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Abstract 

Beta diversity, which quantifies the compositional variation among communities, is one of 

the fundamental partitions of biodiversity and is associated with abiotic and biotic drivers. 

Unveiling these drivers is essential for understanding various ecological processes in past and 

recent faunal communities. Although the quantification of measures of beta diversity has 

improved over the years, the potential dependence of beta diversity on methodological 

choices are relatively understudied. Here, we investigate the effect of the variable scale of 

sampling on different measures of beta diversity at a regional scale. The west coast of India 

bordering the eastern margin of the Arabian sea, presents a coastal stretch of approximately 

6100km from 8–21◦N. We used marine bivalve distribution data, consisting of live 

occurrence data from literature reports and abundance data from death assemblages collected 

from localities representing latitude bins. We tested if the observed variation in beta diversity 

is explained by variable sampling scales due to differences in bin sizes and unequal coastline 

length. We developed a null model to generate a beta diversity pattern with an increase in 

spatial scale of sampling by increasing the spatial grain size along the 14 latitude bins 

progressively. Our null model demonstrates that for the both live and dead dataset, the total 

beta diversity measured by Bray-Curtis, Whittaker and Sorenson indices decreases with 

increasing sampling scale. The species replacement (turnover) evaluated by Simpson index 

decreases and the species loss (nestedness) measured by Sorenson index increases with 

increasing sampling scale. A comparison between the simulated and observed beta diversity 

distribution using K-S test demonstrated that the observed pattern of beta diversity is 

significantly different from the pattern generated from the null model in both live and death 

assemblages. This implies that sampling alone does not generate the spatial variation in beta 

diversity in this region. The results show that environmental parameters such as salinity, 

productivity, and cyclones play a significant role in shaping the regional beta diversity along 
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the west coast. Our study provides an approach for evaluating the effect of variable sampling 

scale on comparing regional beta diversity. It also highlights the importance of spatial 

standardization while inferring about processes driving spatial diversity changes.  
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Introduction 

Biological diversity is spatially heterogeneous across the globe and understanding the 

causes of spatial variation in marine diversity is one of the major focus of ecological and 

paleoecological research (Kowalewski 1996; Olszewski and Patzkowsky 2001; Kidwell and 

Holland 2002; Huntley and Kowalewski 2007; Melo et al. 2009; Tittensor et al. 2010; Brown 

2014; Tyler and Kowalewski 2017). The measures of spatial differences in diversity has three 

main partitions: alpha, beta, and gamma diversity (Whittaker 1960). Alpha and gamma 

diversity represents diversity at finest and largest scale of observation respectively 

(Patzkowsky and Holland 2012). Beta diversity, defined originally as the within-habitat 

diversity (Whittaker 1960), is used to quantify the spatial variation in community 

composition among localities (Harrison et al. 1992; Gray 2000; Anderson et al. 2011). 

Evaluating within-habitat differences in composition helps in understanding different aspects 

of ecosystem functioning (Legendre 2014), including drivers of community assembly and are 

considered essential for conservation based studies (Purvis and Hector 2000; Cleary 2003; 

Tuomisto et al. 2003; Baselga 2010).  

Unlike the directly measurable alpha and gamma diversities, however, beta diversity 

is a derived quantity. It can be measured in numerous ways with no general consensus on 

which measure is suitable for particular ecological question making it a complex metric to 

interpret (Whittaker 1960; Anderson et al. 2006, 2011; Baselga 2010; Beck et al. 2013; 

Barwell et al. 2015). Beta diversity can be partitioned into two major components: turnover 

and nestedness (Harrison et al. 1992; Baselga 2007, 2010; Anderson et al. 2011). Turnover 

can be explained as the replacement of some species by others between assemblages along a 

gradient due to environment sorting and/or historical constraints such as dispersal barriers 

due to geographic isolation (Qian et al. 2005; Leprieur et al. 2011). In contrast, nestedness 

reflects a spatial pattern where assemblage of some sites with lower species richness are 
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subsets of those sites with higher species richness as a result of processes such as selective 

extinction or colonization (Wright and Reeves 1992; Ulrich and Gotelli 2007). These 

components are not mutually exclusive and the resulting assemblages can be a mix of both 

components. Exploring these components across a gradient can reveal the role of different 

processes in shaping the patterns of assemblage composition along that gradient, which will 

in turn help in designing strategies for protecting the diversity of a landscape (Leprieur et al. 

2011; Qian et al. 2020). 

The patterns and processes influencing beta diversity has been an area of considerable 

research interest and the model organisms are dominated by terrestrial communities such as 

plants (Fournier and Loreau, 2001; Kraft et al., 2011; Qian et al., 2005; Qian and Ricklefs, 

2007; Qian and Xiao, 2012; Wagner et al., 2000), insects (Fleishman et al. 2003; Gering et al. 

2003; Summerville et al. 2003; Lindo and N. Winchester 2008), birds (Fleishman et al. 2003; 

Jankowski et al. 2009), mammals (Gabriel et al. 2006; Soininen et al. 2007; Melo et al. 2009; 

Svenning et al. 2011; Peixoto et al. 2017) and freshwater fauna (Stendera and Johnson 2005). 

In contrast, the marine communities are relatively poorly studied with the exception of reefal 

communities such as fishes and benthic invertebrates (Hewitt et al. 2005; Harborne et al. 

2006; Josefson 2009; Belley and Snelgrove 2016; Roden et al. 2020; Souza et al. 2021). 

Large scale patterns in beta diversity is linked to latitudinal and altitudinal gradients 

(Soininen et al. 2007; Jankowski et al. 2009; Kraft et al. 2011). A combination of abiotic 

factors (such as temperature, habitat heterogeneity, biogeographic isolation events) and biotic 

factors (such as dispersal limitation, competitive exclusion) are attributed as important drivers 

of taxonomic and phylogenetic beta diversity in both terrestrial and marine realm (Becking et 

al. 2006; Qian and Ricklefs 2007; Arias-González et al. 2008; Leprieur et al. 2011; Baselga et 

al. 2012; Segre et al. 2014; Hattab et al. 2015; Klompmaker and Finnegan 2018; Fluck et al. 

2020; Qian et al. 2020; Maxwell et al. 2022).  
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Identifying the drivers of beta diversity is highly dependent on spatial scale and 

resolution of the study (Mac Arthur and Wilson 1967; Hewitt et al. 2005; Tokeshi 2009). The 

factors that will determine variability in composition at a small spatial scale (site-scale or 

point-based studies) will be different from the determinant processes at larger scales. 

Typically, beta diversity increases rapidly at local scales as new sampling units are 

incorporated due high variation in stochastic species occupancy pattern among sites 

(Rosenzweig 1995; Barton et al. 2013). At regional scales, beta diversity increases more 

slowly as fewer newer species are encountered between sites as compared to local scales. At 

larger scales again beta diversity increases as new species are encountered between sites 

across bio-geographic regions with different geological and evolutionary histories. 

Consequently similar patterns of beta diversity observed at different scales may not imply 

causative similarities (Whittaker et al. 2001; Hortal et al. 2010). Conceptually, beta diversity 

is expected to increase with increasing area  with increasing spatial scale of individual units 

of observation (grain size) considering all individual units of observation (Barton et al. 2013). 

The choice of sample grain sizes even within a constant extent of study area, however, has a 

significant effect on the variability in species composition (Steinbauer et al. 2012). Barton et 

al (2013) proposed that a ‘sliding window’ perspective, in which both spatial grain size and 

extent varies would be an informative way for understanding compositional variation across 

scales. Uncertainties produced due to unequal sampling and variable geographic 

configuration further complicates the comparison of measured beta diversity (Womack et al. 

2020). In spite of acknowledging  the potential scale dependence, only a few studies 

attempted spatial scaling of beta diversity (Kraft et al. 2011; Barton et al. 2013; Womack et 

al. 2020). Moreover, the patterns of beta diversity and the sensitivity to sampling can differ 

among time-averaged death assemblages (DA) and live assemblages (LA) residing in various 

environments (Tyler and Kowalewski 2017). Understanding the effect of increasing spatial 
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grain size implying increasing sample size per bin within a constant extent on observed beta 

diversity of both live and death assemblages will provide a unique insight into the spatial 

patterns of beta diversity.   

The diverse ecosystem of tropical shallow marine environments is characterized by 

large number of co -existing species within habitats and high rates of species turnover 

between habitats (Gray 2000). Although these are important factors impacting beta-diversity 

(Segre et al., 2014; Klompmaker and Finnegan, 2018), only a handful of studies explored the 

regional patterns along tropical shallow marine environments. Using the marine bivalve 

distribution over a regional stretch of environmentally heterogeneous coastline of India, we 

evaluated the beta diversity and its dependence on the scale of study. Specifically, we tried to 

address the following questions: 

i. If the variation in the beta diversity can be explained by unequal spatial grain size of 

sampling for LA and DA? 

ii. What is the effect of the choice of beta diversity index on the observed pattern? 

iii. If variations due to unequal sampling can be rejected, which environmental parameter 

contributes maximum to the observed beta diversity pattern? 

 

Materials and methods 

Locality and sampling 

The study was conducted along the west coast of India. The west coast of India bordering the 

eastern Arabian Sea represent a latitudinal spread of 14° (8–23°N) spanning approximately 

6100km from Kanyakumari in the south to Koteshwar in the north. The coast is characterized 

by high degree of environmental heterogeneity consisting of coral reefs, lagoons, seagrass 

habitats, sandy beaches. The northern part of Arabian sea has low siliciclastic input and high 

productivity associated with upwelling during winter cooling. The southern region has a well-
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developed reefal system with moderate variation in salinity (Parulekar and Wagh 1975; Slater 

1984; Madhupratap et al. 1996; Levin et al. 2000; Sarkar et al. 2019). For collecting time-

averaged death assemblage, a total of 25 sampling sites representing 14 latitudinal bins were 

selected. Each bin is represented by at least one sampling locality and with a gap of minimum 

five km between two consecutive localities within a bin. From each locality, all visible 

molluscan specimens were collected from a traverse of ~1 km along the sea shore. The 

procedure was repeated twice for each sampling site. The sampling has been done over a 

period of five and a half years from July 2010 to December 2015 in both post and pre-

monsoon and a minimum of 200 individuals were collected from each latitudinal bin. Each 

latitudinal bin was represented by a minimum of 200 individuals. Taxonomic nomenclature 

was primarily based on the published work by Rao (2017) and the World Register of Marine 

Species (WoRMS Editorial Board, 2020). This is followed by detailed documentation and 

identification of the bivalve specimens from death assemblage (DA) (Chattopadhyay et al. 

2021). For constructing live assemblage (LA) dataset, the occurrence data on marine bivalves 

was obtained from a marine biodiversity database reported from various published literature, 

maintained by the Bioinformatics Centre, National Institute of Oceanography, Goa, India 

(Sarkar et al., 2019). The database provided scientific name of the bivalves, along with 

taxonomic details, feeding habit, habitat, size and location. Location data are often 

supplemented by Google Earth for acquiring correct latitude and longitude.  

 

Oceanographic variables 

Data on oceanographic variables (productivity, sea surface temperature, and salinity) 

were collected for each latitudinal bin from Ocean Productivity database. Diversity of 

shallow marine fauna is also known to be dependent on the area of the habitat (Smith and 

Benson 2013) and therefore we use shelf area and coastline length as a proxy for the habitat 
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area. The coastal length and shelf width data are obtained from GEBCO Compilation Group 

(2020). Because high-energy storm events are known to affect the distribution of molluscan 

death assemblages (Bhattacherjee et al. 2021), we included cyclone frequency data from the 

global-tropical-extratropical cyclone climatic atlas from the United States Navy National 

Climate Data Center cyclone records. The details of the processing for converting the raw 

cyclone data into cyclone frequency are discussed at Bhattacherjee et al. (2021). 

 

Diversity estimates  

Taxonomic beta diversity can be measured in a number of different ways. According to the 

concept of additive partitioning (Lande 1996), the gamma diversity (γ) in an area with 

multiple samples equals the sum of the average diversity within each of the samples (α) and 

among the samples (β), therefore γ = α + β, and β is given by γ – α (Crist et al. 2003). We 

report results using both classical additive metrics which are derived directly from the 

relationship between the alpha diversity and gamma diversity, such as Whittaker index 

(Lande 1996) and pairwise metric which are based on similarity between a pair of sites or an 

average of all pairs, and quantify turnover (Anderson et al. 2011). The pairwise metrices used 

are Sørensen (Sørensen,1948), Nestedness component of Sørensen, Simpson (Simpson 1943) 

and Bray-Curtis (Pairwise proportional dissimilarity) (Bray and Curtis 1957; Koleff et al. 

2003; Anderson et al. 2006) indices. Sørensen dissimilarity measures the compositional 

dissimilarity component that is arising from species replacement and species loss 

(nestedness). The component of dissimilarity cause by species replacement is explained by 

Simpson dissimilarity (Simpson 1943). The nested component of Sørensen can be calculated 

by simply subtracting the Simpson dissimilarity from the Sørensen dissimilarity measure 

(Baselga 2010). The presence-absence version of the Bray-Curtis indices or pairwise 
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proportional dissimilarity (PPD) been shown to be relatively insensitive to uneven sample 

sizes (Wolda 1981; Ferrier et al. 2007). 

All calculations were performed on both the datasets (LA vs DA). The abundance data is 

transformed to presence-absence data prior to measurement of beta diversity. Classical beta 

diversity measures like Whittaker’s beta diversity are calculated in R using the “betadiver” 

function from the package Vegan and pairwise measures are calculated using the “beta.pair” 

function from the package betapart (Baselga and Orme 2012).  

 

Null model  

The null hypothesis that we tested states that the variation in beta diversity along the coast is 

explained by unequal sampling due to differences in bin sizes and unequal coastline length. 

To test it, we developed a null model (Ulrich and Gotelli 2007; Astorga et al. 2014; Loiseau 

et al. 2017) with two versions: 1) Combined bin method and 2) Individual bin method (Fig 2). 

These versions allow prediction of the pattern of variation in beta diversity with increasing 

spatial grain and extent of observation. 

In both the variations, for each iteration, we randomly choose two latitude bins between 8 to 

21, 8 being the southernmost bin and 21 being the northernmost bin. Each of these bins are of 

unequal sizes spanning variable coastline lengths. We consider each of these bins as grains or 

individual units of observation. Therefore, bin sizes or coastline length is considered as the 

measure of sampling scale in our study.  

In the “Combined bin method” we incrementally increase the grain size from the smaller 

latitude bin towards the larger bin, by adding one bin in each step. The remaining latitudinal 

bins at that step are also clubbed together into a single unit. At each step, the beta diversity is 

calculated between that grain with the other unit containing the rest of the latitude bins 

combined together. The grain size from the smaller bin is increased at each step until it 
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reaches the bin prior to the maximum latitude bin value of that iteration. This process is 

repeated for 50 iterations (Fig. 2). The beta diversity is calculated at each step of every 

iteration.  

In the “Individual bin method”, we increase the grain size at each step from the smaller 

latitude bin by adding one bin in the same way as described in the “Combined bin method”. 

However, in contrast to “Combined bin method” where the rest of the latitude bins are 

clubbed together as one single unit, we consider the remaining latitudinal bins as individual 

units; the beta diversity at each step is calculated between that grain with the other individual 

latitude bins. The remaining steps within the first iteration are common to the “Combined bin 

method” and is followed in the same sequence as explained previously (Fig. 2).  To evaluate 

the effect of choice of the beta diversity measure, both versions of the null model were 

performed using various beta diversity measures such as Whittaker (βwhit), Bray Curtis (βppd), 

Simpson (βsim), Sorenson (βsor) and nestedness component of Sorenson (βsne). Spearman rank-

order coefficient is used to measure the correlation of beta diversity values (βNull) of each 

indices with varying bin sizes and coastline length. The model was used for both the LA and 

DA dataset and the results are compared. 

To check the effect of unequal grain sizes on the observed beta diversity distribution 

we checked whether βObs (βObs_LA and βObs_DA) can be generated from the distribution of null 

model values βNull (βNull_LA and βNull_DA). A resampling method similar to Bhattacherjee et al, 

2021 was performed for simulating a distribution of β values (βsimulated) by randomly sampling 

from the distribution of null model values (βNull). We resampled 14 values with replacement 

corresponding to 14 latitude bins from distribution of βNull to generate a simulated distribution 

(βsimulated). We calculated the K-S distance (D) and p-value between the distribution of 

simulated β values (βsimulated) and observed β values (βObs_LA and βObs_DA) using the ks.test () 

function in R. We repeated this step 10,000 times to get Bootstrap densities of K-S distances 
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and p-values. This process is performed for all the β diversity indices. If βObs  can be 

generated from βNull then the K-S test will generate p values >0.005 implying the observed 

difference in beta diversity can be created by the scale-dependent sampling strategy. We can 

reject the null hypothesis if p<0.005 implying βObs cannot be generated from distribution of 

βNull. Therefore, that the variation in beta diversity cannot be explained by methodological 

issues such as sampling strategy alone and probably demonstrating the natural variation.  

 

Statistical analyses 

To evaluate the relationship between β diversity and physical factors (such as latitude, 

coastline length and other environmental variables), we used Spearman rank-order correlation 

test. We used Bray-Curtis (PPD) dissimilarity for evaluating the correlation of βobs with 

environmental variables. We also used multiple generalized linear models (GLMs) to analyze 

the effect of environmental variables by taking all parameters simultaneously and evaluating 

their individual contributions to the total variation in diversity (Quinn and Keough 2002). To 

assess the change in species composition with environmental variables, a canonical 

correspondence analysis (CCA) and Redundancy Analysis (RDA) was conducted (ter Braak 

1986). CCA uses a site-by-species matrix and a site by-environment matrix to extract 

orthogonal ordination axes that represent linear combinations of environmental variables. 

RDA is a canonical extension of principal component analysis (PCA), where ordination 

vectors are constrained by multiple regression to be linear combinations of the original 

explanatory variables (Legendre and Legendre 1998). 

All statistical tests were performed in R version 4.2.0 (R Core Development Team, 

2012).  
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Results 

The DA consists of a total of 13757 bivalve specimens collected from 25 localities over 14 

latitude bins representing 167 species from 28 families. The LA consists of 177 species 

representing 37 families. Mean beta diversity values in LA varies from 0.156 for βobs_sne to 

0.864 for for βobs_ppd (Table 1). Mean beta diversity values in DA varies from 0.151 for βobs_sne 

to 0.851 for β obs_ppd (Table 1). 

 

Predicted effect of sampling and choice of index on beta diversity 

In the live assemblages (LA), the null model generated beta diversity values did not show any 

consistent pattern and the correlation was dependent on the unit of spatial grain (bins and 

coastline length) and the method used (Table 2). Bray-Curtis dissimilarity (βppd) although not 

significantly correlated with coastline length was negatively correlated with number of bins 

in individual bin method. The negative correlation with coastline length is however 

significant in combined bin method (Figure 3A, S1A). The total dissimilarity component, is 

negatively correlated with coastline length. While the Simpson index (βsim) values shows a 

negative correlation with both coastline length and number of bins in individual bin method 

(Figure 3F, S1F), the nestedness component of Sorenson (βsne) is positively correlated with 

coastline length and number of bins in individual bin method. In combined bin method 

however, βsne is negatively correlated with number of bins (Figure 3J, S1J).   

In the DA’s, beta diversity of all indices from the null model, was significantly 

negatively correlated with number of bins and coastline length in combined bin method, 

except βsim where correlation wasn’t significant with coastline length (Figure 4, S1; Table 3).  

Only Bray-Curtis (βppd) was positively correlated with coastline length and number of bins 

for both methods (Figure 4A-B, S2A-B). Whittaker’s beta diversity (βsim) is negatively 

correlated with coastline length and number of bins combined bin method and only with bins 
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in individual bin method (Figure 4C, S2C-D). The Simpson index (βsim) demonstrates a 

consistent negative correlation with coastline length in individual bin method and with 

number of bins in both methods (Figure 4E, S2E-F). Sorenson (βsor) shows a similar pattern 

to βsim being negatively correlated with coastline length in combined bin method and with 

number of bins in both methods (Figure 4G, S2G, S2H). The variance in βsim and βsor is also 

negatively correlated with number of bins in both methods and coastline length in combined 

bin method (Figure 4E, 4G, S2E-H; Table 3). The nestedness component of Sorenson (βsne) 

on the other hand, shows a positive correlation with coastline length in individual bin method, 

although it is negatively correlated in combined bin method (Figure 4I-J, S2I). All the 

correlations mentioned before were significant, if not mentioned otherwise (Table 3).  

 

Effect of sampling scale and choice of index on observed beta diversity pattern  

The observed variation pattern of beta diversity along the west coast also does not show any 

significant correlation with coastline length in both LA and DA (Figure 5). The distribution 

of βobs is significantly different from βNull in K-S test for all beta diversity indices except 

nestedness component of Sorenson (βsne) in combined bin method (Figure 6). In individual 

bin method, the difference is significant only for βsor distribution in live assemblages and for 

βppd in live assemblages (Figure 6 D, N).  βNull and βobs in nestedness component of 

Sorenson(βsne) is never significantly different in both methods (Figure 6Q-T).  Most of the 

results for results for total dissimilarity indices βsor and βppd are significant (Figure 6 A, 

C,D,M,N,O), which implies that they are sensitive proxies that can be used to evaluate 

methodological influence. Since βppd is showing a consistent pattern, it is a good index for 

determining the effect of sampling scale. 
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Overlapping and non-overlapping patterns in LA and DA 

For LA and DA, beta diversity patterns were from the null model were mostly 

different especially when the combined bin method was used. While LA did not show a 

significant correlation with number of bins in βppd βwhit βsim, DAs were strongly negatively 

correlated with number of bins for all indices (Table 2-3). The patterns in LA were not as 

consistent as the patterns observed in the DA. βppd shows a significant positive correlation 

with bins in individual bin method in both the LA and DA (Figure S1B, S2B). The turnover 

component (βsim) shows a negative correlation with coastline length and number of bins in 

individual bin method in both the datasets (Figure 3F,4F, S1F, S2F; Table 2-3). The 

nestedness component (βsne) on the other hand positively correlated with coastline length in 

individual bin method and negatively correlated with number of bins in combined bin method 

in both LA and DA (Figure 3J, 4J, S1I, S2I). Overall, both LAs and DAs showed a 

decreasing pattern in the total dissimilarity components as well as turnover components with 

increase in sampling scale, except for the nestedness component which showed an increasing 

pattern.  ΒNull_LA and βNull_DA produced by both the LA and DA datasets were significantly 

different from the βobs_LA and βobs_DA of respective LA and DA datasets, in combined bin 

method. In individual bin method, however βNull and βobs difference was not significant for 

most indices in both LA and DA except for βsor in LA and βppd in DA which were 

significantly different. Except for two instances (Figure 6B-D, 6N-P), LA and DA behaved 

the same for all treatments (index, type of null model). This implies that the sensitivity to 

sampling scale is similar for both live assemblages and time-averaged death assemblages. 
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Effect of environmental variables on beta diversity 

Because of the robustness of βppd (Figure 6), we selected this index to evaluate the influence 

of the environmental variables on beta diversity. Only oxygen concentration shows a 

significant negative correlation with Bray-Curtis dissimilarity (βppd) in LAs (Figure 7M).  

Salinity (range) shows a significant relationship with other environmental variables (Table 4). 

After excluding salinity (range) based on autocorrelation, none of the explanatory variables 

show significant effect on the beta diversity in single and multiple or single GLM for LA and 

DA (Table 5).  

In Canonical correspondence analysis (CCA), 58% variation in species composition in LAs 

was explained by the environmental variables of salinity mean, productivity mean, 

productivity range, temperature mean, shelf area, oxygen concentration and cyclones (Figure 

8A). Of the three ordination axes, axis 1 explained 12% of the total variation in the dataset 

and 42% of the variation explained by all three axes. The same combination of variables was 

able to explain 6.3% of the total variation in species composition in DAs (Figure 8B). In 

DAs, out of the three ordination axes, axis 1 explained 17% of the total variation in the 

dataset and 43.5 % of the variation explained by all three axes.  

About 50% of the constrained variation in species distribution in LAs is explained by a 

combination of productivity (range), salinity (mean), temperature (mean) and cyclones using 

RDA on presence-absence species data (Adjusted R2=23.7%) (Figure 8C). With forward 

selection, only salinity (mean and range) was found to be a significant predictor (p=0.03). 

The same set of variables along with shelf area were able to explain about 53% of the 

variation in species distribution in DAs (Adjusted R2=23.7%) (Figure 8D). Forward selection 

to choose a model with fewer variables, however stopped because of limited explanatory 

power of fewer environmental variables.  
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Discussion 

The compositional variation among communities captured by beta diversity is influenced by 

abiotic and biotic drivers. Unveiling these drivers of spatial heterogeneity of diversity 

requires us to rule out variations arising due to methodological strategies. The high marine 

diversity of tropical oceans, although studied in detail, their spatial structure is relatively 

poorly known. The west coast of India bordering the eastern Arabian Sea represents a tropical 

marine realm with a latitudinal spread of 14° (8–23°N) and is characterized by high degree of 

environmental heterogeneity. The alpha diversity of the coastal and shelf region of Arabian 

sea has been fairly well studied (Jayaraj et al. 2008; Joydas and Damodaran 2009, 2014). In 

contrast the beta diversity of macrobenthic species from this region has been largely 

unexplored (Sarkar et al. 2019; Sivadas et al. 2020, 2021). Our study attempts to develop a 

methodological framework to assess how beta diversity is influenced by methodological 

strategies such as spatial scale and diversity index. Using the regional distribution of LA and 

DA from a tropical coast with high environmental heterogeneity, it also attempts to identify 

the oceanographic drivers shaping the distribution. 

 

Effect of sampling scale 

Coastline length is an important predictor of biodiversity of recent marine ecosystems 

(Tittensor et al. 2010). A longer coastline offers higher availability of important habitat 

features that positively influences both abundance and richness of coastal species 

(Rosenzweig 1995). However, variable coastline lengths of each latitude bin might lead to 

uneven sampling from different spatial bins resulting in increased beta diversity. A similar 

positive correlation is observed in alpha diversity studies, where alpha diversity increases 

quickly with increasing scale at smaller spatial scales due to high variation in stochastic 

species occupancy patterns among sampling units and variation in species responses to 
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habitat heterogeneity (Rosenzweig 1995; Whittaker et al. 2001). At intermediate or regional 

scales, diversity increase with scale is slower because of fewer addition of new species 

relative to the regional pool. This pattern is also applicable to beta diversity, wherein 

dissimilarity is higher at smallest and biggest spatial scales but lower at intermediate scale 

(when based on “sliding window” with varying grain and extent) (Barton et al. 2013).  

The null model provides a ‘sliding window’ perspective wherein the spatial grain size 

is increasing incrementally within a constant spatial extent. According to the results of our 

null model, the consistent pattern observed in beta diversity across LAs and DAs was a 

decreasing trend or negative correlation with increasing sampling scale (Table 2,3). This 

decreasing pattern is contradictory to the general theory of increasing beta diversity with 

increasing spatial grain within a constant extent (Barton et al. 2013; Womack et al. 2020). 

Harborne et al. (2006) observed a positive correlation of beta diversity with environmental 

conditions within a specific spatial scale across a tropical seascape supporting the importance 

of  multiple scale- studies over single-scale studies for generalizing ecological patterns (Levin 

1992). The observed pattern in beta diversity from mollusc LA and DAs from west coast, 

however doesn’t show any significant correlation with increasing coastline length. The null 

model generated distribution of beta diversity in this study provides an opportunity to 

quantitatively evaluate the effect of scale on the regional beta diversity. Our study also 

demonstrated that slight changes in the null model design may result in differing conclusion 

of the scale sensitivity. Combined bin method appeared to be more robust in identifying beta 

diversity variations developed due to non-methodological processes. This affirms that data 

categorization decisions can influence the observed beta diversity patterns at regional scales. 
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Effect of choice of index 

Unlike the overall diversity measures (alpha and gamma diversities) beta diversity cannot be 

measured directly. Because it is a derived quantity, the choice of measure is often debated as 

there is no general consensus on the suitability of a measure for addressing particular 

ecological question (Whittaker 1960; Anderson et al. 2006, 2011; Baselga 2010; Beck et al. 

2013; Barwell et al. 2015). Moreover, the very concept of beta diversity is scale dependent 

and hence, the individual measures may differ in their sensitivity of the scale dependence. 

Our study shows that different measures of beta diversity may have a varying degree of 

sensitivity to spatial scale of sampling. Multisite pairwise measures of beta diversity (βppd, 

βsor, βwhit) shows a general negative correlation with increasing sampling scale represented by 

number of bins/coastline length, contrary to the a priori expectation of increasing beta 

diversity with increasing scale (Barton et al. 2013). Partitioning beta diversity into nestedness 

and species replacement components facilitates a greater understanding of patterns in beta 

diversity. However, we find a difference in their scale sensitivity implying a potential 

problem in interpreting observed patterns in beta diversity. In our study, the turnover 

component (βsim) decreases with increasing sampling scale whereas the nestedness 

component (βsne) increases, although in some of the analyses the nestedness component also 

decreases with increasing scale from the null model. Species replacement component or 

turnover component is the dominant component of variation in compositional dissimilarity 

and it is supposed to increase with increasing spatial scale, while the nestedness component 

decreases with increasing scale (Baselga 2007; Womack et al. 2020). The patterns of these 

components are logical consequences of the effect of environmental or ecological conditions 

that are operating at different scales. However, these studies have been performed at global 

scale where the role of dispersal limitation of species is higher and geographical differences 

in environmental conditions will also increase, which will likely increase the beta diversity. 
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Our study has been performed at an intermediate scale in tropics, with a latitudinal range of 

14 where such large scale geographical and dispersal limitation are less likely to occur. While 

comparing the simulated and observed pattern in beta diversity, the nestedness component 

(βppd) did not show significant difference between observed and simulated patterns in any of 

the results, indicating that this index is not a reliable index in this context, as it cannot tell 

apart the methodological influence from the biological influence. Whereas, in total 

dissimilarity indices like βsor and βppd, the simulated and observed distribution are significantly 

different in most results. This implies that they are sensitive proxies that can be used to 

evaluate methodological influence. Therefore, we used βppd in our subsequent analyses for 

determining the contribution of environment.  

 

Patterns observed in LA and DA 

Death assemblages showed a consistent pattern of negative correlation of beta diversity with 

increasing sampling scale from the null with the exception of nestedness component which 

showed a positive correlation with sampling scale. The live assemblages were also negatively 

correlated with sampling scale except βsne , however the correlation was significant in only 

very few analyses and indices. The observed beta diversity pattern in both DA and LA was 

not significantly correlated with coastline length and both showed the same signal of being 

significantly different from the predicted beta diversity pattern generated from the null 

model. In comparison of observed and simulated beta diversity, LA and DA behaved the 

same for all treatments (index, type of null model) except for two instances. This implies that 

the sensitivity to sampling scale is similar for both datasets. This means that in contrary to the 

previous observation that time averaging generally reduces the beta diversity in an 

assemblage (Tomašových and Kidwell 2009), our study demonstrated that time-averaged 

death assemblages and fossils are no worse than the LA when it comes to beta diversity 
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scaling. Therefore, death assemblages preserve the biological signal that is observed in the 

live assemblages as observed in other marine assemblages (Tyler and Kowalewski 2017). . 

Time averaging and post-mortem mixing did not change the spatial fidelity in beta diversity 

pattern at a regional scale study such as this one.  

 

Role of environmental factors 

Environmental variables of the eastern Arabian sea have a significant influence on beta 

diversity. Environmental processes often explain beta diversity at regional scales and lower 

latitudes (Qian and Ricklefs 2007). Studies showing stronger effect of environmental as 

opposed to spatial variables on community similarity have been reported from tropical forests 

and marine macrofauna in European marine sediments (Condit et al. 2002; Duivenvoorden et 

al. 2002; Ellingsen 2002; Ellingsen and Gray 2002; Cleary et al. 2004).  In our study, salinity 

played a major role in determining the variability of the species composition in both northern 

and southern part of west coast based on the results of CCA and RDA. Salinity is one of  the 

main structuring factor for macrobenthic species turnover at regional scale, as observed in the 

estuarine species in the northern Baltic sea where beta diversity changed at the same rate as 

the change in salinity between regions (Bleich et al. 2011; Josefson and Göke 2013). There is 

a significant variation in salinity in the southern part of west coast because of the influence of 

rainfall summer monsoons along with mixing of Bay of Bengal waters during winter months. 

This salinity variation is likely to affects marine benthos in the west coast. 

Productivity also plays an important role in shaping up the diversity profile along a coastal 

region (Sarkar et al. 2019). A study on bacterial community distribution showed that surface 

water productivity explained 5.1% of the global pelagic community variation and 4.1% in the 

benthic realm (Zinger et al. 2011). Benthic marine communities showed dissimilarity with 

increasing scale than pelagic communities, since physical mixing plays a major role in 
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homogenization of species composition (Zinger et al. 2011). In tropical marine reservoirs, 

diatom beta diversity was found to be negatively correlated to productivity (Zorzal-Almeida 

et al. 2017). Our study however doesn’t show any significant correlation of beta diversity 

with productivity. The productivity range plays a significant in controlling the variability of 

composition in both LA and DA as observed by the proximity of southern latitudinal bins to 

productivity range in RDA. This is because the west coast experiences an increase 

productivity due to upwelling processes with the onset of summer monsoon (June- 

September) (Madhupratap et al. 1996). During winter months, there is a rise in productivity 

in the surface layer mainly in the northeastern Arabian sea whereas the southern part has low 

productivity (Kumar and Prasad 1996; Madhupratap et al. 1996). The difference between 

summer and winter productivity is therefore higher in the southern Arabian sea, resulting in 

higher productivity range in the south.  

Shelf area had a significant effect on the DAs but not LAs which is likely attributable to the 

fact that LAs have habitat specific patchy occurrences whereas DAs are more prone to post-

mortem mixing. A greater shelf area indicates gentler slopes which causes lower rates of 

mixing whereas lower shelf area means a steeper slope causing higher rates of post-mortem 

transportation (Kidwell and Bosence 1991; Donovan 2002). 

Our RDA plot (Figure 8C, 8D) shows a higher effect of cyclones on the species composition 

of the northern part of the west coast in both LA and DA as illustrated by the proximity of 

northern latitudinal bins to frequency of cyclones. Beta diversity across assemblages 

increased after storms events at a tidal flat in Brazil, owing to species loss after storms (Corte 

et al. 2017). There has been an increase in the intensity of pre-monsoon tropical cyclones 

over the Arabian Sea during recent years owing to an increase in the heat content in the ocean 

(Rajeevan et al. 2013). The cyclone tracks arriving from the western Arabian sea move in a 

northwesterly direction from 14°N to 17°N and gradually weakened towards north 
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(Subrahmanyam et al. 2002). These cyclones thereby follow a northwesterly track thereby 

impacting the northern part of west coast more significantly.  

The results of this study suggest that substantial variation in beta diversity can arise from 

methodological artefacts like uneven sampling and spatial resolution. Unless such variation is 

identified and accounted for, the true spatial pattern of biodiversity would be obscured and it 

will not be possible to identify the environmental drivers influencing the ecological 

processes. 

 

Conclusion 

In conclusion, the present study analyzed the effect of sampling scale on the beta diversity at 

a regional scale using live and dead bivalve assemblages along west coast of India. The beta 

diversity pattern generated from null model provides us a reference to assess the effect of 

sampling scale on regional beta diversity pattern and its sensitivity on the choice of beta 

diversity index. Our analyses show that the observed beta diversity distribution in west coast 

cannot be explained by the null model alone implying uneven sampling to be a minor factor 

in shaping the beta diversity pattern. Among the environmental variables, salinity and 

productivity are major variables explaining the beta diversity of this region. Consistent 

patterns were obtained for live and dead datasets indicating that at regional scale, spatial and 

compositional fidelity have not changed significantly despite time averaging and post-

mortem transportation events affecting the death assemblages. However, the consistency in 

this study should not be generalized to imply that live and death assemblages can be always 

considered to be congruent at regional scales and evaluation of live-dead fidelity should not 

be overlooked even at regional scales. A possible caveat of our study is the lack of detailed 

information on seasonal variation of the live assemblages as we had to mostly rely on 
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snapshots of community data from literature. Because of the large spatial coverage pf our 

data, it is less likely to be severely impacted by the caveats.  

 

Figure captions 

Figure 1: Map of India showing the sampling locations. 

 

Figure 2: Flowchart describing the general framework for the null model 

 

Figure 3: Null model predicted mean (black circles) and variance of beta diversity (red dash) 

with coastline length based on LA data. The left column represents “combined bin method” 

and the right column represents “individual bin method”. The indices of beta diversity used 

here include Bray-Curtis (βppd) (A-B), Whittaker index (βwhit) (C-D), Simpson index (βsim) (E-

F), Sorenson index (βsor) (G-H), Nestedness component of Sorenson (βsne) (I-J). 

 

Figure 4: Null model predicted mean (black circles) and variance of beta diversity (red dash) 

with coastline length based on DA data. The left column represents “combined bin method” 

and the right column represents “individual bin method”. The indices of beta diversity used 

here include Bray-Curtis (βppd) (A-B), Whittaker index (βwhit) (C-D), Simpson index (βsim) (E-

F), Sorenson index (βsor) (G-H), Nestedness component of Sorenson (βsne) (I-J). 

 

Figure 5: Relationship between observed mean beta diversity and coastline length. The left 

column represents LA and the right column represents DA. The indices of beta diversity used 

here include Bray-Curtis (βppd) (A-B), Whittaker index (βwhit) (C-D), Simpson index (βsim) (E-

F), Sorenson index (βsor) (G-H), Nestedness component of Sorenson (βsne) (I-J). 
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Figure 6: Histograms of D-values produced by K-S test between simulated (combined and 

individual method) and observed beta diversity distributions. The first two columns represent 

LA and the right two columns represent DA. The indices of beta diversity used here include 

Bray-Curtis (βppd) (A-D), Whittaker index (βwhit) (E-H), Simpson index (βsim) (I-L), Sorenson 

index (βsor) (M-P), Nestedness component of Sorenson (βsne) (Q-T). The significant p-values 

are marked in red. 

 

Figure 7: Relationship between βppd and different oceanographic parameters. The first two 

columns represent LA and the right two columns represent DA.  

 

Figure 8: Biplots showing the relationship between βppd and environmental parameters using 

canonical correspondence analysis (CCA) (A-B) and redundancy analysis (RDA) (C-D). The 

left column represents LA and the right column represents DA. 

 

 

Table captions 

Table 1. Mean of observed beta diversity values of different indices from LA and DA. 

Table 2. Results of Spearman rank correlation test between beta diversity and spatial scale of 

sampling (grain size) for LA.  

Table 3. Results of Spearman rank correlation test between beta diversity and spatial scale of 

sampling (grain size) for DA. 

Table 4. Results of multiple and single GLM analyses to assess contribution of environmental 

variables in determining observed Bray-Curtis dissmilarity (βobs_ppd). The significant results 

are in red.  
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Supplementary materials: 

Figure S1: Null model predicted mean (black circles) and variance of beta diversity (red 

dash) with number of bins based on LA data. The left column represents “combined bin 

method” and the right column represents “individual bin method”. The indices of beta 

diversity used here include Bray-Curtis (βppd)(A-B), Whittaker index (βwhit) (C-D), Simpson 

index (βsim) (E-F), Sorenson index (βsor) (G-H), Nestedness component of Sorenson (βsne) (I-

J). 

 

Figure S2: Null model predicted mean (black circles) and variance of beta diversity (red 

dash) with number of bins based on DA data. The left column represents “combined bin 

method” and the right column represents “individual bin method”. The indices of beta 

diversity used here include Bray-Curtis (βppd) (A-B), Whittaker index (βwhit) (C-D), Simpson 

index (βsim) (E-F), Sorenson index (βsor) (G-H), Nestedness component of Sorenson (βsne) (I-

J). 

 

Table S1. Significance (p-values) of Spearman rank correlation test between environmental 

variables. The significant results are in bold. 

 

S3: This is the R-script used for the present study. The required data is available with the 

authors and can be shared upon request. 
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Table 1. Mean of observed beta diversity values of different indices from LA and DA. 

 

β diversity measure LA  DA  

Bray-Curtis (βobs_ppd) 0.851 0.864 
Whittaker (βobs_whit) 0.753 0.629 
Simpson (βobs_simp) 0.602 0.473 
Sorenson (βobs_sor) 0.753 0.629 
Nestedness component of Sorenson (βobs_sne) 0.151 0.156 
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Table 2. Results of Spearman rank correlation test between beta diversity and spatial scale of sampling (grain size) for LA.  

 

Metric 

LA 

Number of bins Coastline length 

Combined bin method Individual bin method Combined bin method Individual bin method 

Mean Variance   Mean Variance Mean Variance   Mean Variance   

p rho p rho p rho p rho p rho p rho p rho p rho 

βppd 0.636 -0.032 0.000 0.335 0.034 0.148 0.087 -0.545 0.004 -0.191 0.341 0.382 0.296 0.074 0.141 -0.473 

βwhit 0.496 -0.046 0.503 0.227 0.388 0.056 0.354 -0.293 0.106 -0.109 0.356 0.309 0.975 -0.002 0.451 -0.254 

βsim 0.519 0.047 0.232 -0.418 0.000 -0.339 0.880 0.066 0.735 -0.024 0.145 -0.469 0.000 -0.277 0.945 0.030 

βsor 0.012 -0.169 0.968 -0.018 0.085 0.118 0.457 -0.237 0.053 -0.131 0.451 -0.254 0.321 0.068 0.654 -0.150 

βsne 0.056 -0.139 0.299 -0.345 0.000 0.471 0.225 -0.400 0.252 -0.084 0.021 -0.700 0.000 0.335 0.946 -0.027 
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Table 3. Results of Spearman rank correlation test between beta diversity and spatial scale of sampling (grain size) for DA. 

Metric 

DA 

Number of bins   Coastline length   

Combined bin method Individual bin method Combined bin method Individual bin method 

Mean Variance Mean Variance Mean Variance Mean Variance 

p rho p rho p rho p rho p rho p rho p rho p rho 

βppd 0.000 0.315 0.758 -0.115 0.001 0.221 0.095 -0.563 0.000 0.292 0.341 -0.318 0.001 0.227 0.236 -0.391 

βwhit 0.000 -0.436 0.967 0.018 0.002 -0.214 0.707 -0.139 0.000 -0.353 0.145 -0.472 0.752 0.220 0.802 -0.091 

βsim 0.045 -0.141 0.001 -0.872 0.000 -0.474 0.100 -0.527 0.072 -0.126 0.004 -0.809 0.000 -0.263 0.327 0.327 

βsor 0.000 -0.428 0.427 -0.284 0.000 -0.271 0.033 -0.654 0.000 -0.327 0.016 -0.718 0.658 0.029 0.192 -0.427 

βsne 0.000 -0.354 0.743 0.133 0.097 0.119 0.503 0.227 0.001 -0.222 0.349 -0.333 0.022 0.163 0.313 -0.336 
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Table 4. Results of multiple and single GLM analyses to assess contribution of environmental variables in determining observed Bray-Curtis 
dissimilarity (βobs_ppd). The significant results are in red. 

  LA West Coast DA West Coast 

  Multiple GLM Single GLM Multiple GLM Single GLM 

  Estimate 
Std. 
Error t value Pr(>|t|) Estimate 

Std. 
Error t value Pr(>|t|) Estimate 

Std. 
Error t value Pr(>|t|) Estimate 

Std. 
Error t value Pr(>|t|) 

Productivity 
mean -0.0001 0.0001 -0.7246 0.5012 0.0000 0.0000 0.9590 0.3570 -0.0001 0.0000 -1.5158 0.1900 0.0000 0.0000 -0.1720 0.8660 
Productivity 
range 0.0000 0.0001 -0.0890 0.9325 0.0000 0.0000 -1.4380 0.1760 0.0002 0.0001 2.1764 0.0815 0.0000 0.0000 -0.4580 0.6550 
Salinity 
mean 0.1011 0.1586 0.6371 0.5521 0.0258 0.0208 1.2400 0.2390 0.0593 0.1040 0.5701 0.5933 0.0091 0.0164 0.5540 0.5900 
Temperature 
mean 0.0797 0.2094 0.3808 0.7190 -0.0359 0.0296 -1.2120 0.2488 -0.2376 0.1373 -1.7306 0.1441 -0.0072 0.0235 -0.3060 0.7650 
Temperature 
range 0.1654 0.1068 1.5496 0.1819 0.0184 0.0263 0.6990 0.4980 -0.0381 0.0700 -0.5440 0.6098 -0.0158 0.0197 -0.8050 0.4370 

Oxygen -0.0317 0.0207 -1.5307 0.1864 -0.0152 0.0119 -1.2800 0.2250 -0.0296 0.0136 -2.1778 0.0813 -0.0156 0.0084 -1.8710 0.0859 

cyclones 0.0002 0.0071 0.0297 0.9774 -0.0004 0.0027 -0.1500 0.8830 0.0101 0.0046 2.1847 0.0806 0.0002 0.0021 0.0950 0.9260 

Shelf area 0.0000 0.0000 -1.2324 0.2726 0.0000 0.0000 0.2330 0.8190 0.0000 0.0000 -1.9635 0.1068 0.0000 0.0000 -0.0700 0.9460 
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