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Abstract: 12 

We learn from our experience but the underlying neuronal mechanisms incorporating 13 

past information to facilitate learning is relatively unknown. Specifically, which cortical 14 

areas encode history-related information and how is this information modulated 15 

across learning?  To study the relationship between history and learning, we 16 

continuously imaged cortex-wide calcium dynamics as mice learn to use their whiskers 17 

to discriminate between two different textures. We mainly focused on comparing the 18 

same trial type with different history information, i.e., a different preceding trial. We 19 

found history information in barrel cortex (BC) during stimulus presentation. 20 

Importantly, history information in BC emerged only as the mouse learned the task. 21 

Next, we also found learning-dependent history information in rostrolateral (RL) 22 

association cortex that emerges before stimulus presentation, preceding activity in BC. 23 

History information was also found in other cortical areas and was not related to 24 

differences in body movements. Interestingly, a binary classifier could discriminate 25 

history information at the single trial level just as well as current information both in 26 

BC and RL. These findings suggest that past experience emerges in the cortex around 27 

the time of learning, starting from higher-order association area RL and propagating 28 

down (i.e., top-down projection) to lower-order BC where it can be integrated with 29 

incoming sensory information. This integration between the past and present may 30 

facilitate learning.  31 

  32 
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Introduction: 33 

Learning is a process of acquiring new knowledge required for appropriate behavior 34 

and is highly dependent on our previous experience. Our brain integrates incoming 35 

sensory information with history information of previous stimuli to form a 36 

knowledgeable association of the current stimulus. Despite the strong link between 37 

history and learning, the underlying cortex-wide dynamics are relatively unknown, 38 

partially because most previous studies separately focus either on learning or 39 

history(Hattori et al., 2019). Learning-related neuronal dynamics are broadly observed 40 

across the whole cortex, including primary sensory or motor areas(Blake et al., 2002; 41 

Chen et al., 2015; Gilad and Helmchen, 2020; Jurjut et al., 2017; Komiyama et al., 2010; 42 

Li et al., 2008; Poort et al., 2015; Wiest et al., 2010; Xu et al., 2014; Yan et al., 2014), 43 

higher-order association areas(Driscoll et al., 2017b; Gilad and Helmchen, 2020) and 44 

prefrontal cortex(le Merre et al., 2018; Pasupathy and Miller, 2005). But do these areas 45 

that participate in the learning process also carry history information?  46 

Encoding of history information has been reported mainly in higher order 47 

cortical areas such as the posterior parietal cortex (PPC)(Akrami et al., 2018; Harvey et 48 

al., 2012; Hwang et al., 2017; Morcos and Harvey, 2016; Benjamin B Scott et al., 2017; 49 

Suzuki et al., 2022) , retrosplenial cortex(Hattori et al., 2019; Vann et al., 2009) and 50 

prefrontal cortex (Banerjee et al., 2020; Johnson et al., 2016; Kawai et al., 2015; 51 

Benjamin B. Scott et al., 2017; Sul et al., 2010; Tsutsui et al., 2016) , but also to a smaller 52 

extent in lower-order primary sensory areas such as BC(Banerjee et al., 2020; Chéreau 53 

et al., 2020; Rodgers et al., 2021). There is still a debate on which areas link history 54 

information with the learning process. Another important aspect of the history-55 

learning relationship is the temporal aspect that enables integration of past 56 

information with present sensory information. For example, does history information 57 

emerges in cortex before present information arrives or do both past and present 58 

information maybe emerge simultaneously in a certain cortical area? From the 59 

temporal aspect, optogenetic silencing of PPC area during the inter-trial interval 60 

affected performance, highlighting that higher-order cortical areas may maintain 61 

history information before the incoming current stimulus(Akrami et al., 2018; Hwang 62 

et al., 2017). 63 

To study the history-learning relationship, we use wide-field cortical imaging 64 

of mice learning to discriminate between two textures and focus on the cortex-wide 65 
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dynamics of history information. In a previous study using the same dataset, we 66 

showed that in mice learning a whisker-based texture discrimination task, the activity 67 

in task-related areas (e.g., barrel cortex – BC and rostrolateral association cortex – RL) 68 

increases as they become experts(Gilad and Helmchen, 2020). RL is part of the PPC and 69 

is located within the cluster of higher-order association areas surrounding V1. RL plays 70 

pivotal roles in cross-modal sensory integration, learning and history, but the 71 

relationship between history and learning in RL is unknown (Akrami et al., 2018; 72 

Driscoll et al., 2017a; Hattori et al., 2019; Hwang et al., 2017; Khodagholy et al., n.d.; 73 

Marcos and Harvey, 2016; Save and Poucet, 2009). Here, by classifying trials according 74 

to the preceding trial, we now demonstrate the emergence of history information as 75 

the mouse gains expertise. Specifically, history information emerges in RL, just before 76 

the stimulus presentation during the trials, and then is transferred to BC during the 77 

texture touch period, which may aid in learning the rewarded stimulus.   78 
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Results: 79 

In this study we investigate history-dependent dynamics across the whole dorsal 80 

cortex and its emergence during learning in transgenic mice expressing a calcium 81 

indicator (GCaMP6f) in L2/3 excitatory neurons (n=7 mice). This dataset is identical to 82 

the one published in Gilad and Helmchen(Gilad and Helmchen, 2020) where we 83 

focused only on learning dynamics. Using wide-field calcium imaging through the intact 84 

skull (Gallero-Salas et al., 2021; Gilad et al., 2018b; Gilad and Helmchen, 2020; Vanni 85 

and Murphy, 2014), we chronically measured large-scale neocortical L2/3 activity in 86 

the contralateral hemisphere as mice learned a go/no-go whisker-dependent texture 87 

discrimination task (Gilad and Helmchen, 2020). Whisker movements and body 88 

movements were video monitored and synchronized to the calcium imaging data 89 

(Methods). To delineate areas in the dorsal cortex, we functionally mapped sensory 90 

areas for each mouse during anesthesia (see Methods). Based on these maps (and skull 91 

coordinates) we registered all images to the 2D top-view Allen reference atlas(Oh et 92 

al., 2014) and defined 25 areas of interest, further divided into four groups (Fig. 93 

1c;(Gilad and Helmchen, 2020) ).  94 

Mice were trained on a head-fixed, whisker-based go/no-go texture 95 

discrimination task (Chen et al., 2013; Gilad and Helmchen, 2020)(Fig. 1a; Methods). 96 

Each trial started with an auditory cue (stimulus cue), signaling the approach of either 97 

two types of sandpapers (grit size P100: rough texture; P1200: smooth texture; 3M) to 98 

the mouse’s whiskers as ‘go’ or ‘no-go’ textures. The texture stayed in touch with the 99 

whiskers for 2 s, and then it was moved out after which an additional auditory cue 100 

(response cue) signaled the start of a 2-s response period (Fig. 1b) followed by a 6-s 101 

break until the next trial auditory cue. Five mice were trained to lick for the P100 and 102 

two mice were trained to lick for the P1200 texture. Mice were rewarded in ‘Hit’ trials 103 

for correctly licking after the go texture and punished with white noise for incorrectly 104 

licking for the no-go texture (‘false alarm’ trials, FA). Mice were neither rewarded nor 105 

punished when they withheld licking for the go and no-go textures (‘Miss’ and ‘correct-106 

rejection’, CR, trials, respectively). We defined two time windows within the trial 107 

structure: the ‘pre-period’ when the texture approaches the whiskers (−1 to −0.6 s 108 

relative to the texture stop; mainly before the first whisker-texture touch); and the 109 

‘stim-period’ during texture touch (−0.2 to 0.2 s relative to texture stop; Fig. 1b). 110 

 111 
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The performance of all mice increased with training (5–11 days; ~500 112 

trials/day) and eventually reached high discrimination levels (quantified by d-prime; d'; 113 

Fig. s1; refs. (Gilad et al., 2018a); Methods). We defined the ‘learning threshold’ of 114 

reaching expert level for each mouse by crossing the inflection point of the sigmoid fit 115 

for the learning curve (in units of ‘trial number’; Fig. 1e, Fig. s1). The fastest learning 116 

mouse reached threshold in slightly less than thousand trials whereas mouse #4 took 117 

substantially longer (Fig. s1). In addition, we defined a naïve (1st day of recording), 118 

learning (day of crossing the learning threshold; 2nd or 3rd day) and expert (last 119 

recording day) phases for each mouse. All mice, after gaining expertise, showed strong 120 

activation in the Barrel cortex (Fig 1. d, upper panel). This activation was during 121 

stimulus representation, stronger in Hit trials compared to CR trials (Fig. 1d, lower 122 

panel), not dependent on the texture type (i.e. if the hit was p100 or p1200). 123 

Here, we focus on the history content for each trial type. We sub-grouped all 124 

the Hit trials (i.e., the current trial type) based on the previous trial type: CR ("CR-Hit"; 125 

n=423±74, mean±SEM), Hit ("Hit-Hit"; n=585±42), FA ("FA-Hit"; n=217±24) or Miss 126 

("Miss-Hit"; n=55±24; Fig.1f, g). "Miss-Hit" were not analyzed due to a small number 127 

of trials. Our main analysis will compare "CR-Hit" (orange) and "Hit-Hit" (blue) trial 128 

pairs, since they are present in large numbers during all phases in each mouse 129 

separately (Fig. 1g; But see Fig. s3 for a comparison of other trial pairs). We emphasize 130 

that in this comparison, the current trial type is identical (i.e., Hit) whereas only the 131 

pervious trial (i.e., the history, CR or Hit) differed, therefore eliminating activity 132 

differences due to the current stimulus.  133 
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 134 

 135 

History information in BC emerges during learning 136 

First, we focused on history-dependent information in BC, specifically during the stim-137 

period. BC displayed higher activity during CR-Hit compared to Hit-Hit only during 138 

learning and expert phases, but not during the naïve period (Fig. 2a, Fig. s2). This 139 

difference was significant during the stim-period in learning and expert phases across 140 

Figure 1. Trial types based on history 

a. Behavioral setup for head-fixed texture discrimination with simultaneous wide-field 

calcium imaging and video monitoring of whisker motion and body movement.  b. Trial 

structure and possible trial outcomes. pre- and stim-periods are marked in gray and light gray 

colors, respectively. c. 25 cortical areas used in this study grouped into auditory areas (green), 

association areas (pink), somatosensory + V1 areas (blue), and motor areas (red) d. Top: 

Example mean activation map (averaged during the stim period) for the Hit condition. BC – 

barrel cortex. Color denotes normalized fluorescence. Bottom: Time course of activity in BC 

for Hit (green) and CR (purple). Error bars are mean±SEM across trials (n=376 and 333 for Hit 

and CR respectively). e. Example of a learning curve (d′ as a function of trial number) of one 

mouse, fitted with a sigmoid function (solid black line).  Red dashed vertical line indicates the 

learning threshold. gray rectangles mark the naive, learning and expert phases. f. Schematic 

diagram of the different trial types for a Hit trial preceded by a different trial (i.e., history): 

Hit-Hit (blue), CR-Hit (orange) and FA-Hit (gray). g. Probability of the different trial types along 

with the distribution of history for the Hit trial during the naïve, learning and expert phases 

(averaged across 7 mice).  

 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 1, 2022. ; https://doi.org/10.1101/2022.11.01.514667doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.01.514667
http://creativecommons.org/licenses/by/4.0/


8 
 

mice (Fig. 2b; signed rank test, p<0.05). To check whether this effect is not due to 141 

difference in body or whisker movements between the two pair types, we analyzed 142 

body movements by calculating (1 - frame-to-frame correlation) in mouth, forelimb 143 

and hindlimb areas and computed whisker envelope as a function of time (see 144 

Methods). Both body movements and whisker envelope were similar between CR-Hit 145 

and Hit-Hit pairs (Fig. 2c) and there was no significant difference across mice during 146 

the stim-period for neither naïve, learning or expert phases (Fig. 2d p>0.05; Signed rank 147 

test) nor during the pre-period (p>0.05, signed rank test, data not shown). This result, 148 

along with the fact that the current trial type in both conditions is identical, strongly 149 

indicates the presence of history information in BC.  150 

 151 
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 152 

We next quantified the emergence of history information with regard to the different 153 

time scales, the trial structure (within seconds) or the learning profile (across days). 154 

We first show 2D activity plots in BC for each trial pair (i.e., CR-Hit and Hit-Hit; showing 155 

activity of only the Hit trial), where trial time is plotted on the x-axis and trial number 156 

across learning time on the y-axis (Fig. 3a; 100-trial bins regardless of trial pair). Both 157 

Figure 2. History information in BC 

a. Example of average BC response of Hit-Hit (blue) and CR-Hit (orange) from 2 mice (upper 

and lower row) in the naïve, learning and expert phases. Shaded bar depicts the stim 

period. Shadows are mean±SEM across trials (mouse 1: n=86/66, 90/70 and 166/173 Hit-

Hit/CR-Hit for naïve, learning and expert phases respectively. mouse 6: n=94/80, 86/121 

and 99/135) b. Grand average of BC activity during the stim period (-0.2:0.6ms) for the 

naïve, learning and expert phases. Boxes indicate quartiles at 25/75th percentile across 

mice (n=7). c. Same as a but for body and whisker movements in the Hit-Hit (light gray) 

and CR-Hit (dark gray) trials. d. Same as b but for body (top) and whisker (bottom) 

movements. *p < 0.05; n.s. not significant; Wilcoxon signed-rank test. 
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trial pairs display an increase in activity during the stim-period shortly after passing the 158 

learning threshold. We defined a history modulation index as the difference in activity 159 

for BC between the two pair types (Hit-CR minus Hit-Hit). History modulation increased 160 

around the stim-period only in learning and expert phases but not in the naïve case 161 

(Fig 3b, c). A significant history modulation was defined as values exceeding mean±2SD 162 

of a trial-shuffled sample distribution (n=1000 iterations) and was performed for each 163 

mouse separately (Fig. 3b). The onset of the history modulation was defined as the first 164 

time frame reaching significant values (red arrows in Fig. 3b) and was found in BC to 165 

be during the stim-period (Fig. 3d; 0.05±0.32s, -0.1±0.27s 1s, median±SEM relative to 166 

texture stop in learning and expert phases respectively). We note that in the expert 167 

phase there is also a small peak exceeding the significance around the cue, indicating 168 

history information in BC may be present to some extent before stimulus presentation. 169 

Next, we quantified the history modulation in BC during the stim period as a function 170 

of the learning time course. History modulation in BC had the steepest increase after 171 

each mouse crossed its learning threshold (Fig. 3e, f). The onset of the history 172 

modulation was defined as the first trial bin exceeding the trial-shuffled sample 173 

distribution and was found to occur shortly after the learning threshold, highly 174 

correlated with the learning threshold indicating strong relationship between history 175 

emergence and learning of each individual mouse (Fig. 3g, h; 500±83 trials, 176 

median±SEM, r=0.97 p<0.001, spearman correlation). Note that our onset 177 

measurement is relatively strict and an increase in history information can be observed 178 

shortly (i.e., tens of trials) after crossing the learning threshold (Fig. 3d).   179 

We expanded our history analysis also for the pair types other than CR-Hit and Hit-Hit. 180 

For sufficient trial numbers, we focused on the learning phase. First, we compare FA-181 

Hit to Hit-Hit and CR-Hit, i.e., the same current trial type but preceded by an error trial 182 

(FA). Response in BC for FA-Hit was similar to Hit-Hit and significantly lower compared 183 

to CR-Hit (Fig. s3; p<0.05 signed rank test). This result highlights that specifically a 184 

correct rejection (CR), rather than the stimulus (i.e., texture) type, has a strong history 185 

effect. Next, we compared FA-CR, Hit-CR and CR-CR, i.e., similar to the previous 186 

comparison differing only in the current trial type (CR instead of Hit). There was no 187 

significant difference between the different pairs, indicating that the current trial type, 188 

i.e., Hit in this case, has a strong effect along with the history of the CR (Fig. s3; p>0.05, 189 

signed rank test). A comparison of FA-FA, Hit-FA and CR-FA did not show a significant 190 

difference (Fig. s3; p>0.05, signed rank test). In general, a preceding CR trial resulted in 191 
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higher activation independent of the current trial type (i.e., Hit, CR or FA; not significant 192 

for CR and FA), indicating that history information is present at the current time 193 

independently of incoming sensory information (Fig. s3; Compare orange bars to the 194 

blue bars). In conclusion, we found that the CR-Hit pair displayed a specific 195 

enhancement in BC that is related both to the preceding and current trial type (see 196 

discussion). 197 

 198 

Next, we expanded our analysis to the whole dorsal cortex during the stim 199 

period. Mean activation maps for both CR-Hit and Hit-Hit pairs (i.e., Activity for the 200 

current Hit trial whereas only the preceding trial was different) during the stim period 201 

displayed a pronounced activation patch in BC during naïve, learning and expert phases 202 

(Fig. 4a). BC activity was higher in CR-Hit compared to Hit-Hit especially during learning 203 

and expert phases. The grand average activity for all 25 cortical areas highlights history-204 

dependent information that emerges during learning (Fig. 4b). We note that other 205 

areas, e.g., different association areas, also encoded history-dependent information 206 

especially during learning and expert phases. Taken together, these results indicate 207 

that BC encodes history-dependent information that emerges during the stim period 208 

and just after learning. These results gave us the motivation to examine history-209 

dependent information at time periods before texture touch. 210 
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 211 

Figure 3. Temporal dynamics of history information in BC 

a. 2D plot of BC responses for Hit-Hit (top) and CR-Hit (bottom; trial structure on x-axis; Trial 

number across learning (in bins of 100 trials) on the y-axis. Red horizontal dashed line 

indicates learning threshold. Black dashed vertical line indicates the time of texture stop. b. 

Example from one mouse of the history modulation (activity in CR-Hit minus activity in Hit-

Hit) in BC along the trial structure in the naïve, learning and expert phases. Dashed gray line 

is the mean ± 2 SD of the trial-shuffled data (n=1000 iterations). The first-time frame crossing 

the shuffle data is defined as the onset and is marked in red. c. Mean history modulation in 

BC along trial time. Shadows depict mean±SEM across mice (n=7). d. Median onset of history 

modulation. Boxes indicate quartiles at 25/75th percentile across mice (n=7). e. Example from 

one mouse of the history modulation along learning dimension. Dashed gray line is the mean 

± 2 SD of the trial-shuffled data (n=1000 iterations). The first-time frame crossing the shuffle 

data is defined as the onset for learning and is marked in red. The vertical red dashed line (trial 

0) marks the learning threshold. f. Mean history modulation in BC along the learning profile 

aligned to the learning threshold of each mouse (time 0). Shadows depict mean±SEM across 

mice (n=7). g. Onset of the history modulation for learning as a function of the learning 

threshold. Each point is one mouse (n=7). h. Median onset of history modulation relative to 

the learning threshold. Boxes indicate quartiles at 25/75th percentile across mice (n=7).  
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 212 

 213 

Figure 4. Cortex-wide history modulation during the stim period.  

a. Mean activity maps averaged within the stim period (-0.2 – 0 seconds relative to texture 

stop) of CR-Hit (left) Hit-Hit (right) during the naïve (top), learning (middle), expert 

(bottom) phases. Color bar denotes normalized fluorescence (∆F/F). 2D top-view atlas is 

superimposed in gray. b. Grand average neuronal activity during the stim period (-0.2:0.2s) 

for Hit-Hit (blue) and CR-Hit (orange) in all 25 areas for the naïve (top), learning (middle) 

and expert (bottom) phases. Error bars depict mean±SEM across mice (n=7).   
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History information in RL before sensation  214 

We next focused our analysis on the pre-period, just before texture touch (-1 to -0.6 215 

sec before texture stop). Mean activity maps during the pre-period highlight activity in 216 

association area rostrolateral (RL) that is present for both CR-Hit and Hit-Hit pairs 217 

during the naïve, learning and expert phases (Fig. 5a;(Gilad and Helmchen, 2020)) RL 218 

pre-period activity is higher in CR-Hit compared to Hit-Hit mostly during learning and 219 

expert phases. In addition, higher RL activity in CR-Hit pair starts even before the pre-220 

period, indicating that history-information is not directly related on the current 221 

stimulus (Fig. 5b). The grand average of all 25 cortical areas, highlights the emergence 222 

of history-dependent information emerging during learning, especially in RL, but also 223 

in other association and sensory areas (Fig. 5c).  224 

RL activity was significantly higher in CR-Hit compared to Hit-Hit trials in the 225 

pre- period during the expert phase (Fig. s4; signed rank test, p<0.05, similar trend for 226 

the learning phase but insignificant; not significant for the naïve phase).  The onset of 227 

history modulation within the trial structure (as in Fig. 3d) was earlier in RL compared 228 

to BC in both learning (-0.15±0.32s and 0.05±0.32s, median±SEM in RL and BC 229 

respectively) and expert phases (-0.75±0.2s and -0.1±0.27s, median±SEM in RL and BC 230 

respectively) but not significantly different (p>0.05, signed rank test). The onset for the 231 

history modulation with relation to the learning profile in RL (similar to Fig. 3h; During 232 

the pre-period) was also earlier than BC, but not significantly different (200±162 trials 233 

after crossing threshold compared to 500±83 in BC; median±SEM, p>0.05 singed rank 234 

test). Taken together, these results indicate that as mice gain expertise, RL encodes 235 

history information before the next stimulus occurs, which may inform through its 236 

projections to BC where history information then could be integrated with information 237 

of the current incoming texture. 238 
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 239 

 240 

 241 

 242 

 243 

Figure 5. History information in RL before stimulus presentation. 

a. Mean activity maps averaged within the pre-period (-1 – -0.8 seconds relative to texture 

stop) of CR-Hit (left) Hit-Hit (right) during the naïve (top), learning (middle), expert (bottom) 

phases. Color bar denotes normalized fluorescence (∆F/F). 2D top-view atlas is superimposed 

in gray. b. Example from one mouse of average RL response of Hit-Hit (blue) and CR-Hit 

(orange) in the naïve (top), learning (middle) and expert (bottom) phases. Shaded gray bar 

depicts the pre-period (-1– -0.6). Shadows are mean±SEM across trials (n=51/54, 92/78 and 

168/173 Hit-Hit/CR-Hit for naïve, learning and expert phases respectively) c. Grand average 

neuronal activity during the pre-period (-1 – -0.6) for Hit-Hit (blue) and CR-Hit (orange) in all 

25 areas for the naïve (top), learning (middle) and expert (bottom) phases. Error bars depict 

mean±SEM across mice (n=7).   
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Past versus present discrimination power in BC and RL 244 

How well can BC and RL activity discriminate at the single trial level history information 245 

compared to the information of the current stimulus? To do this, we computed the 246 

receiver operating characteristics (ROC) analysis between specific trial types(Gilad et 247 

al., 2020, 2013) , along with the area under the curve (AUC) quantifying the 248 

discrimination power at the single trial level (Methods). We calculated the AUC 249 

between two types of trials (Fig. 6a): 1) Activity between CR-Hit and Hit-Hit pairs based 250 

on the activity during the Hit trial. This is defined as ‘history-AUC’ since only the 251 

previous trial is different. 2) Activity between the current Hit and CR trials. This is 252 

defined as the ‘Current-AUC’ because the current trial types are different (both in 253 

terms of stimulus type and action). Both history-AUC and current-AUC are calculated 254 

for BC and RL for each time 255 

frame along the trial structure 256 

and for naïve, learning and 257 

expert phases. Intuitively, one 258 

would assume that the current-259 

AUC will display higher 260 

discrimination power compared 261 

to the history-AUC because the 262 

latter AUC measure compares 263 

the same current trial type 264 

which should be harder to 265 

discriminate. Interestingly, 266 

during the expert phase, history-267 

Fig. 6. History and current information are equally discriminative at the single trial level  

a. Schematic diagram for the two types of area under the curve (AUC) measures (derived from 

a ROC analysis): history-AUC between the Hit responses for Hit-Hit and CR-Hit trial types. 

Current-AUC between Hit and CR trial types regardless of their history. b. Grand average of 

the history (red) and current (blue) AUC measures in BC (left) and RL (right) along the trial 

structure during the expert phase.  Shadows depict mean±SEM across mice (n=7). Values 

significantly differ from chance (0.5) in history-AUC (p<0.05, 2 tail ttest, for both BC and RL).   

c. Grand average of history and current-AUC measures during the stim period in the expert 

phase. Error bars indicate mean±SEM across mice(n=7). d. Same as in a but for the learning 

phase. Error bars as in a, values significantly differ from chance (0.5) for history-AUC (p<0.05, 

2 tail ttest, for both BC and RL), but not for the current-AUC in RL.  e. same as in c, but for the 

pre-period during the learning phase. *p < 0.05; n.s. not significant; Wilcoxon signed-rank test. 
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AUC in both BC and RL has a discrimination power in the stim period that is not 268 

significantly different than that of the current-AUC (Fig. 6b, c; p>0.05; singed rank test). 269 

In other words, we found that BC and RL discriminate past stimuli just as well as the 270 

current stimuli. In addition, during the learning phase, RL and to some extent BC, 271 

display a significantly higher history-AUC compared to the current-AUC, specifically in 272 

the pre-period (Fig. 6d, e; p<0.05; Singed rank test). This indicates that history 273 

information is discriminative at the single trial level before stimulus onset. Taken 274 

together, we find that BC and RL can encode the past just as well as the present.   275 

  276 

Discussion: 277 

History information is trial-type specific  278 

We have identified cortex wide encoding of history information that emerges as mice 279 

learn to discriminate between two textures. History information was not dependent 280 

on the current stimulus and emerged in RL association area before texture touch. Our 281 

results indicate that a previous CR trial will lead to higher activity in BC and RL 282 

compared to a previous Hit trial. This difference is probably not due to pure sensory 283 

differences in the previous trial since the effect was not present after FA trials (sup Fig. 284 

s3, left panel). In addition, mice trained to lick the P1200 texture displayed a similar 285 

bias to the CR-Hit, further indicating that these differences are not purely sensory 286 

related. Moreover, this difference is probably not related to the previous motor action 287 

(e.g., either lick or no-lick). During the current trial, body and whisker movements were 288 

not significantly different, emphasizing that there are no motor-related differences 289 

based on the previous trial (Fig. 2c, d). The fact that these differences emerged only 290 

after learning implies that these differences are not purely sensory or motor related 291 

but rather reflect internal history-related information. It may be that in a go/no-go 292 

discrimination task the mouse mainly learns not to lick for the no-go texture (i.e., CR) 293 

making the information of a CR trials more pronounced relatively to a Hit trials. 294 

Another possibility is that a previous CR will cause a pronounced anticipatory state for 295 

the incoming texture, leading to enhanced cortical activity. Again, we did not find any 296 

consistent differences in motor movements based on the previous trials making this 297 

possibility less likely. In summary, our results indicate that history-dependent 298 

information emerges internally in cortex as mice learn to discriminate between two 299 

stimuli. 300 
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History information emerges in RL and transferred to BC 301 

BC is considered a lower-order sensory area but encodes not only lower-order stimulus 302 

features(Chen et al., 2013; Estebanez et al., 2012; Garion et al., 2014; Safaai et al., 303 

2013) but also higher-order information such as choice and reward value(Chéreau et 304 

al., 2020; Rodgers et al., 2021; Zuo and Diamond, 2019). We additionally found that BC 305 

carries history information during the sensation period which is related to the previous 306 

trial several seconds back. The presence of history information in lower-order areas 307 

such as BC is interesting by itself, but also raises the question of where is its origin. 308 

Interestingly, we show that history information emerges in RL before texture touch 309 

implying that RL may transfer history information in a top-down manner to BC for 310 

optimal sensory integration.  311 

The presence of history information in RL before the sensation period implies 312 

that RL may play a crucial role in linking past experience to ongoing sensory integration. 313 

RL is the lateral part of PPC adjacent to BC, within the cluster of higher-order 314 

association areas surrounding V1 (Hovde et al., 2018; Lyamzin and Benucci, 2019). 315 

Previous studies showed that history information of choice-outcome is encoded by PPC 316 

neurons(Harvey et al., 2012; Hwang et al., 2017; Marcos and Harvey, 2016; Pho et al., 317 

2018), as well as history of sensory information(Akrami et al., 2018). Silencing the PPC 318 

specifically during the inter-trial interval affected the behavioral performance of rats 319 

(Akrami et al., 2018; Hwang et al., 2017), whereas silencing during the stimulus 320 

presentation did not affected performance. The PPC is also reciprocally connected to 321 

hippocampus via entorhinal and retrosplenial cortices (Save and Poucet, 2009; 322 

Whitlock et al., 2008) and to basolateral amygdala via the anterior cingulate cortex 323 

(Suzuki et al., 2022), giving fast access to the different memory hubs. Khodagholy et 324 

al.(Khodagholy et al., 2017) showed coupling of PPC and hippocampal ripples that 325 

strengthen in non-REM sleep after rats learned a spatial exploration task, further 326 

indicating that RL may relay history information from subcortical memory hubs to 327 

cortex.  328 

The fact that history information emerges only after learning, implies that it 329 

encodes a subjective value or association of a certain past stimulus. It may be that only 330 

once the value of a certain stimulus has been established, e.g., by strengthening 331 

indirect connections between basolateral amygdala (that has a role in associative 332 

memory) and RL, history information can aid in efficiently encoding the incoming 333 

stimulus. In light of this discussion, we suggest that the consolidation of a certain 334 
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association (in our case a CR), induces long-term synaptic plasticity of top-down 335 

projections from higher-order association area (e.g., RL) to a lower-order sensory area 336 

(e.g., BC).  This projection-specific potentiation may better recruit sensory cortex in the 337 

context of the immediate previous history.  338 

 339 

Mechanisms for integrating past and present 340 

The wide-field signal measured in our study reports bulk population activity specifically 341 

in L2/3 excitatory cells. Are neuronal populations encoding past and present 342 

information in the BC overlapping or distinct? On one side, it could be that the same 343 

cell in BC encodes both the current stimulus and additionally receives top-down input 344 

from RL carrying the past stimulus identity. This additional top down information may 345 

amplify sensory integration and optimize discrimination of the current stimulus. On the 346 

other side, previous studies that measured single cell activity in the BC showed that 347 

single cells tend to respond to one information type, (Chéreau et al., 2020; Estebanez 348 

et al., 2012; Rodgers et al., 2021). In this case, we hypothesize that different 349 

populations in BC encode current and history information, which leads to a larger 350 

fraction of neurons in BC that are active for the CR-Hit pair. A larger number of active 351 

neurons in BC may facilitate sensorimotor integration involving downstream areas 352 

such as the motor cortex, further resulting in gaining an expert level (Zuo and Diamond, 353 

2019).  354 

It is probable that both history and learning involve other circuit elements such 355 

as deep cortical layers (Pasupathy and Miller, 2005; Roelfsema and Holtmaat, 2018; 356 

Vecchia et al., 2020), inhibitory subtypes, other pathways (Lacefield et al., 2019; 357 

Mohan et al., 2022; Musall et al., n.d.; Petreanu et al., 2012; Williams and Holtmaat, 358 

2019),and subcortical areas (Fu et al., n.d.; Garrett et al., 2020; Pasupathy and Miller, 359 

2005; Pfeffer et al., 2013). Future work may aim to dissect specific subpopulations that 360 

carry history information using similar behavioral tasks, e.g., imaging of cortex-wide 361 

layer 5 dynamics. Layer 5 neurons may be ideal in integrating past information arriving 362 

onto the apical dendrites in layer 154 with incoming information arriving from the 363 

thalamus. In addition, similar tasks with reward after CR trials, or tasks that better 364 

differentiate between choice and outcome (decision tasks, giving different 365 

probabilities of outcome to each choice), or tasks with a dynamic inter-trial interval 366 

may shed light on the meaning of this history-learning effect. In summary, our results 367 
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imply that as we learn, the cortex learns to better integrate past and present 368 

information resulting in expert performance. 369 
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Star methods: 385 

Animals and surgical procedures: 386 

Methods were carried out according to the guidelines of the Veterinary Office of 387 

Switzerland and following approval by the Cantonal Veterinary Office in Zurich. A total 388 

of 7 adult male mice (1-4 months old) were used in this study. These mice were triple 389 

transgenic Rasgrf2-2A-dCre; CamK2a-tTA;TITL-GCaMP6f animals, expressing GCaMP6f 390 

in excitatory neocortical  layer 2/3 neurons (Gilad and Helmchen, 2020). The dataset 391 

used here is identical to our previous study (Gilad and Helmchen, 2020), but here we 392 

have applied a completely novel history analysis. To generate triple transgenic animals, 393 

double transgenic mice carrying CamK2a-Tta62 and TITL-GCaMP6f63 were crossed 394 

with a Rasgrf2-2A-dCre line (64; individual lines are available from The Jackson 395 

Laboratory as JAX# 016198, JAX#024103, and JAX#  22864, respectively). The Rasgrf2-396 

2A-dCre;CamK2a-tTA;TITL-GCaMP6f line contains a tet-off system, by which transgene 397 
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expression can be suppressed upon doxycycline  treatment ((Garner et al., 2012; 398 

Gossen and Bujard, 1992). However, doxycycline treatment is not necessary in these 399 

animals, since the Rasgrf2-2A-dCre line holds an inducible system of its own, given that 400 

the destabilized Cre (dCre) expressed under the control of the Rasgrf2-2A promoter 401 

needs to be stabilized by trimethoprim (TMP) to be fully functional. TMP (Sigma T7883) 402 

was reconstituted in Dimethyl sulfoxide (DMSO, Sigma 34869) at a saturation level of 403 

100 mg/ml, freshly prepared for each experiment. For TMP induction, mice were given 404 

a single intraperitoneal injection (150 µg TMP/g body weight; 29 g needle; 3–5 days 405 

post-surgery), diluted in 0.9% saline solution. We used an intact skull preparation (Silasi 406 

et al., 2016) for chronic wide-field calcium imaging of neocortical activity(Gilad et al., 407 

2018b). Mice were anesthetized with 2% isoflurane (in pure O2) and body temperature 408 

was maintained at 37 °C. We applied local analgesia (lidocaine 1%), exposed and 409 

cleaned the skull, and removed some muscles to access the entire dorsal surface of the 410 

left hemisphere (Fig. 2a; ~6 × 8 mm2 from ~3 mm anterior to bregma to ~1 mm 411 

posterior to lambda; from the midline to at least 5 mm laterally). We built a wall around 412 

the hemisphere with adhesive material (iBond; UV-cured) and dental cement “worms” 413 

(Charisma). Then, we applied transparent dental cement homogenously over the 414 

imaging field (Tetric EvoFlow T1). Finally, a metal post for head fixation was glued on 415 

the back of the right hemisphere. This minimally invasive preparation enabled high-416 

quality chronic imaging with high success rate.  417 

 418 

Texture discrimination task. 419 

Mice were trained on a go/no-go discrimination task (Fig. 1a) using a data acquisition 420 

interface (USB-6008; National Instruments) and custom-written LabVIEW software 421 

(National Instruments). Each trial started with an auditory cue (stimulus cue; 2 beeps 422 

at 2 kHz, 100-ms duration with 50-ms interval), signaling the approach of either two 423 

types of sandpapers (grit size P100: rough texture; P1200: smooth texture; 3M) to the 424 

mouse’s whiskers as ‘go’ or ‘no-go’ textures (Fig. 1a; pseudo-randomly presented with 425 

no more than three repetitions). Sandpapers were mounted onto panels attached to a 426 

stepper motor (T-NM17A04; Zaber) mounted onto a motorized linear stage (T-427 

LSM100A; Zaber) to move textures in and out of reach of whiskers. The texture stayed 428 

in touch with the whiskers for 2 s, and then it was moved out after which an additional 429 

auditory cue (response cue; 4 beeps at 4 kHz, 50-ms duration with 25-ms interval) 430 
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signaled the start of a 2-s response period. The stimulus and response cues were 431 

identical in both textures. The interval between the trails was 6 s (8 s from response to 432 

next cue). A water reward (~3 µL) was given to the mouse for licking for the go texture 433 

only after the response cue (‘Hit’), i.e. for the first correct lick during the response 434 

period (Fig. 1a; lick were detected using a piezo sensor). Punishment with white noise 435 

was given for licking for the no-go texture (‘false alarms’; FA). Licking before the 436 

response cue was neither rewarded nor punished. Reward and punishment were 437 

omitted when mice withheld licking for the no-go (‘correct-rejections’, CR) or go 438 

(‘Misses’) textures.   439 

Training and performance. Five mice were trained to lick for the P100 texture (mice 440 

#1-4 and 6) and 2 mice were trained to lick for the P1200 texture (mice #5 and 7). Mice 441 

were first handled and accustomed to head fixation before starting water scheduling. 442 

Before imaging began mice were conditioned to lick for reward after the go texture 443 

(presented within a similar trial structure as the task itself). Imaging began only after 444 

mice reliably licked for the response cue (typically after the first day; 200–400 trials). 445 

On the first day of imaging, mice were presented with the ‘go’ texture and after 50 446 

trials the ‘no-go’ texture was gradually introduced (starting from 10% and increasing 447 

by 10% approximately every 50 trials (Guo et al., 2014)  until reaching 50% probability 448 

for the no-go texture by the end of the day. 6 out of the 7 mice learned the task within 449 

3–4 days after around a thousand trials (Supplementary Fig. 1). Mouse #4 learned the 450 

task within 10 days. An effort was made to maintain a constant position of the texture 451 

and cameras across imaging days in order to maintain similar stimulation and imaging 452 

parameters.  453 

Wide-field calcium imaging. We used a wide-field approach to image large parts of the 454 

dorsal cortex while mice learned to perform the task (Gilad et al., 2018b) .A sensitive 455 

CMOS camera (Hamamatsu Orca Flash 4.0) was mounted on top of a dual objective 456 

setup. Two objectives (Navitar; top objective: D-5095, 50 mm f0.95; bottom objective 457 

inverted: D-2595, 25 mm f0.95) were interfaced with a dichroic (510 nm; AHF; 458 

Beamsplitter T510LPXRXT) filter cube (Thorlabs). This combination allowed a ~9-mm 459 

field-of-view, covering most of the dorsal cortex of the hemisphere contralateral to 460 

texture presentation. Blue LED light (Thorlabs; M470L3) was guided through an 461 

excitation filter (480/40 nm BrightLine HC), a diffuser, collimated, reflected from the 462 

dichroic mirror, and focused through the bottom objective ~100 µm below the blood 463 

vessels. Green light emitted from the preparation passed through both objectives and 464 
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an emission filter (514/30 nm BrightLine HC) before reaching the camera. The total 465 

power of blue light on the preparation was <5mW; i.e., <0.1 mW/mm2. At this 466 

illumination power we did not observe any photobleaching. Data was collected with a 467 

temporal resolution of 20 Hz and a spatial sampling of 512 × 512 pixels, resulting in a 468 

spatial resolution of ~20 μm/pixel. On each imaging day a green reflectance image was 469 

taken as reference to enable registration across different imaging days using the blood 470 

vessel pattern (fibercoupled LED illuminated from the side; Thorlabs). 471 

Mapping and area selection. Each mouse underwent a mapping session under 472 

anesthesia (1% isoflurane), in which we presented five different sensory stimuli 473 

(contra-lateral side (Gilad and Helmchen, 2020). Next, we registered each imaging day 474 

to the mapping day using skull coordinates from the green images. Finally, we 475 

registered each mouse onto a 2D top view mouse atlas using both functional patches 476 

from the mapping and skull coordinates ((Gilad and Helmchen, 2020);©2004 Allen 477 

Institute for Brain Science. Allen Mouse Brain Atlas. Available from: 478 

http://mouse.brain-map.org/29). Within the atlas borders, we defined 25 areas of 479 

interest, with some manual modifications within these borders to fit the functional 480 

activity for each mouse. Motor cortex areas were defined based on stereotaxic 481 

coordinates and functional patches for each mouse (see below). Thus, all mice had 482 

similar regions of interest that were comparable within and across mice. We grouped 483 

these 25 areas into auditory (green), association (pink), somatosensory + V1 (blue), and 484 

motor (red) areas (Fig. 1d and Supplementary Fig. 1b). Auditory areas: Primary auditory 485 

(A1), Auditory dorsal (AD) and Temporal association area (TEA). Sensory areas: 486 

Somatosensory mouth (Mo), Somatosensory nose (No), Somtosensory hindlimb (HL), 487 

Somtosensory forelimb (FL), Barrel cortex (BC; Primary somatosensory whisker); 488 

Secondary somatosensory whisker (S2), Somtosensory trunk (Tr) and Primary visual 489 

cortex (V1). Motor areas: whisker-related primary motor cortex (M1; 1.5 anterior and 490 

1mm lateral from bregma, corresponding to the whisker evoked activation patch in M1 491 

from the mapping session), anterior lateral motor cortex (ALM; 2.5 anterior and 1.5 492 

mm lateral from bregma69) and secondary motor cortex (M2; 1.5 anterior and 0.5mm 493 

lateral from bregma corresponding11). Association cortex: Rostrolateral (RL), Anterior 494 

(A), Anterior lateral (AL), Anterior medial (AM), Posterior medial (PM), Lateral medial 495 

(LM), Lateral intermediate (LI), Posterior lateral (PL), Post-rhinal (PR), Retrosplenial 496 

dorsal (RD) and Retrosplenial angular (RA). We note that our definition of association 497 
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cortex is broad and may include or exclude areas that are not necessarily classical 498 

association areas.  499 

 500 

Whisker and body tracking. In addition to wide-field imaging, we tracked movements 501 

of the whiskers and the body of the mouse during the task (Fig. 1a). The mouse was 502 

illuminated with a 940-nm infrared LED. Whiskers were imaged at 50 Hz (500 × 500 503 

pixels) using a high-speed CMOS camera (A504k; Basler), from which we calculated 504 

time course of whisking envelope and the time of first touch (see below). An additional 505 

camera monitored the movements of the mouse at 30 Hz (The imaging source; DMK 506 

22BUC03; 720 × 480 pixels). We used movements of both forelimbs and the head/neck 507 

region to assess body movements, to reliably detect large movements (Fig. 1a; see 508 

Data Analysis below).  509 

Calculating body movements. We used a body camera to detect general movements 510 

of the mouse (30 Hz frame rate). For each imaging day, we first outlined the forelimbs 511 

and the neck areas (one area of interest for each), which were reliable areas to detect 512 

general movements. Next, we calculated the body movement (1 minus frame-to-frame 513 

correlation) within these areas as a function of time for each trial. We than averaged 514 

all the defined body areas to one "body" vector. 515 

 Whisker tracking. The average whisker angle across all imaged whiskers was 516 

measured using automated whisker tracking software (Knutsen et al., 2004) . The mean 517 

whisker envelope was calculated as the difference between maximum and minimum 518 

whisker angles along a sliding window equal to the imaging frame duration (50 ms; 519 

(Gilad et al., 2018b)). Whisker envelope was normalized just before the auditory cue 520 

similar to wide-field data (Frame zero). In addition, we manually detected the first 521 

frame, in which any whisker touched the upcoming texture, using the movies from the 522 

whisker camera (LabVIEW custom program). The first touch occurred on average 0.33 523 

and 0.34 s before the texture stopped for naïve and expert mice respectively. Time of 524 

first touch did not differ between expert and naïve mice (P > 0.05; Mann–Whitney U-525 

test; n = 7 mice). We note that the first touch occurred mostly (but not exclusively) in 526 

the pre-period from −1 to −0.5 relative to texture stop. 527 

Data analysis. Data analysis was performed using Matlab software (Mathworks). All 528 

mice were continuously imaged during learning (5–11 days). Wide-field fluorescence 529 

images were sampled down to 256 × 256 pixels and pixels outside the imaging area 530 

were discarded. This resulted in a spatial resolution of ~40 μm/pixel and was sufficient 531 
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to determine cortical borders, despite further scattering of emitted light through the 532 

tissue and skull. Each pixel and each trial were normalized to baseline several frames 533 

before the stimulus cue (frame 0 division). Our main focus was on the history effect. 534 

Because the hit trails had the largest portion from all trails, we focused on the hit trials. 535 

We sub grouped all the Hit trials based on the type of the preceding trial as follow: CR-536 

Hit - Hit trials that were preceded by correct rejection trial. Hit-Hit - Hit trials that were 537 

preceded by a Hit trial. FA-Hit - hit trials that were preceded by a false alarm trial. We 538 

mainly focused on comparing Hit-Hit and CR-Hit pairs since they had a large proportion 539 

in naïve, learning and expert phases (but see Figure s4). We defined two time periods 540 

within the trial structure: pre (−1 to 0.6 s relative to texture stop) and stim (−0.2 to 0.2 541 

relative to texture stop; Fig. 1a).  542 

 543 

 Calculation of learning curves. Trials were binned (n = 100 trials with no overlap) 544 

across learning (at the stimulus time, adjusted for each mouse) and the performance 545 

(defined as d′ = Z(Hit/(Hit +Miss)) – Z(FA/(FA + CR)) where Z denotes the inverse of the 546 

cumulative distribution function) was calculated for each bin. Next, each behavioral 547 

learning curve was fitted with a sigmoid function 𝑠(𝑡) = 𝑎
1

1+𝑒
−(𝑡−𝑏)

𝑐⁄
 Where a denotes 548 

the amplitude, b the time point (in trial numbers) of the inflection point, and c the 549 

steepness of the sigmoid. 550 

 A learning threshold was defined as the bin in which the d' crossed the inflection point 551 

(half point) of the learning curve sigmoid fit. (Fig. s1). 552 

Defining the learning phases: We defined the naïve, learning and expert phase each 553 

as one day of recordings, the naïve day was defined as the first day to have enough 554 

correct rejections that the performance is still before the crossing threshold (typically 555 

the 2nd recording day). The learning day was defined as the day that the mouse 556 

crossed the learning threshold, and the expert was defined as the last day of the mouse 557 

(usually the 5th day) 558 

 559 

Calculating history modulation and onset: We defined the 'history modulation' as the 560 

difference between the average activation of all CR-Hit and Hit-Hit trials. To calculate 561 

significance of history modulation, we calculated the sample distribution by trial 562 

shuffling between CR-Hit and Hit-Hit trials (n=1000 iterations).  We than defined the 563 

onset of the history modulation as the first bin exceeding mean ± 2 SD of the sample 564 
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distribution. We calculated this history modulation and significance across the trial 565 

dimension (every frame) and across learning dimension (every 100 trials). In the 566 

learning dimension, we calculated the average activity in the stim period (-0.2:0.2) of 567 

all the CR-Hit and Hit-Hit trials that were falling within each 100 trials bin.  568 

Discrimination power between hit trials sub grouped by history. To measure how well 569 

could neuronal populations discriminate between go and no-go textures, we calculated 570 

a receiver operating characteristics (ROC) curve and calculated its area under the curve 571 

(AUC; with a value of 0.5 indicating no discrimination power). This can be done for a 572 

given area, each time frame within each learning phase separately (Fig. 6).  573 

 574 

Statistical analysis. In general, the Wilcoxon signed-rank test to compare a 575 

population’s median to zero (or between two paired populations). Multiple group 576 

correction was used when comparing between more than two groups. 577 

  578 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 1, 2022. ; https://doi.org/10.1101/2022.11.01.514667doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.01.514667
http://creativecommons.org/licenses/by/4.0/


27 
 

References: 579 

 580 

Akrami A, Kopec CD, Diamond ME, Brody CD. 2018. Posterior parietal cortex 581 

represents sensory history and mediates its effects on behaviour. Nature 582 

554:368–372. doi:10.1038/nature25510 583 

Banerjee A, Parente G, Teutsch J, Lewis C, Voigt FF, Helmchen F. 2020. Value-guided 584 

remapping of sensory cortex by lateral orbitofrontal cortex. Nature 585:245–585 

250. doi:10.1038/S41586-020-2704-Z 586 

Blake DT, Strata F, Churchland AK, Merzenich MM. 2002. Neural correlates of 587 

instrumental learning in primary auditory cortex. Proc Natl Acad Sci U S A 588 

99:10114–10119. doi:10.1073/pnas.092278099 589 

Chen JL, Carta S, Soldado-Magraner J, Schneider BL, Helmchen F. 2013. Behaviour-590 

dependent recruitment of long-range projection neurons in somatosensory 591 

cortex. Nature 499:336–340. doi:10.1038/nature12236 592 

Chen JL, Margolis DJ, Stankov A, Sumanovski LT, Schneider BL, Helmchen F. 2015. 593 

Pathway-specific reorganization of projection neurons in somatosensory cortex 594 

during learning. Nat Neurosci 18:1101–1108. doi:10.1038/nn.4046 595 

Chéreau R, Bawa T, Fodoulian L, Carleton A, Pagès S, Holtmaat A. 2020. Dynamic 596 

perceptual feature selectivity in primary somatosensory cortex upon reversal 597 

learning. Nat Commun 11. doi:10.1038/s41467-020-17005-x 598 

Driscoll LN, Pettit NL, Minderer M, Chettih SN, Harvey CD. 2017a. Dynamic 599 

Reorganization of Neuronal Activity Patterns in Parietal Cortex. Cell 170:986–600 

999.e16. doi:10.1016/j.cell.2017.07.021 601 

Driscoll LN, Pettit NL, Minderer M, Chettih SN, Harvey CD, Driscoll LN, Pettit NL, 602 

Minderer M, Chettih SN, Harvey CD. 2017b. Dynamic Reorganization of 603 

Neuronal Activity Patterns in Parietal Cortex Article Dynamic Reorganization of 604 

Neuronal Activity Patterns in Parietal Cortex. Cell 170:1–14. 605 

doi:10.1016/j.cell.2017.07.021 606 

Estebanez L, Boustani S el, Destexhe A, Shulz DE. 2012. Correlated input reveals 607 

coexisting coding schemes in a sensory cortex. Nat Neurosci 15:1691–1699. 608 

doi:10.1038/nn.3258 609 

Fu Y, Kaneko M, Tang Y, Alvarez-Buylla A, Stryker MP. n.d. A cortical disinhibitory 610 

circuit for enhancing adult plasticity. doi:10.7554/eLife.05558.001 611 

Gallero-Salas Y, Han S, Sych Y, Voigt FF, Laurenczy B, Gilad A, Helmchen F. 2021. 612 

Sensory and Behavioral Components of Neocortical Signal Flow in 613 

Discrimination Tasks with Short-Term Memory. Neuron 109:135–148.e6. 614 

doi:10.1016/J.NEURON.2020.10.017 615 

Garion L, Dubin U, Rubin Y, Khateb M, Schiller Y, Azouz R, Schiller J. 2014. Texture 616 

coarseness responsive neurons and their mapping in layer 2-3 of the rat barrel 617 

cortex in vivo. Elife 3:e03405. doi:10.7554/ELIFE.03405 618 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 1, 2022. ; https://doi.org/10.1101/2022.11.01.514667doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.01.514667
http://creativecommons.org/licenses/by/4.0/


28 
 

Garner AR, Rowland DC, Hwang SY, Baumgaertel K, Roth BL, Kentros C, Mayford M. 619 

2012. Generation of a Synthetic Memory Trace. Science (1979) 335:1513–1516. 620 

doi:10.1126/science.1214985 621 

Garrett M, Manavi S, Roll K, Ollerenshaw DR, Groblewski PA, Ponvert ND, Kiggins JT, 622 

Casal L, Mace K, Williford A, Leon A, Jia X, Ledochowitsch P, Buice MA, 623 

Wakeman W, Mihalas S, Olsen SR. 2020. Experience shapes activity dynamics 624 

and stimulus coding of VIP inhibitory cells. Elife 9. doi:10.7554/eLife.50340 625 

Gilad A, Gallero-Salas Y, Groos D, Helmchen F. 2018a. Behavioral Strategy Determines 626 

Frontal or Posterior Location of Short-Term Memory in Neocortex. Neuron 627 

99:814–828.e7. doi:10.1016/j.neuron.2018.07.029 628 

Gilad A, Gallero-salas Y, Groos D, Helmchen F, Gilad A, Gallero-salas Y, Groos D, 629 

Helmchen F. 2018b. Behavioral Strategy Determines Frontal or Posterior 630 

Location of Short-Term Memory in Neocortex. Neuron 99:814–828.e7. 631 

doi:10.1016/j.neuron.2018.07.029 632 

Gilad A, Helmchen F. 2020. Spatiotemporal refinement of signal flow through 633 

association cortex during learning. Nat Commun 11:1–14. doi:10.1038/s41467-634 

020-15534-z 635 

Gilad A, Maor I, Mizrahi A. 2020. Learning-related population dynamics in the 636 

auditory thalamus. Elife 9:1–18. doi:10.7554/eLife.56307 637 

Gilad A, Meirovithz E, Slovin H. 2013. Population Responses to Contour Integration: 638 

Early Encoding of Discrete Elements and Late Perceptual Grouping. Neuron 639 

78:389–402. doi:10.1016/j.neuron.2013.02.013 640 

Gossen M, Bujard H. 1992. Tight control of gene expression in mammalian cells by 641 

tetracycline-responsive promoters. Proc Natl Acad Sci U S A 89:5547–5551. 642 

doi:10.1073/pnas.89.12.5547 643 

Guo Z, Li N, Huber D, Ophir E, Gutnisky D, Ting J, Feng G, Svoboda K. 2014. Flow of 644 

cortical activity underlying a tactile decision in mice. Neuron 81:179–194. 645 

doi:10.1016/j.neuron.2013.10.020 646 

Harvey CD, Coen P, Tank DW. 2012. Choice-specific sequences in parietal cortex 647 

during a virtual-navigation decision task. Nature 484:62–68. 648 

doi:10.1038/nature10918 649 

Hattori R, Danskin B, Babic Z, Mlynaryk N, Komiyama T. 2019. Area-Specificity and 650 

Plasticity of History-Dependent Value Coding During Learning. Cell 177:1858–651 

1872.e15. doi:10.1016/j.cell.2019.04.027 652 

Hovde K, Gianatti M, Witter MP, Whitlock JR. 2018. Architecture and organization of 653 

mouse posterior parietal cortex relative to extrastriate areas. European Journal 654 

of Neuroscience 49:1313–1329. doi:10.1111/ejn.14280 655 

Hwang EJ, Dahlen JE, Mukundan M, Komiyama T. 2017. History-based action 656 

selection bias in posterior parietal cortex. Nat Commun 8:1–14. 657 

doi:10.1038/s41467-017-01356-z 658 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 1, 2022. ; https://doi.org/10.1101/2022.11.01.514667doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.01.514667
http://creativecommons.org/licenses/by/4.0/


29 
 

Johnson CM, Peckler H, Tai LH, Wilbrecht L. 2016. Rule learning enhances structural 659 

plasticity of long-range axons in frontal cortex. Nature Communications 2016 660 

7:1 7:1–14. doi:10.1038/ncomms10785 661 

Jurjut O, Georgieva P, Busse L, Katzner S. 2017. Learning Enhances Sensory Processing 662 

in Mouse V1 before Improving Behavior. J Neurosci 37:6460–6474. 663 

doi:10.1523/JNEUROSCI.3485-16.2017 664 

Kawai T, Yamada H, Sato N, Takada M, Matsumoto M. 2015. Roles of the Lateral 665 

Habenula and Anterior Cingulate Cortex in Negative Outcome Monitoring and 666 

Behavioral Adjustment in Nonhuman Primates. Neuron 88:792–804. 667 

doi:10.1016/J.NEURON.2015.09.030 668 

Khodagholy D, Gelinas JN, Buzsáki G. 2017. Learning-enhanced coupling between 669 

ripple oscillations in association cortices and hippocampus. Science 358:369–670 

372. doi:10.1126/science.aan6203 671 

Khodagholy D, Gelinas JN, Buzsáki G. n.d. Learning-enhanced coupling between ripple 672 

oscillations in association cortices and hippocampus. 673 

Knutsen PM, Derdikman D, Ahissar E. 2004. Tracking Whisker and Head Movements 674 

in Unrestrained Behaving Rodents. J Neurophysiol 93:2294–2301. 675 

doi:10.1152/jn.00718.2004 676 

Komiyama T, Sato TR, O’Connor DH, Zhang Y-X, Huber D, Hooks BM, Gabitto M, 677 

Svoboda K. 2010. Learning-related fine-scale specificity imaged in motor cortex 678 

circuits of behaving mice. Nature 464:1182–1186. doi:10.1038/nature08897 679 

Lacefield CO, Pnevmatikakis EA, Paninski L, Bruno RM. 2019. Reinforcement Learning 680 

Recruits Somata and Apical Dendrites across Layers of Primary Sensory Cortex. 681 

Cell Rep 26:2000-2008.e2. doi:10.1016/j.celrep.2019.01.093 682 

le Merre P, Esmaeili V, Charrière E, Galan K, Salin PA, Petersen CCH, Crochet S. 2018. 683 

Reward-Based Learning Drives Rapid Sensory Signals in Medial Prefrontal Cortex 684 

and Dorsal Hippocampus Necessary for Goal-Directed Behavior. Neuron 97:83–685 

91.e5. doi:10.1016/j.neuron.2017.11.031 686 

Li W, Piëch V, Gilbert CD. 2008. Learning to link visual contours. Neuron 57:442–451. 687 

doi:10.1016/j.neuron.2007.12.011 688 

Lyamzin D, Benucci A. 2019. The mouse posterior parietal cortex: Anatomy and 689 

functions. Neurosci Res 140:14–22. doi:10.1016/j.neures.2018.10.008 690 

Marcos AS, Harvey CD. 2016. History-dependent variability in population dynamics 691 

during evidence accumulation in cortex. Nat Neurosci 19:1672–1680. 692 

doi:10.1038/nn.4403 693 

Mohan H, An X, Kondo H, Zhao S, Matho KS, Musall S, Mitra P, Huang ZJ. 2022. 694 

Cortical glutamatergic projection neuron types contribute to distinct functional 695 

subnetworks. bioRxiv 2021.12.30.474537. doi:10.1101/2021.12.30.474537 696 

Morcos AS, Harvey CD. 2016. History-dependent variability in population dynamics 697 

during evidence accumulation in cortex 19. doi:10.1038/nn.4403 698 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 1, 2022. ; https://doi.org/10.1101/2022.11.01.514667doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.01.514667
http://creativecommons.org/licenses/by/4.0/


30 
 

Musall S, Sun XR, Mohan H, An X, Gluf S, Drewes R, Osten P, Churchland AK. n.d. 699 

Pyramidal cell types drive functionally distinct cortical activity patterns during 700 

decision-making. doi:10.1101/2021.09.27.461599 701 

Oh SW, Harris JA, Ng L, Winslow B, Cain N, Mihalas S, Wang Q, Lau C, Kuan L, Henry 702 

AM, Mortrud MT, Ouellette B, Nguyen TN, Sorensen SA, Slaughterbeck CR, 703 

Wakeman W, Li Y, Feng D, Ho A, Nicholas E, Hirokawa KE, Bohn P, Joines KM, 704 

Peng H, Hawrylycz MJ, Phillips JW, Hohmann JG, Wohnoutka P, Gerfen CR, Koch 705 

C, Bernard A, Dang C, Jones AR, Zeng H. 2014. A mesoscale connectome of the 706 

mouse brain. Nature 508:207–214. doi:10.1038/nature13186 707 

Pasupathy A, Miller EK. 2005. Different time courses of learning-related activity in the 708 

prefrontal cortex and striatum 1138:873–876. 709 

Petreanu L, Gutnisky DA, Huber D, Xu NL, Oconnor DH, Tian L, Looger L, Svoboda K. 710 

2012. Activity in motor–sensory projections reveals distributed coding in 711 

somatosensation. Nature 2012 489:7415 489:299–303. 712 

doi:10.1038/nature11321 713 

Pfeffer CK, Xue M, He M, Huang ZJ, Scanziani M. 2013. Inhibition of inhibition in visual 714 

cortex: The logic of connections between molecularly distinct interneurons. Nat 715 

Neurosci 16:1068–1076. doi:10.1038/nn.3446 716 

Pho GN, Goard MJ, Woodson J, Crawford B, Sur M. 2018. Task-dependent 717 

representations of stimulus and choice in mouse parietal cortex. Nat Commun 9. 718 

doi:10.1038/s41467-018-05012-y 719 

Poort J, Khan AG, Pachitariu M, Nemri A, Orsolic I, Krupic J, Bauza M, Sahani M, Keller 720 

GB, Mrsic-Flogel TD, Hofer SB. 2015. Learning Enhances Sensory and Multiple 721 

Non-sensory Representations in Primary Visual Cortex. Neuron 86:1478–1490. 722 

doi:10.1016/j.neuron.2015.05.037 723 

Rodgers CC, Nogueira R, Pil BC, Greeman EA, Park JM, Hong YK, Fusi S, Bruno RM. 724 

2021. Sensorimotor strategies and neuronal representations for shape 725 

discrimination. Neuron 109:2308-2325.e10. doi:10.1016/j.neuron.2021.05.019 726 

Roelfsema PR, Holtmaat A. 2018. Control of synaptic plasticity in deep cortical 727 

networks. Nat Rev Neurosci. doi:10.1038/nrn.2018.6 728 

Safaai H, von Heimendahl M, Sorando JM, Diamond ME, Maravall M. 2013. 729 

Coordinated Population Activity Underlying Texture Discrimination in Rat Barrel 730 

Cortex. Journal of Neuroscience 33:5843–5855. doi:10.1523/JNEUROSCI.3486-731 

12.2013 732 

Save E, Poucet B. 2009. Role of the parietal cortex in long-term representation of 733 

spatial information in the rat. Neurobiol Learn Mem 91:172–178. 734 

doi:10.1016/j.nlm.2008.08.005 735 

Scott Benjamin B, Constantinople CM, Akrami A, Hanks TD, Brody CD, Tank DW. 2017. 736 

Fronto-parietal Cortical Circuits Encode Accumulated Evidence with a Diversity 737 

of Timescales. Neuron 95:385–398.e5. doi:10.1016/j.neuron.2017.06.013 738 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 1, 2022. ; https://doi.org/10.1101/2022.11.01.514667doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.01.514667
http://creativecommons.org/licenses/by/4.0/


31 
 

Scott Benjamin B., Constantinople CM, Akrami A, Hanks TD, Brody CD, Tank DW. 739 

2017. Fronto-parietal Cortical Circuits Encode Accumulated Evidence with a 740 

Diversity of Timescales. Neuron 95:385-398.e5. 741 

doi:10.1016/J.NEURON.2017.06.013 742 

Silasi G, Xiao D, Vanni MP, Chen ACN, Murphy TH. 2016. Intact skull chronic windows 743 

for mesoscopic wide-field imaging in awake mice. J Neurosci Methods 267:141–744 

149. doi:10.1016/j.jneumeth.2016.04.012 745 

Sul JH, Kim H, Huh N, Lee D, Jung MW. 2010. Distinct Roles of Rodent Orbitofrontal 746 

and Medial Prefrontal Cortex in Decision Making. Neuron 66:449–460. 747 

doi:10.1016/J.NEURON.2010.03.033 748 

Suzuki A, Kosugi S, Murayama E, Sasakawa E, Ohkawa N, Konno A, Hirai H, Inokuchi K. 749 

2022. A cortical cell ensemble in the posterior parietal cortex controls past 750 

experience-dependent memory updating. Nat Commun 13. 751 

doi:10.1038/s41467-021-27763-x 752 

Tsutsui KI, Grabenhorst F, Kobayashi S, Schultz W. 2016. A dynamic code for 753 

economic object valuation in prefrontal cortex neurons. Nature 754 

Communications 2016 7:1 7:1–16. doi:10.1038/ncomms12554 755 

Vann SD, Aggleton JP, Maguire EA. 2009. What does the retrosplenial cortex do? Nat 756 

Rev Neurosci 10:792–802. doi:10.1038/nrn2733 757 

Vanni MP, Murphy TH. 2014. Mesoscale Transcranial Spontaneous Activity Mapping 758 

in GCaMP3 Transgenic Mice Reveals Extensive Reciprocal Connections between 759 

Areas of Somatomotor Cortex. Journal of Neuroscience 34:15931–15946. 760 

doi:10.1523/JNEUROSCI.1818-14.2014 761 

Vecchia D, Beltramo R, Vallone F, Chéreau R, Forli A, Molano-Mazón M, Bawa T, 762 

Binini N, Moretti C, Holtmaat A, Panzeri S, Fellin T. 2020. Temporal Sharpening 763 

of Sensory Responses by Layer V in the Mouse Primary Somatosensory Cortex. 764 

Current Biology 30:1589-1599.e10. doi:10.1016/j.cub.2020.02.004 765 

Whitlock JR, Sutherland RJ, Witter MP, Moser M-B, Moser EI. 2008. Navigating from 766 

hippocampus to parietal cortex. 767 

Wiest MC, Thomson E, Pantoja J, Nicolelis MAL. 2010. Changes in S1 Neural 768 

Responses During Tactile Discrimination Learning. J Neurophysiol 104:300–312. 769 

doi:10.1152/jn.00194.2010 770 

Williams LE, Holtmaat A. 2019. Higher-Order Thalamocortical Inputs Gate Synaptic 771 

Long-Term Potentiation via Disinhibition. Neuron 101:91–102.e4. 772 

doi:10.1016/j.neuron.2018.10.049 773 

Xu J, Harvey N, Saito T, Fukai A, Mabuchi A, Ikeda T, Yano F, Ohba S, Nishida N, Akune 774 

T, Yoshimura N, Nakagawa T, Nakamura K, Tokunaga K, Chung U-I, Kawaguchi H, 775 

Makino H, Komiyama T. 2014. Learning enhances the relative impact of top-776 

down processing in the visual cortex. Cognition 2015:173–180. 777 

doi:10.1038/nn.4061 778 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 1, 2022. ; https://doi.org/10.1101/2022.11.01.514667doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.01.514667
http://creativecommons.org/licenses/by/4.0/


32 
 

Yan Y, Rasch MJ, Chen M, Xiang X, Huang M, Wu S, Li W. 2014. Perceptual training 779 

continuously refines neuronal population codes in primary visual cortex. Nat 780 

Neurosci 17:1380–1387. doi:10.1038/nn.3805 781 

Zuo Y, Diamond ME. 2019. Texture Identification by Bounded Integration of Sensory 782 

Cortical Signals. Current Biology 29:1425-1435.e5. 783 

doi:10.1016/j.cub.2019.03.017 784 

  785 

  786 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 1, 2022. ; https://doi.org/10.1101/2022.11.01.514667doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.01.514667
http://creativecommons.org/licenses/by/4.0/


33 
 

Supplemental information: 787 

 788 

 789 
Figure s1. Learning curves of all 7 mice.  790 
Performance (d') for all mice across the entire learning period is calculated for every 791 
50 trails, fitted with a sigmoid function. The inflection point of the sigmoid fit is 792 
defined as the learning threshold and indicated by open circle for each mouse.  793 

 794 

 795 

Figure s2. Time course of each mouse in the naïve, learning and expert phase for hit 796 

trials classified by preceding trial. 797 

 Vertical dashed line denote texture stop. Shadows are mean±SEM across trials  798 

 799 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 1, 2022. ; https://doi.org/10.1101/2022.11.01.514667doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.01.514667
http://creativecommons.org/licenses/by/4.0/


34 
 

 800 

 801 

 802 

Figure s3. Correct rejection trials have the strongest history effect. 803 

Grand average of BC activity of all history combinations in the learning phase during 804 

the stim period (-0.2–0.6ms). Boxes indicate quartiles at 25/75th percentile across mice 805 

(n=7). *p < 0.05; n.s. not significant; Wilcoxon signed-rank test. 806 

 807 

 808 

 809 

Figure s4. RL activity at pre-stim period (-1– -0.6) across learning. 810 

*p < 0.05; n.s. not percentile across mice (n=7).  thBoxes indicate quartiles at 25/75 811 

significant; Wilcoxon signed-rank test. 812 
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