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Key Points 

• Bespoke program for non-specialists in computerised methodologies for deep exploration 

of TCR repertoire analysis 

• Automated QC and analysis pipelines for Sanger based TCR sequencing coupled with 

immunophenotyping, with the capacity for integration of other sequencing platform 

outputs  

• Automated summary processes to aid data visualisation and generation of publication-

ready graphical displays 
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Abstract 

T cells expressing either alpha-beta or gamma-delta T cell receptors (TCR) are critical 

sentinels of the adaptive immune system, with receptor diversity being essential for 

protective immunity against a broad array of pathogens and agents. Programs available to 

profile TCR clonotypic signatures can be limiting for users with no coding expertise. Current 

analytical pipelines can be inefficient due to manual processing steps, open to data 

transcription errors and have multiple analytical tools with unique inputs that require coding 

expertise. Here we present a bespoke webtool designed for users irrespective of coding 

expertise, coined ‘TCR_Explore’, incorporating automated quality control steps that 

generates a single output file for creation of flexible and publication ready figures. 

TCR_Explore will elevate a user’s capacity to undertake in-depth TCR repertoire analysis of 

both new and pre-existing datasets for identification of T cell clonotypes associated with 

health and disease. The web application is located at https://tcr-explore.erc.monash.edu for 

users to interactively explore TCR repertoire datasets.  
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Introduction 

Conventional alpha-beta (αβ) T cells and unconventional gamma-delta (γδ) are critical 

sentinels of the immune system that are equipped with a molecular armory to detect, engage 

and eliminate abnormal cells[1-3]. Both αβTCR and γδTCR are heterodimeric protein 

containing an α- and a β-chain or a γ- and a δ-chain, respectively. The α- and γ-chain, termed 

TRA or TRG, are encoded by one variable (V), one joining (J) and one constant (C) gene, 

whilst the β- and δ-chain, termed TRB or TRD, is encoded by one V, variable diversity (D) 

genes (up to three), one J and a C gene [4, 5]. Recombination of various V(D)J genes, 

including incorporation of non-template, results in distinct TCR complementarity 

determining region (CDR) 3 protein sequences[4, 6], and leads to highly diverse TCR 

repertoire (e.g. 106 to 108 and unique functional αβTCR clonotypes[7]). Determining the 

composition and diversity of the TCR repertoire associated with different human diseases is 

an important step in rationalised clinical interventions or development of T cell-based 

immunotherapies. For example, we have applied single-cell αβTCR[8] and γδTCR[9] gene 

analysis to decipher MHC-restricted TCR signatures associated with herpesvirus 

infection[10, 11], autoimmune diseases such as rheumatoid arthritis[12], heterologous 

immunity[13] and drug hypersensitivity (αβTCR[14, 15]). Whilst the acquisition pipeline of 

single-cell TCR data by Sanger sequencing is relatively standardised (Figure 1), the 

downstream quality control (QC) processes including filtering poor quality sequences and 

manual pairing of αβ or γδ TCR chains, as well as verification to ensure data transcription 

accuracy remain labour intensive. Similarly, single chain data aligned utilising specific 

software or paid services (e.g. ImmunoSEQ[16], MiXCR[17]) can also require post-

alignment QC processes that include filtering out poor quality sequences. Moreover, 

visualisation of TCR repertoire data often requires additional manual reformatting steps to 

conform to input requirements of figure generation pipelines such as the Circos® online 
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tool[18], downloadable coding-based programs (e.g. TCRdist, VDJtools)[17, 19-25], or 

subscribed non-TCR specific statistical programs (e.g. GraphPad Prism 9 [GraphPad, 

Software, San Diego, CA, USA] or Microsoft®Excel® [Microsoft, Redmond, WA, USA]). 

Often these applications are restricted to either a single TCR chain analysis[20, 23] or paired 

TCR chain analysis[19]. Hence, there is an unmet need for an application that requires 

minimal to no coding expertise, automation of manual processes, elimination of data 

transcription errors, as well as improved flexibility of data analysis and figure generation.  

Here we present TCR_Explore, a Shiny R application available on an open-access 

webserver (http://tcr-explore.erc.monash.edu) that analyses and visualises TCR repertoire 

data. TCR_Explore introduces workflows using an automated process that pairing of αβ or γδ 

TCR chains from Sanger sequencing pipelines and facilitates interrogation of linked flow 

cytometric index data for immunophenotyping analyses. Additionally, TCR_Explore 

facilitates conversion and filtering of non-Sanger alignment pipelines (e.g. ImmunoSEQ, 

MiXCR) to the required TCR_Explore format. Moreover, an automated summarisation 

process from a single input file enables the visualisation of complex data sets and creation of 

a variety of publication ready figures. Thus, TCR_Explore is a powerful platform for routine 

analysis of TCR repertoire data of new and reanalysis of pre-existing datasets for greater 

insight by users irrespective of coding expertise.  
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Methods  

Data and code availability  

The demonstration data is from Mifsud et al. (2021)[14] and Lim et al. (2021)[12]. The local 

version of ‘TCR_Explore’ and all the raw data files and processed datasheets are located on 

GitHub https://github.com/KerryAM-R/TCR_Explore in the test-data section.  

 

Single cell sorting and multiplex nested PCR for amplification of TCR chain genes.  

TCR_Explore was developed for the QC and analysis of Sanger sequencing data generated 

following multiplex nested PCR (Figure 1A). Briefly, this included a single cell sort, with 

and without FACSort index data, into position A1 to H10 of a 96 well plate. Followed by 

multiplexed PCR of either the TCRα and TCRβ or TCRγ and TCRδ[9, 10, 12, 14]. Ideally, 

sample labelling should follow IndividualID.groupChain-initialwell (e.g. T00020.IFNB-A1). 

This naming can be either added in the .seq to .fasta conversion step or prior to the pairing 

process. Sanger sequencing generates two outputs files, .seq and .ab1, that contains the 

sequencing and chromatogram information, respectively.  

 

Quality Control.  

Step 1: Alignment of TCR chain sequences using IMGT. 

Sanger sequencing .seq output files need to be converted into a .fasta file, which can be 

performed using TCR_Explore (recommend 50 sequences per file) (Supplementary data 1). 

The .fasta file is then uploaded onto the international ImMunoGeneTics information system® 

(IMGT)[4, 26] website (https://www.imgt.org/IMGT_vquest/input), which aligns a maximum 

of 50 sequences at a time. To download the Vquest.xls file, the user selects the relevant 

species (e.g. Homo sapiens), receptor type or locus (e.g. TR), followed by section “C. Excel 

file” containing only the ‘Summary (1)’ and ‘Junction (6)’ tabs.  

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted November 4, 2022. ; https://doi.org/10.1101/2022.11.03.514642doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.03.514642


9 
 

Step 2: TCR_Explore Quality control.  

(i) Creating QC file  

Upload the Vquest.xls file into the ‘QC→IMGT (Sanger Sequencing)’ tab, select the dataset 

‘own_data’ and ‘Select file for IMGT datafile’ using the browse function to upload a file. 

This will create a downloadable IMGT_onlyQC.date.csv file that contains necessary 

information for either the TCR_Explore QC process or for compatible files for use in external 

programs.  

 

(ii) Chromatogram quality and sequence functionality 

The program adds columns required for the QC process including, 'V.sequence.quality.check’ 

(column Q), 'clone_quality' (column R) and ‘comments’ (column S) (Supplementary Table 

1). The 'V.sequence.quality.check’ (Column Q) flags IMGT outputs that were not aligned, 

unproductive in ‘V-DOMAIN Functionality’ (Column C), if there were either V or J identity 

issue (<90% identity) from ‘V-REGION identity %’ (column E)  and ‘J-REGION identity %’ 

(column G), respectively or ‘No issue flagged by IMGT’. Based on the test data[14], 151 

sequences reported ‘No issue flagged by IMGT’, had high quality chromatograms with 

productive sequences, and therefore were designated as a ‘pass’ in the 'clone_quality' 

(column R), while the 136 remaining sequences were designated as ‘NA’. The user manually 

interrogates the chromatogram of each .ab1 files using either TCR_Explore or external 

programs such as Chromas (Windows; http://technelysium.com.au/wp/chromas/), FinchTV 

(Mac/Windows; https://digitalworldbiology.com/FinchTV) or another chromatogram 

visualisation software. The user needs to fill in the ‘comments’ column on if the sequence is 

either of poor quality (e.g. T00024.IFNA-A3_A07.ab1 contained two sequences) or high 

quality (e.g. E10630.CD8A-A5_B01.ab1) (Supplementary Table 1). All sequences that are 

low quality need to be designated a ‘fail’ in the 'clone_quality' (column R). Next the user 
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needs to replace the remaining ‘NA’ as either ‘pass’ or ‘fail’ depending on whether the clone 

is productive or not (i.e. stop codons or frameshift), and If these sequences can be manually 

resolved (e.g. insert missing base pair in low quality regions). The user can create a new file 

.fasta file with the resolved sequence(s) with ‘man’ added to the end of header  (e.g. 

>T00020.IFNA-A1_A1.seq#1man), as this will not impact the pairing process. The original 

sequences will ‘fail’, while the manually altered sequences will be designated a ‘pass’. This 

ensures that all alterations are documented and traceable. Overall, the 'clone_quality' will be 

filled in by the user as either pass (e.g. productive, in-frame, no stop codons) or fail (non-

productive, out-of-frame, stop codons, no rearrangement, two sequences, no result) based on 

the sequence information. The user can document the ‘fail’ reason in the ‘comments’ column 

S. This process is repeated for all Vquest.xls sequence files, and the data is combined into a 

single .csv file for downstream TCR chain pairing. A video example of the quality control 

process is located in ‘Tutorials →Quality control information (includes video tutorial)’. 

 

Step 3: Creating the paired TCR file.  

Upload the completed QC.csv file into the ‘QC → Paired chain file’ tab, select the dataset 

‘own_data’ and ‘Completed QC file (.csv)’ using the browse function to upload a file to 

create the paired_TCR.csv file (Supplementary Table 2). The user can select either alpha-

beta or gamma-delta chains as well as the Information included (e.g. Summary+JUNCTION). 

Only paired chains that have a ‘pass’ assigned will included in the final functional paired 

TCR repertoire file. The pairing process is based on the IndividualID.groupChain-initialwell. 

Additionally, the T cell receptor (TR) abbreviation was removed (e.g. TRAV = AV). 

Moreover, the program adds several columns to the end of the file that shows the genes 

without the allele for AJ, AV, AVJ, BJ, BV, BD, BVJ, BVDJ, AVJ.BVJ, and AVJ.BVDJ or 

the γδTCR equivalent (Supplementary Table 2). This will create a downloadable .csv file 
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(e.g. paired_TCR.csv) that contains necessary information for both the ‘TCR analysis’ and 

‘Paired TCR with index data’ sections. There is also an option to download the cleaned 

‘single chain file’ if pairing is not needed or the Tab space variable (TSV) or .tsv file for use 

in TCRdist[19].  

 

Conversion of alternate TCR data outputs to TCR_Explore format. 

TCR_Explore can convert TCR repertoire data from other alignment programs into a 

compatible format. For ImmunoSEQ® we utilised data from Heikkila et al. (2021)[27], this 

process rearranges the file so that the count data is in column A (renamed as cloneCount), 

keeps the in-frame sequences only, removes empty columns and missing information from 

either the V or J genes. For MiXCR[17], the program removes sequences with stop codons or 

frameshifts. For sequencing data not aligned through either ImmunoSEQ® or MiXCR, use 

the ‘Other’ in the ‘Input type’ dropdown menu, as this contains the generic filtering and 

conversion functions. A video example of the functionality is provided in ‘QC → Convert to 

TCR_Explore file format → Video of the conversion process’.  

 

TCR analysis.  

The ‘TCR analysis’ tab includes features to aid in figure generation and summary statistics. 

Users can select either test αβTCR data[14] denoted as “ab-test-data2” or they can upload the 

single or paired TCR .csv file or from another QC processed TCR dataset (e.g. MiXCR[17]). 

Interrogation of TCR data is achieved via four distinct analysis platforms (Overview of the 

TCR, Motif analysis, Diversity and chain usage, Overlap). Each section is further subdivided 

using tabs or dropdown menus to alter graphing parameters and displays for each figure. In 
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total, there are 14 distinct figures that can be generated in ‘TCR analysis’ section and one in 

the ‘Paired TCR with Index data’ section.  

 

 

(i) Overview of TCR pairing 

‘Overview of TCR pairing’ tab includes a downloadable summary table for TCRdist3[24], 

and three analytical graphs: treemap, chord diagram and pie chart. There are common 

automated and customisable features of the plots which include: ordering the groups, 

customisable colours, font type, drop-down menus to change the desired comparison. The 

drop-down menus enable the user to quickly change their comparison from single chain 

analysis (e.g. TRAV vs TRAJ) to paired chain analysis (e.g. TRAV-TRAJ vs TRBV-TRBJ) 

without the need to manually alter the file. Additionally, the chord diagram included options 

for selective labelling (e.g. Label or colour selected clone/s). A video example of the 

functionality is available in ‘Tutorials → Video examples → Overview of TCR pairing’.  

 

(ii) Motif Analysis 

There are four sub-tabs in the ‘Motif analysis’ section which presents motif plots based on 

the unique CDR3 sequences. The first tab is the ‘CDR3 length distribution’, which includes a 

histogram that can be colour coded by a specific column (e.g. AVJ) or as a density plot that 

shows the overlap of the groups. The three other sub-tabs show either the ‘Motif (amino 

acid)’ and ‘Motif (nucleotide sequence)’ for single lengths, while the ‘Motif (AA or NT 

alignment)’ uses muscle[28] to align the sequences. Both the ‘Motif (amino acid)’ and ‘Motif 

(AA or NT alignment)’ can compare the differences of two motifs using subtractive analysis. 

Like the online version of muscle, we restricted sequence alignment to 500 sequences to 
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prevent server timeout issues. A video example of the functionality is provided in ‘Tutorials 

→ Video examples → Motif analysis’.  

 

 

 

(iii) Diversity and chain usage 

There are two tabs in the ‘Diversity and chain usage’ section. The first tab ‘Chain bar graph’ 

has three distinct graphs of either the chains used per group, the frequency of the repertoire 

per group and a stacked bar graph. For the frequency graph, the x-axis represents the number 

of times a clone was observed, the numbers above the bars represent the unique clones, and 

the line represents the cumulative frequency. The second tab is the ‘Inverse Simpson Index’, 

which is used to calculate the changes in diversity. The larger the Inverse Simpson Index, the 

more diversity. There are two graphs available; (1) shows the index vs the selected group and 

(2) showcases the index vs either the number of total clones or unique clones. Graph (2) is 

used to check the total number of sequences is not biasing the results. If two groups are being 

compared, a standard t-test calculation is available. For more complex statistical methods, 

such as ANOVA, a third-party program is required, therefore the Inverse Simpson index table 

is downloadable for this purpose. Further interrogation of the data can also be conducted 

using TCRdist[19] or TCRdist3[24]. A video example of the functionality is in ‘Tutorials → 

Video examples →Diversity and chain usage’. 

 

(iv) Overlap 

The ‘Overlap’ section enables users to compare multiple groups using either a heatmap or 

upset plot. The heatmap compares chain usage from either single or multiple individuals, 
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whilst an upset plot can display the overlap of up to 31 groups, which is a restriction of the 

package used[29]. These comparisons highlight whether the TCR repertoires are of a public 

or private nature. The upset plot table data is also downloadable. A video example of this 

functionality is in ‘Tutorials → Video examples → Overlap’. 

 

 

Paired TCR with Index data 

This three-step process is showcased as a video in  ‘Tutorials → Video examples → Paired 

TCR with Index data’.  

 

Step 1. Merging the paired TCR with Index data (QC process 1) 

The ‘Paired TCR with Index data’ section automates the merging of the paired clone file with 

the corresponding .fcs file. A background file converts the .fcs xloc and yloc (e.g. 0,0) values 

to A1 to H10 values to enable merging. This process is limited to one plate at a time as only 

one .fcs can be uploaded. However, there is no need to reformate the QC paired TCR .csv 

file. The user needs to select the group, individual and if there were multiple plates. The user 

can then copy all the samples into one .csv file.  

 

Step 2. Data cleaning steps (QC process 2) 

The next quality control step occurs in ‘Data cleaning steps’ to covert the negative 

fluorochrome values to small positive values required for log transformation, and was the 

method utilised in Lim et al. (2021)[12]. To create the colour scheme for the file, the users 

can select all necessary columns, but must not select fluorochrome columns, well, 
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cloneCount columns as it will not summarise. After downloading, the user can alter names of 

the fluorochromes, which is restricted to alphabetic characters and numbers.  

 

Step 3. Generation of the analytical plot 

Next, in the ‘TCR with index data plot’, the user uploaded the cleaned file from step 2. The 

user can select any of the fluorochromes to display on the graph. There are over 20 

customisable features including the size, colour, and shape of each dot as well as text size and 

font. These features are either located in the side panel or above the plot, so the user can 

readily visualise all changes. The figure can be downloaded as either a PNG or PDF.  

 

R packages.  

TCR_Explore is an R-based Shiny application constructed using various R packages 

including: “tidyverse” (version 1.3.1)[30], “ggplot2” (version 3.3.5)[31], “ggrepel”(version 

0.9.1)[32], “shiny” (version 1.7.1)[33], “shinyBS” (version 0.61)[34], “gridExtra”(version 

2.3)[35], “DT”(version 0.20)[36], “plyr” (version 1.8.6)[37], “dplyr” (version 1.0.7)[38], 

“reshape2” (version 1.4.4)[39], “treemapify” (version 2.5.5)[40], “circlize” (version 

0.4.13)[41], “motifStack” (version 1.36.1)[42], “scales” (version 1.1.1)[43], “flowCore” 

(version 2.4.0)[44], “readxl” (version 1.3.1)[45], “RcolorBrewer” (version 1.1-2)[46], 

“randomcoloR” (version 1.1.0.1)[47], “colourpicker” (version 1.1.1)[48], 

“ComplexHeatmap” (version 2.9.4)[29], “muscle” (version 3.34.0)[28], “DiffLogo” (version 

2.16.0)[49], “vegan” (version 2.5-7)[50], “VLF” (version 1.0)[51], “ShinyWidgets” (version 

0.7.0)[52], “showtext” (version 0.9-5)[53], “ggseqlogo” (version 0.1)[54], “markdown” 

(version 1.1)[55], “rmarkdown” (Version 2.14)[56], and “sangerseqR” (Version 1.32.0)[57]. 

All dependent packages used to run the program are in ‘Tutorials → Session info’.  
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Results 

Interrogation of TCR repertoires.  

TCR_Explore is a web-application for TCR repertoire quality control and analysis. The 

automated QC process was created to aid cleaning and pairing of αβTCRs or γδTCRs from 

different sequencing alignment pipelines (Figure 1A) to create a single input file for 

TCR_Explore. Importantly, both single chain and paired chain TCR repertoire can be 

interrogated.  

The ‘TCR analysis’ tab has four subsections for repertoire analysis. The first section 

enables data visualisation of TCR repertoire profiles via treemaps, chord diagrams or pie 

charts (Figure 1B) and generates a summary table. The second section evaluates CDR3 

length distributions and amino acid motifs (both single length and consensus sequences) can 

be plotted for comparative analyses (Figure 1C). The third section examines changes in 

repertoire diversity and chain usage via inverse Simpson diversity index (SDI) values or 

frequency plots (Figure 1D). The fourth section facilitates a comparative group overlap 

analysis using heatmaps or upset plots (Figure 1E), with a downloadable table output. 

Collectively, TCR_Explore has enhanced flexibility to perform TCR repertoire analysis and 

aid in directing the next stages of analysis or experimentation.  

 

Showcasing TCR immunophenotypes. 

Unlike existing tools, TCR_Explore enables merging of functional TCR repertoire data with 

phenotypic expression, which is critical for validation of T cell biomarkers[12]. Previously, 

manual merging of paired TCR repertoire data with phenotypic markers (i.e. index data) 

collected during the FACSort was cumbersome and prone to data transcription errors (Table 

1). In addition, manual conversion of negative expression values for log transformation was 

also required, as well as the need to select the phenotypic comparison before generating a 
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biexponential figure in GraphPad®[12] (Table 1). Due to the time-consuming nature of this 

workflow, few studies have utilised this validation process[12, 58]. Here, the ‘Paired TCR 

with Index data’ tab automates these processes to generate a biexponential plot (Figure 1F). 

Drop-down menus improve flexibility for display of selected phenotypic markers, providing a 

detailed assessment of T cell specific biomarkers.  

 

Improved quality control process for pairing TCR chain genes. 

TCR_Explore, utilising the R statistical language, automates numerous manual QC processes 

as depicted in Table 1. This process includes pairing the separate TCRα and TCRβ or TCRγ 

and TCRδ chains, produced from Sanger sequencing output files (.seq). Importantly, our 

program also includes automated merging the functional paired TCR file with corresponding 

phenotype index data (.fcs) file (Table 1; Supplementary Table 3). Both QC merging 

process, based on the naming convention (IndividualID.groupChain-initialwell), thereby 

reduce the time needed to create an analysis file, with substantial reduction of data 

transcription errors in the QC process.  

 

Automated summarisation reduces errors and enables flexible figure generation.  

Previous workflows for TCR repertoire analysis and visualisation involved the use of 

multiple tools, each requiring specific file formats[17-25]. This process is time intensive, 

vulnerable to data transcription errors, and inflexible with respect to incorporating data 

updates or changes to the comparison of interest (e.g. TRAV vs TRAJ to TRAV vs TRBV). 

Additionally, these programs include limitations in plot customisation (i.e. font choices or 

colouring of specific chains)[18, 20], inflexible in their export functions (e.g. inability to 

specify height/width; PNG or PDF only)[18, 20] and restricted to single chain analysis[20, 

21]. Therefore, there is an unmet need to develop a program to overcome these limitations. 
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To remove these reformatting processes and reduce errors, TCR_Explore was designed to 

rely on a single integrated input file for the generation of all data figures (Table 2). The 

program promptly summarises the data based on researcher inputs located in the Shiny R 

interface, thereby eliminating the need for creating multiple files and removal of data 

transcription errors. The input file structure and user-friendly interface allows flexibility, 

particularly if samples are added or removed. Overall, TCR_Explore has improved flexibility 

and breadth of analysis, thereby enhancing opportunity for TCR repertoire discoveries. 

 

Interface with existing programs for extended data analysis.  

One statistical program that uses paired TCR data is TCRdist[19], which has many features 

including identifying the origin of TCR sequences, principal component analysis, αβTCR 

epitope-specific repertoires, and a robust TCR diversity statistic. These features were beyond 

the scope of TCR_Explore, therefore we included an interface that serves to provide 

compatible outputs for TCRdist via the generation of a TSV file (Supplementary data 2). 

Additionally, we included a .csv output that was compatible with further analysis using 

TCRdist3[24] (Supplementary data 3). Moreover, the TCR data outputs from other 

programs and pipelines including: iRepertoire (deep-sequencing of TCR repertoire[59]), 

ImmunoSEQ[16], and MiXCR[17]. These external TCR data, once converted (see ‘QC → 

Convert to TCR_Explore file format’), can be imported into the TCR_Explore ‘TCR 

analysis’. Overall, TCR_Explore is compatible with external programs and data pipelines.  

 

Extended analysis of drug-induced human αβTCRs reveals a central residue for TCR 

activation.  

In our recent study[14], we examined the carbamazepine-induced αβTCR profile of patients 

who had previously experienced either Stevens-Johnson syndrome or toxic epidermal 
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necrolysis following prescription of an anti-seizure medication, carbamazepine. These severe 

allergic responses are classified as T cell-mediated drug hypersensitivity reactions that 

principally target the skin following carbamazepine exposure via TCR activation[59, 60]. To 

profile the TCR repertoire of our patient cohort, peripheral blood mononuclear cells (PBMC) 

were in vitro stimulated for 14 days with 25 μg/mL carbamazepine. On day 14, drug-induced 

T cells were restimulated with HLA allotype matched antigen presenting cells (APC) in the 

absence or presence of carbamazepine, and single-cell sorted based on the production of the 

proinflammatory cytokine IFNγ into two subsets: (i) CD8+IFNγ+ (IFN activated group) or (ii) 

CD8+IFNγ- (CD8 non-activated group). In our initial publication, we reported the drug-

induced TCR clonotypes were highly focused to a few TCR clonotypes and this TCR usage 

was private amongst the cohort. Using TCR_Explore, reanalysis of the pre-existing dataset 

demonstrated a capacity to not only replicate the published findings but also to interrogate the 

data to new depths and reveal nuances not previously appreciated. 

For the reanalysis, we examined three patients E100630, T00016 and T00024. Firstly, 

for E10630 drug-specific TCRs (TRAVJ-TRBVJ) were visualised using chord diagrams in 

TCR_Explore to demonstrate recapitulation of the Circos® plots shown in the 

publication[14] (Figure 2a). Next, we confirmed via an upset plot that the paired αβTCR 

chains were specific to the individual patient (i.e. private TCR repertoire) by comparing 

multiple individuals TCR repertoires (Figure 2b). TCR_Explore also enabled greater 

flexibility for data display using either treemaps (Figure 2c) or pie charts (Figure 2d), which 

represent alternatives to chord diagrams. Additionally, examination of diversity based on 

unique sequences showed a decrease in TCR clonotypes in the IFN activated group compared 

to the CD8 non-activated group. This reduced diversity was represented by a significant 

reduction of the sample size corrected inverse SDI score (p=0.026; paired t-test; one-tailed), 

which highlighted that all three individuals expressed carbamazepine-induced TCR 
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clonotypes (Figure 2e). TCR_Explore automation provided the opportunity for novel 

findings including identification of additional clonal TCR sequences that warrant further 

functional validation.  

There are three proposed mechanisms for T cell activation by small molecules drugs, 

with both the hapten/prohapten and altered repertoire mechanisms resulting in alteration to 

peptides presented by the HLA[15]. In contrast, our paper[14] showed that carbamazepine-

induced SJS/TEN, associated with the pharmacological interaction with immune receptors 

concept, had minimal impact on the peptide repertoire. Therefore, T cell stimulation is likely 

to be triggered by direct interactions between the drug and the TCR, bypassing the need for a 

specific peptide/HLA complex. Using TCR-Explore, interrogation of CDR3α motifs (i.e. 

unique sequences) highlighted a redistribution of carbamazepine-induced CDR3α lengths 

towards 11mers (E10630) and 15mers (E10630, T00016), as well as loss of 16 mers 

(T00024) and 17mers (T00016, T00024) (Figure 3a). Interestingly, the E10630-derived 

11mer (CAAFGDYKLSF) in our original publication was shown to be activated in the 

presence of both CBZ and HLA-B15:02. For the 15mers, the IFN activated group was 

dissimilar from the CD8 non-activated group for both T00016 (Figure 3b) and T00024 

(Figure 3c; major clonotype CDR3α TRAV4-TRAJ33 CLVGETGDSNYQLIW). 

Interestingly, the E10630 and T00024 CDR3α two clonotypes shown above presented a 

central aspartate residue (bolded D). A centric aspartic acid residue αCDR3 region was also 

observed in carbamazepine-induced TCRs of other study participants (E10056, 

CAAKDGMDSSYKLIF; AP026, CIVRSLRDNYGQNFVF)[14] which were also activated 

in the presence of CBZ and HLA-B*15:02. Moreover, centric aspartic acid residues have 

been previously reported in carbamazepine-induced SJS/TEN blister fluid-derived T cells 

(VFDNTDKLI and AASPPDGNQFY)[59]. Therefore, the centric aspartic acid was most 

commonly derived from different TRAJ genes (underlined section), and this feature may be 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted November 4, 2022. ; https://doi.org/10.1101/2022.11.03.514642doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.03.514642


22 
 

required for CBZ-induced TCR activation. Together, TCR_Explore provided an opportunity 

to further interrogate our dataset that contributed to novel insights and opened further 

avenues for functional investigation.  

 

Linking of TCR clonotypes with immunophenotypes in a mouse model of 

autoimmunity. 

In another recent study[12], we examined the αβTCR repertoire in a mouse model of 

Rheumatoid Arthritis that expresses the human susceptibility allele HLA-DRB1*04:01. 

HLA-DR4 mice were inoculated with a double citrullinated peptide Fibβ-72,74cit69-81, and 

lymphocytes from draining lymph nodes were collected on day 8 and examined for TCR 

cross-reactivity to the single and double citrullinated epitopes by co-staining with Fibβ-

72,74cit69-81 and Fibβ-74cit69-81 tetramers. Individual unique- and cross-reactive CD4+ T cells 

were index sorted for downstream association of immunophenotype and TCR sequence and 

single cell TCRα and TCRβ sequencing. Concordant with the original analysis, TCR_Explore 

highlighted the cross-reactive αβTCR clone (i.e. TRAV1/J37-TRBV13-1/J1-6; green cross), 

as depicted by high tetramer expression of both single- and dual-stained citrullinated peptides 

(Figure 4a). However, additional information was showcased by TCR_Explore following 

further examination of the phenotyping panel (e.g. CD4, CD8, TCRβ, CD62L). Here, we 

confirmed that the immunophenotype of the tetramer sorted T cells were all CD4+ TCRβ+ 

(Figure 4b) and CD62Llow (Figure 4c). Low expression of CD62L has also been associated 

with T cell activation in rheumatoid arthritis[61]. Overall, TCR_Explore provides a critical 

platform to examine TCR signatures with immunophenotyping captured via FACSort index 

data to identify phenotypic markers of interest.  
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Discussion  

Programs that perform in-depth TCR repertoire analysis (e.g. TCRdist[19], TCRdist3[24], 

clusTCR[25], VDJtools[20]) utilise coding languages such as python and R, which 

effectively limits their usage to individuals with experience in these programming languages 

or at the very least requires a dedicated time commitment to learn these languages for 

accessibility. Alternatively, other programs such as Immunarch[23], a coding-based R tool, is 

aimed to improve access to TCR analysis by minimising the amount of coding needed to a 

maximum of 5-10 lines[23]. We have further improved the user experience of TCR repertoire 

analysis by launching our R application TCR_Explore on a website, which does not require 

coding inputs for program operation.  

One of the most critical processes for any dataset analysis is QC of the raw data. Prior 

to TCR_Explore, our workflow involved the processing of Sanger sequencing information 

into IMGT to generate the TCR assignments via a vquest.xls file. This file then underwent 

manual QC to generate a curated file for TCR analysis, which increases the potential for data 

transcription errors to occur. To eliminate both manual QC processing and data transcription 

errors, TCR_Explore was purposefully designed to include an automated QC function, with 

greatly reduced errors and efficiency that enables users to analyse their data in a shorter 

timeframe.  

Flexibility of data selection is an essential design feature in TCR_Explore to ensure 

that different variables can be examined without the need to modify the single curated input 

data file. Previous analyses that required changes to the dataset, such as the addition of 

individuals and/or treatment groups, would magnify the time required for reanalysis as this 

would also involve manual reformatting steps required for the various programs being used. 

TCR_Explore automates reformatting and eliminates the need for the modification of 
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multiple files, enabling the user to interrogate their dataset more thoroughly in the first 

instance.  

The capacity to visualise TCR repertoire data has often been restricted to programs 

and webtools that employ either coding languages and/or require specific file formats for 

input data, which also introduces the possibility of data transcription errors. Indeed, in some 

instances more than one webtool is required to visualise different graphical representations of 

the dataset. Here, TCR_Explore consolidates the generation of 15 different types of figures, 

with 14 of these able to be created from the same input file in the ‘TCR analysis’ section. To 

demonstrate the strength of this feature we showcased an increased flexibility and capacity to 

perform in-depth TCR repertoire analysis by re-examining our previously published human 

drug-induced TCR dataset[14]. Not only were we able to recapitulate our initial findings but 

extended our analysis in terms of evaluating both altered diversity of the TCR sequences and 

CDR3α motif differences. Access to all these figures in the one location enabled us to further 

interrogate our data with new hypotheses, which led to novel lines of inquiry not previously 

appreciated.  

 The capacity to pair the immunophenotype and TCR signature of an antigen-specific 

T cell provides powerful information for identification of disease biomarkers[58]. 

TCR_Explore was tailored to readily merge single-cell TCR sequencing and FACS Index 

sorted information. Re-evaluation of our mouse autoimmune TCR dataset[12] with 

TCR_Explore improved the robustness of data interrogation and visualisation to showcase 

previously unappreciated  immunophenotypic markers of interest associated with rheumatoid 

arthritis. Our program facilitated the examination of two immunophenotypic biomarkers at a 

time, where the comparisons could be readily changed. Importantly, third party programs 

involving paid subscriptions or coding-based programs are no longer required to perform this 

function. Our program has improved capacity to identify T cell biomarkers that could be used 
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in disease diagnoses, as well as identification of immunogenic T cells that have the potential 

to be developed into T cell-based therapeutics.  

 

Conclusion 

TCR_Explore is a purpose-designed program to perform automated TCR repertoire analysis 

and visualisation. TCR_Explore includes a QC pipeline to aid in error-free and proficient 

TCR repertoire analysis, as well as the generation of a single input file for data analysis and 

creation of publication ready figures. Use of the Shiny R interface and program maintenance 

on a webserver ensures that TCR_Explore is accessible to users irrespective of their coding 

expertise. We anticipate that TCR_Explore will provide a powerful platform for interrogation 

of TCR repertoires to unravel the complexity of their contribution in human health and 

disease.  
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Figure legends 

 

Figure 1. Traditional Sanger sequencing pipeline.  

(A) Targeted T cells are single-cell sorted into 96 well plates by flow cytometry. Single cells 

undergo reverse transcription to cDNA that is then used as the template for amplification of 

selected TCR genes by multiplex nested PCR. Following a PCR clean-up step and fluorescent 

labelling of dNTPs, the amplified DNA undergoes Sanger sequencing, which produces two 

output files (.seq and .ab1). (B) ‘Overview of TCR pairing’ panel; (top) treemap, (middle) 

chord diagram, (bottom) pie chart. (C) ‘Motif analysis’ panel; (top) length distribution, 

(middle), single length motif plot, (bottom) aligned motif plot. (D) ‘Diversity and chain 

usage’ panel; (top left) chain usage, (top right) frequency of each clonotype, (bottom left) 

inverse Simpson diversity index (SDI), (bottom right) total number of clones. (E)  ‘Overlap’ 

group comparison panel; (left) heatmap or (right) upset plot. (F) ‘Paired TCR with Index 

data’ panel; dot plot of the functional TCR sequence and two immunophenotyping markers. 

Figure created using BioRender (BioRender.com).  

 

Figure 2. TCR-Explore analysis of a pre-existing TCR repertoire dataset 

TCR repertoire data derived from in vitro expanded carbamazepine-induced T cells derived 

from patients with Stevens-Johnson Syndrome (T00016, T00024 and E10630), with CD8 and 

IFN representing the non-activated and drug-activated subsets, respectively. (a) E10630, 

chord diagram of drug-induced αβTCR repertoire for CD8 and IFN subsets. No overlapping 

sequences between the CD8 (grey) and IFN (orange) subsets. (b) Upset plot representing 

αβTCR CDR3 region overlap. Dots represent the presence of a clonal sequence and lines 

connect overlapping samples. (c) treemap coloured by AVJ_aCDR3_BVJ_bCDR3 and 

separated by the TRAV genes (size of the square indicate proportion of each TCR relative to 
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the individual sample; colour represents a unique clone). (d) pie chart coloured by 

AVJ_aCDR3_BVJ_bCDR3 (size of the segment is proportional to the percentage of each 

clone; colour represents a unique clone). Same colours were used for both the (c) treemap and 

(d) pie chart.  (e) Inverse Simpson index vs condition to measure change in diversity 

following drug exposure. Paired Students t-test, *p<0.05. Dots represent each individual.  

 

Figure 3. TCR-Explore reveals CDR3α motif nuances 

TCR repertoire data from patients with Stevens-Johnson Syndrome (T00016, T00024 and 

E10630), with CD8 and IFN representing the non-activated and drug-activated subsets, 

respectively. (a) CDR3α length distribution coloured by individual or density plot of CD8 

non-activated vs IFN activated group. CDR3α  motif plot showcasing the IFN activate (top) 

vs CD8 non-activated (bottom) 15mer for (b) T00016 and (c) T00024. 
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Three supplementary data files and three supplementary tables.  
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