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Abstract5

No environment is constant over time, and environmental fluctuations impact the out-6

come of evolutionary dynamics. Survival of a population not adapted to some environ-7

mental conditions is threatened unless a mutation rescues it, an eco-evolutionary process8

termed evolutionary rescue. We here investigate evolutionary rescue in an environment9

that fluctuates between a favorable state, in which the population grows, and a harsh10

state, in which the population declines. We develop a stochastic model that includes both11

population dynamics and genetics. We derive analytical predictions for the mean extinc-12

tion time of a non-adapted population given that it is not rescued, the probability of rescue13

by a generalist mutation, and the mean appearance time of a rescue mutant, which we14

validate using numerical simulations. We find that evolutionary rescue is less (respectively15

more) likely if the environmental fluctuations are stochastic rather than deterministic and16

if the mean time between each environmental change is less (respectively more) than the17

mean survival time of the population in the harsh environment. We demonstrate that18

high equilibrium population sizes and per capita growth rates maximize the chances of19

evolutionary rescue. We show that an imperfectly harsh environment, which does not20

fully prevent births but makes the death rate to birth rate ratio much greater than unity,21

has almost the same rescue probability as a perfectly harsh environment, which fully pre-22

vents births. Finally, we put our results in the context of antimicrobial resistance and23

conservation biology.24

1 Introduction25

Environmental change happens all around us and impacts the populations that experience it.26

For example, every living organism is exposed to climate change [1, 2, 3, 4], and pathogenic27

microbes are treated with varying drug concentrations [5, 6], which threatens their survival.28

Populations too poorly adapted to changing environmental conditions may go extinct unless29

adaptive mutations counteract their decline, a process termed evolutionary rescue. An impor-30

tant question in theoretical biology is to predict whether evolutionary rescue will occur before31

extinction and which conditions favor adaptation [7, 8, 9].32

Numerous theoretical works have shown that environmental fluctuations affect evolutionary33

dynamics. Specifically, analytical predictions were derived to assess the fate of a mutation in34

a fluctuating environment, which impacts either demography [10, 11, 12] or selection [12, 13,35

14, 15]. For example, these analytical predictions showed that a cyclic change in population36

size or selection coefficient (resembling a fluctuating environment) results in a mutant fixation37

probability that is also periodic as a function of the time of appearance. However, many of38
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these models assume that environmental fluctuations do not impact demography and selection39

together, which is a simplification that overlooks a key aspect of evolutionary dynamics: the40

interaction of population dynamics and population genetics (but see [16]).41

The interaction between population dynamics and genetics is all the more important as it42

exists everywhere in nature. For example, antimicrobial treatments are designed to decrease the43

size of microbial populations until their eradication, which inhibits reproduction and thus the44

appearance of mutation, but selects for antimicrobial resistant mutants that may appear during45

drug therapy [5, 17, 18, 19, 20, 21, 22, 23, 24]. Similarly, climate change may cause extinction46

[25, 26, 27], but some animal species adapt quickly to stressful conditions and reverse their47

decline [28, 29, 30]. Importantly, the interaction between demography and selection can result48

in population decline, reducing genetic diversity, which could facilitate evolutionary rescue [31].49

To improve theoretical predictions and inference from experimental and empirical data, there50

is a need for mathematical models that make an explicit link between ecology, evolution, and51

demography when quantifying the fate of a population evolving in a fluctuating environment [32,52

33]. One of the challenges to overcome is to go beyond the approximation that environmental53

and evolutionary time scales are decoupled [34, 35]. Specifically, environmental effects are often54

self-averaged if environmental fluctuations are rapid [36], or a constant environment is assumed55

if environmental fluctuations are slow [37] (but see [11, 14, 38]). Another challenge is to derive56

exact analytical predictions that do not rely on deterministic or diffusion approximations, which57

have been shown to poorly describe extreme events such as extinction [39], yet necessary for58

modeling evolutionary rescue.59

In this paper, we develop a minimal model that integrates population dynamics and genetics60

to quantify evolutionary rescue in a fluctuating environment. Specifically, we study a haploid61

population evolving in an environment fluctuating between a favorable state, in which the pop-62

ulation grows, and a harsh state, in which it declines. The population is initially monomorphic,63

and mutants can appear upon reproduction. If a mutation unaffected by environmental changes64

becomes fixed, the population is rescued from extinction. Importantly, we investigate the prob-65

ability of evolutionary rescue using a stochastic framework with numerical and analytical tools,66

resulting in an exact computation of the population’s fate under deterministic versus stochastic67

environmental fluctuations. We compare a perfectly harsh (i.e., fully birth-preventing) and68

an imperfectly harsh (i.e., not fully birth-preventing) environment and identify which growth69

parameters promote evolutionary rescue using different growth types.70

2 Model and methods71

A population model in a fluctuating environment. We study a wild-type population72

of size NW , which can vary over time and is limited by a carrying capacity K. Each wild-type73

individual has the same birth rate bW,α, which depends on the environmental state, and death74

rate dW . The population follows a logistic growth in which the per capita birth rate satisfies75

bW,α(1 − NW /K), and the per capita death rate is equal to the intrinsic death rate. We also76

present results for the Gompertz and Richards growths, whose per capita birth rates satisfy77

bW,α log(K/NW ) and bW,α(1 − (NW /K)β), respectively (see figure 1d). These growth types,78

which are used to fit population growth data [40, 41], have different equilibrium sizes and per79

capita growth rates that may impact the probability of evolutionary rescue. The population80

evolves in an environment that fluctuates between two states, namely favorable F and harsh81

H, which impacts only the birth rate. In the favorable environment, the per capita birth rate82

is larger than the death rate (e.g., bW,F (1 − NW /K) > dW for the logistic growth) so that the83

population grows towards its equilibrium size N∗
W . Conversely, in the harsh environment, the84

per capita birth rate is lower than the death rate (e.g., bW,H(1 − NW /K) < dW for the logistic85

growth), so that the population declines towards extinction. An example of a simulation run86
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Figure 1: Illustration of the model - Population dynamics in a fluctuating envi-
ronment. Wild-type population size and birth rate versus time with deterministic (a) and
stochastic switches (b). In both panels, the solid line represents a realization of a simulation
run under the logistic growth. The gray and white phases correspond to harsh and favorable
environments, respectively. (c) Probability density function of the phase duration, which is
normally distributed, positive, of mean τ and standard deviation σ. (d) Population size ver-
sus time for different population growth patterns in a constant favorable environment. Solid
lines represent analytical predictions, and data points show simulated data averaged over 104

stochastic realizations. Error bars correspond to the 95% confidence intervals. Parameter val-
ues: wild-type birth rate in favorable environment bW,F = 1, wild-type birth rate in harsh
environment bW,H = 0, wild-type death rate dW = 0.1, carrying capacity K = 100, and equi-
librium wild-type population size N∗

W = 90.

is shown in figure 1a). The environment remains in each state for a duration τ , sampled87

from the probability density function Fτ . In the case of deterministic fluctuations, we set88

Fτ (t) = δ(t − τ), in which δ is the Dirac delta. In the case of stochastic fluctuations, the phase89

duration is drawn from a biased normal distributions of mean τ and standard deviation σ given90

by Fτ (t) = 2e
− 1

2( t−τ
σ )2

σ
√

2π(1+Erf(t/(σ
√

2π))) (see figure 1b-c) that exclude negative values.91

A generalist mutant appears upon reproduction with probability µ and has birth bM and92

death rates dM constant across environments. We assume that the population is initially93

monomorphic for the wild type and that its initial population size equals the equilibrium size94

N∗
W . Demographic equilibrium, obtained when births and deaths offset each other, is equal95

to K(1 − dW /bW,F ) for the logistic growth. Our analytical approach uses methods from birth-96
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death processes described by master equations [42, 43]. Our simulations are based on a Gillespie97

algorithm and incorporate individual stochastic division, mutation, and death events [44, 45].98

The algorithm we used is detailed in the Supplemental Material.99

Timescales of environmental fluctuations. In the fluctuating environment, either the100

population goes extinct at time T0, or a mutant appears, fixes, and thus rescues the population101

before T0. The evolutionary outcome crucially depends on how the environmental timescale τ102

compares to the population’s lifetime τ0,H in the harsh environment. In the limit of large τ , for103

τ ≫ τ0,H , very slow environmental fluctuations lead to rapid extinction (i.e., T0 = τ0,H) because104

the harsh environment lasts much longer than the population lifetime in the harsh environment105

(see figure S1a). Here, the rapid extinction leaves little (if bW,H > 0 and dW /bW,H ≫ 1) or no106

opportunity (if bW,H = 0) for rescue mutants to appear and therefore the rescue probability pr107

is likely to be zero. In the limit of small τ , for τ ≪ τ0,H , very rapid environmental fluctuations108

make the population persist long enough for mutations to arise and rescue it. In the particular109

case of very fast environmental fluctuations, the evolutionary dynamics can be described by110

a constant environment with an averaged birth rate b̃W = (bW,F + bW,H)/2 and an effective111

equilibrium size Ñ∗
W satisfying 0 < Ñ∗

W < N∗
W (see figure S1b). Although rapid environmental112

fluctuations maintain the population in an equilibrium state, its extinction time T̃0 is reduced113

compared to if it remained indefinitely in the favorable environment. In the case of an effective114

constant environment, the mean appearance time of a beneficial mutant of selection coefficient115

s̃ (i.e., s̃ = (bM × d̃W )/(b̃W × dM) − 1 > 0) that becomes fixed is given by τ̃af = 1/(µ Ñ∗
W d̃W s̃)116

(see figure S2). If this time is much shorter than the mean extinction time T̃0, the rescue117

probability pr is likely to be one.118

In the following, we focus on nontrivial cases in which the environmental timescale is of the119

same order of magnitude as the population lifetime in the harsh phase (i.e., τ ∼ τ0,H) and the120

rescue probability is likely to satisfy 0 < pr < 1.121

Stochastic dynamics of the wild-type population. We describe the population dynamics122

as a Markovian birth-death process that includes stochasticity inherent to demographic noise123

[42, 43]. More specifically, the probability that a population has a given size between 0 and K124

at a given time t is described by a system of K +1 differential equations. This system is coupled125

since a population jumps from one to another size with a rate depending on its current size.126

The system of differential equations, called the master equation, governs the time-evolution of127

the probability Pα(NW , t|NW,0) of having NW individuals at time t in the environmental state128

α given that NW,0 were initially present, and reads for the logistic growth129

dPα(NW , t|NW,0)
dt

=bW,α

(
1 − NW − 1

K

)
(NW − 1)Pα(NW − 1, t|NW,0)

+ dW (NW + 1)Pα(NW + 1, t|NW,0)

−
(

bW,α

(
1 − NW

K

)
+ dW

)
NW Pα(NW , t|NW,0) .

(1)

We write equation (1) in a matrix form, d−→
Pα/dt = R

−→
Pα, where −→

Pα is the probability column130

vector and R the K + 1 × K + 1 transition rate matrix. The solution of equation (1) reads131
−→
Pα(t) = eRt−→Pα(0), where −→

Pα(0) is the initial condition column vector, whose N th
W,0 row is equal132

to 1 whereas the others are zero. We assume that each favorable phase is long enough for the133

population to reach its equilibrium size, that is τ ≫ 1/(bW,F −dW ), given that the population is134

not extinct. Then, each harsh phase starts from a population size NW,0 = N∗
W . When the harsh135

environment fully prevents the birth of individuals (i.e., bW,H = 0), equation (1) is analytically136
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solvable, and we obtain137

PH(NW , t|N∗
W ) =


(

N∗
W

NW

)
(e−dW t)NW (1 − e−dW t)N∗

W −NW if 0 ≤ NW ≤ N∗
W ,

0 otherwise .

(2)

The previous equation shows that the population size NW is sampled according to a normal138

distribution NW (t) ∼ B(N∗
W , e−dW t) when bW,H = 0 in the harsh environment. When the harsh139

environment does not fully prevent the birth of individuals (i.e., bW,H ̸= 0), equation (1) is140

solved numerically. To obtain the wild-type population size at any time t given that it has not141

gone extinct, we need to modify the master equation since equation (1) includes the stochastic142

trajectories leading to rapid extinction [39]. To exclude these trajectories, we consider a biased143

master equation giving the probability Qα(NW , t|NW,0) = Pα(NW , t|NW,α)/(1 − Pα(0, t|NW,0))144

of having NW individuals at time t in the environmental state α, given that NW,0 were initially145

present and that the population is not extinct [12, 46]. This master equation is similar to146

equation (1) with an additional term Qα(NW , t|NW,0)(dPα(0, t|NW,0)/dt)/(1 − Pα(0, t|NW,0)).147

Note that PF (0, t|NW,0) can be analytically obtained by linearizing the master equation, whereas148

PH(0, t|NW,0) is computed numerically if bW,H > 0, or using equation (2) if bW,H = 0. The149

mean population size in the environmental phase α starting from NW,0 individuals is given by150

d⟨NW |NW,0⟩α/dt = ∑
NW

NW dPα(NW , t|NW,0)/dt, which for the logistic growth leads to151

d⟨NW |NW,0⟩α

dt
=(bW,α − dW )⟨NW |NW,0⟩

− bW,α

K
⟨N2

W |NW,0⟩

+ dPα(0, t|NW,0)
dt

⟨NW |NW,0⟩α

1 − Pα(0, t|NW,0)
.

(3)

The initial condition NW,0 is equal to N∗
W in the harsh environment, whereas it is more difficult152

to obtain it in the favorable environment. That is because the initial size in the favorable phase153

is random and depends on the previous harsh phase. Thus, we calculate the mean population154

size in the favorable phase by summing the trajectories with all possible initial conditions NW,0155

weighted by their respective probability156

PF (NW,0) =
(∫ ∞

0
Fτ (t)PF (NW,0, t|N∗

W )dt
)

/
(∫ ∞

0
Fτ (t)(1 − PF (NW,0, t|N∗

W ))dt
)

. (4)

In other words, PF (NW,0) is the probability of having NW,0 individuals at the end of each harsh157

phase, given that the population is not extinct. The denominator of equation (4) ensures that158

only trajectories in which the population did not go extinct in the previous harsh phase are159

considered. This yields160

⟨NW ⟩F =
N∗

W∑
NW,0=1

⟨NW |NW,0⟩F PF (NW,0) . (5)

Now that we have quantified the dynamics in both environments, namely favorable and harsh,161

we can write the complete dynamics as162

⟨NW ⟩(t) =

⟨NW ⟩H(t mod τ) if t mod 2τ < τ

⟨NW ⟩F (t mod τ) otherwise,
(6)

where m mod n is the modulo operation that yields the remainder of the division of m by n.163

An example in which equation (6) is tested against simulated data is shown in figure S3. A164
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technical point should be made clear. Since our birth rates are nonlinear, unless bW,H = 0, the165

mean population size given by equation (3) depends on higher-order moments. In other words,166

the system of equations for the moment dynamics is not closed. Because the system of moment167

equations is not closed, we apply a binomial moment closure approximation as it proves to be168

the best for the logistic growth. In contrast, we use a mean field approximation (equivalent to169

a deterministic equation) for the Gompertz and Richards growths (citation to come).170

Appearance and fixation of a mutant. A beneficial mutant rescues a population from ex-171

tinction only if it survives the initial drift phase at low frequencies and becomes fixed. Following172

[12, 47], the fixation probability reads173

pfix(t0) = 1
1 + dM

∫ ∞

t0
eρ(t)dt

, (7)

where t0 is the appearance time and174

ρ(t) =
∫ ∞

t0

[
dM − bM

(
1 − ⟨NW ⟩(u)

K

)]
du . (8)

The previous equation applies to the logistic growth. To obtain the fixation probability for the175

Gompertz and Richards growths, bM must be multiplied by log(K/⟨NW ⟩) and (1−(⟨NW ⟩/K)β),176

respectively. Equation (7) shows that the fixation probability of the mutant in our eco-177

evolutionary model depends on its appearance time (see figure S4). In contrast, the fixation178

probability is constant for fixed and infinite population sizes in a constant environment.179

In our model with fluctuating selection coefficients, a mutant is more likely to fix in the180

harsh phase than in the favorable phase since dW /bW,F > dW /bW,H . If the harsh environment181

fully prevents the reproduction of wild-type individuals, the fixation probability of a mutant is182

maximal just before the beginning of the harsh phase [47, 48, 49].183

Since environmental fluctuations lead to varying birth rates, the number of mutants that184

appear per unit of time is not constant. We calculate the probability that a mutant appears185

and fixes between 0 and t given that none has done so before as paf(t) = 1 − e−Σ(t) [47], where186

Σ(t) = µ
∫ t

0
pfix(s)bW (s)

(
1 − ⟨NW ⟩(s)

K

)
⟨NW ⟩(s)ds . (9)

Here, the wild-type birth rate depends on time because of the assumed environmental fluctua-187

tions. Taking the limit t → ∞ of paf(t) yields the rescue probability pr. Note that equation (9)188

applies to the logistic growth model. To adjust equation (9) for the Gompertz and Richards189

growths, bW (s) must be multiplied by log(K/⟨NW ⟩) and (1 − (⟨NW ⟩/K)β), respectively.190

Data availability. Simulations were performed with C (version gcc-9) and Matlab (ver-191

sion R2021a). All annotated code to repeat the simulations and visualizations is available at192

https://github.com/LcMrc and will be deposited on Zenodo upon acceptance of the paper.193

3 Heuristic analysis194

Two different extinction mechanisms contribute to failed evolutionary rescue. En-195

vironmental fluctuations decrease the persistence time of a population if they induce paths to196

extinction. In the harsh environment, the population declines because the death rate exceeds197
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the birth rate. If the harsh phase duration τ is longer than the survival time τ0,H , the pop-198

ulation goes extinct. The survival time in the harsh environment is stochastic and extinction199

occurs with probability p0,H =
∫∞

0 Fτ (t)PH(0, t|N∗
W )dt (see equation (2)).200

A second path to extinction exists in the favorable environment. If the population survives201

the previous harsh phase, it possibly starts the new favorable phase with few individuals. Small202

initial population sizes lead to strong demographic noise that may drive the population to ex-203

tinction with probability p0,F = ∑N∗
W

NW =1(
∫∞

0 Fτ (t)PH(NW , t|N∗
W )dt)P ∞

F (0|NW )/(
∫∞

0 Fτ (t)PH(0, t|N∗
W )dt)204

[39]. An example of each extinction mechanism is shown in Fig S5. The proportion of extinc-205

tions occurring in the favorable phase, which is given by ωF ≈ p0,F /(p0,F + p0,H), is expected to206

decrease with increasing phase duration. The longer the harsh phase, the more certain it drives207

the population to extinction. Conversely, short harsh phases do not drive the population to208

extinction but, in some cases, decrease the population size enough to lead to rapid extinction209

in the next favorable phase.210

Stochastic environmental switches can increase or decrease the rescue probabil-211

ity. As explained before, the fate of the population depends on how the survival time of the212

wild-type in the harsh environment compares to the phase duration. If the environmental fluc-213

tuations are deterministic and the mean phase duration is shorter than the mean survival time214

in the harsh environment (i.e., τ < τ0,H), the harsh phase is too short to drive the population215

to extinction. However, if the environmental fluctuations are stochastic, some harsh phases216

are longer than average, which favors extinction and decreases the total extinction time and217

the rescue probability. If the environmental fluctuations are deterministic and the mean phase218

duration is longer than the mean survival time in the harsh environment (i.e., τ0,H < τ), the219

harsh phase is long enough to drive the population to extinction. However, if the environmental220

fluctuations are stochastic, some harsh phases are shorter than average, which favors popula-221

tion survival and increases the total extinction time and the rescue probability. In summary,222

no matter whether the environmental fluctuations are deterministic or stochastic, the total223

extinction time and the probability of rescue decrease as the phase duration increases. How-224

ever, for a mean phase duration shorter than the mean survival time in the harsh environment225

(i.e., τ < τ0,H), the stronger the environmental stochasticity, the lower the total extinction and226

the rescue probability. The opposite is valid for a mean phase duration longer than the mean227

survival time in the harsh environment (i.e., τ0,H < τ).228

Small birth rates in the harsh environment leave rescue probabilities almost un-229

changed. The harsh environment induces a wild-type birth rate lower than the death rate.230

Specifically, a perfectly harsh environment fully prevents births, whereas an imperfectly harsh231

environment allows for a small number of births during the harsh phase. As long as the232

birth rate in the harsh environment is much lower than the death rate (i.e., dW /bW,H ≫ 1;233

e.g., dW /bW,H = 10), the population is driven to extinction on a time scale equal to τ0,H ≈234

log(N∗
W )/dW (see figure S6). Thus, the mean total extinction time should not significantly dif-235

fer between perfectly and imperfectly harsh environments that satisfy dW /bW,H ≫ 1. However,236

bW,H may impact the rescue probability as it determines how many births occur and how many237

mutants appear. Specifically, there are Nbirth ≈ bW,HN∗
W (2K − N∗

W )/(2dW K) births in each238

harsh phase, and the probability that at least one mutant appears is given by 1 − (1 − µ)Nbirth239

(see figure S7). Thus, the larger the birth rate bW,H and the mutation probability µ, the more240

mutants appear in the harsh environment. However, if the death rate to birth rate ratio satisfies241

dW /bW,H ≫ 1, the number of births in the harsh environment is expected to be very small, and242

the number of mutants that appear is much smaller. Therefore, the rescue probability in an243

imperfectly harsh environment is likely similar to that in a perfectly harsh environment.244
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Rescue probability depends on population growth types. In addition to studying245

evolutionary rescue under the logistic growth, we also present results for the Gompertz and246

Richards growths. Each of these growth types has a different equilibrium size N∗
W and growth247

rate, which affect the total extinction time and the rescue probability. First, the larger the248

equilibrium size, the longer it takes for the population to go extinct in the harsh environment249

since τ0,H ≈ log(N∗
W )/dW . Thus, the probability p0,H of extinction in a harsh environment250

at a given phase duration τ decreases as the equilibrium size increases. Second, the faster251

the growth, the lower the demographic stochasticity. The probability of rapid extinction p0,F252

of a population with initial size NW,0 is very small compared to its equilibrium size, which253

is given by (dW /bW,F )NW,0 for the logistic and Richards growths and (dW /(bW,F log(K)))NW,0254

for the Gompertz growth. Thus, the probability of extinction p0,F for a given phase duration255

decreases for populations with a higher growth rate. An increased total extinction time leaves256

more opportunities for mutants to appear and become fixed. Moreover, a larger growth rate257

results in more births, resulting in more mutants and, therefore, a higher rescue probability.258

As a result, growth according to the Gompertz and Richards growths with β > 1 is likely to259

favor evolutionary rescue over the logistic and Richards growths with β < 1 (see figure 1a).260

4 Formal analysis261

Extinction time. From the extinction probabilities, namely p0,F and p0,H (see Model and262

methods), we compute the probability PqF
that the population undergoes qF favorable phases263

before it goes extinct as264

PqF
(k) = (1 − p0,H)k(1 − p0,F )k(p0,H + (1 − p0,H)p0,F ) . (10)

The favorable phases in which a rapid extinction occurs are excluded from this count because265

we focus on the favorable phases in which a mutant is most likely to appear. We obtain the266

mean number of favorable phases before extinction by calculating ⟨qF ⟩ = ∑∞
k=0 k × PqF

(k),267

which yields268

⟨qF ⟩ = −1 + p0,H + p0,F − p0,H × p0,F

−p0,H − p0,F + p0,H × p0,F

. (11)

Equation (11) shows that both extinction mechanisms (extinction in the harsh phase vs. ex-269

tinction due to low numbers at the beginning of the favorable phase) are important in assessing270

population persistence. The probabilities p0,F and p0,H increase as the phase duration increases271

(see figure S8a-b), reducing ⟨qF ⟩. Specifically, the probability of extinction in the harsh envi-272

ronment ranges from 0 to 1 (i.e., 0 < p0,H < 1) since short phases do not leave enough time for273

the population to go extinct. In contrast, long phases surely drive it to extinction before the274

next environmental change. The probability of extinction in the favorable environment ranges275

from 0 to dW /bW,H (i.e., 0 < p0,F < dW /bW,H), where dW /bW,H is equal to the probability that276

a population starting with one individual rapidly goes to extinction. Using equation (11) and277

the proportion ωF of extinction in the favorable environment (i.e., ωF ≈ p0,F /(p0,F + p0,H)), we278

derive the mean total extinction time as279

T0 = 2⟨qF ⟩τ + (1 − ωF )τ0,H + ωF τ0,F . (12)

Independent of whether extinction occurs in the favorable or harsh environment, the population280

persists during ⟨qF ⟩ epochs of a mean duration τ plus the mean survival time in the favorable281

(respectively harsh) environment, given that the population goes extinct, weighted by the282

probability that extinction occurs in the favorable (respectively harsh) environment. The mean283

total extinction time ranges from τ0,H to T̃0 (i.e., τ0,H ≤ T0 ≤ T̃0), where the mean survival284

time τ0,H in the harsh environment is obtained for very long phase durations. In contrast,285
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Figure 2: Extinction time decreases as phase duration increases. Mean extinction
time versus phase duration. Panel (a) compares deterministic and stochastic switches for the
logistic model, panel (b) compares different population growth models, and panel (c) compares a
perfectly harsh environment to imperfectly harsh environments for the logistic model. The solid
lines represent analytical predictions, and the points simulated data averaged over 104 stochastic
realizations. The error bars correspond to the 95% confidence intervals. Vertical dotted lines
represent the mean survival time in the harsh environment. Parameter values: wild-type birth
rate in favorable environment bW,F = 1, wild-type birth rate in harsh environment bW,H = 0 (in
a and b), wild-type death rate dW = 0.1, carrying capacity K = 100, and equilibrium wild-type
population size N∗

W = 90.

the mean extinction time T̃0 in an effectively constant environment is obtained for very short286

phase durations. The proportion ωF of extinction in the favorable environment decreases as287

the phase duration increases (see figure S8c), reducing T0. If the ratio of death rate to birth288

rate in the favorable environment is much smaller than unity (i.e., dW ≪ bW,F ), we can assume289

that rapid extinction in the favorable environment occurs only if the population starts with290

a single individual, hence τ0,F ≈ 1/dW . The extinction time τ0,H in the harsh environment291

is then approximately equal to log(N∗
W )/dW if τ > τ0,H , or to τ otherwise. Our analytical292

predictions accurately predict the simulated data (see figure 2; see also figure S9 for ⟨qF ⟩). As293

reported in figure 2a), the greater the environmental stochasticity (i.e., the larger the standard294

deviation σ), the smaller the mean total extinction time T0. Even small values of the standard295

deviation of environmental stochasticity σ dramatically affect population persistence. The mean296

total extinction time for deterministic and stochastic fluctuations intersect around the mean297

survival time in the harsh environment. Beyond this time, the population persists longer in an298
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environment with highly stochastic fluctuations, but the difference to the result for deterministic299

fluctuations becomes much smaller. As described by Jensen’s theorem [50], as soon as the mean300

total extinction time with deterministic fluctuations resembles a convex function, addition of301

stochasticity reduces this convexity. As reported in figure 2b), populations growing under a302

growth type with a larger equilibrium size and growth rate have an increased extinction time.303

This difference fades as the phase duration increases since extinction occurs mainly in the harsh304

environment, where the extinction probability is independent of the growth type. Finally, figure305

2c) shows that for any ratio dW /bW,H much greater than unity, the mean total extinction time is306

equal because the probability of extinction in the harsh environment is the same as if bW,H = 0.307

Note that the maximum population size scales the window of phase durations that lead to non-308

trivial rescue probabilities (i.e., τ ∼ τ0,H so that 0 < pr < 1). Specifically, the mean survival309

time in the harsh environment is given by τ0,H ≈ log(N∗
W )/dW . In contrast, its variance is310

approximately equal to 1/d2
w (both quantities can be derived from equation 2). We present311

additional results for different maximum population sizes as a function of τ/τ0,H in figure S10.312

Rescue probability. Using the mean number ⟨qF ⟩ of favorable phases that the population313

undergoes, we calculate the probability that a generalist mutant (i.e., one not affected by314

environmental fluctuations) appears and takes over the population before extinction occurs.315

We obtain316

pr =
∫ ∞

0
FT0(t)paf(t)dt , (13)

where FT0 is the probability density function of the total extinction time. Equation (13) is317

simplified by separating the contribution of the favorable and harsh environments. Either the318

mutant appears in the favorable environment while the population is growing or in the harsh319

environment if the division is not fully hindered. Thus, the rescue probability pr reads320

pr =
∞∑

k=0
PqF

(k)(1 − e−(k+1)ΣH−kΣF ) , (14)

where321

ΣH = µbW,H

∫ τ

0
⟨NW ⟩H(t)(1 − ⟨NW ⟩H(t)/K)pfix(t)dt , (15)

and322

ΣF = µbW,F

∫ τ

0
⟨NW ⟩F (t)(1 − ⟨NW ⟩F (t)/K)pfix(t + τ)dt . (16)

Our analytical predictions match the simulated data very well (see figure 3). In particular,323

figure 3a) shows that equation (14) is valid from the rare to the frequent mutation regime.324

All panels highlight the transition from the regime of fast fluctuations, in which pr ≈ 1, to325

slow fluctuations, in which pr ≈ 0. This transition is more abrupt for rare mutations than for326

frequent mutations. The more mutants there are, the more likely one mutant becomes fixed327

and rescues the population before extinction, hence the higher rescue probability at a given328

phase duration. As reported in figure 3b), environmental stochasticity decreases the chances of329

evolutionary rescue because it also decreases the mean total extinction time. Population growth330

types with the highest growth rates and equilibrium sizes have the highest rescue probabilities331

at a given phase duration because they lead to more mutant appearances per unit of time332

(see figure 3c). As shown in figure 3d), a harsh environment that does not fully prevent the333

reproduction of individuals leaves more opportunities for mutants to appear, resulting in a334

higher rescue probability.335

The rescue probability is independent of the carrying capacity K at a given normalized336

phase duration τ/τ0,H if the mutational influx Kµ is constant (see figure S11). The carrying337

capacity value determines the phase duration window in which the rescue probability transitions338

from 1 to 0 through the mean survival time in harsh environment. The product Kµ determines339

the number of mutants that appear per unit of time.340
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Figure 3: Rescue probability decreases as phase duration increases. Rescue probability
versus phase duration. Panel (a) compares different mutation rates, panel (b) deterministic and
stochastic switches for the logistic growth, panel (c) different population growth types, and
panel (d) a perfectly vs. imperfectly harsh environment for the logistic growth. The solid lines
represent analytical predictions, and the points simulated data averaged over 104 stochastic
realizations. The error bars correspond to the 95% confidence intervals. Vertical dotted lines
represent the mean survival time in the harsh environment. Parameter values: wild-type birth
rate in favorable environment bW,F = 1, wild-type birth rate in harsh environment bW,H = 0
(in a, b and c), wild-type death rate dW = 0.1, mutant birth rate bM = 1, mutant death rate
dM = 0.1, carrying capacity K = 100, mutation rate µ = 10−3 (in b, c, and d) and equilibrium
wild-type population size N∗

W = 90.

Appearance time. We derive the average appearance time τaf of a mutant that fixes, given341

that the population is rescued, as342

τaf = (2⟨qaf,F ⟩ − 1)τ + taf . (17)

The mean number ⟨qaf,F ⟩ of favorable phases that occur before a mutant appears and fixes,343

given that the population is rescued, is given by344

⟨qaf,F ⟩ =
+∞∑
k=0

PqF
(k)

k∑
q=0

qe−(q−1)ΣF (1 − e−ΣF )/pr , (18)

and taf is the mean appearance time of a mutant that becomes fixed in the favorable environ-345

ment. Since the mean total extinction time and rescue probability are similar for dW /bW,H ≫ 1346
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Figure 4: The higher the mutation rate and phase duration, the earlier the rescue
mutant appears. Mean appearance time of a mutant that rescues the population versus phase
duration. Panel (a) compares different mutation rates and panel (b) deterministic and stochastic
fluctuations for the logistic growth. The solid lines represent analytical predictions, and the
points simulated data averaged over 104 stochastic realizations. The error bars correspond to
the 95% confidence intervals. Vertical dotted lines represent the mean survival time in the
harsh environment. Parameter values: wild-type birth rate in favorable environment bW,F = 1,
wild-type birth rate in harsh environment bW,H = 0, wild-type death rate dW = 0.1, mutant
birth rate bM = 1, mutant death rate dM = 0.1, carrying capacity K = 100, mutation rate
µ = 10−3 (in b) and equilibrium wild-type population size N∗

W = 90.

(see figures 2 and 3), we assume that a mutant is unlikely to emerge in the harsh environment.347

In the moderate to frequent mutation regime and regardless of phase duration, the mutant that348

rescues the population appears during the first favorable phase (see figures 4 and S12). Then349

τaf increases as τ increases. If mutations are rare, the number of favorable phases before a350

rescue mutant appears decreases as the phase duration increases. More precisely, ⟨qaf,F ⟩ con-351

verges to unity when the phase duration is longer than the survival time in the harsh phase.352

The population goes extinct quickly for such a phase duration, so the mutant must appear in353

the first favorable phases. Our results confirm previous observations that the mutant rescue354

the population from extinction tends to appear just before an environmental change from the355

favorable to the harsh state [47, 48, 49].356

5 Discussion357

Whether it is microbes subjected to varying antimicrobial concentrations or animal species358

caught up in climate change, populations experience environmental changes threatening their359

survival. Determining whether populations adapt or perish is a fundamental question in many360

fields, from antimicrobial resistance to conservation biology. In this paper, we develop a minimal361

model to address evolutionary rescue in a fluctuating environment. We fully analyze our model362

using analytical and numerical tools from stochastic processes. Specifically, we derive equations363

for the extinction time, the rescue probability, and the appearance time of a rescue mutant and364

validate them with numerical simulations.365

Stochastic environmental fluctuations accelerate extinction and hinder evolution-366

ary rescue compared to deterministic fluctuations. Our study quantifies the probability367

of evolutionary rescue of a population evolving in an environment that fluctuates, either de-368
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terministically or stochastically, between a harsh state (i.e., causing a population decline) and369

a favorable state (i.e., allowing population growth). We show that environmental and survival370

time scales determine whether stochastic environmental fluctuations favor evolutionary rescue371

compared to deterministic ones. Specifically, we prove that stochastic environmental fluctu-372

ations with a mean phase duration shorter than the survival time in the harsh environment373

dramatically decrease the mean total extinction time, the rescue probability, and the mean374

appearance time of a rescue mutant. Although the mean phase duration is shorter than the375

mean survival time, environmental stochasticity leads to longer than average phases and thus376

may facilitate extinction. Conversely, stochastic environmental fluctuations with a mean phase377

duration that is longer than the mean survival time of the population in the harsh environment378

very slightly increase the mean total extinction time and the rescue probability but do not379

significantly affect the mean appearance time of a rescue mutant.380

Relating our results to a public health perspective, our model may represent treatment381

with biostatic drugs, which inhibit microbial division. Under this scenario, we evaluate the382

risk of antimicrobial resistance evolution by de novo mutations during therapy [8, 51]. Similar383

to previous theoretical work [47], we show that variation in antimicrobial concentration plays384

a role in the evolution of resistance. For example, we find that deterministic rapid variations385

favor the evolution of resistance over a constant environment. We extend [47] by showing that386

rapid random environmental switches of the drug concentration decrease the risk of resistance387

evolution. Furthermore, our analytical prediction for the probability of evolutionary rescue388

is valid across the regimes of fast to slow environmental fluctuations, which complements the389

work of [47], whose analytical results have been derived in the limit of extremely fast or slow390

fluctuation regimes.391

Long-term therapies involving multiple dosing are subject to imperfect adherence to treat-392

ment, i.e., patients often fail to follow the exact treatment plan [52, 53, 54]. With this in mind,393

dose missing was theoretically investigated in [21], which showed that non-adherence allows394

resistant strains to grow. In our model, stochastic fluctuations may result from another form of395

imperfect adherence: doses taken at irregular intervals. Surprisingly, our model suggests that396

a biostatic antimicrobial treatment taken at irregular intervals may hinder resistance evolution397

rather than accelerate it.398

In summary, our theoretical work can inform the design of drug treatments that prevent399

the evolution of resistance by choosing the best type of antimicrobial and the time interval400

between each dose. A possible extension would be to compare two types of antimicrobial,401

namely biostatic (i.e., hindering microbial division) and biocidal (i.e., killing microbes) [17, 19],402

by including environment-dependent death rates. We expect that biocidal drugs accelerate403

extinction compared to biostatic drugs while at the same time promoting evolutionary rescue.404

That is because since biocidal drugs do not prevent cell division, more mutants appear, which405

increases the probability of evolutionary rescue.406

High equilibrium population sizes and growth rates slow down extinction and fa-407

vor evolutionary rescue. Our model includes an explicit link between ecology, evolution,408

and demography: environmental fluctuations impact the wild-type birth rate, affecting the409

population size and the selective advantage of the mutant. Thus, our work does not rely on410

the common assumption that ecology and evolution are uncoupled when studying the genet-411

ics of adaptation [55]. This assumption was already relieved in theoretical studies that have412

analytically predicted adaptation in a fluctuating environment inducing changes in either pop-413

ulation size or selection coefficient, but not both together [12, 14, 38]. The analysis of our414

eco-evolutionary model shows that the underlying growth type (i.e., the underlying growth415

model) plays an essential role in the population’s fate. Specifically, we show that growth types416

with larger equilibrium sizes lengthen the mean survival time of the population in the harsh417
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environment, and growth types with higher growth rates decrease the probability of rapid ex-418

tinction in the favorable environment. As a result, large equilibrium sizes and high growth419

rates make the population persist longer and therefore favor evolutionary rescue.420

Many mathematical growth models have been developed to describe population demography,421

from the microscopic to the macroscopic scale [40]. Mathematical growth models allow, among422

other things, the fitting of population dynamics data [56]. However, to date, there is no423

universal model that best describes any data set [41]. Our work highlights that it is crucial424

to correctly infer the growth type from empirical data when assessing the persistence of a425

population undergoing environmental change. Although we focused on haploid populations,426

our purely ecological results, such as extinction time, apply to diploid populations. Specifically,427

our model can contribute to conservation biology by guiding natural population management.428

For example, the birds’ breeding season was shown to be impacted by climate change, resulting429

in stochasticity in its duration [57]. Our model, combined with an inference of the growth type430

of bird populations, could allow for predictions of the risk of extinction of such populations.431

Possible extensions to our model carry the potential for additional applications in conser-432

vation biology. For example, by introducing environment-dependent death rates, we may be433

able to identify harvesting periods that should be respected to avoid the extinction of animal434

populations [58]. Here, environmental fluctuations that increase the death rate may represent435

fishing or hunting of animal species at specific periods of the year. Our model suggests that436

stochastically varying fishing and hunting seasons may decrease population persistence and437

accelerate extinction for purely population-dynamic reasons.438

No significant differences in the impact of an imperfectly harsh environment on439

evolutionary rescue compared to a perfectly harsh environment. Our model com-440

pares the impact of a perfectly harsh environment (i.e., one that fully prevents births) to a441

perfectly harsh environment (i.e., one that does not fully prevent births) on evolutionary res-442

cue. We show no significant differences between the two harshness levels, especially for death443

rates much larger than birth rates. Specifically, we prove that the mean survival time, and444

thus the mean total extinction time, is similar for both perfectly and imperfectly harsh envi-445

ronments. Although some births may occur in the imperfectly harsh environment, a mutant446

appearance during this phase is unlikely. Thus, an imperfectly harsh environment does not447

significantly favor evolutionary rescue compared to a perfectly harsh one.448

This result means that our analytical results apply to an extensive range of scenarios where449

populations are exposed to an environment that successively causes their decline and growth.450

In particular, our analytical predictions for the perfectly harsh case are a good approximation451

for the case where the environment does not fully prevent reproduction, which is likely to be452

the case in nature. In the perfectly harsh case, we emphasize that our analytical predictions453

are explicit and exact. They do not rely on a deterministic or diffusion approximation that has454

been shown to poorly describe extreme events such as extinctions [39], although widely used in455

population genetics [10].456

In summary, the randomness of environmental fluctuations is essential to consider when457

quantifying the persistence of a population, as is its growth type. Conversely, the harshness of458

the environment does not significantly impact the persistence of the population as long as it459

induces its decline.460
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