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 2 

Abstract 24 

De novo gene birth—the evolution of new protein-coding genes from ancestrally noncoding 25 

DNA—is increasingly appreciated as an important source of genetic and phenotypic innovation. 26 

However, the frequency and overall biological impact of de novo genes (DNGs) remain 27 

controversial. Large-scale surveys of de novo genes are critical to address these issues, but DNG 28 

identification represents a persistent challenge due to the lack of standardized protocols and the 29 

laborious analyses traditionally used to detect DNGs. Here, we introduced novel approaches to 30 

identify de novo genes that rely on Machine Learning Algorithms (MLAs) and are poised to 31 

accelerate DNG discovery. We specifically investigated if MLAs developed in one species using 32 

known DNGs can accurately predict de novo genes in other genomes. To maximize the 33 

applicability of these methods across species, we relied only on DNA and protein sequence 34 

features that can be easily obtained from annotation data. Using hundreds of published and 35 

newly annotated DNGs from three angiosperms, we trained and tested both Decision Tree (DT) 36 

and Neural Network (NN) algorithms. Both MLAs showed high levels of accuracy and recall 37 

within-genomes. Although accuracies and recall decreased in cross-species analyses, they 38 

remained elevated between evolutionary closely related species. A few training features, 39 

including presence of a protein domain and coding probability, held most of the MLAs 40 

predictive power. In analyses of all genes from a genome, recall was still elevated. Although 41 

false positive rates were relatively high, MLA screenings of whole-genome datasets reduced by 42 

up to ten-fold the number of genes to be examined by conventional comparative genomic 43 

methods. Thus, a combination of MLAs and traditional strategies can significantly accelerate the 44 

accurate discovery of DNG and the annotation in angiosperm genomes. 45 

 46 
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Introduction 47 

Novel genes are major drivers of adaptation and evolutionary innovation. A large body of work 48 

suggests that new protein-coding genes form at a high rate and represent major contributors to 49 

genome evolution and phenotypic variation in plants (1-8). As a result of this rapid evolutionary 50 

gene turnover, all species contain hundreds to thousands young, lineage-specific protein-coding 51 

sequences that are absent from other taxa (9-12). Both small-scale and whole-genome 52 

duplications are responsible for the formation of many novel genes, which tend to share the 53 

biological function of their parent genes (1, 3, 4). Occasionally, plants acquired novel genes 54 

throughout non-duplicative mechanisms, including horizontal DNA transfer from other species 55 

(13, 14) and via the “exaptation” of the coding regions of transposable elements (15-17). 56 

Although fundamentally different in nature, all these processes generate new protein-coding 57 

sequences from pre-existing genes. 58 

 59 

Evolutionary genomic analyses have revealed that new genes can also emerge from ancestrally 60 

noncoding DNA sequences wherein an open reading frame (ORF) and new regulatory sequences 61 

originate through ‘enabler substitutions’, typically nucleotide substitutions (18-20). Long 62 

considered unlikely evolutionary accidents (Jacob 1977), these so-called de novo genes 63 

(hereafter, DNGs) encode for evolutionary novel protein sequences that share no homology with 64 

genes from other species. Some DNGs have been shown to bear significant phenotypic impacts, 65 

from regulating the mating pathway in budding yeast (21, 22), to producing antifreeze proteins in 66 

some fish (23, 24) and affecting human health (25-27).  67 

 68 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 2, 2022. ; https://doi.org/10.1101/2022.11.01.514720doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.01.514720
http://creativecommons.org/licenses/by/4.0/


 4 

First unequivocally discovered in Drosophila (28, 29), de novo genes have been identified across 69 

several other groups of animals (23, 30-33) and are well characterized in some model organisms, 70 

particularly Saccharomyces cerevisiae (21, 34-38). In plants, thousands of potential DNGs have 71 

been retrieved through computational surveys in Arabidopsis thaliana, Brassica rapa, poplar, 72 

rice, sweet orange and Triticeae (8, 10-12, 39-47).  73 

 74 

Despite the growing number of species and genomes analyzed, the current understanding of de 75 

novo gene birth and evolution in plants remain severely limited for several reasons. For instance, 76 

the identification of DNGs has traditionally relied on comparative genomic strategies that can be 77 

computationally demanding, remain difficult to implement on a large scale, and tend to produce 78 

many false positives (48). DNG surveys typically include an initial step wherein all genes (or 79 

proteins) in a focal species are queried against genes from other species through sequence 80 

homology searches, for example using Blast algorithms (49). The pattern of presence/absence of 81 

homologous coding sequences of a given gene along a phylogeny of species allows to estimate 82 

its approximate time of origin, a procedure known as ‘phylostratigraphy’ (50). Genes that share 83 

no homology outside of a given genome according to the phylostratigraphic method should thus 84 

be considered species-specific (taxonomically restricted). However, there are significant caveats 85 

associated with phylostratigraphy.  86 

 87 

First, homology searches can only generate catalogs of all genes that lack homology, also known 88 

as ‘orphan genes’, of which DNGs represent only a subset. Rapidly evolving ancestral genes (51, 89 

52), genes derived from exapted transposable elements (11, 53), horizontally transferred genes 90 

(53) and genes with alternative coding frame (11, 53) also contribute to the pool of orphan genes. 91 
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Although some of these processes are thought to occur at much lower rates than de novo gene 92 

birth, the proportion of DNGs among orphan genes might be low (54, 55). Discriminating DNGs 93 

from other types of orphan genes requires accurate investigation of synteny conservation across 94 

species to identify the enabler substitutions that are uniquely associated with de novo gene birth. 95 

Substitutions that enable longer ORFs are especially useful but can be observed only by 96 

comparing the DNG coding region with the syntenic genomic regions from several other species 97 

(18, 19). While critical to the correct identification of DNGs, the search for enabler substitutions 98 

is rarely implemented. 99 

Second, it has been shown that homology searches can underestimate the age of some types of 100 

genes, i.e. rapidly evolving genes (56, 57), which can directly affect estimates of DNG rate of 101 

formation (48).  102 

Third, homology searches against large datasets require extensive computing resources. 103 

Although strategies exist to accelerate this analysis (58), a thorough search of the known 104 

sequence space remains challenging and is not reproducible over time, given that sequences 105 

databases are expanding exponentially.  106 

 107 

Additionally, a wide spectrum of strategies and bioinformatic protocols have been applied to the 108 

search of de novo genes in plants and in other organisms. The combination of these issues can 109 

produce significant discrepancies in estimates of DNGs even within the same species. For 110 

instance, the number of DNGs discovered in A. thaliana ranges from 364 (11) to 782 (41). The 111 

lack of standardized accurate approaches to assess the number of DNGs represents a major 112 

challenge to estimates the rate of de novo gene birth and is diminishing our ability to characterize 113 

the biological impact of DNG across plant species.  114 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 2, 2022. ; https://doi.org/10.1101/2022.11.01.514720doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.01.514720
http://creativecommons.org/licenses/by/4.0/


 6 

 115 

Machine learning algorithms (MLAs) offer a set of approaches with the potential to mitigate the 116 

limitations in DNG detection outlined above. MLAs have proven to be powerful methods for 117 

learning models from non-linear datasets in a variety of domains, including many applications in 118 

genomics and bioinformatics. In fact, MLAs have been developed to annotate genomic features 119 

that include protein-coding genes, RNA genes, enhancers, transcription start sites, splice sites 120 

and gene function (59-61). To the best of our knowledge, MLAs applied to the detection of de 121 

novo genes have not been developed yet. Interestingly, a few studies have explored the ability of 122 

MLAs to identify the broader category of orphan genes in plants (62, 63). A variety of MLAs 123 

trained and tested on 1,784 orphan genes from A. thaliana showed up to 92% accuracy and 95% 124 

sensitivity (62), whereas hybrid deep-learning algorithms applied to 1,544 moso bamboo 125 

(Phyllostachys edulis) orphan genes reached up to 87% balanced accuracy (63). These results 126 

suggest that MLAs can achieve high levels of accuracy for orphan gene prediction. However, as 127 

discussed above, DNGs represent only a fraction of orphan genes, and are evolutionarily distinct 128 

from other types of genes that lack homology across species. Thus, the ability of MLAs to 129 

accurately predict DNGs remains untested.  130 

 131 

One of the challenges in applying MLAs to learning classifiers for DNGs is the (typically) small 132 

number of positive examples compared to the size of the rest of the genome.  While current 133 

annotations of plant genomes usually contain tens of thousands of genes, only a few hundred 134 

genes can be confidently identified as de novo genes for training.  Some MLAs can be sensitive 135 

to this asymmetry, outputting models with low information content that appear accurate only 136 

because the majority of genes are ancestral genes (hereafter, AGs), while being very inaccurate 137 
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for DNGs.  There are various methods that have been proposed for handling this significant class 138 

imbalance (64).  We show that sub-sampling of AGs as negative examples can be effective in 139 

training accurate models for DNGs.  However, although the accuracy on balanced testing sets 140 

can be high, even a moderate false positive rate (FPR) can lead to many false positive predictions 141 

when the classifier is applied to tens-of-thousands of genes in a whole genome.  We show that 142 

the FPR can be reduced somewhat by adjusting the selection of examples during training, though 143 

at the cost of increasing the false negative rate (FNR).  However, false positives can also be 144 

removed through traditional comparative genomic analyses that allows to detect signatures of de 145 

novo gene birth, i.e. lack of homology in other species and presence of enabler substitutions. 146 

 147 

The ability to detect de novo genes through machine learning classifiers depends on the presence 148 

of features that show different distributions of values between DNGs and AGs, defined here as 149 

genes with no recent de novo origin. Studies across eukaryotes indicate that DNGs and AGs 150 

exhibit different distributions in multiple features associated with gene and protein sequences. 151 

For instance, DNGs tend to be shorter and with fewer exons than most AGs (8, 11, 35, 36). 152 

Proteins encoded by DNGs typically have fewer annotated domains and possess more 153 

structurally disordered regions than ancestral proteins in some eukaryotes (18, 20, 51, 65).  154 

 155 

Leveraging these observations, we sought to develop and test MLAs aimed at discriminating 156 

DNGs from ancestral genes using sequence-derived information. MLA were trained using DNA 157 

and protein sequence attributes from DNGs and AGs obtained from three plant species. The de 158 

novo gene catalogs consisted of 331 putative DNGs from Arabidopsis thaliana (41), 175 and 343 159 

DNGs from Oryza sativa (8) and 754 novel DNGs from Brassica rapa. These species represent 160 
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evolutionary lineages with different levels of divergence, as A. thaliana and B. rapa are 161 

relatively closely related species belonging to the Brassicaceae family within the dicotyledon 162 

(dicots) clade, whereas rice is a much more evolutionary distant species in the monocotyledon 163 

(monocots) clade. 164 

 165 

Our investigation had the following goals: (1) Assessing the accuracy and recall of different 166 

MLA approaches, including decision trees and neural networks, in discriminating DNGs and 167 

AGs; (2) Identifying DNA and protein features with high predictive power for detecting DNGs; 168 

(3) Assessing the accuracy and recall of MLAs based exclusively on sequence features compared 169 

to those incorporating both sequence features and functional genomic data (gene expression 170 

levels, translation level, protein-protein interactions, etc.); (4) Determining the predictive ability 171 

of MLAs built on data from one species across other taxa; (5) Determining the predictive ability 172 

of MLA approaches in detecting DNGs using whole-genome sequence data that include all genes 173 

in a species/accession. 174 

 175 

 176 

Results and Discussion 177 

 178 

A set of high confidence A. thaliana-specific DNGs 179 

A dataset 782 of putative A. thaliana-specific DNGs was recently generated by Li et al. (41). 180 

These genes were identified using sequence homology searches on a limited set of databases and 181 

without validating the de novo status of each gene through synteny conservation with closely 182 

related species. To produce a set of high confidence DNGs from the Li et al. (2016) catalogue, 183 
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we conducted additional homology searches and retained only genes that passed a series of 184 

stringent criteria, including conserved synteny with other Brassicaceae and lack of homology 185 

with genomes and transcriptomes deposited on NCBI, as described in Methods. This approach 186 

follows a robust computational framework developed to identify DNGs (58). A total of 298 187 

putative DNGs were excluded as they shared homology with genes in other species (S1 Table), 188 

leaving 331 high confidence A. thaliana-specific DNGs, similarly to the number of DNGs 189 

reported by Donoghue et al. (11); however, we could not directly compare our list of DNGs to 190 

those identified in this paper, as de novo gene IDs were not provided by Donoghue et al. (11). 191 

The remaining 153 putative A. thaliana DNGs shared no conserved synteny with other species 192 

and were removed from the catalog as the de novo birth pathway could not be determined.   193 

 194 

Identification of high confidence DNGs in Brassica 195 

We first analyzed all available Brassica genome assemblies to determine gene annotation 196 

completeness. Most assemblies showed a high level of completeness according to BUSCO 197 

scores (S3 Table). We selected B. rapa as the primary focal species for a de novo gene survey 198 

due to its agricultural importance and due to the extensive genomic and functional data available 199 

for this species (66-71). As the main focal genome to identify de novo genes, we selected the 200 

recently improved B. rapa v3.0 genome assembly from the Chiifu-401-42 genotype (71),  which 201 

contained 46,248 protein coding annotated genes and showed a slightly higher annotation 202 

completeness than other available assemblies. We performed extensive sequence similarity 203 

searches to identify putative Brassica-specific genes (see Methods) and identified 754 candidate 204 

B. rapa DNGs.  205 

 206 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 2, 2022. ; https://doi.org/10.1101/2022.11.01.514720doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.01.514720
http://creativecommons.org/licenses/by/4.0/


 10 

Sequence and structural features of de novo genes, ancestral genes and their proteins 207 

On average, de novo gene and protein sequences are known to diverge from ancestral genes in 208 

several features. To determine if these qualities can be used to discriminate between DNGs and 209 

AGs, we compiled 22 sequence features from the 331 DNGs from A. thaliana, the 754 DNGs 210 

from B. rapa, and the recently published catalogs of 175 and 343 DNGs from rice, Oryza sativa 211 

(8) (S1-3 Datasets). These sequence features are straightforward to calculate for any annotated 212 

genome, and do not require any additional data collection (such as gene expression by RNAseq 213 

or ribosome profiling). The rice DNGs were obtained integrating sequence homology searches 214 

with synteny analyses and were therefore considered well-curated datasets comparable to those 215 

of A. thaliana and B. rapa. To the best of our knowledge, these datasets represent the largest 216 

comparative catalog of plant de novo genes to date. The same features were also retrieved by all 217 

AGs in these three species (Table 1). 218 

 219 

 220 

Table 1. Primary sequence features and mean values of de novo and ancestral genes and 221 

proteins. 222 

  
AT 

DNGs 
AT 
AGs 

BR 
DNGs 

BR 
AGs 

OS 
DNGs-1 

OS 
DNGs-2 

OS 
AGs 

# Genes 331 26,423 754 34,354 175 343 38,405 
Gene length (bp) 376 2,269 630 1,988 4,612 3,788 3,729 
CDS length (bp) 218 1,251 350 1,169 418 365 1157 
CDS #exons 1.4 5.3 1.9 5.4 3.0 2.7 4.7 
GC-content 43 44 49 47 58 58 58 
SSRs in CDS (bp) 22 18 16 11 16 10 16 
%SSRs in CDS 4.1 1.3 4.2 0.9 2.8 1.9 1.8 
Gene overlap 0.0 0.1 0.5 0.1 13.1 8.7 7.9 
CAI 0.76 0.77 0.77 0.79 0.79 0.79 0.81 
%Coding 31 98 39 92 44 38 84 
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Coding probability 0.20 0.93 0.49 0.91 0.50 0.43 0.85 
Protein domains 0.02 0.85 0.02 1.15 0 0.01 0.95 
%ISD 0.28 0.31 0.33 0.30 0.46 0.44 0.34 
pI 8.7 7.5 8.6 7.5 9.7 9.6 8.0 
#TM helices 0.15 0.78 0.09 0.60 0.06 0.05 0.51 
%w/TM helices 13 25 7 15 5 4 14 
%w/SP 15 15 7 11 5 5 12 
%w/mTP 5 4 3 3 1 1 2 
%w/cTP 1 6 2 5 2 2 5 
%w/luTP 0 0.5 0 0 0 0 0 
%w/NoTP 78 74 88 80 92 92 81 
Kozak score -5.44 -4.99 -5.40 -5.06 -5.15 -5.37 -4.93 

AT: A. thaliana. 223 
BR: B. rapa. 224 
OS: O. sativa. 225 
CDS: coding sequence. 226 
SSRs: simple sequence repeats (microsatellites). 227 
CAI: codon adaptation index. 228 
Coding probability according to CPC2 (72). 229 
%Coding: proportion of genes predicted by CPC2 to be coding. 230 
%ISD: proportion of protein sequence with intrinsic structural disorder. 231 
pI: Isoelectric point.  232 
#TM helices: average of transmembrane helices per gene. 233 
%w/TM helices: proportion of genes with transmembrane helices. 234 
%w/SP: proportion of genes with signal peptide. 235 
%w/mTP: proportion of genes with Mitochondrial transit peptide. 236 
%w/cTP: proportion of genes with Chloroplast transit peptide. 237 
%w/luTP: proportion of genes with Luminal transit peptide.  238 
%w/NoTP: proportion of genes with No-targeting peptide. 239 
 240 

 241 

Along the lines of previous studies (8, 41), all DNGs components tend to be shorter (except for 242 

introns in the O. sativa DNG sets), especially at the level of the coding region, and contain fewer 243 

exons compared to AGs (Table 1; S2A-C Fig). The GC-content varied more significantly across 244 

species than between DNGs and AGs (Table 1; S2D Fig). Interestingly, the GC-content 245 

distribution peaks at higher values for AGs in A. thaliana and for DNGs in B. rapa (S2D Fig). In 246 

rice, the GC-content distribution is bimodal in AG, as previously described (73), with DNG GC 247 

values peaking in between (S2D Fig). This pattern in the rice genome is mirrored at the level of 248 
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the codon adaptation index (S2G Fig). Additionally, DNG coding regions contain a higher 249 

proportion of DNA derived from microsatellites identified by Tandem Repeat Finder. 250 

Interestingly, the microsatellite content is lower in the large rice DNG dataset, which includes 251 

older DNGs, suggesting that simple repeat content may decrease with time due to substitutions. 252 

As expected, the predicted coding potential of DNGs is much lower than in AGs, with much 253 

fewer DNGs being labeled ‘coding’ according to the coding potential calculator 2. In agreement 254 

with this, the coding adaptation index of DNGs is on average significantly lower than in AGs 255 

(Table 1; S2E-G Fig). Furthermore, Kozak scores were lower in DNGs compared to AGs, 256 

although their distributions largely overlapped between the two types of genes (Table 1; S2H 257 

Fig). 258 

 259 

Protein features included the presence of conserved domains, predicted proportion of intrinsic 260 

structural disorder (ISD) residues, isoelectric point, predicted number of transmembrane helices 261 

and subcellular localization peptides (Table 1; S2I-K Fig). As expected, given the small size of 262 

de novo proteins and their recent origin, very few of them contained conserved domains. 263 

Similarly, we found a much lower number of transmembrane motifs (TMs) and genes with TMs 264 

in de novo proteins than ancestral proteins. This is in contrast with the observation that S. 265 

cerevisiae de novo ORFs with adaptive potential are enriched for TM domains (74).  266 

 267 

Across all species, DNG proteins showed consistently higher isoelectric point (pI), indicating a 268 

higher proportion of basic residues, and very few transmembrane domains compared to AG 269 

proteins (Table 1). Elevated pIs due to a depletion of acid residues have been also found in 270 

mammalian orphan proteins (75) and in S. cerevisiae-specific translated ORFs (37), but no 271 
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explanations for these trends have been put forward. We also found that the distribution of pI 272 

values is very different between proteins encoded by DNGs and AGs. While in AG proteins the 273 

pI values follow an approximate trimodal distribution, isoelectric points in DNG proteins cluster 274 

around two peaks around low (~4) and high (~11) values (S2I Fig).  275 

 276 

Additionally, we observed higher ISD levels in DNGs than AGs only in B. rapa and rice (Table 277 

1; S2K Fig). This is in agreement with what observed in Drosophila melanogaster DNGs (76) 278 

and in orphan genes in D. melanogaster (77) and Leishmania (78). A similar trend was also 279 

reported in rodents young genes (65), although follow up studies suggest that this pattern is 280 

likely to be an artifact (51, 79). Some authors have shown that high ISD levels are associated 281 

with elevated GC content in orphan genes or young genes (80), possibly a result of some young 282 

genes overlapping with ancestral genes (51). It is unclear if the modest difference in GC content 283 

between DNGs and AGs in B. rapa and rice drives their elevated ISD levels.  284 

 285 

Overall, DNG proteins also contained fewer localization peptides compared to AG proteins, with 286 

the notable exception in A. thaliana of both a higher proportion of mitochondrial transit peptides 287 

in DNGs vs. AGs, and a comparable number of DNG and AG proteins with a signal peptide 288 

(Table 1). 289 

 290 

We further investigated possible correlation among features in each species (Fig 1). As expected, 291 

gene length, CDS length and CDS #exons (the number of coding exons) were positively 292 

correlated. Similarly, the coding probability and the presence of protein domains increased with 293 

gene length and CDS length and, to a smaller extent, with CDS #exons. Longer coding regions 294 
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are more likely to be predicted as coding by the coding potential calculator (72). Longer genes 295 

are also more likely to encode protein domains. In agreement with previous studies (51, 80), we 296 

found that GC-content and ISD were positively correlated. Another expected pattern is the 297 

negative correlation between ISD and the presence of transmembrane helices, which cannot form 298 

in disordered protein regions. The anticorrelation between GC-content and codon adaption index 299 

may be due to the paucity of GC-rich codons among the most-used codons in angiosperms. 300 

Similar correlations were observed in B. rapa and rice (S3 Fig). 301 

 302 

 303 

 304 

 305 

 306 

 307 

 308 

 309 

 310 

 311 

Fig 1. Correlation matrix of A. thaliana sequence features used to train ML classifiers. Feature 312 

names follow the nomenclature of Table 1. 313 

 314 

 315 

 316 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 2, 2022. ; https://doi.org/10.1101/2022.11.01.514720doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.01.514720
http://creativecommons.org/licenses/by/4.0/


 15 

Both Decision Tree and Neural Network classifiers detect the majority of de novo genes in 317 

test gene sets 318 

As a preliminary attempt to develop a predictive model for DNGs, we trained both a Decision 319 

Tree (DT) classifier and a Neural Network (NN) classifier on the A. thaliana gene datasets.  The 320 

set of positive examples was formed by the 331 DNGs we identified in this species.  Because 321 

using all 26,423 AGs as negative examples led to degenerate tree where every gene was 322 

classified as negative due to class imbalance (64), the AGs were sub-sampled (81) by choosing 323 

an equal number of 331 genes at random for the negative examples.  The NN classifier consisted 324 

of a fully-connected network with a hidden layer of 20 units (see Methods).  We also evaluated 325 

the effect of a different number of hidden units (from 10 to 100 in intervals of 10 units) and 2 326 

hidden layers, but these did not significantly improve the accuracy of the NN.  When the 662 327 

selected examples were divided randomly into 70% for training and 30% for testing, the DT and 328 

NN models were found to have 91-92.0% accuracy in predicting DNGs in the test set.  Thus, 329 

even though Decision Trees and Neural Networks represent completely different methods for 330 

capturing patterns in training data, they are both able to learn how to discriminate DNGs from 331 

AGs using sequenced-based features. The confusion matrix for the 100 genes from the 30% test 332 

sets shows that the errors are evenly distributed between false positives and false negatives, with 333 

recall values above 90% (Table 2). 334 

 335 

 336 

 337 

 338 
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Table 2. Confusion matrix of DT and NN classifiers, trained on A. thaliana genes, applied 339 

to an independent balanced test set.  Values represent counts of test examples. 340 

  predicted class labels  
 DNG AG Recall 

DT classifier actual class labels DNG 91 9 91% 
AG 7 93  

NN classifier actual class labels DNG 92 8 92% 
AG 8 92  

 341 

 342 

 343 

In order to determine a more general estimate of the predictive accuracy (since the single tree 344 

above is dependent on the specific AGs chosen as negative examples), 10-fold cross-validation 345 

was carried out (where a decision tree was generated based on 90% of the data and tested on the 346 

remaining 10%, repeated 10 times in a rotated manner), which resulted in a performance estimate 347 

of 89.7%, with a 95%-confidence interval (CI95) of 87.3-92.1% (Table 3). The same protocol 348 

was used to train classifiers on species-specific sequence features retrieved in DNGs and AGs of 349 

B. rapa and O. sativa (using the larger dataset of 343 de novo genes in the latter, see Table 1). In 350 

all species, NN models performed slightly better than DT models, significantly so in A. thaliana 351 

and B. rapa but not in rice (Table 3). DT and NN classifiers showed significantly lower 352 

accuracies in B. rapa and O. sativa compared to A. thaliana (Table 3; DT A. thaliana-B. rapa 353 

P=0.0038; DT B. rapa-O. sativa P=0.0003; NN A. thaliana-B. rapa P=0.0005; NN B. rapa-O. 354 

sativa P=0.0001, unpaired T-test). Overall, these results indicate that MLAs trained on species-355 

specific datasets can successfully retrieve the vast majority of DNGs. Confusion matrices for 356 

both classifiers indicate that NN models achieve substantially higher recall than DT models in all 357 
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species (S4 Table). Recall is comparably high (~92%) in NN models of Brassicaceae, but 358 

decreased to ~83% in rice, where DT models achieved only ~76% of recall (S4 Table).  359 

 360 

Table 3. Accuracy of DT and NN classifiers in the three angiosperms.  361 

Species Decision Tree balanced 
accuracy† (95% C.I.) 

Neural Network balanced 
accuracy† (95%C.I.) 

A. thaliana 89.7% (87.3-92.1%) 93.2% (91.5-94.8)* 
B. rapa 85.1% (84.3-86.0%) 88.9% (88.1-89.8)* 
O. sativa 76.5% (73.1-80.0%) 80.2% (77.0-83.3) 

†Averaged over 10-fold cross-validation 362 
*NN model vs. DT model within species, P-value<0.05, unpaired T-test 363 
 364 

 365 

The variation in accuracy and recall across species may be due to several factors. A higher 366 

quality of gene annotation in A. thaliana may explain the increased accuracy of MLAs in this 367 

species. The lower accuracy in rice could in part depend on the slightly older age of the larger 368 

dataset of 343 DNGs used for this species (8), as DNGs should acquire features that are more of 369 

typical genes through time (35). Differences in age of DNGs could also explain the significant 370 

overlap in the distribution of continuous features between DNGs and AGs (S2 Fig). We also 371 

observed that some features show a varying degree of predictive importance between 372 

Brassicaceae and rice, which could further contribute to differences in accuracy (see below). 373 

 374 

 375 

Training DT classifiers with functional genomic features 376 

We evaluated whether adding functional genomic data could improve the accuracy of the 377 

decision tree classifier using datasets available for A. thaliana.  The classifier was re-trained 378 

using 28 additional features which are not systematically available in all genomes, including 379 
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transcription data (RNAseq), translation levels estimated through Ribosomal profiling 380 

(RiboSeq), proximity to transposable elements, selective constraint, and phenotype data for gene 381 

knockout mutants (S5 Table).  The 10-fold cross-validated accuracy of models extended with 382 

these functional features was 91.4%, (89.7-93.1%), which is not significantly greater than 383 

models without these functional features (P>0.05, unpaired T-test).   Some of the functional 384 

features were occasionally used as decision criteria in lower branches of some of the decision 385 

trees; the functional feature with highest importance (0.04) was “AVG RiboP RPKM 25 386 

samples”, which suggests that lack of expression evidence can be an important discriminator for 387 

DNGs.  388 

 389 

 390 

Feature Importance in Decision Trees 391 

To better assess the contribution of each feature to DT classifiers in the three species, we 392 

calculated feature importances, which are based on the relative contribution of each feature to 393 

splitting the data in the tree and range between 0 and 1 (see Methods and Fig 2). Feature 394 

importances averaged over 10 runs for each species are shown in S6 Table. The DT classifier 395 

developed in A. thaliana consisted of 70 nodes (including 24 leaves) with a depth of 11.  The 396 

attribute tested for splitting at the root of the tree, considered the most important based on 397 

reduction of Gini impurity, was “Protein domains”.  This turns out to be a highly discriminating 398 

feature: most AGs (22458/26423=85.0%) have at least one domain (recognized as a known fold 399 

family by Pfam based on amino acid sequence), whereas most DNGs do not (only 7/331=2.1% 400 

had a recognized domain) (Fig 2).   401 

 402 
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  403 

Fig 2. Top ten features in the DT classifier ranked by importance.  404 

 405 

 406 

Overall, the top ten features by importance are largely the same across all species. “Protein 407 

domains” is the most prominent feature across species (Fig 2; S6 Table). Several other top 408 

features that are known to be significantly different between DNGs and AGs, including “Coding 409 

probability”, “Gene length”, “CDS length”, “Codon adaptation index (CAI)”, “%GC” and the 410 

proportion of “intrinsic structurally disordered (ISD)” regions in proteins, show high importance. 411 

Although the presence of a conserved Kozak motif has not been investigated before in DNGs, 412 

the “Kozak score” feature showed a relatively high importance, in agreement with other findings 413 

suggesting that de novo genes might acquire more ‘gene-like’ regulatory sequences by natural 414 

selection after their emergence (31).  415 

 416 
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Furthermore, some features exhibited substantially higher importance in rice than Brassicaceae. 417 

For instance, “Codon adaptation index (CAI)” represents the second most important feature in 418 

rice while ranking sixth and eight in A. thaliana and B. rapa, respectively (Fig 2; S6 Table). 419 

This is interesting as CAI is only slightly higher in AGs than DNGs in rice (Table 1; S2G Fig). 420 

“Gene length”, “CDS length”, “Kozak score” are also more prominent features in the monocot.  421 

 422 

Interestingly, the top 2 features alone in A. thaliana (“Coding probability” and “Protein 423 

domains”) can be used to construct decision trees with nearly equivalent accuracy of the ones 424 

trained on all features.  For example, in A. thaliana, the balanced accuracy with such trees 425 

(averaged over 10-fold CV) is 91.4% (95%CI: 89.1-93.7%). The decision trees still have 426 

multiple nodes in them, typically around 30; they just include splits on multiple threshold values 427 

(i.e. sub-ranges) of “Coding probability”.  The average feature importances are 0.407 for 428 

“Coding probability” and 0.392 for “Protein domains”.  In fact, the neural network performs 429 

even better, probably due to the reduction in parameters (weights in the network) with just two 430 

inputs: 94.0% (95%CI: 92.2-95.7%). Further analyses will be necessary to determine if this 431 

applies to other plant genomes. 432 

 433 

 434 

Accuracy is not limited by small training set size 435 

The size of the training dataset can affect accuracy in MLA predictions. We tested if this is the 436 

case for the DT classifiers using randomly selected subsets of A. thaliana de novo genes and 437 

ancestral genes equal to 10-100% of the original training set of 464 genes. This was repeated 30 438 

times for each set size to obtain a DT classifier learning curve. The testing dataset for each 439 
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analysis was carried out on a group of DNGs that did not overlap with the training set. 440 

Additionally, during training and testing, the number of negative examples (AGs) was always 441 

balanced with an equal number of positive examples.  We found that the accuracy of the DT 442 

remains elevated (>85%) even for training with one-tenth of the full training-set size of 464 443 

genes and is nearly equal to the highest accuracy with only 30% of the full training size, 444 

corresponding to 138 genes (Fig 3). The observed trend also suggests that the accuracy would 445 

not be significantly improved by using a larger training set with more known DNGs.  446 

 447 

 448 

 449 

Fig 3. Learning curve of the A. thaliana DT classifier on 10-100% of the original training 450 

dataset. Standard errors are shown. 451 

 452 

 453 

 454 
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Cross-species models for de novo gene prediction are nearly as accurate as species-specific 455 

models 456 

An important question is whether the patterns extracted by the MLAs for discriminating DNGs 457 

are species-specific, or whether the MLAs are capturing general properties of DNGs that extend 458 

across multiple plant species.  To assess this, we trained a DT and NN classifiers using data on 459 

genes from A. thaliana, and then applied these models to the B. rapa and O. sativa datasets.  In 460 

10-fold cross-validation analyses, the A. thaliana DT model achieved 83.1% and 67.2% accuracy 461 

in B. rapa and rice, respectively (Table 4). The A. thaliana NN model reached slightly higher 462 

accuracy in both species (Table 4). Overall, species-specific models (Table 3) achieved 463 

significantly higher accuracy than cross-species models (P-value<0.05, unpaired T-test), except 464 

for the A. thaliana DT model applied to B. rapa datasets (P-value=0.0855, unpaired T-test). 465 

Taken together, these results indicate that models trained on the A. thaliana genome, which has 466 

been more carefully and thoroughly annotated, can be applied with nearly equal accuracy on B. 467 

rapa, and does not require an MLA to be re-trained on each new gene set. Conversely, A. 468 

thaliana classifiers achieved substantially lower accuracies in O. sativa compared to the rice-469 

specific models. It appears that the features associated with DNGs in A. thaliana, such as coding 470 

probability, lacking recognizable protein domains, and having lower Kozak score, generalize 471 

across species, and are associated with DNGs in other plant genomes. 472 

 473 

 474 

 475 

 476 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 2, 2022. ; https://doi.org/10.1101/2022.11.01.514720doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.01.514720
http://creativecommons.org/licenses/by/4.0/


 23 

Table 4. Comparison of performance of DT and NN models using a common model trained 477 

on A. thaliana versus species-specific models. 478 

Species Decision Tree 
balanced accuracy† 

(95% C.I.) 

Neural Network 
balanced accuracy† 

(95%C.I.) 
B. rapa 83.1% (81.2-85.0) 85.1% (83.5-86.6) 
O. sativa 67.2% (63.9-70.5) 69.4% (66.5-72.2) 

†Averaged over 10-fold cross-validation 479 

 480 

 481 

The higher predictive ability of A. thaliana MLA classifiers in B. rapa compared to rice suggests 482 

that cross-species DNG identification with MLAs tend to be more accurate in closely related 483 

genomes. Features that differ significantly between Brassicaceae and rice genes, including gene 484 

length, %GC and simple repeat content in the coding region, may drive the lower sensitivity of 485 

the A. thaliana DT classifier in rice. A broader taxonomic sampling at varying phylogenetic 486 

distances from A. thaliana will be required to test this hypothesis more thoroughly. We noticed 487 

that the recall decreased in cross-species prediction, with a limited difference in B. rapa (from 488 

~84-92% to ~82-84%) and a significant drop in in rice (from ~76-83% to ~55-59%) (S7 Table). 489 

This indicates that cross-species MLA predictions of DNGs may achieve acceptable levels of 490 

sensitivity within taxonomic families but fail to detect a substantial fraction of DNGs in more 491 

distantly related species. Thus, broad MLA-based de novo gene surveys in plants may require the 492 

training of classifiers using DNGs detected with comparative genomic approaches in at least one 493 

species per family.  494 

 495 

 496 

 497 
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Whole-genome predictions of DNGs using DT and NN classifiers 498 

We next assessed the accuracy of species-specific DT and NN classifiers to predict DNGs in 499 

whole-genome gene sets. We calculated the balanced accuracy, which is better suited to assess 500 

the performance of classifiers when classes are imbalanced. The overall balanced accuracy 501 

ranged from 92.3% in A. thaliana to 76.9% in O. sativa, with slightly higher accuracy in DT vs. 502 

NN models (Table 5).  A high recall of ~94-99% was found across species and classifiers, 503 

although DT models also achieved lower FPRs compared to NN models (S8 Table). Given the 504 

much higher number of AGs than DNGs, the total number of false positives reached ~2,055 in A. 505 

thaliana and a maximum of ~8,948 genes in O. sativa (S8 Table). Given the high FPRs, MLAs 506 

alone may achieve the level of accuracy required to entirely replace traditional comparative 507 

genomic analyses in DNG surveys; however, the application of MLAs as a first step would 508 

decrease by up to 10-fold the number of genes that need to be investigated with homology 509 

searches and other time-consuming approaches in order to remove false positives.  510 

 511 

 512 

Table 5. Comparison of performance of DT and NN species-specific  513 

models applied to whole genomes. 514 

species Decision Tree genome-wide 
accuracy† (95% C.I.) 

Neural Network genome-
wide accuracy† (95%C.I.) 

A. thaliana 92.3% (91.9-92.7) 91.1% (90.4-91.9) 
B. rapa 87.4% (87.1-87.7) 86.0% (85.6-86.4) 
O. sativa 79.3% (78.7-79.9) 76.9% (74.9-78.8) 

†Averaged over 10-fold cross-validation 515 

 516 

 517 
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We further examined if the performance of models trained on A. thaliana data but applied to the 518 

two other species (in this analysis, there are no confidence intervals because a single input model 519 

trained on one species was tested for accuracy on the whole genome of another). The A. thaliana 520 

classifiers, particularly NN models, showed relatively high balanced accuracy in B. rapa and in 521 

rice (Table 6). However, recall values dropped significantly in both species, from ~97-98% to 522 

~82-84% in B. rapa and from ~94-98% to ~55-59% in rice (S9 Table). Interestingly, the A. 523 

thaliana NN model resulted in lower FPRs than the within-species models while the opposite 524 

was true for the A. thaliana DT model (S9 Table). 525 

 526 

 527 

Table 6. Comparison of performance of DT and NN models using a common model trained 528 

on A. thaliana versus species-specific models applied to whole genomes. 529 

species Decision Tree  
genome-wide accuracy 

Neural Network  
genome-wide accuracy  

B. rapa 84.9%  86.2%  
O. sativa 74.6%  81.6%  

 530 

 531 

The DT classifier specificity can be adjusted by increasing the proportion of negative 532 

examples during training 533 

Given the high false positive rates in classifiers, we investigated if including negative examples 534 

during training could increase the model specificity using A. thaliana datasets and the DT model. 535 

We scaled up the number of negative examples up to 10 times the original set of 232 AGs while 536 

maintaining a balanced test set with equal numbers of DNGs and AGs. Each iteration at different 537 

training sizes was repeated 30 times. We found that for increasing numbers of negative 538 

examples, the balanced accuracy steadily decreases from ~91% to ~85%, primarily due to the 539 
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increasing false negative rate from <10% up to 25% (Fig 4). Concomitantly, the false positive 540 

rate decreased from ~8% to <4% (Fig 4). As the main goal of the MLA approach is to detect 541 

DNGs, the loss of sensitivity associated with the higher number of negative examples might be 542 

not worthwhile. However, we noticed that this tradeoff between false positive and false negative 543 

rates might be acceptable for limited increases in the size of negative examples. 544 

 545 

 546 

Fig 4. Accuracy (left) and false positive and false negative rates (right) for increasing number of 547 

negative examples used in the training of the DT classifier in A. thaliana. Standard errors are 548 

shown. 549 

 550 

 551 

 552 

Conclusions 553 

In this study, we have developed and assessed the first machine learning framework to identify 554 

de novo genes. In order to make these approaches readily applicable in species with limited 555 

functional genomic data, we have specifically selected basic sequence features that can be 556 

obtained from DNA and protein sequences available in annotated genomes. Using DNG datasets 557 
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from three plant species, including an updated gene set from A. thaliana and the first group of de 558 

novo genes in B. rapa, we have found that both decision tree (DT) and neural network (NN) 559 

classifiers achieve high levels of accuracy and recall in predicting DNGs. Using DT algorithms 560 

applied to sub-sampled sets of DNGs and AGs, we identified a few features with significant 561 

predictive power for DNGs. This is in line with performance ability of MLAs to discover orphan 562 

genes in A. thaliana based on six DNA sequence features (62). Importantly, orphan genes are not 563 

equivalent to de novo genes, as the former appear to be mostly constituted by rapidly evolving 564 

genes (54). Training MLA models with additional features derived from functional genomic data 565 

(transcription and translation data) and information from phenotypic assays that are not readily 566 

available in most sequenced genomes does not lead to a substantial increase in accuracy or 567 

reduction in the number false positives.  568 

 569 

A major advantage offered by MLAs is the significant decrease in computational time compared 570 

to traditional genomic approaches to find DNGs—essentially, a time contraction from weeks or 571 

months to minutes. For MLAs to be successfully applied in DNG surveys across hundreds to 572 

thousands of species, it is critical to train models using datasets of known DNGs from a few key 573 

species, and for these models to obtain high accuracy and recall in other species. We conducted 574 

initial tests to explore this possibility using DT and NN models trained on A. thaliana to predict 575 

DNGs in B. rapa and rice. We found that these cross-species predictions achieved comparable 576 

accuracy of species-specific models in B. rapa, and somewhat lower accuracy in rice. This 577 

suggests that MLAs trained in one species can likely be used to infer DNGs in closely related 578 

species, as in the case of the two Brassicaceae, A. thaliana and B. rapa. Given that many 579 

angiosperm families now contain sequenced genomes from multiple species, and considering 580 
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both the rapid increased of the number and quality of new genome assemblies, de novo gene 581 

discovery based on MLAs could likely be applied to a large number of flowering plant taxa. 582 

Future work on more taxa should help better determine how cross-species MLAs accuracy 583 

decreases when the evolutionary distance between taxa increases, as this study indicates. 584 

 585 

Genome-wide analyses showed that species-specific models predicted well above 90% of known 586 

DNGs, although the much higher number of ancestral genes lead to several thousand false 587 

positive cases. In cross-species genome-wide analyses, A. thaliana models identified 82-84% of 588 

true DNGs in B. rapa, but achieved less than 60% recall in rice. Notably, FPRs were 589 

substantially lower in cross-species NN models compared to species-specific models. The 590 

combination of high recall, at least in some cross-species tests, and high FPRs suggests that a 591 

three-step pathway can be employed to accelerate DNG discovery in angiosperms. First, NN 592 

models are developed in one or two species with the best gene annotation quality in each 593 

angiosperm family. Second, these NN models are applied to an array of target species in the 594 

same family. Third, the candidate DNGs predicted from each target species, comprising only a 595 

few thousand genes, are analyzed post-hoc with traditional comparative genomic approaches to 596 

remove false positives. 597 

 598 

As this represents the first systematic study to assess machine learning approaches in de novo 599 

gene discovery, we expect that further developments of in this area could significantly increase 600 

accuracy and recall while reducing the false positive rate in DNG detection. Along these lines, 601 

alternative machine learning approaches, including deep neural networks, and methods to 602 
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address the class imbalance between DNGs and AGs different from sub-sampling, such as 603 

synthetic minority over-sampling algorithms, or SMOTE (62, 82), warrant future investigations.  604 

 605 

 606 

 607 

Methods 608 

Validation of Arabidopsis thaliana de novo genes 609 

The TAIRv10 (TAIR10) DNA and protein sequences of A. thaliana were obtained from the 610 

folder “TAIR10 blastsets” in the TAIR repository (83). Data from the files 611 

“TAIR10_pep_20101214”, “TAIR10_cds_20101214” and “TAIR10_exon_20101028” were 612 

used in sequence similarity searches and sequence feature analyses. A. thaliana de novo genes 613 

were retrieved from a set of 782 putative DNGs recently described by Li et al (2016) using 614 

sequence homology searches. These genes were screened to identify high-confidence DNGs 615 

supported by further comparative genomic data, particularly synteny information. Specifically, 616 

we performed Blast v2.11.0 (49) searches of the corresponding protein sequences against several 617 

NCBI databases. We used Blastp to search the “nr” and “tsa_nr” databases, and tBlastn to search 618 

the “nr/nt”, “refseq_rna”, “est” and “TSA” databases with the following modified parameters: 619 

num_descriptions 100 -num_alignments 100 -max_hsps 5 -evalue 0.001 -seg yes. The seg filter 620 

was turned on in order to remove spurious hits due to nonhomologous stretches of similar amino 621 

acids. These searches were carried out against increasingly broader taxonomic units that include 622 

Arabidopsis species excluding A. thaliana, Brassicaceae (excluding Arabidopsis), rosidae 623 

(excluding Brassicaceae), angiosperms (excluding rosidae), green plants (excluding 624 

angiosperms). We also searched for homologous sequences of the 782 DNGs in fungi, bacteria 625 
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and archaea to identify and remove possible horizontal transfer cases (S1 Table). Subject 626 

sequences were screened using unix scripts to remove truncated proteins. We excluded from the 627 

catalog of DNGs all cases with any homology with sequences from a non-focal species.  628 

 629 

To determine synteny conservation of DNG coding regions we searched 45 Brassicaceae genome 630 

assemblies obtained from Phytozome (https://phytozome-next.jgi.doe.gov) using the translated 631 

DNA sequence of each exon of the 782 putative DNGs, which allowed us to detect conserved 632 

coding regions for genes with one or multiple exons, in tBlastx run with the following modified 633 

parameters: num_descriptions 100 -num_alignments 100 -max_hsps 5 -evalue 0.001 -seg yes. A 634 

list of the 45 species investigated in available in S2 Table.  635 

 636 

First, we used these alignments to identify Brassicaceae genomic regions that were syntenic with 637 

DNGs and with the potential to encode proteins. Although these regions did not include 638 

annotated genes, they maintained long coding regions and were thus considered bona fide 639 

homologs to DNGs. We based this selection on two criteria. We selected for hits with a 640 

conserved methionine within the first five amino acids of the A. thaliana DNG protein, in order 641 

to account for alternative first codon positions (84). Additionally, we included only hits wherein 642 

the total alignment length from the first codon to the first stop codon equal to at least 75% of the 643 

query protein. This threshold was selected to include hits that are likely to encode a protein, 644 

given the lack of disabling mutations along most the of the coding, while allowing for slightly 645 

shorter loci, as stop codons may also vary slightly between orthologs. Using this strategy, we 646 

identified 44 DNGs with putative homologous genes in non-A. thaliana Brassicaceae, which 647 

were thus discarded.  648 
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Second, we used the same alignment data for the remaining DNGs to identify those that maintain 649 

synteny conservation in noncoding regions with other Brassicaceae. To this end, we applied a 650 

minimum threshold of 30% coverage between A. thaliana DNGs and Brassicaceae genomes as 651 

corresponding to conserved synteny. This length threshold is lower than those used in previous 652 

DNG analyses in animals (31, 85, 86), in order to account for the decreased overall synteny 653 

conservation among Brassicaceae. Furthermore, the syntenic alignments were screened for the 654 

presence of enabler substitutions, represented by a novel start codon, the removal of stop codons 655 

and/or frameshifts in the DNG coding region compared to the syntenic DNA of the outgroup 656 

species. Overall, we found 604 A. thaliana putative DNGs with apparent synteny conservation 657 

with at least one other Brassicaceae genome.  658 

 659 

Identification of Brassica rapa de novo genes 660 

We retrieved all Brassica rapa genome assemblies and gene sets available as of October 2021 661 

and screened each assembly for completeness using BUSCO v3.0 (87) (S3 Table). The B. rapa 662 

coding regions, protein and genome assembly fasta files were downloaded from: 663 

https://ngdc.cncb.ac.cn/search/?dbId=gwh&q=GWHAAES00000000. 664 

B. rapa proteins containing stops (“Xs”) within their amino acid sequences were removed, 665 

leaving 45,912 proteins. We further screened the remaining B. rapa proteins to identify and 666 

remove sequences mostly formed by transposable elements (TEs), as they likely represent 667 

misannotated TEs. To this aim, we first downloaded the sequences of 39,197 TE families from 668 

31 Brassicaceae reported in PlantRep (88). Proteins containing TE sequences were retrieved by 669 

performing a tBlastn search with the following modified parameters: -evalue 1e-10 -670 

max_target_seqs 10 -max_hsps 5. 671 
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A total of 9,791 B. rapa proteins shared sequence similarity with TEs over at least 50% of their 672 

length and were removed from the dataset. Proteins with Blast matches uniquely with unknown 673 

repeats were not removed as those repeats might represent microsatellites, which could 674 

potentially form a portion of de novo gene coding regions. 675 

 676 

To search for DNGs among the remaining 36,121 B. rapa proteins, we carried out a 677 

multipronged homology search strategy to identify proteins with homology in non-Brassica rapa 678 

genomes. First, the B. rapa proteins were searched against the plant NCBI refseq protein set 679 

obtained on August 31, 2021 throughout a Blastp run with the following modified parameters: -680 

num_descriptions 5 -num_alignments 5 -evalue 0.001 -seg yes. A total of 18,413 proteins 681 

showed no sequence homology to NCBI refseq proteins with the exception of Brassica 682 

sequences, thus representing candidate Brassica orphan proteins. A further Blastp search was 683 

performed against the NCBI non-random, tsa_nr, refseq_rna and est databases of all 684 

Brassicaceae proteins with the following modified parameters: -max_target_seqs 50 -max_hsps 685 

5. All hits containing premature stop codons were removed as they could represent expressed 686 

sequences of noncoding genes or truncated and thus non-functional proteins.  687 

 688 

Similarly to the procedure applied to A. thaliana putative DNGs, we carried out Blast searches 689 

against increasingly broad taxonomic units containing B. rapa, starting from Brassica but 690 

excluding B. rapa, then other Brassicaceae, rosidae, angiosperms, green plants, excluding the 691 

previous taxon at each step, and using the following modified parameters: -max_target_seqs 50 -692 

max_hsps 5-evalue 0.001 -seg yes. Fungal proteomes were also screened, whereas Archaea and 693 

Bacteria sequences were not included as our analyses in A. thaliana DNGs showed that 694 
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prokaryotic databases contributed marginally to the detection of homologs. We found 2,089 B. 695 

rapa proteins sharing no sequenced homology with two or more non-Brassica proteins, thus 696 

representing B. rapa orphan genes. A cut-off of at least two non-Brassica proteins was 697 

implemented to take into account possible contamination from A. thaliana into other 698 

Brassicaceae genome datasets (89, 90). This number of orphan genes in B. rapa is similar to but 699 

higher than the 1,540 B. rapa orphan genes recently described (45), probably because of 700 

differences in the homology search criteria and in the gene annotation version. We further 701 

removed from the list of orphan genes 35 genes with annotated protein domains in eggNOG 702 

Mapper (91), as they likely represent fast evolving non-DNGs. 703 

 704 

In order to identify enabler changes uniquely associated with de novo gene birth, we inspected 705 

the alignments from the Blast searches between B. rapa orphan genes and the genome of 45 706 

Brassicaceae (S2 Table). After applying the same approach described to filter A. thaliana 707 

putative DNGs, we obtained 754 B. rapa-specific de novo genes. 708 

 709 

 710 

Examination of DNG coding and protein sequence features 711 

DNA sequence features. Length of genes, predicted coding sequences (CDS) and (where 712 

available) UTRs were retrieved from gff files of the assemblies of each species. The GC-content 713 

of each coding region was calculated using an in-house perl script. Transposable element (TE) 714 

genome coordinates were obtained from the TAIR10 gff3 file in the A. thaliana TAIR repository 715 

and from the Brapa_genome_v3.0_TE.gff file downloaded from 716 

http://brassicadb.cn/#/Download/ for B. rapa. 717 
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O. sativa de novo gene IDs were retrieved from supplementary information in Zhang et al. (8). 718 

O. sativa release v3 coding region fasta sequences were downloaded from the Gramene 719 

repository (http://ftp.gramene.org/oge/release-3/fasta/oryza_sativa/dna/). Rice protein fasta 720 

sequences were obtained translating the CDS sequences using the ORF finder program in the 721 

SMS suite (92). The initial set of 50,556 genes was parsed to retain only the longest isoform of 722 

each locus and to remove genes with premature stop codons, leaving 38,748 genes.  723 

 724 

Microsatellites were retrieved from the coding regions of each gene using Tandem Repeat Finder 725 

v4.09 (93) with default options. Overlap of TEs and microsatellites with the coding region and 726 

gene distance from TEs were obtained using bedtools (94). The coding potential was estimated 727 

using the Coding Potential Calculator (72). The codon adaptation index was calculated using the 728 

‘cai’ tool in the EMBOSS suite (95). 729 

 730 

Kozak scores were computed as the sum of the logs of nucleotide probabilities within a window 731 

of 12 bp around the ATG start codon (96), based on probabilities extracted from all genes in each 732 

species genome:  733 

𝑠 = # log	(𝑝(𝑛+))
-

+./0

 734 

 735 

where 𝑛+ is the observed nucleotide at position i relative to the start of the ATG.  The scores are 736 

generally negative with a mean around -5.1, but the closer to zero, the more like the consensus 737 

sequence (AAAAAAATGGCG) they are.  This is similar, but not identical, to the 738 

acAACAATGGC consensus sequence for terrestrial plants (97), reflecting biases that promote 739 
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translation initiation by the ribosome.  The nucleotide probability profiles surrounding start 740 

codons in A. thaliana, B. rapa, and O. sativa, as well as other diverse plant genomes (Petunia 741 

inflata: 36,489 genes; Quercus robur: 25,808 genes) are highly similar, although genes in O. 742 

sativa appear to have a relaxed constraint in the nucleotide following the ATG, whereas it is 743 

guanine over 50% of the time in the other two species (see S1 Fig), which could be related to 744 

fact that rice is a monocot and thus distantly related to the dicot family Brassicaceae.  The 745 

preference for adenines upstream of the ATG in plants is much less pronounced than in 746 

nucleotide profiles of Kozak sequences in other eukaryotes (e.g. human, Drosophila) (see S1 747 

Fig).  748 

 749 

Protein sequence features. Protein domains were obtained from the NCBI Conserved Domain 750 

Database (98). Protein structural disorder was calculated using IUPred2 (99) after removing 751 

cysteines from the protein sequences in order to account for the possible presence of the disulfide 752 

bonds, which can strongly affect ISD estimates (100). Transmembrane helices were estimated 753 

using TMHMM Server v. 2.0 (101). The identified helices may represent either transmembrane 754 

structures or signal peptides, which tend to occur within the first 60 amino acid in the N-terminal 755 

of the protein. Proteins were conservatively assigned putative transmembrane helices if they 756 

contained one or more predicted helices and at least 18 amino acids in a helix past the first 60 757 

amino acids. Signal peptides were predicted using TargetP2.0 (102). The isoelectric point of each 758 

protein was calculated using the Sequence Manipulation Suite Protein Isoelectric Point tool (92). 759 

All programs above were run using default settings. 760 

 761 
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Functional genomic features in A. thaliana. The A. thaliana TAIR10 gff3 file 762 

“TAIR10_GFF3_genes.gff” in the TAIR repository was used to obtain the length of “5’UTR 763 

length” and “3’UTR length” and the number of coding exons (“#Exons”). The proportion of the 764 

coding region overlapping with transposable elements (TEs; “TEs in CDS (bp)” and “%TEs in 765 

CDS”) and the gene distance to the nearest TE (“TEdist”) were calculated using bedtools (94) 766 

and the genome coordinate of TAIR10 coding exons and TEs. Genome coordinate of TEs were 767 

obtained from the gff3 file “TAIR10_GFF3_genes_transposons.gff” available in the TAIR 768 

repository. Possible regulatory motifs (“#Motifs promoter”) in the promoter regions of DNGs 769 

and AGs were identified using the MEME suite (103). The DNA sequences corresponding to the 770 

300bp upstream of the transcription start site of each TAIR10 gene were retrieved using bedtools 771 

and screened using the MEME Streme tools (104).  772 

 773 

Transcription factor binding site (TFBS) information was retrieved from the Plant cis-Map 774 

genome browser (http://ucsc.gao-lab.org/index.html). The Conserved TFBS dataset included 775 

binding sites deposited in the PlantRegMap database (105, 106). Conservation of TFBSs was 776 

assessed using multiple genome alignments across species from the Plant cis-Map genome 777 

browser conservation track. Binding sites with at least 50% of their sequence falling within 778 

conserved elements were considered conserved (“#Conserved TFBSs”). The pipeline to identify 779 

putative functional transcription factor binding sites (“#FUN TFBSs”) is described in Tian et al. 780 

(105). The AtRegNet confirmed TFBSs dataset (“#AtRegNet TFBSs”) was downloaded from the 781 

AGRIS database (107). The bedtools suite was used to extract the DNA sequences of the 200bp 782 

upstream of transcription start site of TAIR10 genes, corresponding to the putative promoter 783 

regions, and intersected with TFBS genome coordinates. 784 
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 785 

Transcription quantification features were obtained from a study of 18 natural A. thaliana 786 

accessions (108) study. The average (“RNAseq AVG”) and maximum (“RNAseq MAX”) 787 

expression across 48 samples, reported as log(rpkm) values, were calculated for each gene across 788 

45 samples. Expression in only 1 out of 45 samples was also added (“RNAseq <2 samples”). 789 

Average (“RP AVG”) and maximum (“RP MAX”) ribosome profiling (RP) expression data, 790 

reported as log(rpkm) values, were also calculated for root tissues including control and deficient 791 

phosphorous nutrition conditions in a total of 25 samples (109). The maximum RP expression 792 

was calculated only for genes expressed in at least two samples. 793 

 794 

The “Missense variant” feature represents the number of missense (nonsynonymous) 795 

substitutions divided by the length of the coding in each gene (“Missense variation”). Missense 796 

substitutions were obtained from the 1001 A. thaliana Genomes portal 797 

(https://1001genomes.org/index.html). 798 

 799 

Protein domains and protein-protein interactions (PPIs) were obtained from the files 800 

TAIR10_all.domains (“#HMMPfam Domain”) and TairProteinInteraction 20090527.txt 801 

(“#PPIs”, “#PPIs (w/predicted)”), respectively, from the TAIR repository. The PPI data contain 802 

interaction annotations extracted from the literature by TAIR and BIOGRID (110). The 803 

frequency of three different categories of amino acids, “Tiny”, “Aromatic” and “Acidic”, were 804 

obtained using the pepstats program in the EMBOSS suite (95).  805 

 806 
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We gathered phenotypic information using data deposited in the TAIR repository containing 807 

phenotypic data extracted from the literature by TAIR. Data files names: TAIR_Phenotypes_9-808 

2019.txt (“TAIR_Phenotypes_9-2019.txt”), Locus_Germplasm_Phenotype_20190630.txt 809 

(“LGP_20190630.txt”), Locus_Germplasm_Phenotype_20130122 (“LGP_20130122”). 810 

Additionally, data from manually curated meta-analysis of loss-of-function phenotypes (111) 811 

(“Lloyd and Meinke 2012”) and from a high-throughput phenotype screening of annotated genes 812 

with unknown function (112) (“Luhua, et al. 2013”) were included. 813 

 814 

 815 

Machine learning training and testing 816 

Balanced sets of DNGs and AGs were selected for ML training and testing within each species. 817 

For instance, in A. thaliana 331 AGs were randomly chosen among the 26,423 available AGs. 818 

The Decision Tree (DT) classifier was trained using the scikit-learn package in Python (113). 819 

The feed-forward fully-connected neural network (NN) with a single hidden layer with 20 820 

hidden nodes was also trained with the MLPClassifier implementation in scikit-learn, using tanh 821 

activation functions and the ‘adam’ solver.  Log transformations were applied to length-based 822 

features (Gene length, CDS length, Distance from TEs) and to functional genomic features with 823 

RPKM in A. thaliana. 824 

 825 

Feature importance (normalized decrease in Gini impurity index at each node where a feature is 826 

used, weighted by the fraction of training examples represented at those nodes) was calculated 827 

using the ‘feature_importance’ attribute of the DecisionTreeClassifier generated by scikit-learn.  828 

In some runs, “At-least-one-domain” was the feature at the root of the tree, and in other runs, 829 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 2, 2022. ; https://doi.org/10.1101/2022.11.01.514720doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.01.514720
http://creativecommons.org/licenses/by/4.0/


 39 

“Coding potential (cpc2)” represented the splitting feature at the root. Thus, we estimated the 830 

importance of features by averaging them over multiple runs.  831 

 832 

Scripts and data from this study are available at https://github.com/ioerger2/DNG. This 833 

repository contains instructions on how to run Decision Tree and Neural Network training and 834 

testing. A python script generates accuracies, confusion matrices, decision trees and feature 835 

importances for each dataset. The A. thaliana features are available in the repository. 836 

 837 

 838 

Statistical analyses 839 

All statistical analyses were performed in R (cit). In MLA testing, accuracy corresponds to the 840 

sum of true positives (TPs) and true negatives (TNs), divided by all genes: 841 

(TP+TN)/(TP+FP+TN+FN).  Sensitivity and specificity are represented by true positive rate 842 

(TPR=TP/(TP+FN)) and true negative rate (TNR=TN/(TN+FP)).  Test sets and training sets are 843 

always kept disjoint (with no overlap of genes) in all runs. 844 

 845 

 846 

 847 
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