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Abstract

Efficient tapping into genomic information from a single microscopic image of an intact DNA molecule
fragment is an outstanding challenge and its solution will open new frontiers in molecular diagnostics.
Here, a new computational method for optical genome mapping utilizing Deep Learning is presented,
termed DeepOM. Utilization of a Convolutional Neural Network (CNN), trained on simulated images of
labeled DNA molecules, improves the success rate in alignment of DNA images to genomic references.
The method is evaluated on acquired images of human DNA molecules stretched in nano-channels. The
accuracy of the method is benchmarked against state-of-the-art commercial software Bionano Solve. The
results show a significant advantage in alignment success rate for molecules shorter than 50 kb. DeepOM
improves yield, sensitivity and throughput of optical genome mapping experiments in applications of
human genomics and microbiology.

1 Introduction

Optical genome mapping (OGM) of DNA [1, 2, 3] involves the imaging of labeled DNA molecules and their
alignment to reference genome sequences. Consequently, the resulting best-matching alignment reports on
the exact position of this molecule fragment in one of the organism’s chromosomes. This information enables
multiple applications in molecular diagnostics and in genomic research.

Example applications of OGM include species identification [4, 5, 6, 7] for applications such as pathogen
identification in clinical samples, as well as genome-wide mapping of effects such as: DNA damage [8],
methylation [9], and structural variations [10]. OGM holds several advantages compared to DNA sequencing;
for one, it produces extremely long reads of potentially megabase size, which are necessary for mapping large-
scale structural and copy number variations in the genome. Additionally, as a single-molecule technique, it
holds the potential for extremely high sensitivity, i.e. detection of low quantities of target DNA [11], which
is necessary in applications such as cultivation-free pathogen identification [7].

Given an image of a DNA molecule labeled at a specific sequence motif, multiple computational ap-
proaches have been proposed for its alignment to a reference genome sequence. If the labelling is sparse
enough so that individual fluorescent labels can be separated, the positions of the labels are determined
using standard localization techniques, such as emitter centroid fitting [12]. Then, Dynamic Programming
algorithms [13] are employed to align the label positions to the expected positions of the labeled motif in a
reference genome sequence. When the labeled motif is dense in the genome and does not allow for separation
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of individual labels, a different approach was used [4, 5, 6, 7], in which the intensity profile along the imaged
molecule is aligned by cross-correlation to the theoretical intensity profile expected from the density of the
labeled motif in the reference genome.

The accuracy of OGM can be defined as the expected fraction of imaged molecules that are aligned
with high confidence to the reference genome. This accuracy is extremely important for applications where
target DNA quantity in the sample is limited, such as cultivation-free pathogen identification [7], or where
maximal coverage of the genome is required per mapping experiment, such as in rare variant detection [14]
or epigenetic mapping [15, 16]. The current computational approaches are limited in accuracy, since they
are unable to extract all the available information from the image of the DNA molecule. Specifically, when
emitters are overlapping inside a diffraction-limited spot, classic approaches usually cannot separate them.

In this study, in order to maximise the information extracted from the molecule image, a Deep Learning
approach is presented. Convolutional Neural Networks (CNN) were previously shown to become the state-
of-the-art for Single Molecule Localization Microscopy (SMLM) [17, 18, 19]. Here, a similar approach is
applied to OGM, and its advantage is demonstrated on images of sparsely-labeled DNA molecules stretched in
nanochannels. The alignment accuracy of the presented method DeepOM is compared against the commercial
Bionano Solve software which localizes sparse emitters, neglecting their diffraction-limited image overlap. In
contrast, the localization neural network of DeepOM enables the separation of multiple fluorescent emitters
that are within a diffraction limited spot. Since the probability for wrong alignment of optical maps, as was
theoretically shown, depends exponentially on the number of localized labels in the query molecule [20], the
detection of more labels per kilobase of DNA by DeepOM, results in a significantly higher alignment success
rate.

2 Materials and Methods

2.1 The DeepOM Method

The DeepOM alignment of a DNA molecule to a reference genome sequence starts from query images of
molecules fluorescently labeled at specific motifs (Figure 1). The motif CTTAAG (referred to as DLE-1
by Bionano Genomics) was labeled in this study. In each molecule image, the labels are localized by a
localization neural network, resulting in a query map of 1-D pixel positions of labels along the length of the
molecule. A reference map is the sequence of base-pair positions of the labeled motif in a reference genome
sequence. The resulting query map is aligned to the reference map with the dynamic programming alignment
algorithm presented below.

Localization Neural Network A localization neural net model was trained following DeepStorm [17],
DeepStorm3D [18], and DECODE [19], where the models are trained in a supervised manner on simulated
images from randomly generated ground-truth emitter positions, derived using an optical forward model.
Here, a 2-D Gaussian point-spread function (PSF) was used for the optical forward model, and emitter
positions were confined to a straight line segment (Figure 2). Following DECODE [19], and DeepStorm [17],
a U-Net [21] was used, but with 1-D convolutional layers instead of 2-D convolutional layers. The input image
to the network, which is usually on the order of 5 pixels wide and an order of 100 pixels long, was regarded
as a 1-D image with the width (or lateral) dimension regarded as neural network channels dimension. The
last layer of the U-Net was modified to output two 1-D vectors, which correspond to two output numbers per
1-D pixel: (a) Occupancy probability, i.e. the probability for having an emitter in a pixel, and (b) relative
position of the emitter inside the pixel, if the pixel contains an emitter. This is valid assuming there is at
most one emitter per pixel, which is a good approximation for most datasets of interest, including the one
presented here. For the two neural network output numbers defined above, the loss L is computed as a sum
of two loss terms: the occupancy loss Locc, and the localization loss Lloc,

L(Ω, Ω̂,Λ, Λ̂) = Locc(Ω, Ω̂) + Ω̂Lloc(Λ, Λ̂) (1)
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Figure 1: Optical genome mapping using DeepOM. DNA molecules are fluorescently labeled at specific sequence
motifs, CTTAAG in this study. Then, they are stretched in nano-channels and imaged in a microscope. The images
are analyzed by the DeepOM software, and each molecule is aligned to its top matching position in one of the reference
genome sequences.

where Ωi is the predicted probability for having an emitter in a pixel i; Ω̂i is the ground-truth emitter
existence in the pixel, equal to 1 if an emitter is in a pixel and 0 otherwise; Λi is the relative position of an
emitter inside the pixel ranging from 0 for the left pixel edge to 1 for the right pixel edge. This position has a
meaningful value only in the pixels containing emitters, so the localization loss Lloc is masked with Ω̂ in the
equation; Λ̂i is the ground-truth relative position of an emitter inside the pixel computed from ground-truth
emitter positions, which are known in the simulated data. The loss terms themselves were computed as,

Locc(Ω, Ω̂) = Ldice(Ω, Ω̂) +
∑
i

Lbce(Ωi, Ω̂i) (2)

Lloc(Λ, Λ̂) =
∑
i

Lbce(Λi, Λ̂i) (3)

where the i-summation is over the 1-D pixel indices along the length of the molecule image, and with
Dice-Loss [22] Ldice and Binary-Cross-Entropy Lbce defined as,

Ldice(Ω, Ω̂) = 1−
10−5 + 2

∑
i ΩiΩ̂i

10−5 +
∑

i Ωi +
∑

i Ω̂i

(4)

Lbce(x, y) = −x log(y)− (1− x) log(1− y) (5)

In each gradient descent training step, the model was presented with a batch of randomly generated DNA
molecule images, and the loss was computed as described above using the ground truth positions of emitters
in the molecule (Figure 2). Training was done for 10000 steps with a 256 batch size.
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Figure 2: Simulated DNA molecule used for localizer neural net training. Ground-truth label positions
(green) and the predicted localizations by the neural net (blue) are shown. Random generated emitter positions were
confined to a straight line segment, convolved with a 2-D Gaussian point-spread function (PSF), and noise was added
to the image.

Alignment algorithm The algorithm by Valouev et al. [13] was implemented to align the localized labels
in a DNA molecule to the reference genome. An alignment of a DNA query molecule and a reference genome
sequence is a set of labeled position pairs from the query and reference. The implementation of the algorithm
computes the following Dynamic Programming recurrence equation for the alignment score matrix Si,j ,

Si,j = 1 + max
i−δ≤g<i
j−δ≤h<j

{
Sg,h+

−α−1||ri−rg|−|qi−qg||+
−β−1|i−g−1+j−h−1|+

}
(6)

Then, the alignment is traversed back starting from the maximal cell value in the score matrix. ri is the
reference positions vector indexed by the integers i or g, and qj is the query positions vector indexed by the
integers j or h. The query vector q = sx is obtained by converting the pixel value x of localized emitters
to basepairs through a conversion scale factor s = 335 bp

pixel . δ = 5 is the allowed margin for missing labels
in query or reference, α = 500 is the penalty factor for localization error, β = 10 is the penalty factor for a
missing label in the alignment. Si,j is the score of the top scoring alignment of ri and qj ending in indices
i, j.

2.2 Sample preparation and imaging

Cell culture U2OS (human OS) cell line was cultured in Dulbecco’s Modified Eagle medium, supplemented
with 10% fetal bovine serum (Gibco, Amarillo, TX), 2 mM l-glutamine, and 1% penicillin-streptomycin
(10,000 U/mL; Gibco) and incubated at 37°C with 5% CO2.

DNA extraction DNA was extracted from 106 cells using the Bionano Prep Cell Culture DNA Isolation
Protocol according to manufacturer’s instructions.

DNA labeling 1 µg of DNA was directly labeled and stained using DLS labeling kit (Bionano Genomics)
composed of a single enzymatic labeling reaction with DLE-1 enzyme followed by DNA staining with a
fluorescent marker. 1 µg of DNA was mixed with 6 µl of 5x DLE-buffer, 2 µl of 20x DL-Green and 2 µl of
DLE-1 enzyme (Bionano Genomics) in a total reaction volume of 30 µl and incubated for 2 hours at 37°C.

DNA imaging DNA image data was generated on the Saphyr instrument (Bionano Genomics) with
Saphyr chips (G1.2). The chip was loaded as recommended by Bionano Genomics.

3 Results and Discussion

The accuracy of DeepOM’s alignments was evaluated on images (Figure 3) produced from the Bionano
Genomics Saphyr system described in the Materials and Methods section. The reference genome used for
alignments is the reference human genome GRCh38 [24]. The ground-truth for alignments was generated
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Figure 3: Experimentally imaged DNA molecules and their alignment to the human genome. (a)
Zoomed-in field-of-view of an image captured in the Bionano Saphyr system. DNA molecules are stretched here in
nano-channels of the Bionano Chip. (b) Zoomed-in view to a 500kb molecule from the field-of-view image (sub-figure
a). This molecule is used as a ground-truth for alignment of its cropped sub-fragments. Cropped sub-fragment
(white dashed rectangle), zoomed-in in sub-figure c. The reference genome labeled motif (CTTAAG) sites are shown
(green), in relative offset to human genome coordinates shown on the x-axis. The alignment of the molecule to
the reference was done both by Bionano Solve and DeepOM, and the resulting genome coordinates were practically
identical. (c) An example cropped fragment used for the alignment success rate comparison. Shown are Bionano
Solve localizations (red), DeepOM localizations (blue). The reference sites (green) genome coordinates of the parent
molecule are used as a ground-truth for the evaluation of the success of this fragment’s alignment. The advantage of
DeepOM is manifested here, where pairs of tightly spaced labeled motifs are separated by the neural net, while the
classical localization approach (red) detects only one label at the diffraction limited spot. This in turn, leads to more
confident and accurate alignments with higher success rates.

as follows. All molecules longer than 450 kb were taken from the imaged data, and aligned to the reference
genome with the Bionano Solve software. Out of those, the top 512 molecules were chosen by their Bionano
alignment confidence score (see Bionano documentation [25]). Each chosen long molecule image was digitally
cropped [26] into random short fragments (Figure 3). Since each cropped fragment’s position is known within
the parent molecule, its aligned position can be regarded as a ground-truth for the purpose of the alignment
accuracy evaluation. Each cropped fragment image is fed into the DeepOM pipeline and aligned to the
reference genome, then if the alignment matches the ground-truth it is counted as correct.

To make the comparison to the Bionano Solve software, cropping of the long molecules was done digitally
by manipulation of the Bionano BNX output files (see documentation [25]) produced from the imaging
experiment. The BNX file contains a localization list for the emitters in each molecule, and the molecules’
coordinates in the captured field-of-view image. In order to generate the cropped fragments in the BNX
file, labels were deleted from the localization list according to the cropped fragments (Figure 3). First,
we demonstrate the effectiveness of dense localization by the neural net, compared to standard, sparse
localization, which discards closely spaced emitters. To do so, the localization list for each cropped molecule
was aligned to the reference using the DeepOM alignment algorithm (Materials and Methods), and the
success rate is shown in Figure 4a, presenting the comparison of the DeepOM localizer and the Bionano
localizer both using the same alignment algorithm of DeepOM.

Next, the whole DeepOM pipeline was compared vs the full Bionano localizer and aligner pipeline, on a
subset of molecules. To run the Bionano pipeline, a new BNX input file was generated containing random
crops from the chosen molecules. Then the file was fed as input to the Bionano Solve aligner. The success
rate comparison of the full pipelines is shown in Figure 4b.
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Figure 4: Accuracy evaluation of DeepOM vs Bionano Solve. The alignment success rate is shown for DeepOM
(blue) and Bionano Solve (orange) vs fragment length. The success rate for a fragment length, is defined as the fraction
of correct alignments for this length. Each success rate point was computed from 512 random cropped fragments
with a ground-truth alignment from long high-confidence aligned molecules (Figure 3). Each cropped fragment was
aligned to the reference genome and the success rate is the fraction of correct alignments, 95% confidence bounds
are shown, computed with the Clopper-Pearson interval Beta Distribution [23]. In (a) DeepOM is compared against
the localizations produced by Bionano Solve, which are aligned to the reference genome, with the DeepOM aligner.
While in (b) comparison is also against the whole Bionano Solve pipeline including the Bionano localizer and Bionano
aligner (orange dotted line).

In both comparison methods, the results in Figure 4 show more than a twofold improvement factor in
the success rate for fragments shorter than 50 kb. Notably, optimizing the alignment algorithm, together
with the localization neural net, further improves alignment success rate, as can be seen when comparing
the DeepOM aligner to the Bionano aligner, when both using the same localizer (Figure 4b).

4 Conclusions

In this study, an improved computational method for optical genome mapping was presented. A CNN
was employed to significantly improve the success rate of alignments, as compared to a state-of-the-art
non-overlapping approach. The accuracy of the presented method, DeepOM, was compared against the
state-of-the-art commercial Bionano Solve on human cell-line DNA data acquired with the Bionano Saphyr
system. The advantage of the presented method is most dominant for DNA fragments in the range 50-150kb,
where it yields up to twofold more successful alignments (Figure 4b). This is especially significant given that
the Bionano Genomics pipeline recommends filtering out molecules shorter than 150kb in order to provide
a high mapping rate. In contast, DeepOM allows exploiting the information from these shorter molecules.
DeepOM enables higher genome coverage from a given sample, enhancing the ability to detect low frequency
structural variations. The presented method may be utilized in molecular diagnostic applications such as
epigenetic profiling, and pathogen species identification, where it can significantly increase the fraction of
identified molecules, enabling higher diagnostic sensitivity.
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Juhasz, Ceyda Coruh, Nissim Arbib, Zhaohui Sunny Zhou, et al. Chemoenzymatic labeling of dna
methylation patterns for single-molecule epigenetic mapping. Nucleic acids research, 50(16):e92–e92,
2022.

[17] Elias Nehme, Lucien E Weiss, Tomer Michaeli, and Yoav Shechtman. Deep-storm: super-resolution
single-molecule microscopy by deep learning. Optica, 5(4):458–464, 2018.

[18] Elias Nehme, Daniel Freedman, Racheli Gordon, Boris Ferdman, Lucien EWeiss, Onit Alalouf, Tal Naor,
Reut Orange, Tomer Michaeli, and Yoav Shechtman. Deepstorm3d: dense 3d localization microscopy
and psf design by deep learning. Nature methods, 17(7):734–740, 2020.

[19] Artur Speiser, Lucas-Raphael Müller, Philipp Hoess, Ulf Matti, Christopher J Obara, Wesley R Legant,
Anna Kreshuk, Jakob H Macke, Jonas Ries, and Srinivas C Turaga. Deep learning enables fast and
dense single-molecule localization with high accuracy. Nature methods, 18(9):1082–1090, 2021.

[20] Thomas Anantharaman and Bud Mishra. False positives in genomic map assembly and sequence vali-
dation, 2001.

[21] Fausto Milletari, Nassir Navab, and Seyed-Ahmad Ahmadi. V-net: Fully convolutional neural networks
for volumetric medical image segmentation. In 2016 fourth international conference on 3D vision (3DV),
pages 565–571. IEEE, 2016.

[22] Carole H Sudre, Wenqi Li, Tom Vercauteren, Sebastien Ourselin, and M Jorge Cardoso. Generalised
dice overlap as a deep learning loss function for highly unbalanced segmentations. In Deep learning in
medical image analysis and multimodal learning for clinical decision support, pages 240–248. Springer,
2017.

[23] Charles J Clopper and Egon S Pearson. The use of confidence or fiducial limits illustrated in the case
of the binomial. Biometrika, 26(4):404–413, 1934.

[24] Sergey Nurk, Sergey Koren, Arang Rhie, Mikko Rautiainen, Andrey V Bzikadze, Alla Mikheenko,
Mitchell R Vollger, Nicolas Altemose, Lev Uralsky, Ariel Gershman, et al. The complete sequence of a
human genome. Science, 376(6588):44–53, 2022.

[25] Bionano documentation. https://bionanogenomics.com/support-page/

data-analysis-documentation/. Accessed: 2022-10-19.

[26] Rani Arielly and Yuval Ebenstein. Irys Extract. Bioinformatics, 34(1):134–136, 07 2017.

[27] Some figures in this paper were created with biorender.com.

8

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted November 4, 2022. ; https://doi.org/10.1101/2022.11.04.512597doi: bioRxiv preprint 

https://bionanogenomics.com/support-page/data-analysis-documentation/
https://bionanogenomics.com/support-page/data-analysis-documentation/
https://doi.org/10.1101/2022.11.04.512597

	Introduction
	Materials and Methods
	The DeepOM Method
	Sample preparation and imaging

	Results and Discussion
	Conclusions
	Acknowledgements

