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Abstract

Age-related pathologies are so widely presented in old age that in most cases they are hardly
distinguishable at the molecular level from the so-called ‘‘normal’’ aging. Both aging and age-related
diseases are characterized by a wide range of transcriptional and epigenetic changes that underlie the
physiological or pathological phenotype, with plenty of overlap in their signatures, but also with
differences. In most pathological conditions it is rather the dysregulation of a complex network of genes
than a problem with a single gene dysregulation that causes its emergence or progression, and aging
differently gives a “predisposition” towards an age-related pathology or another, or in a favorable
situation towards none. The important question is how similar are the transcriptional changes during
“healthy” aging with those that occur in age-related diseases. In this study, we explore gene expression
data to answer this question and aim to predict which drugs and compounds could have a reversing effect
on their common drift.
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Introduction

Despite pathologies being intimately connected to aging itself, the exact molecular relationship between
aging and age-related diseases (ARDs) still remains an unsettled issue in biogerontology (Budovsky et al.,
2006; Hekimi, 2006; Yang et al., 2016). The frequency of major life-threatening degenerative pathologies
in humans, including atherosclerosis, cancer, neurodegeneration, type 2 diabetes, osteoporosis, and
sarcopenia, progressively increases in the post-reproductive period (Cutler and Mattson, 2006). Some
pathways are common between aging and ARDs (Budovsky et al., 2009; Wolfson et al., 2009; Tacutu et
al., 2011; Fernandes et al., 2016), however this still does not explain why some people appear to be
suffering from one or more age-related pathologies from a younger age while others age in a “healthy”
manner, showing no clear indication of any ARDs until their death. Thus far, hundreds of genes have been
identified as being involved in aging, longevity, and ARDs (Tacutu et al., 2010, 2013, 2018), and many
common genes to both aging/longevity and ARDs have been shown to act in a cooperative manner,
forming entire gene networks (Budovsky et al., 2007; Tacutu et al., 2010a, 2010b; Wolfson et al., 2009).
This led to the idea that ARDs are so widely presented in old age that they are hardly distinguishable from
the so-called ‘‘normal’’ aging and, in fact, represent its diverse manifestations, being an essential
component of the aging process (Budovsky et al., 2007).
While it is highly probable that some common molecular mechanisms stand behind both aging/longevity
and ARDs, some evidence has shown that the aging processes could also diverge at different points,
leading the healthy aging system towards the development of one pathology or another (Demetrius et al.,
2014; Driver, 2014).
Overall, aging and ARDs are characterized by a wide range of transcriptional and epigenetic changes that
underlie the physiological or pathological phenotype. Recent studies show that in most pathological
conditions it is rather the dysregulation of a complex network of genes than a problem with a single gene
dysregulation that causes its emergence or progression (Smith and Flodman, 2018). So, the presence of
common genes and networks is essential but still not sufficient evidence for a common molecular basis
for aging and ARDs. The important question is whether there is similarity between the transcriptional
drift during “healthy” aging and that which occurs across ARDs. Perhaps even more importantly, another
question is whether we can derive signatures of transcriptional changes that could still be reversible. In
this paper we focus on a multi-study analysis of aging and ARD microarray datasets that could explore
the above hypothesis.

Results

Aging and age-related disease datasets. The first step in this study was the collection of human
microarray datasets relevant to healthy and pathological aging. For healthy aging, transcriptional datasets
were considered if the authors reported a comparison between younger and older individuals, with both
compared groups being considered healthy (or more accurately, without showing any signs of age-related
pathologies). Datasets of interest were considered those that contained samples from different age
segments, grouped by us mainly into three categories - young (15-35 years old), middle-aged (35-65 years
old), and old (65-89 years old). For the purpose of the current study, dataset samples from nonagenarians,
centenarians and supercentenarians were excluded. While generally there is extraordinary value in such
datasets, we believed the transcriptional profiles of long-lived humans, at advanced ages, would provide
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mixed signals into our analysis. On one hand, these samples reveal the transcriptome at a very advanced
age, which should entail stronger signals about the age-related differences, but on the other hand, they
also contain the beneficial transcriptional differences that allowed long-lived individuals to reach such
advanced age.
For age-related diseases, the following pathologies were included in the search: Alzheimer’s Disease
(AD), Parkinson’s Disease (PD), Type 2 Diabetes, Atherosclerosis and Osteoporosis. In total, 54
microarrays were selected, 24 datasets for association with healthy aging and 30 datasets for pathologies:
6 for AD, 10 for PD, 2 for Type 2 Diabetes, 4 for Atherosclerosis and 8 for Osteoporosis. For the selected
datasets, sample conditions were defined and a list of comparisons of interest was compiled. The full list
of 54 datasets can be found in Supplementary Table 1.

Similarity between transcriptional changes in aging and age-related diseases. For all selected datasets,
samples were normalized and for the comparisons of interest, differential gene expression was computed
resulting in a series of transcriptional profile shifts (differential expression changes between two
experimental conditions). The full list, briefly describing the 104 transcriptional shifts/comparisons can be
found in Supplementary Table 2. In order to evaluate which of these shifts are changing the transcriptome
in the same direction and which are opposite, we next computed a similarity score between any two shifts,
using an in-house developed Python script (which is further detailed in the Materials and Methods
section). The script was then used to compute all pairwise similarities and to construct an undirected
network (included in Fig. 1A) with the score representing the strength of an interaction between nodes
(the transcriptional profile shifts).

Clustering of system modifications in physiological and pathological aging space. Using a clustering
algorithm, the network in Fig. 1A was transformed to identify groups of pathophysiological causes that
lead to relatively similar change patterns (Fig. 1B). In total, 4 clusters were obtained (b1-b4), with a series
of additional 2-3 node groups (b5 area) which probably characterize aspects more private to certain
conditions, and less common to all forms. As can be seen in panel B, the two main clusters in the top-left
of the figure were better outlined. First cluster (denoted in the figure as “b1”) includes neurodegenerative
changes - mainly characteristic to AD (yellow nodes), and to several aging-related comparisons -
especially in brain regions, but also a few in blood. In total, the first cluster (referred in this article as
Cluster-AD) has 21 nodes (transcriptional comparisons), including 14 old vs young comparisons (from 7
studies), and 6 AD vs control (from 4 studies). In general, the similarity scores show consistency between
datasets (121 positive, and only 8 negative scores), suggesting a strong consensus. Interestingly,
Cluster-AD also includes a transcriptional shift reported in one of the studies of Parkinson’s Disease.
The second cluster (denoted in the figure as “b2”) is more characteristic to changes that occur in
Parkinson’s Disease (the purple nodes), with a peculiar similarity to several pattern changes that appear in
Atherosclerosis and Osteoporosis. For this cluster (referred in this article as Cluster-PD), a wider
distribution of tissues is observed for aging-related changes - including brain, but also muscle, bone,
retina and liver. It contains 20 nodes and 23 edges. The nodes belong to 11 old vs young comparisons (7
different studies), 6 PD vs control (6 studies), 2 atherosclerosis vs control (2 studies) and 1 osteoporosis
vs control. Only 2 similarity scores are negative. Cluster-PD has a lower density than Cluster-AD and
there is a central hub node that is highly similar (score > 0.6) to all but one other node.
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Figure 1. A. Undirected network of similarities between any two transcriptional shifts, selected from the studied
datasets. B. Clusters obtained using the MCL algorithm, applied to the network shown in panel A, and using the
similarity scores as strength for the edges. A-B. The network and clusters include the following comparisons: 1)
“healthy” aging (old vs young) - maroon; 2) AD - yellow; 3) PD - purple; 4) atherosclerosis - cyan; 5) type 2
Diabetes - dark blue; 6) osteoporosis - orange. For schematic simplification, the displayed titles include only the
tissue and the name of the GSE - each node represents in fact one comparison (transcriptional shift) between two
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analyzed conditions in that dataset/study. Edges between nodes represent similarity scores between two
comparisons. Continuous line - positive scores (similar shifts); dashed line - negative scores (opposite shifts).

The next obvious question is what is the consensus in the transcriptional shift for each of the two clusters,
i.e. what common and consistent (or almost common/consistent) changes are the core drivers of these
age-related processes - either seen in pathological form after a significant advance or perhaps in a
pseudo-physiological form as predisposing states of the aging system. To answer this, we next performed
a meta-analysis for each cluster, considering all the different datasets in a cluster. In order to have a more
inclusive analysis, in which small-size effects are still considered and in which the focus is more on the
consistency of direction rather than the strength of the signal (which in some studies might be limited by
the available sample size) we have performed a custom-designed meta-analysis. This analysis took into
consideration all gene expression changes at p-value < 0.05, without taking into account the FDR multiple
testing correction, and ensured that the genes selected as up- or down-regulated show a fold change > 2 in
at least one dataset, while no other dataset shows a significant change in the opposite direction (the steps
of the meta-analysis are described in Materials and Methods).
For comparison, we have also carried out another meta-analysis, using the RankSum analysis from the
RankProd library, with FDR-adjusted data from each dataset (FDR <0.05, FC increase/decrease >= 50%;
data not included). It should be mentioned that while the results from our custom analysis are more lax
(resulting in larger lists), the functional enrichment at the level of biological processes and signaling
pathways showed the results being relatively similar. The main difference between the two approaches is
that for the RankSum with FDR, the number of contributing datasets to the analysis is drastically reduced
because most of the comparisons from public datasets have limited statistical power, and weak signals
cannot be clearly distinguished even for a 50% FC threshold. For example, for Cluster-AD, only 8 out of
21 comparisons show any significant differences by themselves - thus reducing the input for the
meta-analysis to only 4 aging datasets and 2 AD datasets (instead of 7 and 6, respectively). By contrast,
our meta-analysis criteria led to all 21 transcriptional comparisons being included in the selection. As a
result of the meta-analysis, the list of genes consistently changed across Cluster-AD was reduced to 410
up-regulated genes and 833 down-regulated genes. For Cluster-PD, the list included 318 up- and 229
down-regulated genes. Supplementary Table 3, contains these lists for both clusters.

Functional characterization of the main two clusters.
To further understand the characteristics of up- and down-regulated genes from each cluster, we
conducted a functional module analysis, using the HumanBase online tool (Greene et al., 2015). The
analysis revealed that in the Cluster-AD (Fig. 2a), upregulated genes form five functional modules that
are involved in viral response and interferon-gamma (MA1), cellular response to zinc ion (MA2),
bacterial immune response (MA3), and morphogenesis (MA4), response to peptide and microtubule
cytoskeleton organization (MA5). In contrast, downregulated genes from Cluster-AD (Fig. 2b), generated
seven functional modules that are related to dendrite regulation (MB1), neuron projection and
differentiation (MB2), aspartate metabolic processes and actin rod assembly (MB3), potassium ion
transport (MB4), morphogenesis (MB5), and anion transport (MB6).
The 3 modules based on Cluster-PD’s upregulated genes (Fig. 2c) are primarily reflecting RNA
polymerase activities (MC1), protein monoubiquitination (MC2), and response to cAMP (MC3).
Downregulated genes from Cluster-PD on the other hand encompass only 2 modules (Fig. 2d). Module
MD1 is involved in the regulation of microtubule polymerization and apoptotic signaling pathway.
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Similar to the MB2 module in Cluster-AD, module MD2 is enriched in the regulation of neurogenesis,
neuron differentiation and other neuron-related processes.

Figure 2. Functional module network of the up-and down-regulated genes from the cluster analysis. The network
was built for the lung tissue, using HumanBase. The interaction network is built using the closest gene neighbors
and then clustered based on enrichment in GO categories. A. Cluster-AD up-regulated genes five modules. B.
Cluster-AD up-regulated genes six modules. C. Cluster-PD up-regulated genes three modules. D. Cluster-PD
up-regulated genes two modules.
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Next, we also performed a gene set enrichment analysis (GSEA – prerank) on the ranked list of genes
from the meta-analysis in order to further characterize the function space of the genes comprising
Cluster-AD and Cluster-PD. The full list of results is available as Supplementary Table 4. Enrichment was
examined with respect to several relevant databases: GO Biological Processes, KEGG, Reactome and
ChEA. For Cluster-AD, we observed significant enrichment suggestive of upregulation of general
immune system terms (innate immune system, neutrophil degranulation, interferon gamma response), as
well as some more specific immune system terms (FOXO1, NCOR, IL-8, IL-6/JAK/STAT3,
IL-2/STAT5). Terms related to infections (Epstein-Barr virus infection, Coronavirus disease) were also
observed. Terms not related to the immune system which were observed to be enriched included: hypoxia,
regulation of angiogenesis, phagosome and apoptosis. With regards to downregulation, we consistently
observed terms related to chemical synapses: transmission across chemical synapses, GABAergic
synapses, glutamatergic synapses and cholinergic synapses. 6 significantly downregulated gene sets were
related to the SUZ12 protein.
Surprisingly, we did not identify any significant enrichments based on the results from Cluster-PD after
FDR adjustment.

Reversing the transcriptional drifts associated with neurodegenerative aging.
Considering the sources of expression changes that contribute as the input for the meta analysis, namely
aging and neurodegenerative disease shifts, it is tempting to suggest that the common changes (i.e., the
meta-analysis results) might also have a determinant role in the degenerative progression of an aging
system, either pushing it to a pathological state (such as AD or PD), or making it more vulnerable even
though seemingly healthy (as in “healthy” aging). Idealistically, a therapeutic approach to tackle this
would be to target and reverse the entire transcriptional drift, however, this seems highly improbable to
achieve. Instead, a search for drugs and compounds that move the system state as much as possible
towards the initial state might be attainable.
ConnectivityMap is a tool that allows users to search through a large database of perturbational studies
(based on in vitro data), identifying the genetic and pharmacologic perturbagens that cause similar or, on
contrary, opposite signatures. As such, we next used the topmost up- and down-regulated signatures
(sorted by their fold change) from the meta-analyses done on clusters 1 and 2, to identify the compounds
with the most negative scores.
From the analysis of Cluster-AD 15,076 significant (FDR<0.05) potential compounds resulting in an
opposite effect to the transcriptomic profile determined by aging/neurodegenerative pathologies were
identified. Among these compounds, we found some drugs whose mechanisms of action were previously
associated with aging and aging-related processes. For example, manually going through the compounds
with the 200 top-most negative scores, we identified 9 drugs (out of a full list of 136,460 compounds in
the ConnectivityMap data bank and 26,557 drugs with FDR<0.05) that could reverse the consensus
changes induced by the conditions of Cluster-AD and had been already associated either with aging or
with some aspects of the aging process.
By contrast, for Cluster-PD we have identified only a list of 194 significant drugs (FDR<0.05) with
negative similarity scores. Nevertheless, among these drugs we also found 8 drugs that could reverse its
consensus transcriptional change and which were previously associated with aging-associated processes
or age-related pathologies.
Since the drugs in Cluster-AD/Cluster-PD are characterizing an entire cluster and are not specific only to
a certain pathology, we hypothesized that some of them might work in a broader way, via mechanisms of
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reprogramming and induced pluripotency. Recently we compiled a manually curated list of 92 chemical
compounds that can either induce or enhance pluripotency, alone or in combination with TFs (Knyazer et
al., 2021). Indeed, many of these small molecules can be found with negative scores in our current
profile-reversing predictions. For example, 21 of the 92 compounds were found to have negative scores in
the analysis of Cluster-AD, and 18 of them had significant values (FDR<0.05). Some of these potential
targets are discussed in the next section. On the other hand, the drugs that could potentially reverse the
signature of Cluster-PD did not include any of the re-programming drugs, pointing out that a brain
rejuvenation solution would work differently for PD than for AD.

Discussion
Up to date, comparisons of aging signatures between different tissues have been carried out (e.g. Zahn et
al. 2006), although in most cases limited to 2 or 3 tissues. The authors came to the conclusion that there is
a common aging signature between skeletal muscle, brain and kidney, that comprises several pathways:
ECM genes, cell growth genes, and complement activation genes which significantly increase their
expression with age, and the chloride transport genes and electron transport genes, which significantly
decrease their expression with age in all three human tissues (Zahn et al. 2006). However, the conclusion
regarding a common aging signature was based on the comparison of pathways but not of the individual
genes involved. Thus, the question as to the existence of a common aging gene expression signature
remained open. In another previously reported study (Rodwell et al., 2004), age-related expression
changes were compared between kidney and skeletal muscle (Welle et al., 2003), however the authors did
not find any similarity directly in aging signatures between the two tissues. Later, in a meta-analysis of 27
datasets from mice, rats and humans, several genes were found to be consistently changed with age (56 up
and 17 down), involving mostly inflammation, immune response, the lysosome, collagen genes, energy
metabolism (particularly mitochondrial genes), and cellular senescence (de Magalhães et al., 2009). None
of these studies however targeted directly the involvement of aging in ARDs. Moreover, while some
research has been done to identify specific gene signatures for ARDs, much still remains to be done
before gene expression could be used as a biomarker before the actual symptoms. For example, Smith and
Flodman, pointed out in their review the lack of gene expression research despite the fact that numerous
diseases have been linked to genetic or genomic defects (Smith and Flodman, 2018). Lastly, in terms of
integrative aging/ARDs analyses, there is only a limited amount of systems biology studies and the
molecular interactions between different processes are rarely evaluated in a systems biology manner, as
we did for example in Tacutu et al., 2011. In this work, we looked comparatively at how the
transcriptional profile shifts during aging and as a consequence of ARDs, and tried to understand what
aspects of ARDs are similar to aging, and to each other. The results showed two potentially divergent
drifts (or pathological “manifestations” of aging), characterized by the changes in the two separate
clusters of our analysis - the Cluster-AD and Cluster-PD. It should be acknowledged that our analysis is
dependent on the availability of data, and it is possible that, with the appearance of more datasets, the
meaning of the clusters might become more general. For the time being however, it seems that the two
main clusters are specific to AD and PD.
The HumanBase functional module analysis of the clusters (Fig. 2) showed, as expected, some enriched
up- or down-regulated processes that are in accordance with the two pathologies. For example, AD is
known to be linked to the immune system (Bettcher et al., 2021), one of the recurring processes in our
analysis. The role of zinc in AD was also previously reported (Watt et al., 2011) in agreement with
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cellular response to zinc ion being upregulated in Cluster-AD. Dysregulated protein phosphorylation,
microtubule cytoskeleton organization and morphogenesis are also determining conditions in brain aging
and AD (Ferrer et al., 2021). In both diseases, AD and PD, neurogenesis and neuronal regulation, were
down-regulated. RNA polymerase activity was reported to play a critical role in AD (Kang and Shin,
2015; Majidinia et al., 2016). Monoubiquitylation regulates processes that range from membrane transport
to transcriptional regulation (Hicke 2001) and there have been shown that monoubiquitination might play
an important role in Lewy body formation (Engelender 2008). cAMP, whose response was upregulated in
Cluster-PD is a potent regulator of innate and adaptive immune cell functions and its signaling was
previously linked to PD (Santini et al., 2008; Goto 2017).
Similarly, the GSEA enrichment results for Cluster-AD highlighted well-known associations of aging,
especially with immune system processes, such as the well-characterized connection between aging and
FOXO1 (Martins et al., 2016). Infection-related terms are commonly occurring in enrichment analysis on
aging datasets, and here we see no exception. This is not surprising, as many of the genes involved in
infection processes overlap with genes associated with immune processes and with age there is a known
shift towards immunosenescence (Wang et al., 2022). Additionally, there is already some data associating
the development of AD to infections, such as with EBV (Zhang et al., 2022). We also observed
downregulation of many synapse-related terms, which might drive broader, widespread aging-related
alterations. On the other hand, the absence of significant enrichments for Cluster-PD may suggest
significant functional heterogeneity of the genes included in this cluster.
The most important part of the methodology that we used in this study is whether it could be used to
actually predict new drugs or other compounds that might reverse the profile shift that occurs during
aging and ARDs. Using the clusters’ signatures, we found several drugs for each cluster that were indeed
previously associated either with aspects of aging or the disease.
Drugs identified from the analysis of Cluster-AD. AMG-487 (CC chemokine receptor antagonist),
BRD-K68144790 (apoptosis stimulator), and diethylcarbamazine (lipoxygenase inhibitor) were found to
have opposite signatures to that of Cluster-AD. Other examples include selumetinib, a MEK inhibitor, for
which it is known that MEK inhibition can be used in the treatment of some forms of cancer and in the
prevention or suppression of cellular aging (Steelman et al., 2011).
Heat Shock Proteins (HSPs) are known to be pro-longevity and can improve proteotoxicity associated
with aging and have a regulatory role in cellular senescence, apoptosis and cancer (Tower, 2009), and
homosalate, an HSP inducer was also identified with a highly dissimilar transcriptional change compared
to the signature of Cluster-AD.
GDC-0152, an inhibitor of XIAP (X-linked inhibitor of apoptosis), and AZD-8055, an inhibitor of the
well-known longevity-associated gene mTOR were also identified among the drugs with lowest scores.
PPAR proteins are important regulators in various pathophysiological processes associated with age -
especially processes involved in energy metabolism and oxidative stress (Erol, 2007). PARP1 for example
can be considered a molecule with a pleiotropic antagonistic effect - on the one hand it protects cells from
senescence in physiological conditions, on the other hand PARP1 supports cell death and functional
decline in aging and pathophysiological conditions (Mao and Zhang, 2022). Pioglitazone, an agonist of
PPAR receptors, and rucaparib - another PARP inhibitor also scored negative.
Drugs identified from the analysis of Cluster-PD. Several drugs already approved for diseases included in
Cluster-PD or which have common mechanisms with approved drugs for these diseases were identified
by our analysis. Raloxifen (Selective estrogen receptor modulator), approved for the treatment of
osteoporosis and Bazedoxifene (a newer generation of selective estrogen receptor modulators), approved
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for prevention of postmenopausal osteoporosis were both found to have opposite signatures to that of
Cluster-PD. Other examples include metixene, an anticholinergic drug - already approved as
antiparkinsonian, as well as other anticholinergic drugs, such as: solifenacin (approved for urinary
incontinence), mebeverine (approved as antispastic) and deltaline. Metergoline, a dopamine receptor
agonist and Darapladib (phospholipase inhibitor), an investigational drug currently in a clinical study for
stabilization of atherosclerotic plaque, were also revealed in the analysis.

Concluding remarks
The meta-analysis of human microarray datasets relevant to healthy and pathological aging led to a clear
clustering of the transcriptional transitions between such biological states. For the available datasets,
encompassing aging and age-related diseases, two main clusters of transcriptional shifts were identified -
one corresponding mainly to changes reported in Alzheimer’s Disease and one for Parkinson’s Disease.
Interestingly, amongst the drugs that could trigger a reverse transition to the consensus signatures of each
cluster we identified several with strong links to the aging process, suggesting that the model and used
methodology could have the potential to identify valuable candidate therapies and drugs for various
pathologies. Although our application focused only on two clusters (in this case, both relevant for
neurodegenerative diseases), this method can be extended to any pathology associated with aging. The
impact of this approach should also increase with the accumulation of a larger and more diverse volume
of data.

Materials and methods

Dataset selection and curation. The search for datasets was performed in two stages: 1) a programmatic
search, using GEOmetadb, and querying it for relevant keywords (such as aging and aging, longevity,
lifespan, etc), and 2) a manual curation stage, in which the description of the datasets, as well as in some
cases the abstracts/body of the associated papers were carefully screened by our group. Dataset samples
from nonagenarians, centenarians and supercentenarians, as well as from children or individuals in early
stages of development (ex: fetal samples, testing induced pluripotency) were excluded from the study. For
pathology-related datasets, samples from patients who were not under normal conditions (including those
under treatment, diets, etc) were also excluded.
Additionally, for reducing noise generated by the variety of array platforms, normalizations and
methodologies, the datasets with the most uncommon platforms were also discarded before the processing
phase (in the end only microarray platforms that can be processed with R/Bioconductor scripts were
kept). Datasets lacking relevant information (subject age unspecified, too broad age interval, etc), or
considered inadequate for the study (due to insufficient sample size, lack of control, insufficient link to
aging) were also discarded.
Age or age group for the samples was inferred using the characteristics_ch1 field in GEOmetadb, and
filled in manually where this value was missing. Tissue meta-data was also extracted from the data
sample if possible, or filled in manually if required.
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Gene expression processing. Bioinformatics processing of all gene expression differences was performed
from scratch, in a uniform manner for all datasets. Microarrays from the GEO database were retrieved,
and analyzed using in-house R/Bioconductor-based scripts. Affymetrix datasets were normalized using
the RMA method from the affy Bioconductor package and datasets which included other platforms were
normalized using the quantile method from the limma package. Differential expression was computed for
all comparisons of interest, given that there are at least 2 samples in each of the compared states.
Benjamini-Hochberg multiple testing correction was applied for each comparison. If not otherwise
specified in the text (such as for the custom meta-analysis, see below), genes were considered
differentially expressed for an adjusted p-value < 0.05 and a |logFC|>1.

The similarity score between 2 dataset comparisons. To calculate the similarity of the transcriptional
changes that can be observed in comparisons from the same or different datasets, we have developed a
Python script that computes a similarity score, based on the algorithm developed by Connectivity Map
(Lamb et al., 2006; https://clue.io/connectopedia/pdf/cmap_algorithms). Briefly, the script performs a
Gene Set Enrichment Analysis (GSEA) for a genetic signature (ex: a list of significantly changed
transcripts), by quantifying similar modifications in terms of up- and down-regulation. Based on GSEA,
two enrichment scores were computed (ESup and ESdown) and then the Weighted Connectivity Score
(WTCS) was computed as (ESup - ESdown)/2 if sign(ESup) ≠ sign(ESdown), 0 otherwise. The graph presented
in Fig. 1, is constructed using edges as similarity scores.

Network analysis and visualization. The construction of networks and their visualization was performed
using Cytoscape ver. 3.8.2. Clustering was performed with the MCL algorithm, using granularity = 5.

Meta-analysis of cluster data and Connectivity Map. For the meta-analysis, all expression change values
corresponding to a p-value < 0.05 were taken from individual dataset DE analyses, without considering
FDR. For each gene, N_up was computed as the number of dataset comparisons in which p-value < 0.05
and logFC > 0, while N_down was computed as the number of dataset comparisons in which p-value <
0.05 and logFC < 0 (the consistency criterion). In the cluster consensus signature, a gene was then
considered upregulated if N_up > 0 and N_down = 0, and downregulated if N_down > 0 and N_up = 0.
For the output of the meta-analysis, only genes with |logFC| > 1 (magnitude of the effect being at least 2x)
were considered.
For the ConnectivityMap analysis, the 150 topmost up- and down-regulated genes from the meta-analysis
were used as input. These were input in the CMap webtool, and the results were then manually analyzed.
Sorting of the input genes, was done descending by max (|logFC|) across all studies in the cluster.

Functional module analysis
The construction of a network with functional modules for clusters of differentially-expressed genes was
performed using the HumanBase tool (Greene et al., 2015), https://hb.flatironinstitute.org, with a
minimum module size set to at least 10 genes. Briefly, HumanBase provides the possibility to identify, at
the tissue level, functional modules containing genes and their interaction partners which specifically
work together, by grouping them into clusters of relevant biological processes. HumanBase detects
modules of genes from tissue-specific functional association gene networks built by integrating vast
omics datasets and associates terms (e.g. processes, pathways) to the detected modules based on
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overrepresentation. In the functional modules analysis, all networks were based on the global network
while using brain tissue or nervous system tissue-based networks the results were extremely similar.

Enrichment analysis
The GSEA – prerank analysis was performed using python, with the gseapy library wrapper of GSEA
(Mootha et al., 2003; Subramanian et al., 2005). The analysis is easily reproducible using the data and
code from https://github.com/ursueugen/transcriptional-profiles_enrichment-analysis (public repository).
Briefly, we run prerank analysis on the data obtained from the meta-analyses with 1000 number of
permutations with respect to common functional gene sets collections that we pre-selected:
'KEGG_2021_Human', 'GO_Biological_Process_2021', 'Reactome_2022', 'ChEA_2022'. For
post-processing and summarizing the results, we examined the significant terms (FDR-adjusted p-value
<0.01) with the highest absolute value of the normalized enrichment score (NES).

Acknowledgments
This work was supported by the Romanian Ministry of Education and Research, CCCDI - UEFISCDI,
through PNCDI III [Grant numbers: PN-III-P1-1.1-TE-2019-1020 and PN-III-P2-2.1-PED-2019-2593 to
RT]. We are also grateful for the funding received from the Dr. Amir Abramovich Research Fund [granted
to VEF].

Author contributions
This study was carried out by RT’s research groups, in collaboration with VEF. Data collection,
processing, analysis of the result and their description were done by GB, DT and EU. Interpretation of the
results was done by all authors. RT designed, coordinated and supervised the project. VEF and SG
critically reviewed the project and the results. All authors have participated in the writing of the
manuscript. All authors reviewed the manuscript.

Conflicts of interest
The authors declare no conflict of interest.

References
Bettcher BM, Tansey MG, Dorothée G, Heneka MT. Peripheral and central immune system crosstalk in

Alzheimer disease - a research prospectus. Nat Rev Neurol 2021, 17:689-701, Erratum in: Nat Rev
Neurol, 2021, PMID: 34522039.

Budovsky A, Muradian KK, Fraifeld VE. From disease-oriented to aging/longevity-oriented studies.
Rejuvenation Res 2006, 9:207-210, PMID: 16706644.

Budovsky A, Abramovich A, Cohen R, Chalifa-Caspi V, Fraifeld V. Longevity network: construction and
implications. Mech Ageing Dev 2007, 128:117-24, PMID: 17116322.

Budovsky A, Tacutu R, Yanai H, Abramovich A, Wolfson M, Fraifeld V. Common gene signature of
cancer and longevity. Mech Ageing Dev 2009, 130:33-39, PMID: 18486187.

Cutler RG, Mattson MP. The adversities of aging. Ageing Res Rev 2006, 5:221-38, PMID: 16950665.
Demetrius L, Fraifeld VE. Age-related diseases: common or diverse pathways? Biogerontology 2014,

15:543-5, PMID: 25472796.
Driver JA. Inverse association between cancer and neurodegenerative disease: review of the

epidemiologic and biological evidence. Biogerontology 2014; 15:547-57, PMID: 25113739.

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 2, 2022. ; https://doi.org/10.1101/2022.11.01.514657doi: bioRxiv preprint 

https://github.com/ursueugen/transcriptional-profiles_enrichment-analysis
https://doi.org/10.1101/2022.11.01.514657
http://creativecommons.org/licenses/by/4.0/


Engelender S. Ubiquitination of alpha-synuclein and autophagy in Parkinson's disease. Autophagy 2008,
4:372-4, PMID: 18216494.

Erol A. The Functions of PPARs in Aging and Longevity. PPAR Res 2007, 2007:39654, PMID: 18317516
Fernandes M, Wan C, Tacutu R, Barardo D, Rajput A, Wang J, Thoppil H, Thornton D, Yang C, Freitas

A, de Magalhães JP. Systematic analysis of the gerontome reveals links between aging and
age-related diseases. Hum Mol Genet 2016, 25:4804-4818, PMID: 28175300.

Ferrer I, Andrés-Benito P, Ausín K, Pamplona R, Del Rio JA, Fernández-Irigoyen J, Santamaría E.
Dysregulated protein phosphorylation: A determining condition in the continuum of brain aging and
Alzheimer's disease. Brain Pathol 2021, 31:e12996, PMID: 34218486.

Goto S. Striatal Gαolf/cAMP Signal-Dependent Mechanism to Generate Levodopa-Induced Dyskinesia in
Parkinson's Disease. Front Cell Neurosci 2017, 11:364, PMID: 29201000.

Greene CS, Krishnan A, Wong AK, Ricciotti E, Zelaya RA, Himmelstein DS, Zhang R, Hartmann BM,
Zaslavsky E, Sealfon SC, Chasman DI, FitzGerald GA, Dolinski K, Grosser T, Troyanskaya OG.
Understanding multicellular function and disease with human tissue-specific networks. Nat Genet
2015, 47:569-76, PMID: 25915600.

Hekimi S. How genetic analysis tests theories of animal aging. Nat Genet 2006, 38:985-91, PMID:
16941009.

Hicke L. Protein regulation by monoubiquitin. Nat Rev Mol Cell Biol 2001, 2:195-201, PMID: 11265249.
Kang H, Shin JH. Repression of rRNA transcription by PARIS contributes to Parkinson's disease.

Neurobiol Dis 2015, 73:220-8, PMID: 25315684.
Knyazer A, Bunu G, Toren D, Mracica TB, Segev Y, Wolfson M, Muradian KK, Tacutu R, Fraifeld VE.

Small molecules for cell reprogramming: a systems biology analysis. Aging (Albany NY) 2021,
13:25739-25762, PMID: 34919532

Lamb J, Crawford ED, Peck D, Modell JW, Blat IC, Wrobel MJ, Lerner J, Brunet JP, Subramanian A,
Ross KN, Reich M, Hieronymus H, Wei G, Armstrong SA, Haggarty SJ, Clemons PA, Wei R, Carr
SA, Lander ES, Golub TR. The Connectivity Map: using gene-expression signatures to connect small
molecules, genes, and disease. Science 2006, 313:1929-35, PMID:17008526

de Magalhães JP, Curado J, Church GM. Meta-analysis of age-related gene expression profiles identifies
common signatures of aging. Bioinformatics 2009, 25:875-81, PMID: 19189975.

Majidinia M, Mihanfar A, Rahbarghazi R, Nourazarian A, Bagca B, Avci ÇB. The roles of non-coding
RNAs in Parkinson's disease. Mol Biol Rep 2016, 43:1193-1204, PMID: 27492082.

Mao K, Zhang G. The role of PARP1 in neurodegenerative diseases and aging. FEBS J 2022,
289:2013-2024, PMID: 33460497

Martins R, Lithgow GJ, Link W. Long live FOXO: unraveling the role of FOXO proteins in aging and
longevity. Aging Cell. 2016 Apr;15(2):196-207. doi: 10.1111/acel.12427. Epub 2015 Dec 8. PMID:
26643314; PMCID: PMC4783344.

Mootha VK, Lindgren CM, Eriksson KF, Subramanian A, Sihag S, Lehar J, Puigserver P, Carlsson E,
Ridderstråle M, Laurila E, Houstis N, Daly MJ, Patterson N, Mesirov JP, Golub TR, Tamayo P,
Spiegelman B, Lander ES, Hirschhorn JN, Altshuler D, Groop LC. PGC-1alpha-responsive genes
involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet
2003, 34:267-73, PMID: 12808457.

Rodwell GE, Sonu R, Zahn JM, Lund J, Wilhelmy J, Wang L, Xiao W, Mindrinos M, Crane E, Segal E,
Myers BD, Brooks JD, Davis RW, Higgins J, Owen AB, Kim SK. A transcriptional profile of aging in
the human kidney. PLoS Biol 2004, 2:e427, PMID: 15562319.

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 2, 2022. ; https://doi.org/10.1101/2022.11.01.514657doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.01.514657
http://creativecommons.org/licenses/by/4.0/


Santini E, Valjent E, Fisone G. Parkinson's disease: levodopa-induced dyskinesia and signal transduction.
FEBS J 2008, 275:1392-1399, PMID: 18279379.

Smith M, Flodman PL. Expanded Insights Into Mechanisms of Gene Expression and Disease Related
Disruptions. Front Mol Biosci 2018, 5:101, PMID: 30542652.

Steelman LS, Chappell WH, Abrams SL, Kempf RC, Long J, Laidler P, Mijatovic S, Maksimovic-Ivanic
D, Stivala F, Mazzarino MC, Donia M, Fagone P, Malaponte G, Nicoletti F, Libra M, Milella M,
Tafuri A, Bonati A, Bäsecke J, Cocco L, Evangelisti C, Martelli AM, Montalto G, Cervello M,
McCubrey JA. Roles of the Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR pathways in controlling
growth and sensitivity to therapy-implications for cancer and aging. Aging (Albany NY) 2011,
3:192-222, PMID: 21422497

Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL,
Golub TR, Lander ES, Mesirov JP. Gene set enrichment analysis: a knowledge-based approach for
interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 2005, 102:15545-50, PMID:
16199517.

Tacutu R, Budovsky A, Fraifeld VE. The NetAge database: a compendium of networks for longevity,
age-related diseases and associated processes. Biogerontology 2010, 11:513-22, PMID: 20186480.

Tacutu R, Budovsky A, Wolfson M, Fraifeld VE. MicroRNA-regulated protein-protein interaction
networks: how could they help in searching for pro-longevity targets? Rejuvenation Res 2010,
13:373-377, PMID: 20367577.

Tacutu R, Budovsky A, Yanai H, Fraifeld VE. Molecular links between cellular senescence, longevity and
age-related diseases - a systems biology perspective. Aging (Albany NY) 2011, 3:1178-91, PMID:
22184282.

Tacutu R, Craig T, Budovsky A, Wuttke D, Lehmann G, Taranukha D, Costa J, Fraifeld VE, de
Magalhães JP. Human Ageing Genomic Resources: integrated databases and tools for the biology and
genetics of ageing. Nucleic Acids Res 2013, 41:D1027-33, PMID: 23193293.

Tacutu R, Thornton D, Johnson E, Budovsky A, Barardo D, Craig T, Diana E, Lehmann G, Toren D,
Wang J, Fraifeld VE, de Magalhães JP. Human Ageing Genomic Resources: new and updated
databases. Nucleic Acids Res 2018, 46:D1083-D1090, PMID: 29121237.

Tower J. Hsps and aging. Trends Endocrinol Metab 2009, 20:216-22, PMID: 19394247.
Wang Y, Dong C, Han Y, Gu Z, Sun C. Immunosenescence, aging and successful aging. Front Immunol.

2022 Aug 2;13:942796. doi: 10.3389/fimmu.2022.942796. PMID: 35983061; PMCID: PMC9379926.
Watt NT, Whitehouse IJ, Hooper NM. The role of zinc in Alzheimer's disease. Int J Alzheimers Dis 2010,

2011:971021, PMID: 21197404.
Welle S, Brooks AI, Delehanty JM, Needler N, Thornton CA. Gene expression profile of aging in human

muscle. Physiol Genomics 2003, 14:149-59, PMID: 12783983.
Wolfson M, Budovsky A, Tacutu R, Fraifeld V. The signaling hubs at the crossroad of longevity and

age-related disease networks. Int J Biochem Cell Biol 2009, 41:516-520, PMID: 18793745.
Yang J, Huang T, Song Wm, Petralia F, Mobbs C, Zhang B, Zhao Y, Schadt E, Zhu J, Tu Z. Discover the

network mechanisms underlying the connections between aging and age-related diseases. Sci Rep
2016, 6:32566, PMID: 27582315.

Zahn JM, Sonu R, Vogel H, Crane E, Mazan-Mamczarz K, Rabkin R, Davis RW, Becker KG, Owen AB,
Kim SK. Transcriptional profiling of aging in human muscle reveals a common aging signature. PLoS
Genet 2006, 2:e115, PMID: 16789832.

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 2, 2022. ; https://doi.org/10.1101/2022.11.01.514657doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.01.514657
http://creativecommons.org/licenses/by/4.0/


Zhang N, Zuo Y, Jiang L, Peng Y, Huang X, Zuo L. Epstein-Barr Virus and Neurological Diseases. Front
Mol Biosci. 2022 Jan 10;8:816098. doi: 10.3389/fmolb.2021.816098. PMID: 35083281; PMCID:
PMC8784775.

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 2, 2022. ; https://doi.org/10.1101/2022.11.01.514657doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.01.514657
http://creativecommons.org/licenses/by/4.0/

