolution_mechanism 

Data availability 

Raw sequencing read data will be made available upon publication. 

Primers used in this study 

See supplementary table ST1. 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 1, 2022. ; https://doi.org/10.1101/2022.10.31.514613doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.31.514613
http://creativecommons.org/licenses/by-nc-nd/4.0/


Fig. S1: Number of mutations measured for the ten position antitoxin library.
The number of observations is shown for each number of mutations of antitoxin variants with 
respect to the wild-type antitoxin.

Fig S1

# mutations
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Figure 3: Site-wise preferences are altered by mutations in contacting residues.
a, Crystal structure (PDB ID: 5CEG) indicating that the combinatorial antitoxin ParD3 library from dataset 1 was 
screened for neutralization against 10 different ParE3 toxin single substitution variants. The toxin is shown in 
green, with the mutated positions spacefilled. The antitoxin is shown in yellow with purple, cyan and blue 
indicating the combinatorially mutated residues. Only one mutated position in the toxin, E87, contacts the 
antitoxin at position K63 (cyan).
b, Antitoxin ParD3 site-wise preferences inferred by the nonlinear, independent model correlate almost perfectly 
when inferred in wild-type toxin background or toxin mutant background ParE3(V5L) (left) or ParE3(A66F) 
(right).
c, Pearson correlation coefficients, r, shown for inferred sitewise antitoxin preferences in the background of 10 
different toxin ParE3 single substitution variants vs. the wild-type toxin ParE3.
d, Antitoxin site-wise preferences differ only at antitoxin position K63 in the background of a toxin variants that 
contains a substitution, E87M, at a contacting position.
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Fig. S2: RES model scores correlate with measured variant effects.
The summed scores for each position from the RES model are plotted versus the measured growth rate effects 
(GR) for each of the 3 position, 4 position and 10 position antitoxin libraries. The pearson correlation coefficients, r, 
are indicated.

Fig S2
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