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Abstract

We consider the problem of sequence-based drug-target interaction (DTI) pre-
diction, showing that a straightforward deep learning architecture that leverages
pre-trained protein language models (PLMs) for protein embedding outperforms
state of the art approaches, achieving higher accuracy, expanded generalizability,
and an order of magnitude faster training. PLM embeddings are found to contain
general information that is especially useful in few-shot (small training data set) and
zero-shot instances (unseen proteins or drugs). Additionally, the PLM embeddings
can be augmented with features tuned by task-specific pre-training, and we find
that these task-specific features are more informative than baseline PLM features.
We anticipate such transfer learning approaches will facilitate rapid prototyping of
DTI models, especially in low-N scenarios.

1 Introduction

Predicting drug-target interaction (DTI), a critically important problem in drug discovery, should
ideally be informed by protein and drug structures. However, even if all protein structures were
available (say, by AlphaFold2 prediction [14]), the computational expense of docking is prohibitive for
large-scale DTI screening, suggesting that sequence-based prediction of DTIs will remain important.

Accordingly, in this paper we consider the computational prediction of DTIs when the inputs are
a) a molecular description of the drug (such as the SMILES string [1]) and b) the amino acid
sequence of the protein target. Many methods have been proposed to address the DTI problem in
this formulation [2], with state-of-the-art approaches relying on deep learning architectures that build
protein representations using sequence models like convolutional neural networks [15] and, more
recently, transformers [11]. As the focus of this work is optimal protein representations for DTI
prediction, we fix the drug molecular representation here to the commonly used Morgan fingerprints
[17], noting that recently introduced alternative representations may further increase performance
[12, 13].

The key claim of this work is that a pre-trained protein representation from protein language models
can offer state-of-the-art performance with a relatively straightforward model architecture, even
on tasks that have already been the focus of dedicated deep learning model design. Pre-training
is especially impactful when the training set is small or unbalanced or if the test set contains
hitherto unseen proteins or drugs. We emphasize here the importance of matching the pre-trained
representation to the task. As we show in a feature attribution analysis, augmenting language models
with additional training on protein-protein interaction (PPI) prediction yields features which are
more informative for DTI prediction than those from baseline embeddings that were pre-trained
only on protein sequences. Thus, our work constitutes a concrete demonstration of the power of a
well-designed transfer learning approach that adapts foundation models for a specific task [4, 7].
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Figure 1: Our prediction framework leverages protein sequence representations learned by pre-trained
protein langauage models (PLM) and protein-protein interaction prediction models (PPIM) to make
accurate drug-target interaction predictions. Pre-trained features generalize well to unseen proteins,
allowing for zero- and few-shot learning of DTIs.

2 Method

Given a SMILES string and protein sequence, our predictive framework consists of the following
three steps (Figure 1):

1. Featurize the drug and protein using pre-trained models or algorithms.

2. Transform both the drug and protein into a shared latent space.

3. Output the DTI prediction based on the drug–protein distance in the latent space.

Molecular featurization: We featurize the drug molecule by its Morgan fingerprint [17], an encoding
of the SMILES string of the molecular graph as a fixed-dimension embedding M ∈ Rdm (we chose
dm = 2048) by considering the local neighborhood around each atom. The utility of the Morgan
fingerprint for small molecule representation has been demonstrated in [20].

Pre-trained protein featurization: We generate protein features using pre-trained protein language
models (PLM): These models generate a protein embedding E+ ∈ Rn×d for a protein of length n,
which is then pooled along the length of the protein resulting in a vector E ∈ Rd. Specifically, we
investigate the PLMs from Bepler & Berger [3], ESM [19], and ProtBert [6], with default dimensions
d = 6165, 1280, 1024 respectively.

Additionally, we evaluate the output of the projection module of a D-SCRIPT PPI prediction model
trained on human PPIs, using each language model as input embeddings [22]. Details of this
featurization (d = 100) can be found in Appendix A.1 We emphasize that the language and projection
models are used exclusively to generate input features– their weights are kept unchanged and are not
updated during DTI training.

Transformation into a shared latent space: Given small molecule embedding M ∈ Rdm and
protein embedding E ∈ Rd, we transform them separately into M∗, E∗ ∈ Rh using fully-connected
multi-layer perceptrons with a ReLU activation. Given the latent embeddings M∗, E∗, we compute
the probability of a drug-target interaction p̂ as the cosine similarity between the embedding vectors.

Training and Implementation: The loss was calculated using the binary cross entropy between the
true labels y and the predicted interaction probabilities p̂. Model weights were updated with error
back-propagation using the Adam optimizer with learning rate 10−4 over 50 epochs, with a batch size
of 16. We used a latent dimension size of 1024 (results were robust to variations in latent dimension
size). We implemented this framework in PyTorch version 1.9.
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Table 1: PLM-based models (Bepler & Berger, ESM, ProtBert) out-perform non-PLM models
(MolTrans, GNN-CPI, DeepConv-DTI) over 5 random initializations. Training pairs are positive +
negative, with an equal number of each. The column “Balanced?” refers to validation and test sets.
Metrics for models with † are from [11]

.

Benchmark Training Balanced? Model AUPR AUROC F1Edges

BIOSNAP 19238 Yes

Bepler & Berger 0.914 ± 0.003 0.898 ± 0.004 0.838 ± 0.004
ESM 0.898 ± 0.004 0.876 ± 0.005 0.817 ± 0.008

ProtBert 0.895 ± 0.004 0.873 ± 0.004 0.811 ± 0.004
MolTrans 0.885 ± 0.005 0.876 ± 0.007 0.806 ± 0.006

GNN-CPI† 0.890 ± 0.004 0.879 ± 0.007 —
DeepConv-DTI† 0.889 ± 0.005 0.883 ± 0.002 —

BindingDB 12668 No

Bepler & Berger 0.618 ± 0.009 0.862 ± 0.006 0.625 ± 0.010
ESM 0.638 ± 0.005 0.881 ± 0.002 0.637 ± 0.003

ProtBert 0.652 ± 0.005 0.876 ± 0.007 0.636 ± 0.006
MolTrans 0.598 ± 0.013 0.898 ± 0.009 0.593 ± 0.015

GNN-CPI† 0.578 ± 0.015 0.900 ± 0.004 —
DeepConv-DTI† 0.611 ± 0.015 0.908 ± 0.004 —

DAVIS 2086 No

Bepler & Berger 0.463 ± 0.013 0.907 ± 0.005 0.523 ± 0.012
ESM 0.479 ± 0.008 0.916 ± 0.004 0.544 ± 0.008

ProtBert 0.511 ± 0.012 0.917 ± 0.003 0.546 ± 0.006
MolTrans 0.335 ± 0.017 0.889 ± 0.007 0.420 ± 0.012

GNN-CPI† 0.269 ± 0.020 0.840 ± 0.012 —
DeepConv-DTI† 0.299 ± 0.039 0.884 ± 0.008 —

3 Results

Data Sets: To evaluate the predictive accuracy of our framework, we use three different DTI
benchmark data sets. Two data sets, DAVIS [5] and BindingDB [16], consist of pairs of drugs and
targets with experimentally determined dissociation constants (Kd). Following [11], we treat pairs
with Kd < 30 as positive DTIs, while larger Kd values are negative. The third data set, ChG-Miner
from BIOSNAP [24], consists of only positive DTIs. The DAVIS data set represents a few-shot
learning setting: it contains only 2,086 training interactions, compared to 12,668 for BindingDB
and 19,238 for BIOSNAP. The rest of the data preparation follows [11]. We create negative DTIs by
randomly sampling an equal number of protein-drug pairs, with the expectation that a random pair is
unlikely to be positively interacting. The data sets are split into 70% for training, 10% for validation,
and the remaining 20% for testing. Training data is artificially sub-sampled to have an equal number
of positive and negative interactions, while validation and test data is left at the natural ratio. Full
specification of the data, including number of unique drugs, proteins, and positive/negative edges can
be found in Table A1.

Experiment Design: For each data set, we evaluate the predictive performance of the pre-trained Be-
pler & Berger, ESM, and ProtBert model embeddings. Additionally, we compare with MolTrans
[11], GNN-CPI [23], and DeepConv-DTI [15], which have been shown to achieve state-of-the-art
performance on DTI prediction, and specifically on these benchmark data sets. During training, we
monitor the AUPR, AUROC, and F1 metrics on the validation set, and store the model with the
highest AUPR, which is then evaluated on the held-out testing set. Each training is run with 5 random
initializations, and we report the mean and standard deviation of each metric.

3.1 Improved DTI prediction

We demonstrate that co-embedding pre-trained protein language model features with small molecule
features achieves state-of-the-art performance on all three benchmark data sets. Across all three
data sets the three PLM models perform similarly, which is consistent with prior work which shows
that there is often ambiguity as to which PLM is best suited to a given task [8, 9]. However, the
three PLM models consistently outperform the non-PLM models, with especially large improvement
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Figure 2: DeepLift feature attributions for Bepler & Berger (a), ESM (b), and ProtBert (c) embedding
dimensions (gray) and the respective D-SCRIPT embedding dimensions (black) of the combined
featurizations from Section 3.2. D-SCRIPT features have an outsize contribution to the overall
model prediction relative to the PLM features alone. The dashed blue line indicates the mean feature
attribution.

Table 2: Pre-trained embeddings generalize DTI prediction to proteins not seen in training
Benchmark Model AUPR AUROC F1

Unseen proteins Bepler & Berger | BB-D-SCRIPT 0.875 0.868 0.793
MolTrans 0.657 0.660 0.664

Unseen drugs Bepler & Berger | BB-D-SCRIPT 0.882 0.858 0.779
MolTrans 0.858 0.832 0.761

coming on the most challenging DAVIS set where very little training data is available and evaluation
is unbalanced. DeepConv-DTI achieves the best AUROC on the unbalanced BindingDB, but the
PLM models have higher AUPR, which is the more representative metric for unbalanced data sets.

3.2 Feature attribution reveals information gain from tuning on PPI

We additionally investigated training DTI models using protein language model embeddings aug-
mented with features from a D-SCRIPT model pre-trained on human PPIs (see Appendix A.1 for
details). While the top-line performance of the augmented models are similar to the base models
(Table A3), an attribution study using DeepLift [21] shows that the new D-SCRIPT-derived features
are disproportionately represented in the set of highly important features. This suggests that tuning on
a related task refines the representations from the general protein language models to ones more suited
for the specific task, as in [7]. This explanation is supported by the fact that the 100-dimensional
D-SCRIPT features alone achieved only slightly decreased performance on the DTI task compared to
PLM-based models with 10-50x as many parameters (Table A3).

3.3 Zero-shot learning with pre-trained protein embeddings

In [22], Sledzieski et al. demonstrate that language models enable D-SCRIPT to generalize especially
well to out-of-species PPIs. Here, we show that generalization extends to DTIs for proteins which
are unseen in the training set. The Bepler & Berger | BB-D-SCRIPT featurization outperforms
MolTrans in predictive performance on a variation of the BIOSNAP data where 20% of proteins and
all corresponding interactions were removed as a test set. The outperformance over MolTrans is not
as stark in the unseen drugs domain, possibly because the informational advantage of pre-training
disproportionately benefits the protein representations (Table 2). The performance of other PLM
models was similar to the one shown (Table A3).

3.4 Pre-training enables an order of magnitude faster optimization

One of the benefits of using a hierarchy of pre-trained models is that computation times are amortized
over the lifespan of downstream applications. Pre-trained models incur an up-front computational
cost, but can then be re-used for multiple inference tasks with straightforward architectures. Our
framework allows for training DTI models up to an order of magnitude faster than an end-to-end
method. Inference of DTIs is also faster—here anywhere from a 2x to 5x speedup (Table A2).
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4 Discussion

Previous work has recognized the value of meaningful drug molecule representations for DTI
prediction [10, 18], but relatively little work has focused on the target protein representation. Here,
we show that pre-trained embeddings from protein language models, combined with simple molecular
features, not only achieve state-of-the-art performance for the DTI prediction task but also enable
substantially better accuracy in the few-shot (DAVIS data set) or zero-shot (unseen proteins) learning
settings. Also, features learned from pre-training on the related PPI prediction task can provide
additional information beyond general protein language models. This approach enables generalization
to unseen proteins as well as fast model training and inference. This is particularly valuable for
drug re-purposing and iterative screening where large compound libraries are evaluated against
hitherto-uncharacterized proteins from pathways implicated in a disease of interest. Our framework
may enable more accurate transfer of DTI from the model organisms on which drugs are initially
tested to their eventual use in human patients. This work demonstrates the previously unexplored
value of language models in the DTI prediction domain, the additional information unlocked by
pre-training on related tasks (PPI prediction), and the power of iterative adaption for transfer learning.
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A Appendix

Table A1: Full specification of benchmark data sets. Number of pairs are shown as (positive/negative).
Data Set Unique Drugs Unique Proteins Training Pairs Validation Pairs Test Pairs

BIOSNAP 4510 2181 9619/9619 1374/1374 2748/2748
BindingDB 10665 1413 6334/6334 927/5717 1905/11384
DAVIS 68 379 1043/1043 160/2846 303/5708

Table A2: Comparison of training and inference times of several models (mean seconds over 5 runs).
Training and inference time for PLM models were all similar.

Wall Clock Training (per epoch) Inference

BindingDB
BB-D-SCRIPT 848 4.65 42.46
Bepler & Berger 866 6.52 43.27
MolTrans 9874 142.96 222.17

BIOSNAP
BB-D-SCRIPT 496 5.35 18.12
Bepler & Berger 487 5.94 14.29
MolTrans 6424 116.21 31.64

DAVIS
BB-D-SCRIPT 231 0.57 10.19
Bepler & Berger 216 0.98 8.94
MolTrans 1417 15.38 35.06

A.1 D-SCRIPT projections as protein features for DTI

In the original D-SCRIPT paper, protein sequence embeddings from the Bepler & Berger model
are used as input features. Here, we additionally train D-SCRIPT models using ESM and ProtBert
embeddings as features. These models are trained on the human cross-validation set from [22]. We
refer to the output of the first projection module, which takes as input the n× d protein representation
and tunes it to an n×100 representation, as [PLM]-D-SCRIPT, where PLM is either Bepler & Berger
(BB), ESM, or ProtBert. As inputs for our DTI model, we explore concatenating these embeddings to
the raw PLM embeddings (e.g. [ESM | ESM-D-DSCRIPT]) so each amino acid has d+ 100 features,
and using the D-SCRIPT projections on their own.
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Table A3: Full results of all DTI models trained on all data sets. [PLM]-D-SCRIPT means a human-
trained D-SCRIPT model where input features came from that protein-language model. [PLM] |
[PLM]-D-SCRIPT means the D-SCRIPT embeddings concatenated to the raw embeddings.

Benchmark Training Balanced? Model AUPR AUROC F1Edges

BIOSNAP 19238 Yes

[Bepler & Berger | BB-D-SCRIPT] 0.611 0.863 0.633
BB-D-SCRIPT 0.618 0.870 0.619

Bepler & Berger 0.618 0.862 0.625
[ESM | ESM-D-SCRIPT] 0.641 0.881 0.638

ESM-D-SCRIPT 0.611 0.865 0.620
ESM 0.637 0.881 0.637

[ProtBert | ProtBert-D-SCRIPT] 0.652 0.878 0.641
ProtBert-D-SCRIPT 0.624 0.863 0.623

ProtBert 0.652 0.876 0.636

BindingDB 12668 No

[Bepler & Berger | BB-D-SCRIPT] 0.909 0.893 0.836
BB-D-SCRIPT 0.911 0.897 0.831

Bepler & Berger 0.914 0.898 0.838
[ESM | ESM-D-SCRIPT] 0.901 0.881 0.823

ESM-D-SCRIPT 0.889 0.867 0.798
ESM 0.898 0.876 0.817

[ProtBert | ProtBert-D-SCRIPT] 0.897 0.876 0.812
ProtBert-D-SCRIPT 0.885 0.866 0.796

ProtBert 0.895 0.873 0.811

DAVIS 2086 No

[Bepler & Berger | BB-D-SCRIPT] 0.464 0.913 0.537
BB-D-SCRIPT 0.475 0.912 0.533

Bepler & Berger 0.463 0.907 0.523
[ESM | ESM-D-SCRIPT] 0.495 0.920 0.547

ESM-D-SCRIPT 0.479 0.915 0.522
ESM 0.480 0.916 0.544

[ProtBert | ProtBert-D-SCRIPT] 0.502 0.916 0.533
ProtBert-D-SCRIPT 0.462 0.903 0.522

ProtBert 0.511 0.917 0.546

BIOSNAP Unseen Proteins

[Bepler & Berger | BB-D-SCRIPT] 0.875 0.868 0.793
Bepler & Berger 0.875 0.868 0.798

[ESM | ESM-D-SCRIPT] 0.847 0.836 0.770
ESM 0.850 0.839 0.770

[ProtBert | ProtBert-D-SCRIPT] 0.841 0.827 0.755
ProtBert 0.841 0.827 0.750

BIOSNAP Unseen Drugs

[Bepler & Berger | BB-D-SCRIPT] 0.879 0.855 0.800
Bepler & Berger 0.881 0.857 0.802

[ESM | ESM-D-SCRIPT] 0.882 0.853 0.793
ESM 0.876 0.850 0.796

[ProtBert | ProtBert-D-SCRIPT] 0.877 0.851 0.791
ProtBert 0.876 0.848 0.785
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