ABSTRACT
Once perceived to be homogenous effector cells, neutrophils have since been shown to exhibit population heterogeneity. Here, we established an experimental model of clonal neutrophil heterogeneity using conditionally immortalized clonal granulocyte monocyte progenitors (GMPs) and their mature neutrophil progeny. Transcriptional and epigenetic profiling showed conserved genome-wide signatures of transcription and chromatin accessibility that were specific to individual GMP clones and their paired neutrophil progeny, suggesting that clone specificity is established as early as the GMP stage. Clone-specific genes in vital regulatory pathways were pre-programmed and exhibited delayed expression in the mature neutrophil stage. The clone-specific gene expression in the mature neutrophils paired to enhancer activation in their parental GMPs. To determine whether transcriptional heterogeneity predicted the response to fungal pathogens, neutrophil clones were functionally profiled. Clones demonstrated heterogeneous responses to fungal pathogens in vitro and revealed neutrophil subsets with evidence for tailored functional responses to Candida spp. as well as specific transcriptional and epigenetic patterns that may explain these differences. Together, this work establishes that heterogenous GMP and neutrophil compartments exist under homeostatic conditions and that these represent predefined clusters that are uniquely adapted to control invasive fungal pathogens.
Short Summary Clonal neutrophil progenitors demonstrate heterogeneity in transcription and chromatin accessibility which may inform response to later fungal challenges.
Competing Interest Statement
The authors have declared no competing interest.
Footnotes
↵10 Lead contact