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In many organisms, interactions among genes lead to multiple functional states, and12

changes to interactions can lead to transitions into new states. These transitions can be13

related to bifurcations (or critical points) in dynamical systems theory. Characterizing14

these collective transitions is a major challenge for systems biology. Here, we develop a15

statistical method for identifying bistability near a continuous transition directly from16

high-dimensional gene expression data. We apply the method to data from honey bees,17

where a known developmental transition occurs between bees performing tasks in the18

nest and leaving the nest to forage. Our method, which makes use of the expected shape19

of the distribution of gene expression levels near a transition, successfully identi�es20
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the emergence of bistability and links it to genes that are known to be involved in the21

behavioral transition. This proof of concept demonstrates that going beyond correlative22

analysis to infer the shape of gene expression distributions might be used more generally23

to identify collective transitions from gene expression data.24

1 Introduction25

Social insects represent well-known examples of adaptive collective systems, combining the e�orts of26

many individual actors to produce robust and adaptive aggregate behavior [1]. The allocation of tasks27

to individuals and, in some cases, specialization of individuals to particular tasks, often displays a28

sophisticated organization that promotes collective success [2]. This distributed coordination of e�ort29

is the result of a complicated process reaching from the level of gene regulation to social interactions.30

Mapping out the drivers of this process is a major challenge in understanding how collective behavior31

is successfully regulated in social insects, and connects to open questions more generally across32

living systems [3, 4].33

In honey bees, specialization occurs typically among the worker daughters of a single queen. The34

largest distinction among workers is between those that mostly perform tasks within the nest (brood35

care, food processing, nest construction and maintenance, and colony defense) and those that leave36

the nest to forage. Bees typically begin their lives performing more in-nest tasks (nest bees), and in37

about their second to fourth week of life a major transition occurs in which they switch to foraging38

outside the nest (foragers) [5, 6]. Individual bees vary in the age at which they make this nest bee to39

forager transition, and while the transition can be reversed in individual bees if the colony’s needs40

change, few normally do. This temporal bifurcation leads to an age-related division of labor [7].41

The mechanisms behind this behavioral transition include interactions between genes and other42

factors expressed within each bee, interactions between bees, and interactions between bees and43

their local environment [5, 8–14]. At the individual level, the gene product Vitellogenin (VG, formerly44

known as an egg-yolk precursor) and the endocrine factor juvenile hormone (JH), and the interactions45

between the two, have been well studied [5, 12, 15]. The interaction takes the shape of a mutually46
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suppressive feedback control system that appears to be at the core of the bifurcation of behavior47

between nest activities and foraging. Increasing levels of VG suppress JH in early life, while lower48

levels of VG in later life leads to higher titers of JH that further suppresses VG by inhibiting vg gene49

expression [5]. The behavior of this positive feedback control is consistent with the phenomenology50

of the transition, with either increases to JH (e.g. resulting from fewer interactions with other foraging51

bees as well as exposure to a variety of stressors) or decreases to VG (e.g. resulting from reduced food52

intake or excessive consumption of physiological nutrient stores during nursing tasks) leading to53

reinforcing feedback and the initiation of foraging. This general picture has recently been re�ned54

by situating VG and JH within larger gene networks involved in target of rapamycin and insulin55

signaling, ecdysone response, ovarian and neural activation [13]. Still, little is known about the full56

spectrum of genes and network dynamics that drive the transition from nest bee to forager and at57

least temporarily “lock” worker honey bees into the di�erent roles.58

An analogous phenomenon occurs in cell di�erentiation in multicellular organisms. Here, genetically59

identical cells perform distinct roles in the larger organism. Distinct cell types are “locked in” by60

regulatory interactions typically understood at the level of gene transcription. The dynamics of these61

interactions are thought to produce separate attractor states with di�erent gene expression patterns62

that correspond to distinct cell types [16, 17].63

In the language of dynamical systems, transitions among separate attractors are understood as arising64

from bifurcations that change the number of attractor states or from noise-induced hopping among65

co-existing attractors. In the cellular di�erentiation literature, statistical tools have been developed66

for use with gene expression data to identify transitions that create new attractor states [17–20].67

These studies have shown that multiple cases of cell state change are consistent with dynamics that68

pass through or near a continuous bifurcation, also known as a critical transition. This type of bifurcation69

is known to result from positive feedback loops in many biochemical networks [21,22]. More generally,70

such critical transitions are theorized to be ubiquitous across biology as mechanisms for controlling71

collective behavior [3, 4, 23–26].72

In honey bees, studies linking gene expression to behavior have tended to focus on searching for73

individual genes whose expression correlates with behavior [14,27,28]. This contrasts with a collective-scale74
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view of multiple interacting genes across multiple individuals that we anticipate will be necessary to75

�nd evidence of critical transitions.76

In this study, we analyze gene expression data across an ensemble of individual honey bees and across77

a series of developmental timepoints to examine genetic-scale indicators of the transition from in-nest78

tasks to foraging. We develop a method for identifying critical transitions based on the Landau theory79

of phase transitions in statistical physics and the theory of bifurcations in dynamical systems. At80

each timepoint, using measurements of gene expression across multiple bees, we are able not only81

to estimate mean expression values and their co-variance, but to infer the shape of the distribution82

of expression values. This shape can be expected to begin as unimodal as bees initially emerge from83

pupation, with gene expression values �uctuating around a common mean. As the adult bees develop,84

increased variation in behavior could be connected to continuous variation in gene expression, or at85

some point expression values could split into two well-de�ned groups (e.g. nest bees and foragers)86

corresponding to discontinuous variation. Such a transition would be indicated by a change from87

unimodality to bimodality in the distribution of expression values, which our method explicitly identi�es.88

Our method is designed to work with high-dimension-low-sample-size data as is common in transcriptomic89

data; it does not require prior knowledge of important genes; and it is formulated using a Bayesian90

interpretation to provide precise statistical meaning with respect to model selection and transition91

identi�cation. We use our method to answer the questions of whether and when the bees’ transition92

to foraging is visible in gene expression data, whether it is consistent with a continuous bifurcation93

transition, and which genes are most associated with such a transition.94

2 Results95

We examined gene expression pro�les of Nsamples = 16 bees at 5 developmental timepoints, from96

1 to 15 days old, spanning the transition in behavioral development from all bees remaining in the97

nest to some bees leaving the nest to forage. To critically test the concepts of our statistical model,98

we focused on a set of genes Ngenes = 91 that we expected to be involved in distinguishing the nest99

bee and forager behavioral phenotypes through their actions on and with VG, a known determinant100
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of foraging onset. Some of these genes have known correlations with VG production and with each101

other, while others were suspected of being involved through their action in common gene networks.102

Additional genes were selected because they are located within the genetic map con�dence limits of103

known quantitative trait loci (QTL) shown to have e�ects on ovaries, VG production, and foraging104

behavior [29], or involved in stress or immune-associated pathways that have been correlated with105

the behavioral transition before [30]. We predicted that the expression of sets of genes a�ecting foraging106

should diverge from their expression in nest bees leaving a detectable bimodal distribution of gene107

expression representing the bifurcation.108

We tested for bimodality consistent with a continuous transition using a Bayesian analysis. In particular,109

we compared the goodness-of-�t of a unimodal Gaussian distribution with the form of bimodal distribution110

expected near a continuous transition (see Methods). We were able to perform this test with low111

sample sizes (Nsamples < Ngenes) because bistability is expected to begin along the dimension with112

the largest variance (the �rst principal component), and we could thus focus on identifying bimodality113

along this single dimension.114

We �rst demonstrate proof of the principle that this method can successfully infer a transition to115

bistability in simulated data from a simple model of noisy gene regulatory dynamics with Ngenes =116

91. Fig. 1 displays the fraction of simulations in which evidence of a transition was successfully identi�ed117

as a function of the strength of interactions that induce a transition. While a larger number of samples118

can identify the transition earlier (Nsamples = 100; red points), even with the smaller number of119

samples that we have here (Nsamples = 16; orange points), we expect to be able to identify such a120

transition once the bimodality is more pronounced.121

Applying this analysis to the honey bee expression data, we �nd a transition into two distinct groups122

that is statistically visible at age 10 days and more apparent at age 15 days (Fig. 2). In Fig. 3, we plot123

for these two ages the gene expression data and inferred transition distribution along the bistable124

dimension (corresponding to the �rst principal component; see Methods). The data and the inferred125

distribution in this dimension are characterized by bees that fall roughly into two clusters, with a few126

bees that are transitional between the two clusters.127

Di�erent genes contribute di�erentially to de�ning the bistability. Sorting by the fraction s of each128
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Figure 1: The method successfully identi�es the transition state in simulated data. As
interaction strength α increases in a simple dynamical model of gene regulation (see
Eq. (19) in the Methods), gene expression levels projected along the �rst principal
component transition from a unimodal to a bimodal distribution (three insets show
simulated data as blue histograms and the best-�t distributions as red curves). A statistical
comparison between a Gaussian distribution and the distribution shape expected near
a continuous transition reliably identi�es the transition state once the bimodality is
su�ciently pronounced (red and orange points). Increasing the number of data samples
allows identifying the transition state when bimodality is less pronounced (compare red
and orange points).
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A B

Figure 2: In honey bees, both the variance of gene expression and the strength of evidence
for bistability grow over developmental time. A: The standard deviation of gene
expression along the principal component increases during development. Error bars
show standard errors (Nsamples = 16). B: The Bayesian Information Criterion measure
∆BIC quanti�es the strength of evidence in favor of the bistable transition distribution as
compared to a unimodal Gaussian, with positive values favoring bistability (blue circles; see
Methods Eq. (16)). We interpret ∆BIC values larger than 6 (horizontal dashed line) as strong
evidence for bistability. We also compute ∆BIC that compares a Gaussian mixture (n = 2)
with the unimodal Gaussian, which identi�es weaker evidence for bimodality (orange Xs;
see section 3).

Day 10 Day 15

Bistable dimension (first principal component) Bistable dimension (first principal component)

Figure 3: Bistability along the �rst principal component. Gene expression data from 16 bees
at age 10 days and 15 days projected along the �rst principal component (colored circles;
log-transformed data). Colors correspond to distance along this dimension, with orange
chosen to represent the low vg state indicative of foragers. The �t Landau distribution is
shown in blue.
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gene or product s 
up / 

down 
reg.

distribution of expression 

vg 0.95

hex 110 0.89

P110 0.80

transferrin 1 0.80

LOC409966 0.77

Hex70a 0.77

JHE 0.75

VG protein 0.69

ilp1 0.69

Def2 0.68    

   

   

   

   

   

   

   

   

   

gene or product s 
up / 

down 
reg.

distribution of expression 

hex 110 0.93

ilp1 0.83

MRJP-3 0.79

Hex70a 0.78

Def2 0.75

Malvolio 0.74

vg 0.74

P110 0.72

LOC409966 0.71

PRM1 0.71

SVP NR2F1 0.69

   

   

   

   

   

   

   

   

   

   

   

Day 10 Day 15

Table 1: Individual genes associated with the bistability. A handful of individual genes or gene
products have a large proportion s of their variance along the bistable dimension. Here we
highlight all genes with s > 2/3. Orange and purple colors correspond to bees on two
sides of the bistability, with orange chosen to represent the low vg state that is indicative
of foragers. In the column “up/down reg.”, we indicate whether the gene is up or down
regulated in the orange state as compared to the purple state. Expression data for these
genes are shown with the same colors for individual bees as in Figure 3, along with the
marginalized �t distribution in blue (log-transformed data, with scale bar corresponding to
an expression ratio of 10).
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gene’s variance that lies along the bistable dimension highlights those genes whose expression values129

give the most information about the side of the bistability on which each bee lies (Table 1 and SI130

Table 2). In Table 1, we also display the measured expression levels of the most informative genes,131

with datapoints from each bee colored according to their positions along the bistable dimension.132

Comparison with known gene expression patterns suggests that purple points correspond to bees133

predisposed to in-nest behavior, and orange points to those predisposed to foraging behavior [5, 31].134

3 Comparison to other potential methods for identifying a transition135

 

A B

Figure 4: Fitting to the Landau probability density function performs better than a mixture
of two Gaussians. In tests with simulated data, the Landau method (A) identi�es the
transition state sooner (at smaller µ, when the bistable states are closer to one another;
shown here �tting 100 samples), and (B) �ts the transition distribution much more closely
(shown here �tting 50,000 samples at µ = 0.0158; simulated data in blue histogram
compared to best �ts of Landau distribution and Gaussian mixture distribution shown as
solid curves).

A family of related methods for detecting bimodality would correspond to �tting bimodal distributions136

of di�erent shapes along the �rst principal component. One simple choice would be a mixture model137

that combines two Gaussian distributions. We compare our derived “Landau” distribution to this138

Gaussian mixture distribution (�tting the location of each Gaussian, a common width, and their relative139

weight, producing 2 extra degrees of freedom compared to the single Gaussian model). In Fig. 4, we140

demonstrate using simulated data that this distribution performs noticeably worse in detecting the141

transition to bimodality and in �tting the distribution of gene expression values. Furthermore, the142

orange points in Fig. 2B show that the Gaussian mixture model is not as statistically favored as the143
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1 3 6 10 15
Age (days)

0.2
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0.8
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10 selected genes
20 selected genes
50 selected genes
All 91 genes

Figure 5: Existing “transition index” measure also suggests a transition when focused on
particular genes. The transition index de�ned in Ref. [17] requires selecting a set of genes
that are known a priori to be involved in a transition. Applying this measure to our data
and restricting to genes identi�ed by our method, the largest values occur at age 10 and 15
(red circles). This corroborates our method, which does not require selecting speci�c genes,
yet locates a transition at a similar time. In contrast, when including data from all 91 genes
(pink squares), the signal in the transition index is washed out.

Landau model in �tting our experimental data.144

Another related technique, explored in the context of cell di�erentiation in Ref. [17], looks for signatures145

of a continuous transition related to increased variance in the expression of a given subset of genes.146

The method is simpler than ours in that it only requires measuring pairwise correlations among147

genes and bees, and does not explicitly measure the shape of the distribution of expression values.148

The method has the advantage of explicitly incorporating the increase in variance one expects to149

�nd when an existing attractor is destabilized, which can help to distinguish the case of attractor150

destabilization from the case of hopping between co-existing attractors. Applied to our data, a relative151

increase of the resulting “transition index” at days 10 and 15 (see Fig. 5) is also suggestive of a transition152

state, but only when limited to genes that we identify as most informative through our measure s.153

Though our method is somewhat more computationally involved, it is able to identify individual154

genes that are related to transition states, infer the shape of the transition distribution, and produce a155

statistically interpretable measure (∆BIC) of the likelihood of bistability given the data.156
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4 Discussion157

We show that expression data from 91 genes, taken from 16 honey bee workers sampled at 5 di�erent158

time intervals that span the �rst 15 days of life, demonstrate bimodality within time intervals that159

becomes more pronounced with age. We hypothesize that the observed bimodal distributions of160

gene expression correspond to known temporal dynamics of behavior. Days 10 to 15 correspond to161

a known developmental time point at which individual bees transition or prepare to transition from162

in-nest activities to foraging [6]. Days 10 and 15 demonstrate the strongest evidence for bimodality,163

suggesting that the two modes represent the transitioning of bees from those that engage in nest164

activities into those that forage.165

We propose that the sets of genes de�ning these bimodal structures are working together in networks166

with bistability associated with the distinct behavioral states [5, 15, 32]. The gene networks have167

two stable states that are driven by the JH/VG positive feedback control system. The JH/VG feedback168

system drives gene expression that sculpts the physiological and behavioral changes in worker behavior.169

The resulting switch is steep as a consequence of the feedback mechanisms a�ecting blood titers of170

VG and JH. During the nest stage, blood levels of VG initially increase but eventually decline due to171

dynamics including depletion (its use in brood food production) and/or suppression of synthesis due172

to reduced food intake/availability, disease or stress. As VG levels decline, JH titer increases, driving173

the production of VG even lower. This positive feedback is behind the steep switch and a route to174

the transition of the bee into the forager state. Note that VG may directly a�ect expression levels of175

other genes via DNA-binding capability [33]. There is also a JH and VG independent pathway to the176

forager state, but its initiator(s) is unknown [5, 34].177

The transition is a�ected by the external environment through feeding activities and stressors: Feeding178

more larvae can result in more rapid VG depletion and an earlier onset of foraging. Workers in colonies179

that have stored insu�cient pollen, the source of protein, initiate foraging earlier in life, presumably180

due to a de�ciency in VG levels. Workers in colonies with fewer foragers accelerate the onset of181

foraging, presumably by having a reduction of some unknown inhibitor passed from foragers to182

younger bees [35] or by the lack of nutrients to support colony growth. Similarly, pathogens that183
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reduce VG production by, for instance, reducing nutrient uptake over the gut or consumption of184

resources in immune activation lead to earlier foraging onset [36].185

Given this context, our list of genes that align most strongly with with the gene network bistability186

(Table 1 and SI Table 2) is one of “usual suspects.” Most of the genes listed have known involvement187

in lipid and lipoprotein synthesis and metabolism, are lipoproteins found in the hemolymph or hypopharyngeal188

glands of nest bees involved directly in larval and adult nutrition, regulate the JH/VG switch between189

nest bees and foragers, or are known “immunity genes” involved in responses to pathogenic organisms.190

This result is also an outcome of our initial selection of the 91 genes, which in essence focused on191

“usual suspects” to provide a strong basis for testing our statistical methodology.192

More speci�cally, VG, major royal jelly protein 3 (MRJP-3), and the hexamerins (hex 100 and Hex70a)193

are lipoproteins that are metabolized prior to the onset of the foraging state. Elements of the insulin194

signaling pathway include insulin like peptide 1 (ilp1), its receptor (InR1), and P110. Insulin-like195

signaling (IIIS) acting in the fat body has been shown to be involved in VG production and the transition196

from nest bee to forager. The target of rapamysin (TOR) pathway cross-talks with IIS signaling in the197

regulation of JH, while at least TOR is in�uencing VG levels more directly presumably by communicating198

nutritional context information to the VG production system [37], which is highly nutrient sensitive199

[38]. Transferrin 1, hymenoptaecin, argonaute 2 (AGO2), and defensin-2 (Def2) are genes associated200

with immunity. Their role may be one of adjusting to the change in pathogenic challenges that take201

place when a bee transitions from the protected nest environment to foraging. Malvolio is a manganese202

transporter that a�ects sucrose sensitivity, and through its e�ect on mn2+ in the brain presumably203

in�uences neuromodulators involved in the onset of foraging. Octopamine (OA) is involved in the204

onset of foraging and increases sensory motor responses involved in foraging; OAR is its receptor.205

The pattern we reveal for juvenile hormone esterase (JHE), strongly correlated with bistability in206

bees of age 15 days, might be particularly novel and intriguing. JHE provides opportunity to metabolize207

JH inside cells, and this action may block cellular responses to bursts in circulating (blood) JH titers.208

We show that JHE transcript levels decrease in the low vg state indicative of foragers, thereby making209

these individuals potentially more sensitive to JH. Such sensitivity would add to the positive feedback210

control system of VG and JH, which secures that transitioning individuals stay committed to their211

12

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 7, 2022. ; https://doi.org/10.1101/2022.11.03.514986doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.03.514986
http://creativecommons.org/licenses/by/4.0/


new behavioral role.212

What causes this split into two groups? The correlation of these genes and the bistability can be213

explained in multiple ways. The transition could be controlled by an internal temporal program, or214

“physiological clock”, running independently within individual bees [39]. Alternatively, the bifurcation215

could arise solely via external positive feedback, with ampli�cation of individual di�erences in foraging216

thresholds through interactions with the nest, the environment, and other bees, similar to that seen217

in other examples of division of labor [9]. Perhaps most likely is a combination of these two mechanisms:218

internal dynamics that create a steep switch between nest bees and foragers, with the timing of this219

switch greatly in�uenced by the environment [5, 14]. The toy model of gene interactions that we220

use to test the statistical inference is one way to represent dynamical mechanisms that can amplify221

di�erences in gene expression to create distinct types, which could be further ampli�ed at the behavioral222

scale.223

Our statistical method of Bayesian model selection for identifying bistability is designed to impose224

the least structure possible to explain the data: we start from the simplest possible probability distribution225

(Gaussian) and compare this to the case in which we add the lowest order correction term consistent226

with a transition. This simple representation is useful when we have limited data (in this case, 16227

bees per timepoint). In future cases with more data, more precise versions may be fruitful, including228

those that test whether expression data are consistent with a continuous or discontinuous transition.229

Existing methods for identifying critical transitions from gene expression data have largely focused230

on the increase of correlated variability near a transition, and before the transition induces a split231

into two clusters [17, 18, 40]. In contrast, and similarly to Ref. [19], the method we develop here goes232

beyond pairwise correlation and looks for a characteristic shape of bimodality during and after this233

split. Our method remains statistically robust, working in the regime of “high dimension low sample234

size” [41] that is common in gene expression studies. The method has no free parameters, unlike235

many clustering methods, and it is interpretable in a Bayesian analysis to quantify the evidence favoring236

bistability.237

We anticipate that our approach could be useful in interpreting existing gene expression data, both in238

the context of social insects and more generally across biology. First, in the development of multicellular239
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organisms, the divergence of progenitor cells into di�erentiated cells can also be well-represented240

using bifurcation theory [17, 19, 42, 43]. Current approaches for identifying cell types from gene241

expression data typically separate the data into distinct types using clustering methods (e.g. [19, 41,242

44]). While a clustering approach is suitable for cases in which cell types are highly distinguishable,243

clustering will break down as cell types become less distinguishable near a continuous transition.244

Our method, in contrast, is designed to work near the transition point. This type of analysis could be245

used, for instance, to use gene expression data to more precisely de�ne the time in development at246

which one cell type becomes two.247

Other collective decisions, such as in neural systems, are thought to arise from continuous bifurcations248

as well [45], and our method could be used directly on activity data to identify the individual components249

(e.g. neurons) that may drive these transitions.250

To summarize, in the context of animal behavior, our results add a new layer to understanding how251

the strategy of task specialization plays out in biological collectives. Even when individuals share252

the same genetic code and environment, their traits can diverge into separate tracks. Similarly to253

di�erentiation in multicellular organisms, this divergence is visible both at the scale of functional254

characteristics and at the scale of gene expression. Furthermore, the simplest model of critical bifurcation255

provides a good description of how this divergence occurs. The generality of this phenomenology256

suggests that such critical transitions may be a common mechanism within biology, making use257

of the emergent properties of strongly interacting dynamical networks to generate reproducible258

diversity. Further work is needed to detail how those networks are successfully constructed and259

regulated in an evolutionary context.260
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Methods265

Gene expression data266

The bee collection was conducted during March 18th to April 7th, 2016. Five strong wild type colonies267

were chosen as sources of newly emerging bees. Two small nuclear colonies with 9 frames in each268

were used as recipient colonies that had similar supplies of pollen and honey, and similar numbers of269

brood and adult bees. The emerging frames from source colonies were put into incubator (37◦C) and270

about 200 newly emerged bees were collected, marked in a color on the bee thoraxes and distributed271

evenly to the recipient colonies. This procedure was repeated for three consecutive days. About272

600 newly emerged bees were introduced in the recipient colonies from March 19th to March 21st,273

2016. Ten each of 1 day old, 3 day old, 5 day old, 10 day old and 15 day old bees from each recipient274

colony were collected in the following days. Therefore, there were total 20 sample bees for further275

experiment from two recipient colonies for each age. RNA was extracted from 16 randomly selected276

bees of each age using TRIZOL method. The quality of RNA was measured by Nanodrop and 260/280277

was between 1.85-2.00, indicating good quality of RNA. RNA samples were sent to the University278

of Arizona Core lab for Nanostring analysis, a method to quantify the copy of RNA for the target279

genes. 96 genes (see SI Table) were selected based on prior knowledge and the potential association280

between these genes, VG production, and social behavior. Four housekeeping genes, actin (GB17681),281

rp49 (GB10903), GAPDH (LOC410122) and RPS18 (LOC552726) were used for sample normalization.282

Geometric mean of four housekeeping genes were used to calculate normalization factors to minimize283

the noise from individual genes using nSolver software provided by the company. We use log-transformed284

values of the raw expression data for all analyses.285

Conceptual overview of statistical method286

The expression of gene products across individual bees is correlated, with correlations arising from287

a complex set of dynamics. These dynamics include both direct interactions among measured genes288

and common factors of in�uence external to the measured genes. Changes to these dynamics (e.g.289

caused by stronger interactions among genes during certain phases of development, or shared interactions290
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with a common environment) can lead to increased variance in gene expression. This additional291

variance is also correlated, forming patterns consisting of sets of genes with expression that moves292

in tandem. In the case of a transition into two distinct types, we expect that this correlated variance293

will additionally display bimodality. That is, two separate patterns of gene expression will coexist,294

with few individuals having gene expression levels that are a mixture between the two types.295

In the following description of methods, we �rst build a simple model of gene expression dynamics296

that displays this characteristic transition to bimodality. We demonstrate that the separate patterns297

of gene expression corresponding to this bimodality are given by the dimension of largest variance298

(�rst principal component), as can be extracted from gene expression data by principal components299

analysis. We then show that the distribution of gene expression values along the principal component300

has a speci�c shape near the transition, which we derive. By �tting the observed data to this distribution,301

we determine whether gene expression across a population of individuals of the same age displays302

evidence of a bistable transition.303

Dynamical model of gene interactions304

Near a transition from a system with continuous variation into one displaying distinct types, one305

expects the emergence of a bimodal distribution with a particular shape. In this section, we derive to306

lowest order the form of this distribution for the case of the dynamics of a densely connected gene307

regulatory network.308

We start with a general form of dynamics for the (log-transformed) concentrations of the measured309

gene products, arranged in the Ngenes-dimensional vector ~x:310

d~x

dt
= F (~x, ~y, t), (1)

where ~y consists of other unmeasured variables and t is time. We assume a separation of timescales311

such that, at each developmental timepoint, we are measuring an equilibrium distribution, which312

slowly changes as a function of developmental time. This means F depends on the long developmental313

time T (on the timescale of days), but the distribution of ~x at each t will not depend on t de�ning314
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gene transcription dynamics (on the timescale of seconds):315

d~x

dt
= FT (~x, ~y). (2)

The ~x we observe will then be restricted to be near attractors of FT , determined by taking t → ∞.316

Without the ability to measure the dynamics of more complicated attractors on this fast timescale317

(limit cycles, strange attractors, etc.), we will focus our attention on stable �xed point attractors ~x∗,318

where319

FT (~x∗, ~y∗) = 0. (3)

If we were to observe only these �xed point attractors, and for �xed hidden variables ~y∗, we would320

erase all information about hidden variables and about dynamics at the fast timescale. This corresponds321

to a description of the system we could get if we measured one bee per developmental timepoint.322

We now want to incorporate information about variance in the observed ~x coming both from the323

e�ects of hidden variables ~y and from other fast-timescale dynamics. When these e�ects are small324

and temporally uncorrelated, we can approximate them as adding uncorrelated noise to FT :325

d~x

dt
= FT (~x) + ~ξ, (4)

where ~ξ is chosen from a multidimensional Gaussian with some �xed covariance. Assuming this326

variance is su�ciently small (compared to nonlinearities in FT ), the system stays near the �xed point327

~x∗. In this case, dynamics can be approximated using a Taylor expansion of FT around ~x∗ (related to328

the Hartman–Grobman theorem [46])329

FT (~x) = Λ δ~x+O(|δ~x|2), (5)

where δ~x = ~x − ~x∗. The assumption that we are at a stable �xed point is equivalent to the statement330

that the eigenvalues of the matrix Λ are all negative. The solution of these dynamics is a multidimensional331

Gaussian. This corresponds to the analysis performed in Ref. [17], where the existence of a critical332

point corresponds to an eigenvalue of Λ becoming close to 0, such that there is a measurable large333
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variance in δ~x along the corresponding eigenvector.334

We take the next step in the expansion by looking at what happens when all of the above assumptions335

hold but we additionally want to treat the super-critical case, when an eigenvalue of Λ becomes336

larger than 0. Our goal is to �nd the form of the simplest possible symmetry breaking transition that337

leads to two distinct modes of gene expression. Still assuming the noise is small means ~x stays near338

the �xed point except along the eigenvector ν̂ with eigenvalue greater than 0. Along that direction,339

the variance is largest, so this dimension will correspond to the �rst principal component. Further,340

because the dynamics are locally unstable to lowest order, the behavior along ν̂ is no longer determined341

only by the lowest-order expansion given in Eq. (5). It will instead be determined by the lowest-order342

term that cures the divergence of the variance in that direction.1 Next will generally be a term of343

order |δ~x|2, but this still allows a divergence of δ~x along either positive or negative ν̂. In addition,344

we restrict our analysis to retain the symmetry of FT (δ~x) = FT (−δ~x), so that the system will be345

equally likely to move in the positive or negative ν̂ direction at the transition, corresponding to a346

symmetry breaking that is unbiased. It is also possible to include a bias term that leads to one of the347

�nal attractors being favored over the other [19], but we omit that possibility here to produce the348

simplest possible symmetry breaking transition. For these reasons, we assume the second-order term349

is zero. The lowest-order term that does cure the divergence is of order |δ~x|3; we write350

FT (~x) = Λ δ~x+ Γ(δ~x · ν̂)3ν̂ +O(|δ~x · ν̂|4), (6)

with Γ < 0. This corresponds to a so-called “supercritical pitchfork” bifurcation in dynamical systems351

theory, where one stable �xed point changes continuously into three �xed points, two stable separated352

by one unstable [47, 48]. The resulting two stable �xed points represent two distinct types of gene353

expression — phenotypes or “cell fates” in the cell di�erentiation literature — into which the single354

�xed point in gene expression splits. Finally, we note that even higher-order terms would be necessary355

if Γ > 0, which corresponds to a subcritical pitchfork [42], but we again omit that possibility to356

produce the simplest possible symmetry breaking transition.357

1There are other ways the transition could happen such that this divergence is not cured (or not cured in a way that
keeps δ~x relatively small). This corresponds, for instance, to a saddle-node bifurcation, in which the transition would cause
the system to suddenly change to some other distant attractor. That is, there are transitions that would not be identi�ed by
our method. Our method is designed to detect only the simplest symmetric, continuous transitions.
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Form of Landau distribution358

We now derive the expected equilibrium distribution under the dynamics given by Eq. (4) with FT as359

in Eq. (6). Writing the noise term more explicitly, we have360

d(δ~x) =
[
Λ δ~x+ Γ(δ~x · ν̂)3ν̂

]
dt+ σ d ~Wt, (7)

where σ is a tensor that produces the noise when applied to the standard Ngenes-dimensional Wiener361

process ~Wt. The time derivative of p(~x), the distribution of ~x over multiple realizations of this dynamics,362

is given by the Fokker–Planck equation:363

∂p(~x)

∂t
= −~∇ ·

[(
Λ δ~x+ Γ(δ~x · ν̂)3ν̂

)
p
]

+
1

2
∇2
(
σσT p

)
. (8)

We then obtain equilibrium solutions by setting ∂p
∂t = 0. Assuming a solution of the form364

pL(~x) = Z−1 exp

[
−1

2
δ~x ·A · δ~xT − B

4
(δ~x · ν̂)4

]
, (9)

we solve for A and B in terms of the dynamical parameters Λ, Γ, and σ:365

A = −2
(
σσT

)−1
Λ (10)

B = −2
[
ν̂T ·

(
σσT

)−1 · ν̂]Γ. (11)

We call pL from Eq. (9) the “Landau distribution” as we expect this shape near any continuous phase366

transition that can be described by simple Landau theory. In particular, Landau’s theory of continuous367

phase transitions describes a Gibbs free energy of the form [49, 50]368

F(y)−F0 =
a

2
y2 +

b

4
y4. (12)

Along the bistable dimension ν̂, the corresponding equilibrium distribution maps exactly onto the369

distribution pL(~x) in Eq. (9) that we derived from system dynamics near a transition, with y = δ~x · ν̂,370

a = ν̂T ·A · ν̂, b = B, and pL(y) ∝ exp−F(y).371
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Note that the above derivation assumes that the bistable dimension ν̂ is also an eigenvector of the372

inverse noise tensor (σσT )−1. This assumption holds in our simulation tests, but would not hold for373

aribitrary dynamics, in which case the noise can a�ect the direction of the lowest-order bistability374

displayed by the equilibrium distribution. In this case, we expect that the equilibrium distribution375

near the transition will still have the form of Eq. (9) (so that our �tting procedure remains unchanged),376

but with a modi�ed ν̂ that is no longer simply an eigenvector of Λ, and with an e�ective Γ that contains377

information about the shape of FT along that dimension.378

Fi�ing and model selection379

To �t the Landau distribution to data, we rewrite it in terms of more easily managed parameters. We380

�rst �nd the Gaussian approximation corresponding to PCA:381

pG(~x) ∝ exp

[
−1

2
(~x− ~µ)T · J · (~x− ~µ)

]
, (13)

with J equal to the inverse of the data’s covariance matrix Σ. We then express pL(~x) in terms of382

parameters c and d that set the shape along the bistable dimension ν̂, which we assume to be the �rst383

principal component of the data (the dominant eigenvector of Σ):384

pL(~x) = Z−1 exp
[
−1

2(~x− ~µ)T · J · (~x− ~µ)

− c−1
2 Jν((~x− ~µ) · ν̂)2 (14)

−d
4J

2
ν ((~x− ~µ) · ν̂)4

]
,

where Jν = ν̂T · J · ν̂ and the normalization factor Z is given by385

Z =

√
(2π)N−1

det J

|c|
2d

exp

(
c2

8d

)
B, (15)

with B = K1/4(
c2

8d) when c > 0, B = π√
2
[I−1/4(

c2

8d) + I1/4(
c2

8d)] when c < 0, and Iα and Kα are the386

modi�ed Bessel functions of the �rst and second kind, respectively. Note that c and d are related to A387

and B in Eq. (9) (speci�cally A = J + (c − 1)Jν ν̂ν̂
T and B = dJ2

ν ), the original Gaussian model pG388
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corresponds to c = 1 and d = 0, and bistability corresponds to c < 0 and d > 0.389

In the case in which Nsamples < Ngenes, the covariance matrix Σ does not have full rank, and the390

above equations can be interpreted by remaining in the subspace with variance. This does not a�ect391

model selection because we only look for bistability along the single dimension with largest variance392

(the principal component).393

We use the Bayesian Information Criterion (BIC) to determine whether to select the null distribution394

pG (Gaussian along all components) or the Landau distribution pL (bimodal along the principal component).395

Note that if the number of degrees of freedom for the simple Gaussian is nG, the Landau distribution396

has nL = nG + 1 (d is the extra parameter; c and µν do not add any additional freedom because these397

correspond to degrees of freedom that are also in the Gaussian model). The di�erence in BIC values398

between the two models,399

∆BIC = −(nL − nG) logNsamples + 2

Nsamples∑
i=1

(
log pL(~xi)− log pG(~xi)

)
, (16)

produces our criterion for model selection (see Figure 2). We choose a threshold ∆BIC > 6 to400

indicate strong evidence in favor of a bistable distribution [51].401

The maximum likelihood mean µ will be the same as the sample mean of the data in all dimensions402

except for the bistable dimension, so we vary three parameters in numerically �tting the Landau403

distribution: c, d, and µν = µ · ν̂. We constrain d to have a minimum value of 10−3 to avoid numerical404

issues near d = 0.405

For the two cases in which we �nd strong evidence for bistability, we �nd the following best-�t parameter406

values: On day 10, c = −4.75 and d = 3.19, and on day 15, c = −6.09 and d = 4.95. (Note that these407

values were computed with respect to data in which we took the natural logarithm of the original408

expression values.)409
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Interpreting results with respect to individual genes410

In Fig. 3, we interpret the bistable dimension ν̂ (principal component dimension) in terms of individual411

genes by highlighting those genes whose variance lies mostly along ν̂. We accomplish this using the412

measure413

si =
ν̂2i

JνΣii
, (17)

a number between 0 and 1 that indicates the proportion of gene i’s variance that lies along ν̂. Genes414

with largest s are highlighted in Table 1 and SI Table 2.415

The distributions for individual gene expression shown in Fig. 3 are marginals over the distribution416

in Eq. 14:417

p(xi) =

∫
pL(~x)

∏
j 6=i

dxj

∝
∫
N(xi, µi + η(ν̂ · î),Σ′

ii) exp

[
− c

2
Jνη

2 − d

4
J2
νη

4

]
dη, (18)

where Σ
′ is the covariance matrix Σ modi�ed to remove variance along the bistable dimension ν̂,418

N(x, µ, σ2) indicates a normal distribution over random variable x with mean µ and variance σ2,419

Jν = ν̂T · J · ν̂, and we evaluate the �nal integral over η numerically using Mathematica.420

Simulation data and tests421

We create test data using a discrete time simulation of a simple model of gene regulation:422

dxi
dt

= −xi + α
∑
j

wij tanh(xj) + ξ, (19)

here assuming the simplest all-to-all network structure for simplicity: wij = 1 for all i and j. We423

simulate the dynamics until equilibrium using a simple Euler timestep of ∆t = 10−3. We ensure424

equilibrium by simulating to time tf = 100: As in Ref. [52], we expect the maximal relaxation timescale425

(here with τ and σ e�ectively 1 and the participation ratio p = Ngenes) tmax ≈
√
Ngenes, so with426

Ngenes = 91 our chosen tf > 10 tmax. In the limit of small noise, the model has a transition to427
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bistability at αcrit = 1/Ngenes.428

We then test our method’s ability to detect the resulting bistability (Fig. 1). At each value of α, we429

run 100 independent trial simulations with Ngenes = 91 and run the �tting analysis on the �nal states430

from each case. When the di�erence in BIC exceeds a threshold (here set at ∆BIC > 6 [51]), we431

count this as a positive identi�cation of a bistable distribution. In the case analogous to ours, with432

Nsamples = 16 (orange points), we see that misidenti�cations are rare far below the transition,433

and identi�cations become easy su�ciently above the transition. As expected, with more samples434

(Nsamples = 100, red points), it is possible to identify the incipient transition sooner, when the two435

modes of the distribution remain closer to one another.436

Day 15

gene s 

vg 0.95

hex 110 0.89

P110 0.80

transferrin 1 0.80

LOC409966 0.77

Hex70a 0.77

JHE 0.75

VG protein 0.69

ilp1 0.69

Def2 0.68

PRM1 0.65

TOR 0.64

Hymenoptaecin 0.62

Malvolio 0.59

TYR1 0.58

E74 0.45

Kr-h1 0.44

cad 0.42

InR1 0.39

AGO2 0.35

Day 10

gene s 

hex 110 0.93

ilp1 0.83

MRJP-3 0.79

Hex70a 0.78

Def2 0.75

Malvolio 0.74

vg 0.74

P110 0.72

LOC409966 0.71

PRM1 0.71

SVP NR2F1 0.69

AGO2 0.61

Hymenoptaecin 0.59

SmG 0.58

TOR 0.54

OA1 or OAR 0.54

VG protein 0.53

USP (RXR) 0.53

AKHR 0.53

Kr-h1 0.52

Table 2: Genes whose variance in expression is most aligned with the transition dimension.
Here we list the top 20 genes, at age 10 and 15 days, ordered according to s, the fraction of
the gene’s variance that lies along the bistable dimension (see Methods Eq. (17)).
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